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Abstract
In this paper, we construct two generalized cyclotomic binary sequences of period 2pm based
on the generalized cyclotomy and compute their linear complexity, showing that they are of
high linear complexity when m ≥ 2.

Keywords Binary sequence · Linear complexity · Cyclotomy · Generalized cyclotomic
sequence
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1 Introduction

A sequence s∞ = {s0, s1, s2, . . .} is called a binary sequence of period N if si ∈ F2 and
si = si+N for all i ≥ 0. The linear complexity (LC) of a periodic binary sequence s∞, denoted
by LC(s∞), is the length of shortest linear feedback shift register (LFSR) that generates the
sequence [10], i.e., the smallest positive integer l such that si = clsi−l + · · · + c2si−2 +
c1si−1 for i ≥ l and constants c0 = 1, c1, . . . , cl ∈ F2. For s∞ a sequence of period N ,
the characteristic power series/polynomial of s∞ and sN = {s0, s1, . . . , sN−1} are defined
respectively as c∞(x) = s0 + s1x + · · · and cN (x) = s0 + s1x + · · · + sN−1xN−1, the
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minimal polynomial [3] of s∞ is

m(x) = (xN − 1)/ gcd
(
cN (x), xN − 1

)
.

Then we have the following classical relation

LC(s∞) = deg(m(x)) = N − deg
(
gcd

(
xN − 1, cN (x)

))
. (1)

The linear complexity of a sequence is an important criteria of its quality. As we all know,
sequences with high linear complexity (such that LC(s∞) > N

2 ) have important applications
in cryptography.

Cyclotomic generators based on cyclotomy can generate sequences with large linear
complexity. Generalized cyclotomic classes with respect to pq and p2 were introduced by
Whiteman and Ding for the purposes of searching for residue difference sets [19] and cryp-
tography [4] respectively. Based on Whiteman’s generalized cyclotomy of order 2, Ding [5]
constructed a class of generalized cyclotomic sequences of period pq and determined their
linear complexity. Autocorrelation and linear complexity of period p2 and p3 were studied in
[18,22]. The linear complexity of generalized cyclotomic sequences of period pm were inves-
tigated in [14,15]. In addition, the generalized cyclotomy of order 2 was extended to the case
of period pe11 · · · pemm , which is not consistent with the classical cyclotomy [7]. Subsequently,
new generalized cyclotomic sequences of period pe11 · · · pemm that include the classical ones
as special cases were presented in [6], and the linear complexity of such sequences of period
pq were calculated in [1]. Furthermore, new classes of generalized cyclotomic sequences of
period 2pm were proposed in [8], which included the sequence presented in [12] as a special
case, and they were shown to have high linear complexity. For recent development of the
linear complexity of generalized cyclotomic sequences with different periods, the reader is
referred to [2,11–13,16,17,21,23].

In this paper, we construct two new classes of generalized cyclotomic binary sequences
of period 2pm and compute their linear complexity, showing that they are of high linear
complexity when m ≥ 2.

2 Generalized binary cyclotomic sequences of period 2pm

Let p be an odd prime and g be a primitive root module pm . Replace g by g+ pm if necessary,
without loss of generality, we may assume that g is an odd integer, and thus g is a common
primitive root module p j and 2p j for all 1 ≤ j ≤ m. For a decomposition p−1 = e f , write

d j = ϕ(p j )
e = p j−1 f for each j where ϕ(·) is Euler’s totient function. For i ∈ Z, s = p j or

2p j , define

D(s)
i :=

{
gi+d j t (mod s) : 0 ≤ t < e

}
= gi D(s)

0 . (2)

One can see immediately D(s)
i depends only on the congruence class i (mod d j ). By abuse

of notation we say an integer n ∈ D(s)
i if n (mod s) ∈ D(s)

i .
For (s, a) = (p j , pm− j ), (p j , 2pm− j ) or (2p j , pm− j ), we define

aD(s)
i :=

{
agi+d j t (mod as) : 0 ≤ t < e

}
. (3)
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It is well known that
{
D(p j )
0 , D(p j )

1 , . . . , D(p j )
d j−1

}
forms a partition of Z

∗
p j (see [24]), which

we call the generalized cyclotomic class of order d j with respect to p j , and

Zpm =
m⋃
j=1

d j−1⋃
i=0

pm− j D(p j )
i ∪ {0}, (4)

Z2pm =
m⋃
j=1

d j−1⋃
i=0

pm− j
(
2D(p j )

i ∪ D(2p j )
i

)
∪ {0, pm}. (5)

From now on, take

f = 2r (r ≥ 1), b ∈ Z, δ j = d j

2
= p j−1 f

2
.

