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ABsTRACT. We study the basic Zg-extension of imaginary abelian field and estab-
lish a formula on Hurwitz-type relations of A(p, S)-invariants. Our result can be
considered as a generalization of Y.Kida [5] .

1.Introduction.

Let p be a prime number and F be a CM-field. Let F,, be the cyclotomic Z,-
extension of F. For every n, we have a unique subextension F,, of degree p™ over
F in F,. We denote F* the maximal real subfield of F, and let h;, be the relative

class number of F,,/F;7| then we have a well known result:
ordp(h, ) =p " p" + A n+v",

pw~ > 0,27 >0, and v~ are integers, when n is sufficiently large.

Let E be a CM-field and a p-extension of F, under the assumption pp = 0,
Y .Kida([5]) proved a striking analogue of the classical Riemann-Hurwitz genus for-
mula from the theory of compact Riemann surfaces, by describing the behavior of

A~ in p-extension. His result can be described as the following:

Theorem 0 (see [8,Theorem 4.1]). pp = 0 if and only if pgz = 0, and when

this is the case
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where the summation is taken over all places w' on By, (resp. w on EX) which do
not lie above p and v' = W'|p_ (resp. v = wlp+ ), e(w/v) (resp. e(w'/v')) is the
ramification index of w (resp. w') over v (resp. V') and dg =1 or 0 (resp. op =1

or 0) according E (resp. F) contains ¢, (or (a4 if p=2) or not.

There are several ways to prove this result. K.Iwasawa([4]) showed us a proof by
using Galois cohomology. W.Sinnott([8]) gave a proof by using p-adic L-function
and J. Satoh([6]) obtained it by using the theory of I'-transforms of rational func-
tions. In this paper, we’ll generalize the above result to basic Zg-extension when
E and F are abelian.

Let S = {p1,...,ps} be a finite set of primes, Zs = [[Z; and Qg be the
les
Zgs-extension of Q, Fg = FQg is called the basic Zg-extension of F. Let N =

py' -+ pPe and Fy be the unique subextension of degree N of Fg. Let hy denote
the relative class number of F/F}. From a theorem of E. Friedman([2]), when F

is an imaginary abelian number field, we have
ordy, (hy) = A" (pi, S)ni + v~ (pi, S),

where all n; are sufficiently large and p; € S.
In this paper, using the relationship between A~ (p;, S) and the A—invariant of

Dirichlet character of F, we obtain the following main result.

Theorem 1. Fized p € S, let E and F be imaginary abelian number fields and E

be a p-extension of F, we have

Mg (P, S) — 0 =[Es FS]( ( ) OF)

Z Z (w/v)—1),

w

where the summation is taken over all places w' on Eg (resp. w on EL) which do
not lie above p and V' = W'|p, (resp. v = w|F§), and e(w/v) (resp. e(w'/V")) is the
ramification index of w (resp. w') over v (resp. v') and ég =1 or 0 (resp. op =1

or 0) according E (resp. F) contains ¢, (or (4 if p=2) or not.

2. Preliminaries.

Let p € S be a fixed prime number and put

{& p=2,

q =

p, pF#2

Let w, be the Teichmiiller character mod ¢. For every m € Z with (m,p) =1 and
m # +1, we have
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with my € Z,, (mq,p) = 1 and n,, being a positive integer. We let Q) denote the
basic Z,-extension on Q and 7' = S — {p}.

Let O be a ring of integers of a finite extension over Q, and let f(X) = ao +
a1 X + - -+ € O[[X]] be a non zero power series. We define

p(f) = min{ordya; : i > 0}, A(f) =min{i > 0: ordya; = u(f)}.

Clearly we have u(fg) = u(f) + u(g) A(fg) = A(f) + A(g), if J,g are non zero
elements of O[[X]]. So p and A can be defined in the quotient field of O[[X]] in a

natural way.

Let Z% denote the unit group of Zg. So
Zg = US X Vs,

where Vg is the torsion part of Z§ and Us = [](1+ 2(Z;). Let < >g and wg
les

denote the projections from ZZ to Ug and Vg respectively. When s = 1, we have
that wg is the Teichmiiller character. Let € be an odd primitive Dirichlet character
with values in C,,, where C,, is a fixed completion of algebraic closure of Q,. Any
primitive Dirichlet character whose conductor is divisible only by the primes in S
can be regarded as a character of Z§. Such a character is called the second kind
for S if it is trivial on Vg. For a character ¥ of the second kind for S, then we have
the decomposition ¥ = W@ (T) where ¥ (resp. ¥(T)) is of the second kind for
p (resp. T')(see [9]).

