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The Growth of Selmer Ranks of an Abelian Variety
with Complex Multiplication

V. Kumar Murty and Yi Ouyang

Abstract: Let K be a CM field and O be its ring of integers. Let p be an
odd prime integer and p be a prime in K lying above p. Let F be a Galois
extension of K unramified over p. For an Abelian variety A defined over
F with complex multiplication by O, we study the variation of the p-ranks
of the Selmer groups in pro-p algebraic extensions. We first study the Zp-
extension case. When K is quadratic imaginary and E is an elliptic curve,
we also study the p-ranks of the Selmer groups in an unramified p-class field
tower.

1. Introduction

Let F be a number field and A an Abelian variety defined over F . The Mordell-
Weil theorem states that the group of rational points A(F ) is finitely generated.
In particular, this group has a well-defined rank:

r(A,F ) = rankZA(F ).

On the other hand, A(F ) is a divisible group. One can ask how the rank changes
as F varies over a family of fields. In particular, if we consider a tower of fields

F = F0 ⊆ F1 ⊆ · · · ⊆ Fn · · · ⊂ F,

what can be said about the sequence

r(A,Fn)?

This problem was studied by Mazur [14] in the case that the tower of fields
defines a Zp extension. Mazur developed an analogue of Iwasawa theory for this
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context. Surprisingly, it turns out that under some conditions on A and the
tower, the sequence of ranks can stay bounded.

Related to the group of rational points is the Selmer group. One can also
ask about the rank of this group (or more precisely, a p-primary component of
it) in the same tower. The work of Mazur and more recently of Coates and of
Greenberg [10] throws considerable light on this question.In particular, Greenberg
has managed to develop a theory that applies not just to Zp extensions, but to
Galois extensions whose group is p-adic analytic.

Using the techniques developed by them, we will study the growth of Selmer
ranks for Abelian varieties with complex multiplication and in certain towers
not covered by the general theory of Greenberg. In particular, consider an ellip-
tic curve E with multiplication by an order in an imaginary quadratic field K.
Suppose that E and its endomorphisms are defined over a number field F , and
consider the p-class field tower of F for certain primes p. This is a tower of fields,
each member of which is the p-Hilbert class field of the preceding member. Under
some conditions on F , it is known from the work of Golod and Shafarevich that
this class field tower is infinite. It is also known that this tower defines an infinite
Galois extension of F whose Galois group is not a p-adic analytic group, and in
particular, Greenberg’s theory does not apply. Under some hypotheses on E, we
show that the rank of the Selmer group in such a tower does not stay bounded.
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3. Selmer groups of Abelian varieties

3.1. Notations. Let Q be a fixed algebraic closure of Q. Let p be a fixed prime
number. Let F be a fixed number field. We assume F and all its algebraic
extensions appearing in this paper are contained in Q. Thus F = Q. For any
subfield L of Q, GL is defined to be Gal(Q/L). For any Galois extension L/K,
GL/K is the Galois group of L/K.

Let v be a place of F . For every place η of L above v, we define Lη to
be the union of the completions of finite subextensions of L/F at η. Write
GLη = Gal(Fv/Lη).

Let M
φ→ N be a homomorphism of abelian groups(resp. modules etc), we

denote by M [φ] the kernel of φ. If M = N , we denote by Mφ the union of all
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M [φn] for n ∈ N, i.e.,

Mφ = lim−→
n

M [φn].

3.2. A brief review of Selmer groups. We assume that L/F is an algebraic
extension of F . Let A,B be two Abelian varieties defined over F . Suppose an
isogeny

φ : A → B

is given. Then the short exact sequence

0 → kerφ → A → B → 0

gives rise to the following fundamental short exact sequence

(1) 0 → B(L)/φA(L) κ−→ H1(L, kerφ) → H1(L,A(Q))[φ] → 0

by Galois cohomology. The connecting homomorphism κ is defined as follows.
For b ∈ B(L), choose a ∈ A(Q) such that φ(a) = b, then κ(b) is the cohomological
class associated to the cocycle

κ(b)(σ) = aσ − a, ∀σ ∈ GL.

