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1 Introduction

1.1 A conjecture about class numbers of cyclic 2-extensions

Let m # 2 (mod 4) be a fixed positive integer which is not a prime power. Let n > 2 be the number
of prime factors of m. By a standard way, we shall construct a subfield L = L,, of Q(g,,) which is a
maximal cyclic 2-extension of Q such that all prime factors of m are totally ramified. Moreover, L/Q is
of order 2!, where
min{ords(p; — 1) : 1< i< n}, if 2+ m;
t=1<1, if 4 || m; (1.1)
min{t; — 2,orda(p; —1): 2< i< n}, if8|m.
We decompose L/Q into a tower of cyclic extensions of order 2: Q = Ey C By C -+ C E = L. Let
C; be the 2-part of the narrow class group of E; and let h; = |C;] be the 2-part of narrow ideal class
number. By the class field theory, N;;—1 : Ci—1 — C; is surjective. Let hf = h;/h;—1. We shall show
that 271 | b
Our conjecture is
Conjecture 1.1. Assumet > 2, i.e., m odd or 16 | m and p =1 (mod 4) for all odd prime p | m. The
following three conditions are equivalent.
(1) hy = 2771
(2) hy =271 for some i;
(3) hy =27~ for all .
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1.2 The conjecture implies the Gross conjecture over Q

Our main result in this paper is
Theorem 1.2.  If Conjecture 1.1 is true, then the Gross conjecture over Q is also true.

Remark. (1) Readers who are familiar with the Gross conjecture certainly know that the case over Q
was claimed by Aoki [1] in 1991. However, in that paper, there were numerous serious or small mistakes,
and there were also many false claims. It is to understand Aoki’s paper that makes the authors to work
on a more complete proof. The readers can see that there are many ideas in this paper coming from
Aoki’s paper and the authors just tried to make them mathematically correct, but there are also many
more which were obtained by our own research. We are not yet successful in giving a complete proof
following this line of Aoki. The remaining obstacle is the above conjecture.

(2) Certainly new proofs of the Gross conjecture over Q has been achieved by Burns [3] and Aoki [2].

2 The Gross conjecture

2.1 General facts

Let k& be a global field and K be an abelian extension of k with Galois group G. Let S be a finite
set of places of k which contains all archimedean places and all places which are ramified in K/k. Let
n = #S — 1. By the Dirichlet unit theorem, Ug, the set of S-units over k, is a finitely generated abelian
group of rank n. We choose T, a finite set of primes disjoint from S, such that

Usqr={x€Us|z=1 (mod q) for every g€ T'}

is a free abelian group of rank n. Let {e1,...,e,} be a set of Z-basis of Ug r. Let Y be the free abelian

group generated by S and let X = ker(Y deg, Z). Then X is also a free abelian group of rank n. Choose

a basis {x1,22,...,2,} of X over Z.
Let I = I be the augmentation ideal ker(deg : Z[G] — Z). We note that G — Ig/I% : g~ g—1is
an isomorphism. The Gross regulator map Ag is defined to be the Z-linear map

N:Usr = I/ IP®X, e Z(ru(a) -H®uv,
veS

where 7, is the reciprocity map from k) to G. Using the above chosen basis {e1,...,e,} and {z1, 22, ...,
T, }, we obtain an n x n matrix (1;;) of Ag with entries in I/I?. Set

detg A = det(n;;) = Z SIgN(0) 1o (1) Moy € 1 /T" (2.1)
oES,

The element detg A is unique up to a sign depending on the basis chosen. However, if k is a number field,
we always have
2detg A =0 (mod I™M). (2.2)

Indeed, for an archimedean place v, 7,(g) is either trivial or of order 2, which means 2(r,(¢) — 1) =
—(ry(e) = 1)2 € I%

On the other hand, let Pic(Og) be the group of invertible Og-modules and Pic(Og)r be the group of
invertible Og-modules together with a trivialization at T'. Then one has the exact sequence

1=Usr—U~— H Fy — Pic(Og)r — Pic(Os) — 1.
qeT

Set hg = #Pic(Og) and
[ler(Na—1)

hsr = #Pic(Os)r = hs - (Us Tsn)

(2.3)
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For x € GV, the group of complex characters of G, one defines the Hecke L-function

Lsz(S,x) = [J (1 = x(Frobg)Nq'~*) T] (1 = x(Froby)Np~*)~ ",
qeT pgsS

where Frobg is the Frobenius substitution of q in . Under the assumption that Ugr is free, one can
show that there exists a unique element 0 € Z[G] such that x(0c) = Lg,r(x,0) for all x € GV.

Conjecture 2.1 [7, Conjecture 4.1].  Assume the above assumptions, then
0c = £hsrdetg(N) (mod In+1). (2.4)

From now on, we denote the above conjecture as Gr(K/k,S,T). We list some known results about
Gr(K/k,S,T) here.

Gross [7] first proved the following results:
Proposition 2.2.  The conjecture Gr(K/k,S,T) is true if one of the following holds:

(1) S contains a complex place, or S contains only archimedean places;

(2) K/k is a quadratic extension.

We also have the following well-known results:

Proposition 2.3.  Let K/k, S, T be given as above. Then

(1) If p,q ¢ SUT, then Gr(K/k,S,T) implies Gr(K/k,SU{p},T) and Gr(K/k,S,T U {q}).