In the following we define two families of generalized cyclotomic sequences of period
2pm . The ideal of construction comes from Xiao et al. [20], where generalized cyclotomic
sequences of period pm were constructed and studied.

(i) The generalized cyclotomic binary sequence of period 2pm is defined as s∞ = {si }i≥0

with

si =
{
1, if i (mod 2pm) ∈ C1,

0, if i (mod 2pm) ∈ C0,
(6)

where

C0 =
m⋃
j=1

d j−1⋃
i=δ j

pm− j
(
2D(p j )

i+b ∪ D(2p j )
i+b

)
∪ {pm},

C1 =
m⋃
j=1

δ j−1⋃
i=0

pm− j
(
2D(p j )

i+b ∪ D(2p j )
i+b

)
∪ {0}.

For the above sequence s∞, the following theorem holds.

Theorem 1 For the generalized cyclotomic sequence defined by (6) of period 2pm,

(1) if 2e �≡ ±1 (mod p) or 2e ≡ 1 (mod p) but 2e �≡ 1 (mod p2), then LC(s∞) = 2pm;
(2) if 2e ≡ −1 (mod p) but 2e �≡ −1 (mod p2), then 2pm − 2(p − 1) ≤ LC(s∞) ≤

2pm − (p − 1).

(ii) The modified generalized cyclotomic binary sequence of period 2pm is defined as
s̃∞ = {̃si }i≥0 with

s̃i =
{
1, if i (mod 2pm) ∈ C̃1,

0, if i (mod 2pm) ∈ C̃0,
(7)

where

C̃0 =
m⋃
j=1

pm− j

⎛
⎝

δ j−1⋃
i=0

2D(p j )
i+b

d j−1⋃
i=δ j

D(2p j )
i+b

⎞
⎠ ∪ {pm},

C̃1 =
m⋃
j=1

pm− j

⎛
⎝

d j−1⋃
i=δ j

2D(p j )
i+b

δ j−1⋃
i=0

D(2p j )
i+b

⎞
⎠ ∪ {0}.

For the above sequence s̃∞, the following theorem holds.
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Theorem 2 For the modified generalized cyclotomic sequence defined by (7) of period 2pm,

(1) if 2e �≡ 1 (mod p), then LC(̃s∞) = 2pm;
(2) if 2e ≡ 1 (mod p) but 2e �≡ 1 (mod p2), then 2pm − 2(p − 1) ≤ LC(̃s∞) ≤ 2pm −

(p − 1).

We give two remarks about our main results.

Remark (1) The two theorems covers all non-Wieferich primes, as in this case, 2p−1 �≡ 1
(mod p2) implies 2e �≡ ±1 (mod p2). Consequently the case that 2e ≡ ±1 (mod pa)
but �≡ ±1 (mod pa+1) for a > 1 is rare.

(2) A key argument of our computation follows from the work of Edemskiy et al. [9]. Based
on our computation, a new (but essentially the same) proof of the conjecture by Xiao et
al. in [20] can be achieved.

The inequalities in Theorems 1(2) and 2(2), arising from the inseparability of the polyno-
mial x2p

m − 1 over F2, are strong enough to deduce that the two generalized sequences are
of high linear complexity if m ≥ 2. For the exact values there, based on numerical evidence,
we have the following conjecture:

Conjecture If 2e ≡ −1 (mod p) but 2e �≡ −1 (mod p2), then LC(s∞) = 2pm − (p − 1).

Remark If 2e ≡ 1 (mod p) but 2e �≡ 1 (mod p2), we expected that LC(̃s∞) = 2pm −
(p − 1) − e and checked many examples. However, as pointed out by the referee, if p = 73,
m = 1 and f = 4, then LC(̃s∞) = 38 �= p + 1 − e = 56. So the prediction is false and we
now expect LC(̃s∞) ≤ 2pm − (p − 1) − e.