Let v be a place of F . For every place η of L above v, we get a local exact sequence
analogous to (1). If we regard GLη as a subgroup of GL, then the restriction map
from H1(L,−) to H1(Lη,−) yields the following commutative diagram:

0 −−−−→ B(L)
φA(L)

κ−−−−→ H1(L, kerφ) −−−−→ H1(L,A(F̄ ))[φ] −−−−→ 0y
y

y
0 −−−−→ B(Lη)

φA(Lη)

κη−−−−→ H1(Lη, kerφ) −−−−→ H1(Lη, A(F̄v))[φ] −−−−→ 0

The Selmer group of A over L with respect to the isogeny φ, is the group

SelA(L)[φ] =
⋂
η

ker(H1(L, kerφ) → H1(Lη, A(Fv))[φ]).

The Shafarevich-Tate group of A over L is the group

XA(L) =
⋂
η

ker(H1(L,A(F )) → H1(Lη, A(Fv)).

Easily by diagram chasing, these two groups and the Mordell-Weil group are
related by the following important fundamental exact sequence

(2) 0 → B(L)/φA(L) → SelA(L)[φ] →XA(L)[φ] → 0.
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Now assume A = B. We consider the isogenies φn for every n ≥ 1. For every
pair (n,m) such that n ≤ m, we have the following commutative diagram

0 −−−−→ A(L)
φnA(L) −−−−→ H1(L, kerφn) −−−−→ H1(L,A(F )[φn] −−−−→ 0y

y
y

0 −−−−→ A(L)
φmA(L) −−−−→ H1(L, kerφm) −−−−→ H1(L,A(F )[φm] −−−−→ 0

where the vertical maps are natural injections. Furthermore, the local analogue
of the above diagram also holds and the restriction maps are compatible with the
diagrams. Thus they induce the following diagram

0 −−−−→ A(L)
φnA(L) −−−−→ SelA(L)[φn] −−−−→ XA(L)[φn] −−−−→ 0y

y
y

0 −−−−→ A(L)
φmA(L) −−−−→ SelA(L)[φm] −−−−→ XA(L)[φm] −−−−→ 0

Taking the direct limit, one has the exact sequence

(3) 0 → lim−→
n

A(L)/φnA(L) → lim−→
n

SelA(L)[φn] → lim−→
n

XA(L)[φn] → 0.

The φ-primary part of the Selmer group SelA(L) is then defined to be

SelA(L)φ = SelA(L)[φ∞] = lim−→
n

SelA(L)[φn].

3.3. A five term exact sequence. This subsection follows Greenberg’s expo-
sition ([9]). We identify H1(Lη, A(F v))[φ∞] with

HA(Lη) =
H1(Lη, kerφ∞)

im κη
,

where the local Kummer mapping is the map

κη : lim−→
n

A(Lη)/φnA(Lη) → H1(Lη, kerφ∞).

Denote by PA(L) the product of HA(Lη) for all primes η of L. Then

SelA(L)φ = ker(H1(L, kerφ∞) → PA(L)).

Put
GA(L) = im(H1(L, kerφ∞) → PA(L)),

then one has an exact sequence

(4) 0 → SelA(L)φ → H1(L, kerφ∞) → GA(L) → 0.
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Suppose furthermore that the extension L/F is a Galois extension. Write G =
Gal(L/F ). For every intermediate field F ′ of L/F , write G(L/F ′) = Gal(L/F ′).
One has the following commutative diagram with exact rows

0 // SelA(F ′)φ
//

sL/F ′
²²

H1(F ′, kerφ∞) //

hL/F ′
²²

GA(F ′) //

gL/F ′
²²

0

0 // SelA(L)G(L/F ′)
φ

// H1(L, kerφ∞)G(L/F ′) // GA(L)G(L/F ′)

where the vertical maps sL/F ′ , hL/F ′ and gL/F ′ are natural restrictions. The
snake lemma then gives the exact sequence:

(5) 0 → ker sL/F ′ → kerhL/F ′ → ker gL/F ′ → coker sL/F ′ → cokerhL/F ′ .

This five term exact sequence is of extreme importance in our paper.

3.4. Two types of isogenies. Let us consider two types of isogenies.

(i) Let the isogeny φ be the multiplication-by-p map. Then

lim−→
n

A(L)/pnA(L) = A(L)⊗Qp/Zp

and kerφ∞ = A[p∞]. The study of the natural restriction

sL/F ′ : SelA(F ′)p −→ SelA(L)G(L/F ′)
p

is the so called control problem in the study of arithmetic of Abelian varieties.
Mazur’s famous control theorem is the following result.