Let 6 be an odd primitive Dirichlet character with values in C,,. Fix u a generator

of U,. When 6w, is not of the second kind for p, we define
A(0) = Alga(X — 1)),
where
96(X — 1) € 20[[X —1]]
with
go(u® — 1) = Ly(s, 0w,)

and L, (s, fw,) is the p-adic L-function associated to fw,. When fw, is of the second

kind for p, we define A\(#) = —1. The following proposition is [6, Th.1].

Proposition 1. Let 0 be an odd primitive Dirichlet character, T be an even prim-

itive Dirichlet character and O be the integer ring of the field generated over Q) by

+t1r 1 N1 ra
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(1) T has a p-power order and its conductor | is a prime number,
(2) for all a € Z,07(a) = 0(a)7(a),

then
(i) If 0 # w, ', we have

AO)+p™ /g, if 0(1) =1 mod p

AbT) = { A(9), if 0() £ 1 mod

where p 1s a prime ideal of O above p.
(i) If 0 = w,*, we have

ng
Aoy =2 1.
q

Remark 1. This proposition can also be proved by using p-adic L-function (see [8,
§2]).

Proposition 2. Let 6 be an odd primitive Dirichlet character of order prime to p,
T be an even primitive Dirichlet character of p-power order and 07(a) = 6(a)7(a).

Suppose the conductor f(t) of T is prime to p. Write f(r) = [[I*, where k; > 1
I

and | are primes. Then
(i) ky = 1, for alll.
(ii) if O # wp_l,

if@zwp_l,

Proof. (i) By Chinese Remainder Theorem, we have 7 = [[r;, where [* is the
[

conductor of 7; and 7; has p-power order.

If k; # 1, consider the natural map:
i Z)IF) —zZ/(Fh

For any x € ker i, x has order of [ power. Thus 7;(x) is an [ power-th root of unity.
Note 7; has p-power order and (p,l) = 1, we have 7;(z) = 1. This is a contradiction
because [¥ is the conductor of 7.

(ii) When 0 # w, !, it follows from Proposition 1 and (i) since §7(I) = 1 mod p
if and only if (1) = 1. When 0 = wp_l, then I = 1 mod p since 7; has p-power order.

Therefore §(I) = 1 mod p and we are done by Proposition 1. O
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3. The Number of Splitting Primes.

Let k be a finite abelian extension of Q. In this section, we compute the number
of primes of kg above a prime number [, which is closely related with the characters
of Galois group. The character group of an abelian profinite group G means the set
of continuous homomorphisms from G to the roots of unity in C;; with the induced
topology. We denote this character group as G".

Now we take x € Gal(ks/Q)", then ker x is a close subgroup with finite index
of Gal(ks/Q) (an open subgroup) and y is essentially a usual Dirichlet character.
Let kX be the subfield of kg fixed by ker x, then we define

0 if [ is ramified in kX,
x(l) =

X (F'roby) if [ is unramified in kX.
Keeping the above notations, we have the following lemma:

Lemma 1. For any prime number [, we have
(i) There are finitely many primes in kg above [.

(ii) The number of primes above l in kg is equal to
#{x € Gal(ks/Q)" : x(I) = 1}.

Proof. (i) First consider S = {p}. Let Q be a prime in k above [.
If | = p, it is trivial by [10, Lemma 13.3].
If [ # p, then Q is unramified in kg/k. Write

l=wy(D)(1+p"i).
Then the number of primes of k above Q is equal to

#(Gal(ks/k)/< Frobg >)
< #(Gal(QW/Q)/< Frob; >) - [k : Q]
<p"k:Q] < oo

and we proved the case s = 1.

If s > 1, let D(Q) be the decomposition group of Q, then D(Q) is a closed
subgroup of Zg and has the form plilZp1 X oo xpteZ, ,0<t; <oo,i=1---,s,
where p°Z, = 0. It is sufficient to prove that t; < oo,¢ = 1,---,s. If not,
suppose t; = co. Let k(1) C L be a basic Z,,-extension of k and D®)(Q) be the

decomposition group of Q over k). So we have

oY/ A T AN A
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This is a contradiction to the case of s =1 and we proved (i).
(ii) Let D(l) denote the decomposition group of a prime in kg above [, then the

number of primes in kg above [ is equal to

#(Gal(ks/Q)/D(1)) = #((Gal(ks/Q)/D(1))")
=#{x € Gal(ks/Q)" : x(I) = 1}

This is the result as desired. [

Remark 2. Lemma 1 is not true for arbitrary Zg-extention, see [10, ex.13.2].