3 Proof of themain results

Let β = βm be a fixed primitive pm-th root of unity, then the field F2(β) = F2n where n is

the order of 2 module pm . For j < m, β j = β
pm− j

m is a primitive p j -th root of unity.

We fix the decomposition p−1 = e f , f = 2r for r ≥ 1, δ j = d j
2 = p j−1 f

2 for 1 ≤ j ≤ m

and b ∈ Z. Note that δ1 = f
2 and d1 = f . For v ∈ Z, set

H(p j )
m,v :=

δ j−1⋃
i=0

pm− j D(p j )
i+v , H (p j )

m,v := 2H(p j )
m,v , H (2p j )

m,v :=
δ j−1⋃
i=0

pm− j D(2p j )
i+v

and

H(p j )
m,v (x) :=

∑

t∈H(p j )
m,v

xt , H (p j )
m,v (x) :=

∑

t∈H (p j )
m,v

xt = H(p j )
m,v (x2), H (2p j )

m,v (x) :=
∑

t∈H (2p j )
m,v

xt .

The characteristic polynomials of s∞ and s̃∞ are

s(x) :=
∑
t∈C1

xt = 1 +
m∑
j=1

(
H (p j )
m,b (x) + H (2p j )

m,b (x)
)
,

s̃(x) :=
∑

t∈C̃1

xt = 1 +
m∑
j=1

(
H (p j )
m,b+δ j

(x) + H (2p j )
m,b (x)

)
.
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To study the linear complexity of s∞ and s̃∞, note that there is some subtlety here: the
polynomial x2p

m − 1 is inseparable, each root βa (a ∈ Zpm ) is of multiplicity 2, so by Eq.
(1), we have the inequalities

2pm − 2|{a ∈ Zpm | s(βa) = 0}| ≤ LC(s∞) ≤ 2pm − |{a ∈ Zpm | s(βa) = 0}|, (8)

2pm − 2|{a ∈ Zpm | s̃(βa) = 0}| ≤ LC(̃s∞) ≤ 2pm − |{a ∈ Zpm | s̃(βa) = 0}|. (9)

Since the polynomial is valued over a field of characteristic 2, for v ∈ Z, we have

H (p j )
m,v (βa) = H(p j )

m,v (β2a) = a(H(p j )
m,v (βa)a)2, (10)

H (2p j )
m,v (βa) = H(p j )

m,v (βa). (11)

To study s(βa) and s̃(βa), it suffices to evaluate H(p j )
m,b (βa) for each j ≤ m.

Lemma 1 ([20], Lemma 4) For v ∈ Z, we have

H(p)
m,v(β) + H(p)

m,v+ f
2

(β) =
∑

t∈pm−1Z∗
p

β t = 1, (12)

H(p j )
m,v (β) + H(p j )

m,v+δ j
(β) =

∑

t∈pm− jZ∗
p j

β t = 0 if 2 ≤ j ≤ m. (13)

Lemma 2 Let a = plu ∈ pl D(pm−l )
k where 0 ≤ l ≤ m − 1. Then for j = 1, 2, · · · ,m,

(1) if j ≤ l, H(p j )
m,b (βa) = p j−1(p−1)

2 ;

(2) if j = l + 1, H(p j )
m,b (βa) = pl−1

2 + H(p)
m,b+k(β);

(3) if j > l + 1, H(p j )
m,b (βa) = H(p j−l )

b+k (β).

Proof First note the computation here is carried out in F2(β). By definition,

H(p j )
m,b (βa) =

∑

t∈H(p j )
m,b

βat =
δ j−1∑
i=0

∑

t∈pm− j D(p j )
i+b

β tpl u =
δ j−1∑
i=0

∑

t∈pm+l− j D(p j )
i+b

β tu . (14)

If j ≤ l, each term in H(p j )
m,b (βa) defined in (14) equals to 1, hence

H(p j )
m,b (βa) = δ j · |D(p j )

i+b | = δ j p
j−1 p − 1

p j−1 f
= p j−1(p − 1)

2
.