Theorem 1 (Mazur). If L/F is a Zp-extension, assuming that A has good ordi-
nary reduction at all primes of F lying over p, then ker sL/F ′ and coker sL/F ′ are
finite and bounded as F ′ varies over finite extensions of F inside L.

Greenberg’s exposition [9] formulated a general plan to attack this problem by
using the above exact sequence (5). Namely, through the study of the behavior of
kerhL/F ′ , cokerhL/F ′ and ker gL/F ′ as F ′ varies, one can get information about
ker sL/F ′ and coker sL/F ′ . The kernel and cokernel of hL/F ′ are not hard to
describe, and are given by the inflation-restriction sequence. However, ker gL/F ′

is much more difficult to study.

In the definition of gL/F ′ , the local restriction map was extensively involved.
For every prime v′ of F ′ and a prime η of L over v, let rv′ = rv′,η be the
local restriction map HA(F ′

v′) → HA(Lη). Let rL/F ′ be the restriction map
PA(F ′) → PA(L). By carefully studying rv′ and hence rL/F ′ , Greenberg obtained
information about ker gL/F ′ , and thus obtained generalized control theorems for
the case that G is a p-adic analytic group, in particular, the cases G = Zp and
L = F (A[p∞]).
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(ii) In this paper, we are interested in another type of isogeny. Let K be a
CM-field and F/K be a Galois extension. Assume that A is an Abelian variety
defined over F and having complex multiplication by the ring of integers OK of
K. Let p be a prime in K lying over p. Let ph = (α) for some integer h > 0 and
α ∈ OK . Then the multiplication-by-α map is an isogeny of A. Moreover, one
has

lim−→
n

A(L)/αnA(L) = A(L)⊗Kp/Op

and kerα∞ = A[p∞]. For L/F a Galois extension with profinite Galois group G,
the p-primary control problem then is

Question 1. What can one say about the behaviors of the kernel and cokernel of
the restriction map

sL/F ′ : SelA(F ′)p −→ SelA(L)G(L/F ′)
p

as F ′ varies over finite extensions of F inside L?

We shall study two cases in this paper. The first is the case that A is a general
Abelian variety with complex multiplication and L/F is a Zp-extension. In this
case, we will give a theorem(Theorem 2) in § 4, which is an analogue of Mazur’s
control Theorem. It is very likely known to the experts but we could not find an
appropriate reference. The second is the case that the Abelian variety is actually
an elliptic curve E and the extension L/F is an infinite class field extension. Note
that L/F is a non-Abelian extension in this case. Our main result is stated in
Theorem 4 in §4.

4. The Zp-extension case

In this section, we let K be a CM field and F/K be a Galois extension. Let
O be the ring of integers of K. Let A be an Abelian variety defined over F and
with complex multiplication by O. Let p be a prime of K lying over p. Let L/F
be a Zp-extension with Galois group Γ. We shall prove the following theorem in
this section.

Theorem 2. Assume that A has good ordinary reduction at all primes of F lying
over p. Then the natural maps

sL/Fn
: SelA(Fn)p → SelA(L)Gal(L/Fn)

p

has finite kernel and cokernel of bounded order as n varies, where Fn is the unique
subextension of order pn in L/F .

To prove the above theorem, we are going to use the exact sequence (5). Write
Γn = Gal(L/Fn), sL/Fn

= sn, hL/Fn
= hn and gL/Fn

= gn. Let us first consider
kerhn and cokerhn. We have
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Lemma 1. The order of kerhn is bounded as n varies; the cokernel cokerhn

vanishes for every n ≥ 0.

Proof. By the inflation-restriction exact sequence, one has

kerhn = H1(Γn, A(L)p), cokerhn ⊆ H2(Γn, A(L)p).

Since Zp has cohomological dimension 1, we have H2(Γn, A(L)p) = 0 and thus
cokerhn vanishes. Let γ be a topological generator of Γ, then γpn

is a topological
generator of Γn. We have

H1(Γn, A(L)p) = A(L)p/(γpn − 1)A(L)p.

Treating γpn − 1 as an endomorphism of A(L)p, one see easily that the kernel of
it is just A(Fn)p, a finite group. Thus

(γpn − 1)(A(L)p)div = (A(L)p)div,

and so
|A(L)p/(γpn − 1)A(L)p| ≤ [A(L)p : (A(L)p)div],

which is finite and independent of n. ¤

Let v be a place in F . Let vn be a place of Fn lying over v and let η be a place
in L lying above vn. We consider the kernel of the restriction map

rvn : HA((Fn)vn) → HA(Lη).