(2) If L is a sub-extension of K/k corresponding to the subgroup H of G (i.e., Gal(L/k) = G/H), then
O/ and detg gy A are the images of Og and detg A under the natural homomorphism Z[G] — Z|G/H]
respectively. In particular, Gr(K/k,S,T) implies Gr(L/k,S,T).

This immediately gives the following

Corollary 2.4. In order to prove the Gross conjecture for a fixed base field k, it suffices to prove
Gr(Kj/k, S, o) for all S, § and Ty, where § is the cycle

szvHv"”, Ny € Zo,

vloo vES
vfoo

K5 is the ray class field of k modulo § and Ty is a minimal non-empty set of primes such that Us 1, is
free.

2.2 The case k=Q

This paper is an attempt to show the Gross conjecture over Q, i.e., Gr(K/Q,S,T) for all possible K, S
and T.
By [12], we have

Proposition 2.5.  The Gross conjecture is true for k = Q and n = 1.

By Corollary 2.4, to prove the Gross conjecture over Q, since the ray class field of the cycle moo of Q
is nothing but Q(f,,), we only need to prove Gr(K,,/Q, Sy,,T), where

Km:Q(,um), S:Sm:{ooap177pn Di |m}7 T:{q}7

for every m which is not a prime power and ords(m) # 1 and every odd prime integer ¢ not dividing m.
In this case,
-1
U:=Us=(-1,p1,...,pn), Ur=Usr={zxcU:x2=1(modq)}, h:=hgr= qi
(U:Ur)
Under the canonical isomorphism Gal(Q(un,)/Q) =2 (Z/mZ)* which associates o : ¢ — (%, with a, we
know that .
— a 1 .
fc = (1 — Frob,) Z:l {E - 5} 04 = (1 —Frob,) - 67, (2.5)

(aym)=1
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where 67 is the involution of the Stickelberger element

m—1 a 1
1
= — == . 2.
N (26)

It is well known (and easy to check) that 0_16,, = —0,,. Thus if g € I"™, we have
206 =(1—0_1)0g € I (2.7)

Therefore,
Proposition 2.6. If K is a totally real abelian extension of Q, then Gr(K/Q,S,T) is always true.

Proof. By (2.2), we have detg A = 0 € I"/I"*!. Let K,, = Q((») be the minimal cyclotomic field
containing K, then 0 is the restriction of 0k ,o. By (2.7), it must be 0. o

2.3 A key lemma

Suppose n > 2. Let G be a finite abelian group with a decomposition G = G1 x G2 X --- X G, such that
G; = (0;) is a cyclic group with a generator o; for 2 < i < n, and G is either:

(a) a cyclic group with a generator oy; or

(b) G11 X G2, where G4 are cyclic groups with generators ;.

We now regard G;, G1; and products of them as both subgroups and quotient groups of G. We denote by
Y u the restriction of Z[G] to Z[G/H]. In particular for H = G, we simply write the restriction v¢/q,
as ;. Moreover, for J C [n] := {1,...,n}, we denote by G; = [[,.; Gi and by 1 the corresponding
restriction map Yg/q, -

Lemma 2.7.  Assumptions as above. If a € I C Z[G] such that ¥ (o) € Igﬂ/'é for every 1 < i < n,
then

(1) In Case (a) (i.e. Gy cyclic), a = c(o1—1) -+ (0,—1) (mod I%™), where 0 < ¢ < ged(|G1],. .., |Gyl).

(2) In Case (b), if moreover ¥ a,,(a) € 18761#12’ then a = c(o12 — 1)+ (0, — 1) (mod T4, where
0 < e < ged(|Gial, |Gal, - -y |Grl)-

Proof.  We only prove (2), (1) follows similarly, or one can refer to [9].

Note that for ¢ = [[,9: € G (9i € G;), g — 1 is the linear combination of products of the form
[Lic/(gi — 1) for J a subset of [n] = {1,...,n}. Moreover, g; — 1 is the linear combination of g1; — 1,
g12 — 1 and (g11 —1)(g12 — 1). Now if g; = o (vesp., g1; = 01;), then g; =1 = t(0; — 1) (mod IZ.) (resp.,
g1j —1=t(o1; — 1) (mod Ig;lj)), thus any a € I¢ can be expressed as

=Y celorr — 1) (012 — 1) (03 — 1) -+ (0, — 1) (mod I&H),
eck

where
FE = {(6117612,62,...,6n) EZ;—gl |611+€12+€2+-..+€n <n}
For e € E, we define
Suppe ={i|e; >0ore;; +e2>0ifi=1}.
We denote
T, = (011 — 1) (013 — 1) (g3 — 1)% - - (g, — 1)°".

Then for J C [n],
ajy=1(a) = Z ceT, (mod Ig;réJ)
e: Supp eNJ=0

By the assumption, if J is a non-empty proper subset of [n], ay € I, g}'éj clI g“. Then by the inclusion-
exclusion principle,
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a=ag= Y (~)M "y = (~1)"agy (mod I3,
J#0D

However, e; = (1,0,1,...,1) and e3 = (0,1,1,...,1) are the only e € E with support [n]. Thus
ap = a1 Te, + coTe, (mod Iz,
By assumping ¥ /q,, (@) € Igjém, then 1T, € Ig“, thus
a = c(orz —1)(o2 — 1) -+ (0, — 1) (mod I5).