If j > l, let s = j − l, then

H(p j )
m,b (βa) =

δ j−1∑
i=0

∑

t∈pm+l− j D(p j )
i+b

β tu =
δ j−1∑
i=0

∑

t∈D(p j )
i+b

β pm−s tu . (15)

Note that when i passes through {0, 1, . . . , δ j − 1}, i (mod ds) takes value
pl−1
2 times on

each element in {0, 1, . . . , ds − 1} and one additional time on elements in {0, 1, . . . , δs − 1}.
Hence the multiset
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{
tu (mod ps) | t ∈ D(p j )

i+b , 0 ≤ i ≤ δ j − 1
}

passes pl−1
2 times through Z

∗
ps , and one additional time over the union of D(ps )

i+k+b for 0 ≤
i ≤ δs − 1. Since β pm−s

is a primitive ps-th root of unity, by (15), we have

H(pl+1)
m,b (βa) = pl − 1

2

∑
a∈Z∗

ps

β pm−sa + H(ps )
m,b+k(β),

which is pl−1
2 + H(p)

m,b+k(β) if s = 1 and H(ps )
m,b+k(β) if s ≥ 2 by Lemma 1. 
�

For 1 ≤ j ≤ m and v ∈ Z, set

Am, j,v(x) :=
j∑

s=1

H(ps )
m,v (x). (16)

Note that H(ps )
m,v (βm) = H(ps )

j,v (β j ) for s ≤ j , then

Am, j,v(βm) =
j∑

s=1

H(ps )
m,v (βm) =

j∑
s=1

H(ps )
j,v (β j ) = A j, j,v(β j ).

Set
A j,v := A j, j,v(β j ) ∈ F2(β j ). (17)

By Lemma 2 and Eqs. (10)–(11), for a ∈ pl D(pm−l )
k , 0 ≤ l < m, let t = m − l, then

s(βa) = 1 + At,b+k + A2
t,b+k, s̃(βa) = 1 + At,b+k+δt + A2

t,b+k .

By Lemma 1, 1 + At,b+k+δt = At,b+k . In conclusion, then we have:

Proposition 1 For a = 0, one has s(1) = s̃(1) = 1. For a ∈ pl D(pm−l )
k , 0 ≤ l < m, let

t = m − l, then

s(βa) = 1 + At,b+k + A2
t,b+k, (18)

s̃(βa) = At,b+k + A2
t,b+k . (19)

It now suffices to study the values of A j,v for j ≥ 1 and v ∈ Z. We first list three key
identities about A j,v:

Lemma 3 For each j ≥ 1 and v ∈ Z, one has

(1) A j,v = A j,v+d j .
(2) A j,v + A j,v+δ j = 1.

(3) If 2 ∈ D(p j )
h , then A2

j,v = A j,v+h.

Proof (1) is trivial. (2) follows immediately from Lemma 1.

For (3), if 2 ∈ D(p j )
h , then 2 ∈ D(ps )

h for all s ≤ j . For any i , we have {2t | t ∈ D(ps )
i } =

D(ps )
i+h , hence H

(ps )
j,v (β j )

2 = H(ps )
j,v (β2

j ) = H(ps )
j,v+h(β j ) and (3) follows. 
�

Following the proof of [9, Proposition 2], we have the following essential result.
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Lemma 4 Suppose [F2(β j ) : F2(β j−1)] = p. Then A j,v + A j,v+ f /2 /∈ F2(β j−1). In partic-
ular, for 0 < t < j , set

A[t]
j,v := A j,v − At,v =

j∑
s=t+1

H(ps )
j,v (β j ).

Then A[t]
j,v + A[t]

j,v+ f /2 /∈ F2(β j−1), and consequently, A
[t]
j,v �= A[t]

j,v+ f /2.

Proof Note that in our case j ≥ 2 as [F2(β1) : F2(β0)] ≤ p − 1 < p. Let ξ = H(p j )
j,v (β j ) +

H(p j )
j,v+ f /2(β j ). If A j,v + A j,v+ f /2 ∈ F2(β j−1), then

ξ = (A j,v + A j,v+ f /2) − (A j−1,v + A j−1,v+ f /2) ∈ F2(β j−1).