(i) If v is archimedean, then v splits completely in L/F , i.e., Fv = Lη, hence
ker rvn = 0.

(ii) If v non-archimedean, and v - p, then we claim that im κvn = im κη = 0.
Indeed, A((Fn)vn) ⊗ Kp/Op is a divisible group for vn - p. On the other hand,
H1((Fn)vn , A[p∞]) is a finite group, so that imκvn = 0. Similarly one has imκη =
0. (One can also prove this claim by using Mattuck’s Theorem that for a local
field K, A(K) = Odim A

K × U where U is a finite group.)

By the inflation-restriction sequence, then

ker rvn = H1(Lη/(Fn)vn , A(Lη)p).

(ii-a) If v - p, then v is unramified in the extension L/F . If v splits completely
in L/K, ker rvn is trivial.

If v does not split completely in L/K, there are finitely many primes vn of Fn

and η of L lying over v. Let Iv be the inertia subgroup of GFv = Gal(Fv/Fv). Let
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F ur
v = Fv

Iv be the maximal unramified extension of Fv. Then ker rvn is bounded
by the order of ker(H1((Fn)vn , A[p∞]) → H1(F ur

v , A[p∞]), which is given by

H1(F ur
v /(Fn)vn , A(F ur

v )p) ∼= A(F ur
v )p/(σ − 1)A(F ur

v )p,

where σ is a topological generator of Gal(F ur
v /(Fn)vn). Since the kernel of σ − 1

acting on A(F ur
v )p is finite( it is just A((Fn)vn)p), so the cokernel of σ− 1 is also

finite. Thus
(A(F ur

v )p)div ⊆ (σ − 1)A(F ur
v )p ⊆ A(F ur

v )p.

Hence
| ker rvn | ≤ [A(F ur

v )p : (A(F ur
v )p)div],

an absolute constant independent of n. In particular, if A has good reduction
at v, then the action of Iv on A[p∞] is also trivial, hence A(F ur

v )p = A[p∞], a
divisible group, so ker vn = 0.

(ii-b) If v | p but v - p, we want to show that ker rvn has bounded order. The
reason for the case that v is unramified in the extension L/F is the same as v - p.
We also have ker vn = 0 if A has good reduction at v. Now if v is ramified in
L/F , then vn is totally ramified in the extension L/Fn for n À 0, thus the finite
residue field fvn of vn stabilizes to the residue field lη of η. The fact that ker rvn

has bounded order follows from the same reason in the proof of Lemma 1. In
this case, ker rvn may not vanish even when A has good reduction at v. But the
number of vn lying above v stabilizes as n →∞.

Combining the above analysis, we have

Lemma 2. For every n, the product
⊕
vn-p

ker rvn over all primes vn - p in Fn is a

finite set bounded by an absolute constant independent of n.

(iii) Now we discuss the case v | p. By our assumption, A has good ordinary
reduction at v. We let Γvn = Gal(Lη/(Fn)vn). If v is unramified at L/F , by the
proof of Proposition 2.3 of Greenberg [9], we know that ker rvn = 0 for all vn.

Now suppose v is ramified at L/F , then vn is totally ramified for n À 0. Let
F be the formal group attached to the Néron model of A at the local field Fv.
Fix an algebraic closure Fv of Fv. Let m be the maximal ideal of Fv. We assume
Lη is contained in Fv. The choice of Fv is not essential. As A has good ordinary
reduction at v, dim A = height F and we denote it by g. We have an exact
sequence

0 → F(m) → A → Ã → 0

where Ã is the reduction of A modulo v. Set C = Cp = F(m)[p∞]. Then

0 → C → A[p∞] → Ãp → 0.
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The inclusion of C ↪→ A[p∞] induces a map

λM : H1(M, C) → H1(M, A[p∞])

for every algebraic extension M of Fv.

In the paper [4], Coates-Greenberg studied the corresponding p-case, i.e., Cp =
F(m)[p∞], Dp = A[p∞]/Cp. The inclusion of Cp ↪→ A[p∞] induces a map

λM,p : H1(M, Cp) → H1(M, A[p∞])

for every algebraic extension M of Fv. According to (4.9) of [4], imκM,p ⊆
im λM,p, and by Propositions 4.3 and 4.4 of [4],

im(λFvn ,p)div = im(κFvn ,p), im(λLη ,p) = im(κLη ,p).