Let m; = |G;| (or |G12]ifi = 1), and mg = ged{m;}, then there exist integers [; such that > I;m; = my.
Thus
’/Tl()Te2 = Z limiTeQ .

Note that m;(o; —1) € I, each term in the summand is inside ] 2+t Hence moT,, € I&*". This finishes
the proof of (2). a

2.4 Reduction to the cyclic 2-extension case

We now construct explicitly the field L = L,, which was mentioned in Subsection 1.1.
Suppose m = pil <o-pln (p > 2) and without loss of generality, we assume p; is minimal. We let
G; be the Galois group Gal(@(up:i)/Q). Then G; = (Z/pkZ)* and G = Gal(Q(p,)/Q) is canonically
isomorphic to G1 X - -+ x G,,. For our purpose, we treat m in the following three cases.
(1) 24m, ie. p1 > 2;
(2) 4||m, ie. p1 =2, t1 = 2;
(3) 8| m, ie. p1 =2, > 2.
In Cases (1) and (2), G; are cyclic and G satisfies Case (a) in Subsection 2.3; in Case (3), letting G1; =
Gal(Q(p4)/Q) and G1a = Gal(Q(ugn )T/Q) = Z/21727Z, then G satisfies Case (b) in Subsection 2.3.
Recall that
min{ords(p; — 1) : 1 <i < n}, if 24 m;
t=<1, if 4| m;

min{t; — 2,orde(p; — 1) : 2<i<n}, if8|m.

Note that |G;| = p'i~t(p; — 1) if p; # 2 and |G1| =271, G1; = 2 and G2 = 21272 if p; = 2. Then

2tm/, if 24 m;
cd(|Gal, |Gal, ..., |Gxn|) = ’ ' 2.8
ged(|Gil,|Gal, ..., |Gal) {27 it 4 m, (2.8)
where m/ is an odd integer, and
ged(|Gral, |Gal, ... |Grl) = 28m/,  if 8 | m. (2.9)

Pick a generator o; (or o1;) for every cyclic groups mentioned here. Let H and H’ be the subgroups of
G given by

/

H=(?, qio;" 1<, i’ <n), H = (0¥

] [

, ooyt |1 <d,i’ < n)

if 21 m, and by

/ 2t 2 -1 -1 o
H=H = (0o11,015,0; , 0i0;, ,0,015 | 1<4,i" <n)

if 4 | m. Let L = Ly, (vesp., L' = L]) be the corresponding field extension of H (resp., H') by Galois
theory. Then Gal(L/Q) = G/H (resp., Gal(L'/Q) = G/H’) is a cyclic subgroup of order 2! (resp., 2'm/
with m’ odd or = 1) with a generator o (resp., ¢’) which is the image of all o; or g12. Moreover, the
composite maps G; — G — G/H (resp., G12 — G — G/H) are all surjective, which means that

Lemma 2.8.  The finite primes p; are totally ramified in L,,/Q.
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Proof.  Note that G; is the inertia subgroup of p; in K/Q. Now the lemma follows from a more general
fact:

If K/L/k are Galois extensions, suppose that 8 is a prime ideal in K and N O = p. If the inertia
group I(P/p) maps to Gal(L/k) surjectively, then p is totally ramified in L/k.

It is easy to see that L is a maximal cyclic 2-extension inside K, = Q(u,,) such that all prime factors
of m are totally ramified. o

Proposition 2.9. To show the Gross conjecture for the base field Q, it suffices to show the Gross
congecture Gr(L, /Q, Sm, {q}) for all L,,.

Proof. ~ We need to show Gr(K,,/Q, S, {q}) for every m > 3 and ords(m) # 1. We prove it by
induction on m.

If m = 3, Q(us)/Q is a quadratic extension, Gr(K3/Q, Ss,{q}) is true by Gross (Proposition 2.2).
Suppose Gr(K,,/Q, Sy, {q}) is true for all mg < m. Then for Gr(K,,)/Q,Sm,{q}), let a = ¢
—hdetg A. The case n =1 is true by [12] (see Proposition 2.5). In other cases, by inductive hypothesis,
Yaya,(a) (resp., Ya/a,,(a)) satisfy the assumptions of the key Lemma 2.7, therefore,

a=cloy —1)-- (0, — 1) (vesp., c(o12 — 1)+ (0, — 1)) (mod I%*")
for some 0 < ¢ < 2'm/. Then arp =Yg/ (a) = ¢(o’ —1)" (mod Ig'/"}{,) Since both f¢ and detg A are
killed by 2, 2a, = 2¢(0’ = 1)™ € Igﬁ{/. Note that G/H’ is cyclic of order 2'm/, and Ig/H,/Igﬁl, is also
cyclic of order 2'm’ generated by (o’ — 1)", which means either ¢ = 0 or ¢ = 2!='m/. Therefore, that
Gr(Ly,/Q, Sm, {q}) is true implies that o, = g g/ (ar) =clo —1)" € Igﬁl Since Ig/H/Igﬁ{ is cyclic
of order 2! generated by (0 — 1)", ¢ must be 0, which in turn implies that Gr(K,,/Q, Sy, {q}). a

Now by Proposition 2.2, the cases that L,,/Q is quadratic or L,, is totally real are automatically true.
Thus we only need to consider that ¢ > 2 and L is imaginary.

The rest of this paper is dedicate to the proof of the following theorem, which finishes the proof of our
main Theorem 1.2.