On the other hand, by definition we have ξ = ∑
k∈D βk

j , where

D =
f /2−1⋃
i=0

(
D(p j )
i+v ∪ D(p j )

i+δ j+v

)

is the same D (with translation by v) in the proof of [9, Proposition 2]. Note that if k1 �=
k2 ∈ D , then k1 (mod p) �= k2 (mod p), and the set D mod p is nothing but the set Z

∗
p .

We have

ξ =
p−1∑
i=1

ciβ
i
j , 0 �= ci ∈ F2(β j−1).

Thus the minimal polynomial of β j over F2(β j−1) is of degree [F2(β j ) : F2(β j−1)] < p,
which leads to a contradiction. 
�
Lemma 5 For j ≥ 1, suppose 2 ∈ D(p j )

h . Then one of the following holds:

(1) 2e �≡ ±1 (mod p), equivalently, δ1 = f
2 � h.

(2) 2e ≡ 1 (mod pa) and 2e �≡ 1 (mod pa+1), equivalently, 2 ∈ D(p j )
0 for j ≤ a and

2 /∈ D(p j )
0 for j > a.

(3) 2e ≡ −1 (mod pa) and 2e �≡ −1 (mod pa+1), equivalently, 2 ∈ D(p j )
δ j

for j ≤ a and

2 /∈ D(p j )
δ j

for j > a.

Furthermore,
(4) If (2) holds, then F2(β1) = F2(βa) and [F2(β j ) : F2(β j−1)] = p for j > a.
(5) If (3) holds, then F2(β1) = F2(βa) and [F2(β j ) : F2(β j−1)] = p for j > a.

Proof The equivalence of different descriptions of each condition is easy to get. (4) and (5)
can be proved in the same way. We only show (5) here.

Let τ j be the order of 2 mod p j and τ = τ1. It is well-known F2(β j ) = F2τ j . It suffices
to show τa = τ and τ j = τ p j−a for j > a.

On one hand τ j | τ j+1. On the other hand, 2τ j ≡ 1 mod p j , then 2τ j pk ≡ 1 mod p j+k ,
hence τ j+k | τ j pk . The condition (3) means τ j is a factor of 2e for j ≤ a, thus τa |
gcd(τ pa−1, 2e) = τ , and F2(βa) = F2(β1).
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Now we have 2τ ≡ 1 mod pa and 2τ �≡ 1 mod pa+1 (otherwise 22e ≡ 1 mod pa+1 and
2e ≡ −1 mod pa+1). Write 2τ = 1 + λpa , then p � λ. For j > a,

2τ p j−a−1 = (1 + λpa)p
j−a−1 ≡ 1 + λp j−1 �≡ 1 (mod p j ).

Hence τ j � τ p j−a−1. Along with τ | τ j | τ p j−a , one must have τ j = τ p j−a . 
�
Proposition 2 For any v ∈ Z, we have

(1) If 2e ≡ 1 (mod p j ), then A j,v ∈ F2. If 2e �≡ 1 (mod p), then A j,v /∈ F2 for j ≥ 1.
(2) If 2e ≡ 1 (mod p) but 2e �≡ 1 (mod p2), then A1,v ∈ F2 and A j,v /∈ F4 for j ≥ 2.
(3) If 2e ≡ −1 (mod p) but 2e �≡ −1 (mod p2), then A1,v ∈ F4 − F2 and A j,v /∈ F4 for

j ≥ 2.
(4) If 2e �≡ ±1 (mod p), then A j,v /∈ F4 for any j ≥ 1.

Proof Suppose 2 ∈ D(p j )
h . We may assume 0 ≤ h < d j .

(1) The condition 2e ≡ 1 (mod p j ) means h = 0. Then Lemma 3(3) implies A2
v = Av ,

hence Av ∈ F2.
The condition 2e �≡ 1 (mod p) means 2 /∈ D(p)

0 , hence f � h, there exists x1 > 0 such
that hx1 ≡ δ j (mod d j ). By Lemma 3(2), we have

A j,v+hx1 = A j,v+δ j = A j,v + 1.

On the other hand, if Av ∈ F2, by Lemma 3(3), for all n ∈ Z, we have

A j,v = A j,v±h = · · · = A j,v+nh ∈ F2.