Returning to our case, let M be a finite extension of Fv. We know that κM is
injective and imκM is divisible. By Mattuck’s theorem, the Zp-corank of imκM

is g · [M : Qp]. As for H1(M, A[p∞]), using Poitou-Tate local duality theorem,
the Zp-corank is also g · [M : Qp] since the Zp-corank of A[p∞] is g. We see that
cokerκM in fact is finite.

Following the same argument of Greenberg [8, Page 64], one shows that imκM ⊂
im λM . As kerλM is finite, H1(M, C) then is also of Zp-corank g · [M : Qp]. By
using Poitou-Tate local duality theorem again, the Zp-corank of C must also be
g and thus imκM = (im λM )div.

Note that im λM/(im λM )div has order bounded by |Ã(m)p| where m is the
residue field of M . For the Zp-extension Lη/Fv, we write λFvn

, κFvn
, rvn as λn,

κn and rn for simplicity. Since the residue fields fvn stabilize for n À 0, hence
im(λLη)/ im(κLη) is a finite group. On the other hand, GLη has p-cohomological
dimension 1, then H1(Lη, C) is divisible and

im(λLη) = im(κLη).

Then from
HA(Fvn) an→ H1(Fvn , A[p∞])/ im λn

bn→ HA(Lη),
we have

ker an
∼= im(λn)/ im(κn), ker rn/ ker an = ker bn.

Now ker an is just im(λn)/ im(λn)div. The order of ker an is equal to the p-part
of Ã(fn), which is bounded by a finite number independent of n. As for ker bn,
by the exact sequence

0 → C → A[p∞] → Ãp → 0
and a diagram chasing as in Greenberg [9, Page 19], one has

ker bn ⊂ ker(H1(Fvn , Ãp)
dn→ H1(Lη, Ãp) = H1(Lη/Fvn , Ã(Lη)p).
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The last term again has an order of Ã(fn)p for n À 0, bounded and independent
of n. Thus we have

Lemma 3. Let v | p. Suppose v is ramified in a Zp-extension L/F , then the
kernel of

rvn : HA((Fn)vn) → HA(Lη)

is bounded by |Ã(fn)p|2 for n À 0.

Lemma 4. As n varies, the product
⊕
vn|p

ker rvn over all primes vn | p in Fn is a

finite set bounded by an absolute constant independent of n.

By Lemmas 2 and 4, ker gn is of finite order and bounded, and by Lemma 1,
kerhn and cokerhn are finite and bounded, we thus finish the proof of Theorem 2,

5. Infinite class field tower

Let p be a fixed prime number. Let F be a number field. Let F∞ be the max-
imal unramified p-extension of F and put Γ = ΓF = Gal(F∞/F ). Let {Γn}n≥0

be the derived series of Γ. For every n ≥ 0, the fixed field Fn+1 corresponding
to Γn+1 is then the the p-Hilbert class field of Fn. Let ρ(k) (resp. ν(k)) denote
the p-rank of the ideal class group of a number field k(resp. the rank of the unit
group).

In 1964, Golod-Shafarevich [7] proved that if ρ(F ) ≥ 2 + 2
√

ν(F ) + 1, then Γ
is infinite, thus established for the first time the existence of infinite p-class field
tower. Stark asked the following question:

Does the p-class rank ρ(Fn) of the layers in an infinite p-class field
tower tend to ∞ as n tends to ∞?

One way to reformulate Stark’s question is the following. For any finitely gen-
erated pro-p group G, let Z/pZ be a G-module on which G acts trivially and
set

hi(G) = dimZ/pZH i(G,Z/pZ), i = 1, 2.

Then
h1(G) = dimZ/pZHom(G,Z/pZ)

is just the number of minimal generators of G. By Burnside’s basis theorem, we
know that h1(G) = h1(Gab). In particular, in the p-adic class field tower case,
h1(Γn) = ρ(Fn).
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As H ranges over all normal open subgroups of G, the limsup and liminf of

dim H1(H,Z/pZ)

are known to be equal. This common value is called the Prüfer rank of G. A
theorem due to Lubotzky and Mann([13]) states that a finitely generated pro-p
group G has finite Prüfer rank if and only if G is a p-adic analytic group. Now,
we may ask the question

Is Γ a p-adic analytic group?