Theorem 2.10. Ift > 2 and L is imaginary, then under Conjecture 1.1, Gr(L/Q, Sm, {q}) is always
true.

From now on, we drop the subscript m from our notations.

3 Class numbers and Gross regulators of cyclic 2-extensions

3.1 Class numbers of cyclic l-extensions

Suppose that [ is a prime number. We start by reviewing some results of [6]. Suppose that K/F is a
cyclic extension of order I. Let G = Gal(K/F) = (o) with o a generator of G. Let F' = F(u;) and
K’ = K (u;). This is indicated in the following diagram.

/)
%

Let I(K) be the group of fractional ideals of K and €[(K) be the narrow ideal class group of K. For a
G-submodule C of CI(K), we take a G-submodule D of I(K) satisfying the condition:

D generates C' in €I(K), and DN I(K) = D~

For such data (K/F,C, D), we define a subgroup A of F* by

(o)

F

A = {z € F* : z is totally positive and (z) = 2O € Nk, r(D)}.
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Let Ram(K/F) = {p1,...,p,} be the set of prime ideals of F' ramified in K. Assume p; is unramified
in F'. Let Yo(K/F) be the free abelian group generated by Ram(K/F'). For each place v of F, choose
a place v’ of F’ lying above v. Then for any z,y € F,, the Hilbert norm residue symbol (z,y), is
independent of the choice of v’, thus we denote it by (z,y), in the following. Now we define the Gras
map p with respect to (K/F,C, D) as follows:

pA/Al_>:ul®YVO(K/F)7 Z"—*Z(a,ﬂ?)pl @ P,
i=1
where p; is the group of I-th roots of unity in F”.
Lemma 3.1.  Viewing 1y ® Yo(K/F) as an r-dimensional vector space over Fy, then dimp, imp < r— 1.

Proof.  Let x be an element of A. Then for infinite places v/, (a,2) = 1 since > 0. For the inert
prime p, if € p, we have = € p’ since (z) € Ng/p(D). Thus | | vy(z). Since K, /Fy, is unramified, we
have 7/ (z) = Frob”'®) where Frob is the Frobenius substitution in Gal(Ky, /Fy,). The fact 1| vy ()
then means that rp/(z) is trivial, hence (a,z)p, = (V/a)™»'(®~1 = 1. If p splits, we have Ky, = F,,. Note

that K’ = F'({/a), we conclude that 7,/ (x) is trivial. Hence (a,z), = 1. Thus by the product formula,

we have
T

[ =1, (3.1)

i=1
where ¢; is the number of prime ideals of F’ lying above p;. Since §; is a divisor of [ — 1, it is relatively
prime to {. Thus (3.1) gives a nontrivial relation on the image of p. Hence the result follows. |

Theorem 3.2.  Notations being as above, let C = {P e ¢K):PB°! € C}. Then we have

|CHE)]
[ Nke/rC]|

. lr—l—dimﬂrl imp.

C/C| =

Proof.  For the proof, see [6, Theorem 4.3]. O

In the following, we shall assume that Ng,p(D) contains all p;. Denote
Up:={z € F*:z>0and ordy(z) =0 for any p ¢ Ram(K/F)}.

Under the above assumption, Uy is a subgroup of A. Let S = Ram(K/F)U Mp oo, where Mp o is the
set of infinite places of F'. Let U be the group of S-units of F'. Then we can consider the Gross regulator
map Ag. Define the finite part of A as follows,

/\G,O :Ug — G@Yo(K/F)
U= er‘i (’LL) & Ppi.
=1

Now we have a diagram
Uy —92 G @ Yo(K/F)
| |
AJA —L = 1y @ Yo (K/F).
The left vertical arrow is induced by the inclusion Uy < A, and the right is an isomorphism
§:GROY(K/F) — pu @ Yo(K/F)

given by

Zo'i ® pl | Z(%Gl_l)(l_l)/&t ® pi.
i=1 i=1
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Lemma 3.3. The diagram above is commutative.

Proof.  Take an element u of Uy. Then the composition of Ag ¢ and £ send it to

S g,

i1
and p sends it to Y _;_, (Va 7"“"i(“)_l) ® p;. Class field theory gives us the following commutative diagram,

F;2(—> JF’ —_— Gal(K’/F')

lnorm lnorm lres

FyC Jr Gal(K/F).

Therefore, ry; (u) = rp, (u)(I=D/%  To simplify notations we denote x = /a, o = 1y, (u), ¢ = 27 /z for
the moment. Note that ¢ is a root of unity in F/, hence is o-invariant. So one deduces 27 = (" via
elementary calculations. The result then follows. |
We shall need the following proposition.
Proposition 3.4. Let D be the subgroup of I(K) generated by p1,...,p: and V be its image in CI(K).
Suppose N (V') equals the l-part of €I(F'). Then V equals the l-part of €I(K) if and only if dimg, imp =
r — 1, where p is the Gras map with respect to (K/F,V, D).
To prove this proposition, we need a lemma.
Lemma 3.5.  Let T be a cyclic group of order | with a generator ~y. Let M be an abelian l-group with the
structure of T-module, and let N be a T'-submodule of M of finite index. Let N = {x € M : 27~* € M}.
Then N = N if and only if M = N.
Proof. By definition we have N/N = (M/N)' = {z € (M/N): 27 =z for all y € T'}. If M # N, then
M/N is an [-set with an action of I". The length of its I'-orbit is either { or 1, thus the number of orbits
of length 1, which is nothing but the order of N/N, must be a multiple of . In particular, N # N. O

Proof of Proposition 3.4. By Theorem 3.2, we have
|‘7/V| _ lr—l—dimyl imp

Therefore, V =V if and only if dimp, imp = r — 1. Now the result follows from the above lemma. a

3.2 Class numbers of cyclic 2-extensions over Q

What we need for the Gross conjecture is the case | = 2, K = Q. We have U = (—1,p1,...,pn), Uy =
(p1,...,pn)- Recall that we have constructed a cyclic extension L of Q@ with Galois group G = Z/2'Z
and all primes in S = {p1,...,pn} totally ramified. We can decompose the extension L/Q into a tower
of cyclic extensions of order 2:

Ey=Q)CE1C---CE1 CE(=1L).