This is a contradiction.
(2) The condition means 2 ∈ D(p)

0 but 2 /∈ D(p2)
0 . That A1,v ∈ F2 follows from (1). For

j ≥ 2, the assumption means gcd(h, d j ) = d1 = f and hence gcd(h, δ j ) = δ1 = f /2. For

A[1]
j,v = A j,v − A1,v , by Lemma 3(2),

A[1]
j,v = A[1]

j,v±δ j
= · · · = A[1]

j,v+nδ j
, n ∈ Z.

If A j,v ∈ F2, then A[1]
j,v ∈ F2, and for n ∈ Z,

A[1]
j,v = A[1]

j,v±h = · · · = A[1]
j,v+nh ∈ F2.

Hence A[1]
j,v = A[1]

j,v+n1h+n2δ j
for any n1, n2 ∈ Z, and A[1]

j,v = A[1]
j,v+nδ1

for n ∈ Z. In

particular, A[1]
j,v = A[1]

j,v+δ1
= A[1]

j,v+ f /2. By Lemma 5(4), [F2(β j ) : F2(β j−1)] = p for

j ≥ 2. Then Lemma 4 implies A[1]
j,v �= A[1]

j,v+ f /2, a contradiction. Hence A j,v /∈ F2.

If A j,v ∈ F4 − F2, then A[1]
j,v ∈ F4 − F2, we have A[1]

j,v+h = (A[1]
j,v)

2 = A[1]
j,v + 1

and A[1]
j,v+2h = A[1]

j,v; and (A[1]
j,v−h)

2 = A[1]
j,v = (A[1]

j,v + 1)2, A[1]
j,v−h = A[1]

j,v + 1 and

A[1]
j,v−2h = A[1]

j,v . Again we get A[1]
j,v = A[1]

j,v+nδ1
, which is impossible by Lemma 4.

(3) The condition means 2 ∈ D(p)
δ1

but 2 /∈ D(p2)
δ2

. Hence

A2
1,v = A1,v+δ1 = A1,v + 1

and A1,v ∈ F4. For j ≥ 2, then (A[1]
j,v)

2 = A[1]
j,v+h . If A

[1]
j,v ∈ F2, we have A[1]

j,v+h = A[1]
j,v , If

A[1]
j,v ∈ F4−F2, we have A

[1]
j,v±2h = A[1]

j,v . Since by assumption, gcd(h, δ j ) = gcd(2h, δ j ) =
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δ1, we get A
[1]
j,v = A[1]

j,v+nδ1
. By Lemma 5(5), [F2(β j ) : F2(β j−1)] = p, and by Lemma 4,

A[1]
j,v �= A[1]

j,v+δ1
. We get a contradiction.

(4) The condition means f
2 � h, in particular f

2 = 2r−1 is even and there exists an even

integer x1 > 0 such that hx1 ≡ f
2 (mod f ). If A j,v ∈ F4, by the proof of (1), we may

assume A j,v = ε0 /∈ F2, thus ε20 + ε0 + 1 = 0. By Lemma 3(2),

εp j−1hx1 := A j,v+p j−1hx1 = A j,v+δ j = A j,v + 1 = ε0 + 1.

By Lemma 3(3), we have ε1 = A j,v+h = ε20 = ε0 + 1, ε2 = A j,v+2h = ε21 = ε0, hence
ε0 = ε2 = · · · = εp j−1hx1 . This is a contradiction. 
�

Remark For the case 2e ≡ ±1 (mod pa) but �≡ ±1 (mod pa+1) for a > 1, if j ≥ 2a,
we can imitate the proof of Lemma 4 and Proposition 2 (i.e., the method in the proof of
[9, Proposition 2]) to show A j,v /∈ F4. However, we don’t know how to treat the case
a < j < 2a.

We are now ready to prove our main results by applying Propositions 1 and 2.

Proof of Theorem 1 If 2e ≡ 1 (mod p) but 2e �≡ 1 (mod p2), then A1,v ∈ F2 and A j,v /∈ F4

for j ≥ 2, in both cases, s(βa) = 1 �= 0. If 2e �≡ ±1 (mod p), then δ1 � h and A j,v /∈ F4,
hence s(βa) �= 0. Therefore LC(s∞) = 2pm .