If it is not, then Stark’s question has a positive answer. By a general conjecture
of Fontaine-Mazur [6], we do not expect Γ to be an analytic group. The Fontaine-
Mazur conjecture states the following:

Conjecture 1. For any number field k, Γk has no infinite p-adic analytic quo-
tient.

Without assuming the Fontaine-Mazur Conjecture, recently Hajir [11] and
Boston [2] proved the following theorem:

Theorem 3 (Boston-Hajir). Let F be a number field. If the Golod-Shafarevich
inequality

ρ(F ) ≥ 2 + 2
√

ν(F ) + 1

holds, then the group Γ is not p-adic analytic and the p-class rank ρ(Fn) tends to
infinity with n →∞.

6. The case of elliptic curves in an infinite class field tower

6.1. Questions and main result. In this section, let K be an imaginary qua-
dratic field and O = OK be the ring of integers of K. Let p be an odd prime
number. Assume that F is a finite Galois extension of K for which ρ(Fn) →∞ as
n →∞. As we have observed in § 5, this holds if F satisfies the Golod-Shafarevich
inequality or if F has an infinite p-class field tower under the Fontaine-Mazur
Conjecture.

We assume p = pp̄ splits in K and p is unramified over F/K. Let E be an
elliptic curve defined over F which has complex multiplication by O. We assume
that E has good ordinary reduction at all primes above p in F . We write Mp

for the p-primary part of an O-module M . Let r and rn be the Z/pZ-ranks of
SelE(F∞)p[p] and SelE(Fn)p[p] respectively. By analogy with Stark’s question,
we would like to ask the following two questions about r and rn:

(1). Is rn bounded? If not, is it true that rn →∞ if n →∞?
(2). Is it true that r = ∞?
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In the following, the p-rank of an O-module M is defined to be the Z/pZ-rank
of Mp[p]. We will prove the following result.

Theorem 4. Let F be a number field containing the imaginary quadratic field K
and satisfying

ρ(F ) ≥ 2 + 2(ν(F ) + 1)1/2.

Let E be an elliptic curve defined over F with complex multiplication by K. As-
sume that p is a prime in K splitting over p and unramified in F/K. Suppose for
every prime v at F above p, E has good ordinary reduction at v and Ẽ(fv)p = 0
where fv is the residue field of Fv.

Let F∞ be the maximal unramified nonconstant pro-p extension of F and Fn

be the n-th layer of the p-class field tower F∞/F . Then

(1). The p-rank of the Selmer group of E over Fn is unbounded as n →∞.

(2). If furthermore, E(F )p = 0, then the p-rank of the Selmer group of E
over F∞ is infinite. Thus either the Mordell-Weil rank or the p-rank of the
Shafarevich-Tate group of E over F∞ is infinite.

6.2. Preliminaries. Before we begin the proof of Theorem 4, we make some
preliminary remarks. Since p splits completely in K/Q, we have

E[p] ∼= O/pO ∼= Z/pZ
and

E[p∞] ∼= Zp

as abelian groups. Let L̃ = F (E[p∞]) and L̃n = Fn(E[p∞]). The action of
Gal(L̃/F ) on E[p∞] defines a canonical injection

χ∞ : Gal(L̃/F ) ↪→ Z×p
whose image is of finite index in Z×p . Via χ∞, the decomposition of Z×p = µp−1×
(1+pZp) rises to the corresponding decomposition of Gal(L̃/F ) as ∆×Γ′, where
∆ is a subgroup of µp−1 and Γ′ is a subgroup of 1 + pZp. Let L be the unique
Zp-extension of F inside L̃ which is fixed by ∆. The classical theory of complex
multiplication shows that L is actually the composition of F and the unique Zp-
extension of K unramified outside p. Let Ln = FnL for every n ≥ 0. Then
Ln/Fn is the unique Zp-extension inside L̃n which is unramified outside p. Write
Γ′n = Gal(Ln/Fn) ∼= Zp. Then for every n ≥ 0

Gal(L̃n/Ln) ∼= Gal(L̃/L) = ∆ and Gal(L̃n/Fn) = ∆× Γ′n.

We have the following elementary but useful lemma:

Lemma 5. Let G be a pro-p group and A be a discrete p-primary G-module.
Then A = 0 if and only if H0(G,A) = AG = 0.
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Proof. First consider the case both G and A finite. By the action of G on A, A
is the disjoint union of G-orbits Ox = {gx : g ∈ G}. The cardinality of Ox is the
index of the stabilizer Gx = {g ∈ G : gx = x} in G. Since Gx = G if and only if
x ∈ AG, if x /∈ AG, [G : Gx] = 0 mod p. Therefore |AG| = |A| mod p. Hence

A 6= 0 ⇐⇒ |A| = |AG| = 0 mod p ⇐⇒ AG 6= 0.