Moreover, since t > 2 and L is imaginary, we have E;_; = LT, the maximal real subfield of L and
E; = Q(v/m*), where
m*=[[p=p1-pu

plm

Let G; = Gal(E;/Q), G; = Z/2Z. Denote the 2-part of the narrow class group of E; by C;. Since the
prime p € S is totally ramified in L, by the class field theory we have C;;1 maps onto C;, and the dual
group Cy embeds in CY;.
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Consider the narrow genus group & (E;/Q) of E;/Q. Let V; = & (E;/Q)". Denote by ¢(E;/Q) the
character group of Gal(E;/Q) or of C(Q)/Ng, o(C(E;)), and by ¢* (E;/Q) the group
¢’ (Ei/Q) = {¢ € C(Q)F : Ny, /g¢ is unramified at all finite primes},
where C(Q)™ is torsion subgroup of C(Q)Y. Then V; fits into an exact sequence (cf. [4, p. 15])
0 — ¢(Ei/Q) — ¢1(Ei/Q) — Vi — 0. (3.2)

By the genus theory, we have ¢(E;/Q) ~ Z/2'Z and ¢* (E;/Q) ~ (Z/2'Z)". For each i, we have the
commutative diagram

0 ——=7/2""12 —— (Z/21~17)" Vi1 0
lxl lxl l
0 —>2/27 —> (Z)2Z)" v, 0,

which shows that V;/V;_1 ~ (Z/27Z)" L.
Let hi = |CY/CY_y| = |Ci| /|Ci-1]. In particular, hj = hj = hr/h}. We have
Proposition 3.6. 2"~ | b} for any i, and hi = 2""1 if and only if V;CY , = CY.
Proof.  We first have C}Y D V;CY , and
Vi /Gy = Vi/Vin CYLy = Vi/Viea = (2/22)" .
The result then follows. o

One natural question is whether i is divisible by a higher power of 2. The following proposition shows
that h] plays a deciding role in the divisibility of h} by a high power of 2. For each i =1,...,¢, let D;
be the subgroup of I(E;) generated by the prime ideals of F; dividing m and C; be the image of D; in
CI(E;). Let 6; be the composition of obvious maps C; — C; — &,. Then we have

Proposition 3.7.  If hi =271, then h} = 2"~1, and the composite 0; is an isomorphism for all i.

In order to prove this proposition, we need some preparation. First note that for each ¢ =0,...,t —1,
Ng, /g, ,(D;) contains all primes in Ram(E;/E; 1). Let

Ai={z € E : 2> 0and ordy(z) =0 for any p ¢ Ram(E;/E;_1)}.

It is obvious that Uy = Ag. Let p; : A;_1/AL | — (+1) ® Yo(E;/E;_1) be the Gras map with respect to
(Ei/Eifl,Ci, Dl)
Lemma 3.8. Let r; = dimg, imp;. Then ri <ry < --- <1y <n— 1. In particular, if r1 =n —1, then
ri=n—1fori=1,...t.
Proof.  We first study the generator of E; over E;_;. We have E; = E;_1(y/a) for some a € E;_;\ E? ;.
One can see that E, = Q(v/a). In fact, {E; : ¢ = 0,...,t — 1} are the only proper subfields of L. If
E; = Q(y/a) for some i € {i =1,...,t— 1}, we must have a € E;_1, a contradiction to the choice of a.
Let a; = Ng,_,/p,(a) for all i, we claim that E;,1 = E;(\/a;). For i = t— 2, Gal(Ey/E; o) =
{1,7,72, 7%}, Gal(E; /E;—1) = {1,7%} and Gal(E;_1/E;_2) = {1,7|g,_,}. We have Ng, /5, ,(a) =
a7 € Ey_y. Thus (Ey_o(va' )t Bro) = 1or 2. If Ja''" € Ey_y, we have (va' ™) = a''",
which shows that /a = \/ETQ, so v/a € E;_1. A contradiction. Thus E; 1 = E;_»(,/a;_2). For general
i < t, our claim follows from a simple induction.
For a fixed 4, let p (resp., B) denote the unique prime ideal of E; (resp., F;11) above a prime factor
of m. We have (z,y)p = (Ng, /5, (2),y)p for any x € E;yy and y € E;. This induces the following
commutative diagram,

Nioa /A2 2 (£1) @ Yo(Bi/Ei)

l1®f¢

Ag/A2 L (£1) @ Yo(Biga /Ei),
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where the left vertical map is the natural one and f; is the inverse of the isomorphism induced by the
norm map from F; to F;_1. The equality r; < r;41 is clear from the above commutative diagram. O
Proof of Proposition 3.7.  First note that E;/Q is quadratic, therefore, |C;| = 2"~! is always true
(Theorem 39 and its corollary of [5]). By Proposition 3.6, if b} = 2"~! then |C;| = 2"~ ! and V; = CY.
Thus C; ~ &; ~ C;. Then by Proposition 3.4, 11 = n — 1. Thus by the previous lemma, we have
r; =n — 1 for all ¢. Hence C; = C; for all i by Proposition 3.4 once more. By definition, &; = Ci/Cil_‘”.
However, C; = C; is o;-invariant. Therefore, C; = &; and the result follows from Proposition 3.6. O

Now Conjecture 1.1 is just a generalization of Proposition 3.7, which claims that under our assumption
of m, the divisibility of h; is equivalent to that of A} for L = L,,.