If 2e ≡ −1 (mod p) but 2e �≡ −1 (mod p2), then A1,v ∈ F4 − F2 and A j,v /∈ F4

for j ≥ 2. Hence s(βa) = 0 for a ∈ pm−1
Z

∗
p and s(βa) �= 0 for all other a’s. Hence

2pm − 2(p − 1) ≤ LC(s∞) ≤ 2pm − (p − 1). 
�

Proof of Theorem 2 If 2e �≡ 1 (mod p), then 2 /∈ D(p)
0 . Hence A j,v /∈ F2 for all j and

s̃(βa) �= 0. Therefore LC(̃s∞) = 2pm .
If 2e ≡ 1 (mod p) but 2e �≡ 1 (mod p2), then only A1,v ∈ F2 and s̃(βa) = 0 for

a ∈ pm−1
Z

∗
p . For all other a, s̃(β

a) �= 0. Hence 2pm−2(p−1) ≤ LC(̃s∞) ≤ 2pm−(p−1).

�

4 Numerical evidence

By using Magma, we compute the following examples to check our results.

Example 1 Let p = 7, m = 2 and g = 3. Take f = 2 and e = 3, then 23 ≡ 1 (mod p) and
23 �≡ 1 (mod p2). For b = 0,

s∞ =1̇111011101100111001000000111111010001101010101010

0101010101010011101000000111111011000110010001000̇,

s̃∞ =1̇101110111001101100010101101010000100111111111111

0000000000000110111101010010101110010011000100010̇.

Then LC(s∞) = 98 = 2pm and LC(̃s∞) = 89 = 2pm − (p − 1) − e, consistent with
Theorems 1(1) and 2(2).

Example 2 Let p = 5, m = 2 and g = 3. Then f can be taken either 2 or 4.
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Table 1 LC(s∞) for
2e ≡ −1 mod p but �≡ −1
(mod p2)

p m e g b LC(s∞) 2pm − (p − 1)

5 2 2 3 0, 1, 3 46 46

3 246 246

4 1246 1246

11 2 5 7 2, 19 232 232

13 2 6 7 6, 11 326 326

11 5, 12

3 7 5, 12 4382 4382

11

17 1 4 3 0, 3 18 18

5

2 3 0, 2 562 562

5 0, 7

19 2 9 3 1, 6 704 704

13 3, 22

(i) If one takes f = 2, then e = 2, 22 ≡ −1 (mod p) and 22 �≡ −1 (mod p2). For
b = 0,

s∞ = 1̇1111110011010000011000100010001100000101100111111̇,

s̃∞ = 1̇1010100110000101101101110111011000010000110010101̇.

Then LC(s∞) = 46 = 2pm − (p − 1) and LC(̃s∞) = 50 = 2pm , consistent with Theo-
rems 1(2) and 2(1).

(ii) If one takes f = 4, then e = 1, 2 �≡ 1 (mod p). For b = 0,

s∞ = 1̇1111110111110011010001010010111010011000001000000̇,

s̃∞ = 1̇1010100010100110000100000111101111001101011101010̇.

Then LC(s∞) = LC(̃s∞) = 50 = 2pm , consistent with Theorems 1(1) and 2(1) respectively.

Example 3 Let p = 31, m = 1, g = 3 and e = 15. Then 215 ≡ 1 (mod 31) and 215 �≡ 1
(mod 312). For b = 0,

s∞ = 1̇1101101111000101011100001001000110110111100010101110000100100̇,

s̃∞ = 1̇1000111010010000001001011100010011100010110111111011010001110̇.

Then LC(s∞) = 62 = 2p and LC(s∞) = 17 = 2p − (p − 1) − e, consistent with
Theorems 1(1) and 2(2).

Because of the above examples, we form our conjecture and try more examples in Table 1.

5 Conclusion

In this paper, we introduced two generalized cyclotomic binary sequences of period 2pm ,
which include the sequences in [13,25] as special cases.We computed their linear complexity
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in most cases (all cases for p a non-Wieferich odd prime) and showed each of our sequences
is of high linear complexity if m ≥ 2.

Acknowledgements Y. O. would like to thank the Morningside Center of Mathematics for hospitality where
part of this paper was written. We thank the referees for many helpful comments, especially for providing a
counterexample for a previous conjecture about the linear complexity of sequences in the second class.
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