Now if G is profinite, we only need to show that if AG = 0, then AU = 0 for
every normal open subgroup U of G. In this case, G/U is a finite p-group and AU

is a discrete G/U -module of p-power order, by the above argument, thus AU = 0
if and only if (AU )G/U = 0, but (AU )G/U = AG = 0. ¤

There are only two possibilities for E[p](F ), either trivial or the whole group
E[p]. Hence from Lemma 5, we have

Lemma 6. There are only two possibilities for E(Ln)p: if E[p](F ) is trivial,
then L 6= L̃ and E(Ln)p = 0 for every n ≥ 0; if E[p] ⊂ E(F ), then Ln = L̃n and
E(Ln)p = E[p∞] for every n ≥ 0.

Lemma 7. The intersection of F∞ and L is a finite extension of F . In particular,
if E[p] ⊂ E(F ), then F∞ and L are disjoint over F .

Proof. The intersection F∞ ∩ L must be an abelian extension of F since L/F
is abelian. However, the maximal abelian quotient of F∞/F is nothing but the
p-Hilbert class field F1/F , hence F∞ ∩ L ⊂ F1. In the case E[p] ⊂ E(F ), then
L̃ = L and L/F is totally ramified over p. Since F∞ is unramified over F , it
follows that F∞ and L are disjoint. ¤

Note that

Γ′n = Gal(Ln/Fn) = Gal(L/Fn ∩ L) ⊇ Gal(L/F∞ ∩ L).

By the above lemma, Γ′n is a subgroup of Γ′ and as n varies, there are only a
finite number of choices of Γ′n since each of them must contain the open subgroup
Gal(L/F∞ ∩ L).

Let Mn be the maximal abelian pro-p extension of L̃n unramified outside p
and let Xn = Gal(Mn/Ln). Under standard techniques, Xn is an Iwasawa Λ[∆] =
Zp[∆][[T ]]-module. Moreover, we have the following result of Coates.

Theorem 5 (Coates). Let χ be the restriction of χ∞ to ∆. Then there is a
canonical pairing

SelE(Ln)p ×X (χ)
n −→ E[p∞]

which induces an isomorphism of Galois modules

SelE(Ln)p
∼= Hom(X (χ)

n , E[p∞])
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Proof. See Coates [3], Theorem 12, Page 121, or de Shalit [5], Theorem 1.5, page
124. ¤

6.3. Proof of Theorem 4. By Coates’ theorem, we immediately have

Lemma 8. The Zp-corank of SelE(Ln)p tends to ∞ as n varies.

Proof. By Coates’ theorem, it suffices to show that the Zp[∆]-rank of Xn tends
to ∞. However, since Fn+1 and L̃n are both abelian extensions over F which are
unramified outside p, their composition L̃n+1 must also be unramified outside p

over Fn, and hence unramified outside p over L̃n. Thus L̃n+1/L̃n is a subextension
of Mn/L̃n. Moreover, note that

Gal(L̃n+1/L̃n) = Gal(Ln+1/Ln) = Gal(Fn+1/(Fn+1 ∩ Ln)).

Now, by Theorem 3, the p-rank of Gal(Fn+1/Fn) tends to ∞ while the p-rank of
Gal((Fn+1 ∩ Ln)/Fn) is less than or equal to the Zp-rank of Γ′n = Gal(Ln/Fn),
which is 1. Therefore, the p-rank of Gal(L̃n+1/L̃n) tends to ∞ and hence the
Zp[∆]-rank of Xn tends to ∞. ¤

Remark. Note that we have actually proved more. As (Xn)Γ′n certainly con-
tains Gal(L̃n+1/L̃n), an application of Coates’ theorem implies that the p-rank
of SelE(Ln)Γ

′
n

p tends to ∞ as n varies.

Let sn = sLn/Fn
, hn = hLn/Fn

and gn = gLn/Fn
. From the above lemma, if we

can show that ker sn and coker sn are finite and bounded as n varies, then the
rank rankp SelE(Fn)p differs from rankp SelE(Ln)Γ

′
n

p by a bounded amount.