3.3 Gross regulators of 2-cyclic extensions

We define «; by the following commutative diagram,

AG,0

Uo G ® Xp.

N AT

Uo/US'

Proposition 3.9.  «; is surjective for all i if and only if oy is surjective.

Proof.  Assume «; is surjective. We first have the following commutative diagram,

0—>kerai—>U0/U0i ima, 0
0 ——keray Uo/UZ G ®Xo——0.

By adding the kernels and cokernels, we have a larger diagram,

0 0 0

A—— (22)2'2)" —— C
O—>kerai—>U0/UOi im oy 0
0 ——keray Uo /U G1 ® Xog —=0.

D 0

0

By the snake lemma, we have
dimA+dimC =dimD + (i — 1)n. (3.3)

Here by dim, we mean the 2-power of the order of each group. On the other hand, by the exactness of
the left vertical sequence, we have

dim A + dimker o1 = dima; + dim D. (3.4)
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Combining (3.3) and (3.4), we have
dim C + dimker o; = (i — 1)n + 1. (3.5)
By the exactness of the right vertical sequence, we also have
dimC + (n — 1) > dimim a, (3.6)
and the equality holds if and only if im «; maps onto G; ® Xy. Therefore, summarizing all above we have
in = dimker o; + dimim ; < dimker o; +dimC + (n — 1) = in,

which yields dimC + (n — 1) = dimim «y;. Therefore, im «; maps onto G7 ® Xy, which means that
ima; — G; ® Xg — G ® Xo is onto. This shows that for each Z/2!Z-component of G; ® X (as a free
7.,/2'Z-module of rank n), a generator of it is contained in im c;. Therefore, im o; = G; @ Xo.
Proposition 3.10.  Assuming Conjecture 1.1, then h} = 2"~ if and only if o is surjective.

Proof.  Because of Conjecture 1.1 and Proposition 3.9, it suffices to prove the case i = 1. We have the
following commutative diagram,

UQ/U02 i>G1 ® Xo

|

Ao/A2 — (+1) @ Y.

It follows that v is surjective if and only if dimg, im p; = n — 1. This is equivalent to V; = CY, hence
hy =2n1L _ _
Note that U/U? = (+1) x Uy/UZ". We define a; by the following commutative diagram,

Aa.
U < G; ® X.

N

Uu/u*

Note that Ag,(—1) # 0 by the local class field theory. The image of a; is contained in the group generated
by Ag,(—1) and G; ® X in G; ® X. Denote this group by I';. Note that the restriction of &; to UO/Ugl
is ;. We have the following commutative diagram,

1 —— U, /U2 U/u? (£1) 1

where the horizontal rows are exact. Then the surjectivity of a; is equivalent to that of «; by the snake
lemma. The following proposition is nothing but Proposition 3.10.

Proposition 3.11. Assuming Conjecture 1.1, then h} is exactly divisible by 2"~ if and only if

Take T' = {q} for ¢ an odd prime number not in S and consider the following diagram,

Yi

U, /U2 U/u? Fr/(EX), (3.7)
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where ; is induced by the inclusion U; — U and ; = a; o 7;. Note that the upper row of the diagram
is exact. U, is a free abelian group of rank n, hence Uq/UqT ~ (Z/2'Z)". But T; is isomorphic to
7.)27 % (Z,)2'Z)"~*. Therefore, 3; can be regarded as an endomorphism of (Z/2°Z)" whose determinant
is either 0 or 2°~! and det 3; = 2°~! exactly when f3; is surjective. We have the following commutative
diagram,

Xclug

U, T,

NA

U,/UZ

hence the following proposition.
Proposition 3.12.  detg, A # 0 if and only if B; is surjective.

Recall m* = lem p and By = Q(v/m*). The following proposition connects the relative class number
of E; and the Gross regulator.

Proposition 3.13. (1) If (”}1) =1, then detg, A = 0.
(2) If (mT) = —1, assuming Conjecture 1.1, then detg, A # 0 if and only if 2"~ || h}.

Proof.  First of all we claim that

m*U?/U? C ker a;. (3.8)

For the quadratic field By = Q(vm*), r,(u) = 1 if and only if (m*,u), = 1. If p # 2, then

* * * -1
(), = =1, = (1) =1
p
if p =2, then
(m* m*)y = (=) (/2027 =

and (m*,m*)s = 1 since m is positive. Thus we obtain (3.8).

For (1), first consider the case i = 1. We have to show that f3; is not surjective. Note that |U,/UZ| =
T4, it suffices to show that 31 is not injective. By hypothesis, (mT) =1, hence m* € (FX)*. But the
upper row of diagram (3.7) is exact, there is an element = # 1 of U, /U2, such that v (z) = m*U?/U?>.
This shows (1 (z) = ag o y1(x) = 1. In particular £; is not injective.

