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Abstract

This paper is based on the course notes given in the 13-th National Graduate Stu-
dent Summer School in Pure Mathematics at University of Science and Technology
of China in July 2008. We first discuss the spaces of continuous functions, lo-
cally analytic functions, Cr-continuous functions over Zp, and the dual spaces of
measures, distributions and tempered distributions of order r. we prove Kummer’s
congruences and use Leopoldt’s Γ-transform to construct the p-adic zeta function of
Kubota-Leopoldt. The theory of (ϕ,Γ)-modules of Fontaine is then introduced and
its connection to Iwasawa theory is explained. At last we compute the (ϕ,Γ)-module
of the p-adic representation Zp(1) and obtain its connection to Kubota-Leopoldt
zeta function.
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1 Introduction

This paper is based on the course notes given in the 13-th National Graduate Stu-
dent Summer School in Pure Mathematics at University of Science and Technology
of China in July 2008. It follows heavily the course notes “Fontaine rings and p-
adic L-functions”([C]) of Pierre Colmez at Tsinghua University in 2004 (available
at http://staff.ustc.edu.cn/∼yiouyang/).

This paper is divided into four sections. In §1, we first discuss the p-adic
Banach space C0(Zp,Qp), the space of continuous functions over Zp and prove
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the classical Mahler’s theorem. We then study its dual space D0(Zp,Qp), the
space of measures over Zp. The Amice transform Aµ of a measure µ is given, as
well as the ϕ, ψ and Galois actions of µ. We then show the map µ 7→ Aµ gives
an isometry between Banach algebras D0(Zp,Qp) and B+

Qp , a space with deep

root in the theory of (ϕ,Γ)-modules. In the same manner, we study the Frechet
space of locally analytic functions LA(Zp,Qp), and the dual spaces D(Zp,Qp) of
distributions over Zp, the Amice transform of a distribution and the actions of ϕ,
ψ and Galois on a distribution, and the isometry of D(Zp,Qp) and the Robba ring
R+. At last, we study the space Cr(Zp,Qp) of Cr-functions over Zp, and its dual
space Dr(Zp,Qp) of tempered distributions of order r.

In §2, we prove Kummer’s congruences and use Leopoldt’s Γ-transform to
construct the p-adic zeta function of Kubota-Leopoldt. In §3, we first review
Fontaine’s theory of (ϕ,Γ)-modules of p-adic Galois representations, then use the
(ϕ,Γ)-module D(V ) of a p-adic representation V to compute the Galois cohomol-
ogy of V and obtain its Euler-Poincaré formula (the theory of Herr).

In §4, we define the Iwasawa module of V , and describe it in terms of D(V ).
When V = Zp(1), we are able to do explicit computation and obtain Coleman’s
power series.
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2 Continuous functions, measures and distribu-
tions over Zp

2.1 Continuous functions on Zp

2.1.1 p-adic Banach spaces.

We first recall properties about p-adic Banach spaces.

Definition 2.1. A p-adic Banach space B is a Qp-vector space which contains a
(full) Zp-lattice B0 separated and complete for the p-adic topology, i.e.,

B = B0 ⊗Zp Qp and B0 = lim←−
n∈N

B0/pnB0.

For every x ∈ B, there exists n ∈ Z, such that x ∈ pnB0. We define the
associated valuation vB : B → Z ∪ {+∞} by

vB(x) = sup
n∈Z∪{+∞}

{n | x ∈ pnB0}. (2.1)

Then vB satisfies the following properties:

vB(x+ y) ≥ min{vB(x), vB(y)}, if x, y ∈ C; (2.2)

vB(λx) = vp(λ) + vB(x), if λ ∈ Qp and x ∈ C. (2.3)