Following the exact sequence (5), we shall study the behavior of kerhn, cokerhn

and ker gn as n varies.

Lemma 9. The orders of kerhn and cokerhn vanish for every n ≥ 0.

Proof. By the inflation-restriction exact sequence, one has

kerhn = H1(Γ′n, E(Ln)p), cokerhn ⊆ H2(Γ′n, E(Ln)p).

Since Zp has cohomology dimension 1, we have H2(Γ′n, E(Ln)p) = 0 and thus
cokerhn vanishes. Now by Lemma 6, E(Ln)p is either trivial or E[p∞].In the
first case, ker hn = 0. For the second case, putting Γ′n,m = Gal(Fn(E[pm])/Fn),
we have

kerhn = H1(Γ′n, E[p∞]) = lim−→H1(Γ′n,m, E[pm]).

Now E[pm] is cyclic of order pm and Γ′n,m is also cyclic. It is easy to show that
H1(Γ′n,m, E[pm]) = 0 (see Coates [3]), and so in this case as well, ker hn = 0. ¤
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To study the map gn, we first study ker rv of the local restriction map

rv : HE(Fn,v) −→ HE(Ln,η)

for v a place in Fn and η a place in Ln above v. There are three cases to consider.

If v | ∞, then v splits completely in Ln/Fn and hence ker rv = 0.

If v < ∞ and v - p, then H1(Fn,v, E[p∞]) is finite but E(Fn,v) ⊗ Kp/Op is
divisible, hence im κv = 0. Similarly, imκη = 0. Let δ be a topological generator
of Gal(Ln,η/Fn,v) ∼= Zp, and let Bv = E[p∞](Ln,η), then by inflation-restriction,

ker rv = H1( ¯〈δ〉, Bv) = Bv/(δ − 1)Bv.

Since E(Fn,v) has a finite p-primary subgroup, the kernel of δ − 1 acting on Bv

is finite, hence (δ − 1)Bv ⊇ (Bv)div and

| ker rv| ≤ |Bv/(Bv)div|.
Now since Ln,η ⊆ Fn,v(E[p∞]), Bv is the set of invariant elements in E[p∞] by the
Galois group of Gal(Fn,v(E[p∞])/Ln,η), which is a subgroup of ∆ = Gal(L̃n/Ln).
Since the latter one is a cyclic group of order dividing p−1, Bv must be divisible.
Therefore ker rv = 0.

Finally if v | p, by our assumption, E has good ordinary reduction at v. Now,
v is (totally) ramified in the extension Ln/Fn. We let Γv = Gal(Ln,η/Fn,v). Let
fn,v be the residue field of v and lη be the residue field of η. By Lemma 3, ker rv

is bounded by |Ẽ(fv)p|2 = |Ẽ(fη)p|2. Under the assumption of Theorem 4, by
Lemma 5, Ẽ(fv)p = 0, Therefore

ker rv = 0.

By the above analysis, we see that ker gn = 0 for every n ≥ 1, hence

Lemma 10. The orders of ker sn and coker sn are both 0 for every n ≥ 0.

Now we can finish the proof of Theorem 4.

Proof of Theorem 4. First we prove (1). By Lemma 8 and its remark, the p-rank
of SelE(Ln)Γ

′
n

p is unbounded and tends to infinity as n tends to infinity. Now by
Lemma 10, the map

sn : SelE(Fn)p → SelE(Ln)Γ
′
n

p

is an isomorphism, hence the p-rank of SelE(Fn)p is unbounded and tends to
infinity as n tends to infinity.

For (2), since E(F )p = 0 and F∞/F is a pro-p extension, by Lemma 5,
E(F∞)p = 0, thus

kerhF∞/Fn
= coker hF∞/Fn

= 0.
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Hence ker sF∞/Fn
= 0. Therefore the p-rank of SelE(F∞)Γn

p is unbounded as n
goes to infinity, hence the Zp-corank of SelE(F∞)p is unbounded.

¤

References

[1] A. Akbary and V. K. Murty, Descending rational points on elliptic curves to smaller fields,
Canad. J. Math. Vol. 53(3)(2001), 449-469.

[2] N. Boston, Some cases of the Fontaine-Mazur conjecture, J. Number Theory 42(1992),
285-291.

[3] J. Coates. Infinite descent on elliptic curves with complex multiplication. Arithmetic and
geometry, Vol. I, 107–137, Progr. Math. 35, Birkhäuser, 1983.
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