For general i, consider the following commutative diagram,

Uq/qu - Uq/Ut?

aj jal

Iy ————1I1,

where the upper and lower maps are surjective. Therefore, that 31 is not surjective implies that (; is not
surjective, hence detg, A = 0.

Now we show (2). The assumption (mT) = —1 implies that there exist some p | m* such that (%) =-1.
Let U} = {a € Uy : @ > 0}. Then U, # U,, since —pl4=1/2 € U,\UJ}. Take a € U, which generates
U,/ U;’ . Let B =3 |U;r Juz - Then the following diagram shows that [3; being surjective is equivalent

to B being surjective.

1 —= Ut JUg — U, /U2 — (a)/{a®) —1

F )

1—G; ® X I (Ag,(~1)) —=1.
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We have the following commutative diagram,

Vi

U;/qu UO/Uoi

B /

G; ® Xo.

By Proposition 3.10, to show (2), it suffices to show that ﬂj being surjective is equivalent to a; being
surjective. Obviously, 8;7 being surjective implies that «; is surjective. Conversely we first consider the
case ¢ = 1. This time ~; is injective, because

U nug =U;. (3.9)

q
In fact, if 2 € U7, then 2* = 1 (mod g), hence either x or —z lies in U, which shows U;f NU§ C U;. The
reverse inclusion is obvious. Hence the identity (3.9) holds, and ~; is injective. Note that m*U?/U? €
ker a;, m* ¢ Ug. But |U0/U§| = 2" and |G1 ® Xo| = 2”71, ker oy contains only two elements because
aq is surjective. Therefore, ker oy is generated by m*U?/U2. Moreover, (mT) = -1, m* ¢ US. Hence
ker oy Nim~; = {1}. Therefore, 3; is surjective.

For general 7, consider the following diagram,

1 — ker 3 —= U /U im B 1

b

1—>kerﬁf—>U;’/U§—>G1 ®Xg ——1.

By exactly the same method as in the proof of Proposition 3.9 one can show im ﬁ;r = G; ® X, thus ﬁ;r
is also surjective. O

4 6Og and class number

4.1 Sinnott’s index formula

In this subsection, we review several results concerning the index formula of Sinnott about the Stickel-
berger ideal in an imaginary abelian field. The readers can refer to [10] for the proof.

Let K be an imaginary abelian field, G = Gal(K/Q), R = Z[G]. Let T be the complex conjugation in
G and e~ = (1 — 7)/2. Let w be the number of roots of unity in K.

We first recall the definition and some properties of generalized index. Let V be a subspace of Q[G],
A and B be two lattices in V' of the same rank. Then there is a linear transformation ¢ of V', such that
¢(A) = B. Define

(A: B) = |det(@)]. (4.1)

We have a series of lemmas about the generalized index.

Lemma 4.1. Let A, B,C be three lattices in V of the same rank. Then

() (A:C)=(A:B)(B:C);

(2) If AD B, then (A: B) =[A: BJ.
Lemma 4.2. Let o € Q[G], A be a lattice in V. The character x € GV extends naturally to a ring
homomorphism from Q|G] to C. If x(A) # 0 for any character x of G satisfying x(«) # 0, then

I x(@
x(A)#0

Lemma 4.3. If A and B are two lattices in e~ Q[G], then

(A:ad) = . (4.2)

(A:B) = (wA : wB). (4.3)
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Let S’ be the abelian group generated by elements of the following form

t\ (K NQum)/Q\ "
COI'eSK/KmQ(#m) Z {%} (M) , a € Z7m c Z7

1<t<m
ged(t,m)=1

where {z} stands for the fractional part of z. Define the Stickelberger ideal S = S’ N R. We denote —*
the involution of Q[G] sending g to g~'. Let w = resqg(y,,)/k (05,), where m is the minimal integer such
that K C Q(um), and 0y, is defined in (2.6). Then by [10], we know that there is an R-submodule U of
Q[G] such that e S’ = wU. Let R~ and S~ be the minus part of R and S respectively, i.e.,

R ={a€R:ta=-a}, ST=SNR".

Proposition 4.4. S~ is a submodule of e=S’, and [e= S’ : S7] = w.

Let hy be the relative class number of K, Qx be the unit index of K, ie., Qx = [Or : pxOf+],
where K is the maximal real subfield of K. Sinnott’s index formula is the following theorem:

Theorem 4.5. S~ is of finite index in R™, which is given by

hye
QK
Theorem 4.6. If G is cyclic, then (e R:e”U) = 1.

Proposition 4.7.  If L is the cyclic extension constructed in Subsection 2.4, then Qr = 1.

[R™:57 = L(e R:e V). (4.4)

Proof.  In this case the roots of unity pr, = {#1}. Thus we have the following embedding,
6: 07 )0, = (£1), e ez,

where ¢ is the complex conjugate of . If there is a unit ¢ € Of such that & = —¢, since €2 € LN, then
L = L*(e) and L/L™" is unramified outside 2. But by our assumption, there are at least two primes
ramified in L. The contradiction means that for any ¢ € O we have £ = ¢, i.e., Qp = 1. ]

Corollary 4.8. If L is defined as above, then [R™ : S7] =h; .
4.2 6O¢ and the class number

For any subgroup M of R, denote by Ms the group M ® Zs. Let A; = I; N R, . We have
Lemma 4.9.  Suppose 0 € I' for some i > 1. Then 0g & I'T" if and only if 0g Ry = A;.
Proof.  This is just the special case & = ¢ of the claim: if t > 2 and a € IG N R~ such that aR is a

subgroup in I, N R~ of the same rank then a ¢ 15" if and only if (I NR™: aR) is odd.
Write G = (o). Then 0_; = 0> . An element a = 212 L a;0" € R is contained in R~ if and only if
Qipor—1 = —aj, for every i € [1,2!71] or equivalently, a is contained in the ideal (0_; — 1) of R. Choose

a primitive character x : G — C* and extend it linearly to a ring homomorphism R — O := Z[(a¢].
Denote A = x(o0). The kernel of x is the ideal (0_1 + 1). Therefore, the restriction of x to (-1 — 1) is
injective, and it sends (o_; — 1) onto (A — 1)2t_1 . From this we see that if aR C (0_; — 1), then the
index ((0_1 — 1) : @R) is finite. A lemma of Tate [8] says that x induces an isomorphism

(01 —1)NIE/ (o — 1) NI S (A= 1) H20 / (A— 1)t

Now the claim is a direct consequence of this isomorphism. O
The next proposition connects 6 and the class number.

Proposition 4.10.  Let L be constructed as before, G = Gal(L/Q). Then the following are equivalent
forn > 2.
(1) 6g € I™\I" T,
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*

(2) (™) = 1 and 2" || .

Proof.  First of all, 0 € I. Take the largest i such that g € I*. We compute [R; : 0 Rs] in two ways.
Note that R, € I, thus

i—1
[Ry :0cRo] = [[[Ak : Apga][Ai : 0 Ry) =271
k=1

On the other hand, we have
[Ry :0cgR2] = [Ry : 0GR2] = [Ry : S5 ][Sy : 0" Ro] = (2-part of h} )[Sy : 0" Ral.

Since 2"~ | h7, i = n. Therefore, i = n if and only if 2"~! || h7 and [Sy : 6*Rs] = 1. Therefore, all we
have to do is to show the following,

(m ) = —1 if and only if [S™ : " R] is odd.
q

Since 0 = ab,,, where @ =1 — q(%). We have
[ST:0*R] =[e" S :a*wR]/[e”S": S7] (Lemma 4.1)
= %(e‘wU :e”a*wR) (Proposition 4.4)
= %(E_U ce"a*R) (Lemma 4.3)

1
= §(€7U ce R)[e R:e a*R] (Lemma 4.1)

1
= §[€7R ce"a*R] (Theorem 4.6).

Let a = ordale” R : e~ *R]. We have to show (mT*) = —1if and only if @ = 1. Take a primitive 2'-th
root of unity 7. Suppose (Lq—Q) = ob. Note that GV is generated by x : 0 — 1. By Lemma 4.3,

I a-a™

i€(Z/dZ)*

[eTR:e a*R] = H (1 —qx(o)")| =

x odd

Suppose b = 2", where 2t b, r <t — 1. Then

IT =" = Noguy et —a8)*,
i€(2,/dZ) >

where ¢ is a primitive 2¢="-th root of unity. Note that by the definition of cyclotomic polynomial

t—r ]_
No(uye )01 =€) = ¢°  @ouer (5) ,
It is well known that ®gi—r (X) = 2! 4 1. hence

II a-a") =

i€(z/dz)*

2t7'r71

+1)%.

Since r <t —1,a=1if and only if r =0, i.e., b is odd.
On the other hand, E; = Q(vVm*),

- (59)- ()

Therefore, b is odd if and only if ("};) = —1. This proves the proposition. m|
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4.3 End of the proof

We are to finish the proof of Theorem 2.10, and hence of Theorem 1.2.
Note that h = (¢ — 1)/[U : Ur]. We have

Lemma 4.11.  If h is even, then (mT) =1.

Proof.  Define

Z = coker( modg, o)

By definition, h = |Z|. We have the following exact sequence,
1 — U/, — F))(F) — Z/2* — 1.

Note that |IFqX/(IE‘qX)d| = ged(q — 1,d)/2. If h is even, then |Z/Z% is even, hence |U/U%U,| divides
ged(q — 1,d)/2. Thus meedla=1d)/2 ¢ gdy, meedla=1.4)/2 (mod q) € (F)?. Take a primitive root g of
q, suppose m = g" (mod ¢). Then

gagcd(qfl,d)/2 = mgcd(qfl,d)/2 c (F;)d

Therefore a is even, which shows ( mT) =1. a

Proof of Theorem 2.10.  Take L and ¢q. We shall show Gr(L/Q, S, {¢}) under Conjecture 1.1. If () =

q

1, then by Propositions 3.13 and 4.10, 6 € I"+!, detg A = 0. Thus Gr(L/Q, S, {q}) holds. If (2°) = 1,
then by Propositions 3.13 and 4.10, ¢ & I"*! if and only if detg A Z 0 (mod I™*!). Note that g and
detg A both lie in the cyclic group I"/I"*1, and 20 = 2detg A = 0. Thus g = detg A (mod I™+1).
Then by Lemma 4.11, h is odd. Therefore, Gr(L/Q, S,{q}) also holds. This completes the proof of
Theorem 2.10. ]
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