From Lemma 1, we immediately have the following lemma:

Lemma 2. Suppose kN Qs =Q,pe S withptk:Q|, T=S—{p} andl is a

prime number different from p. Then the number of prime ideals above | in kQg is

#{x € Gal(kQr/Q)" : x(I) = 1}#{x € Gal(QW/Q)" : x(I) = 1}
= (p"/9)#{x € Gal(kQr/Q)" : x(I) = 1}.

Proof. By Lemma 1, it is sufficient to prove

#{x € Gal(kQg/Q)" : x(I) =1}
=#{x € Gal(kQp/Q)" : x(1) = 1}#{x € Gal(Q®)/Q)" : x(I) = 1}.

Since

Gal(kQs/Q) = Gal(kQ,/Q) x Gal(QP/Q),

we have

Gal(kQg/Q)" = Gal(kQp/Q)" x Gal(Q™W)/Q)",

Therefore for any x € Gal(kQg/Q)", we have x = x7-Xxp, With x7 € Gal(kQr/Q)",
Xp € Gal(Q®W /Q)" and x(I) = x7(1)x,(1). Note x,(I) is a p-power root of unity

and xr([) is not, so we have
X)) =1 xr(l) =1and x,(l) =1

and Lemma 2 is proved. [

4. Proof of Theorem 1.
First let k be a finite abelian extension of Q and we use the following notations

assoclated to k:

~ [/ r—\ 31 _ 4 € 11 7/ 1IN TYY O 1YY Y e Y 1



RIEMANN-HURWITZ FORMULA IN BASIC Zgs-EXTENSIONS 7

Xk (l) (resp. X, (1)): all the elements of Xy (resp. X, ) whose conductors are
divisible by a prime number .

Jk(1): all the elements of Xy whose conductors are prime to a prime number /.

We write xx as an element of Xy and fx as the conductor of k. Let e, f and g
denote the usual meaning as the ramification index, the residue class degree, the
number of splitting primes respectively. For a prime number [, by [10. Th.3.7], we

have
# k() = f(Dgx(l) and  #(Xi/Jk()) = ex().

Now E, F are the same as in section 1. Let K be the maximal p-extension of Q
in E and L be the maximal extension of Q in E with p t [L : Q]. w (resp. w')
is a prime of E{ (resp. Eg) which does not lie over the prime p, v = w|F;r (resp.
Vi =uw'|lp,) and u = w|LJSr (resp. u' = wlLy).

Suppose w|q = # p. Since the residue field at « or «’ has no finite p-extensions,
it is clear that f(w/u) = f(w'/u') = 1. Furthermore

ex(l) = e(W'/u'), ex+() =e(w/u), and #Jx+ =g(w/u), #Jk =g(w'/u)

We also note

1) It is easy to check that if Theorem 1 holds for two of E/F, K/F and E/K, it
holds for the third. This allows us to reduce ourselves to the case where [F : Q] is
not divisible by p for p > 2.

2) We can also assume ENFg = F,FN Qg = Q and the conductor of E is not
divisible by gp, since any number field between E and Eg has the same A(p, S)-
invariant as that of E.

3) By the above assumption, we have
[Es:Fs]=[E:F], ENQs = Q.

With the above notations, we have the following lemma:

Lemma 3.
D (e(w'/v) = 1) =) (elw/v) = 1)
lep”l‘l#XK(l)#{XFW(T) : xr odd, xg¥ D (1) = 1}, if p>2

2 X () - B Fl#Xpox (1) 3 O™ v @) =1}, if p=2

where W' (resp. w) runs over all the primes in Eg (resp. EY ) which do not lie over

p, | runs over all the prime numbers different from p and ¥T) is taken over the

DT Y e B P aN 'V aSy



8 YI OUYANG® AND FEI XU

Proof. Since
Z( w'/u') —1) Z (w/u) — 1)
—Zg Zg w/u)(e(w/u) = 1) (%)
When p > 2, then F=L, v = u, v =« and K = K*. By Lemma 2, we have

=) #Xk() Y 1= #Xk() Y1

I£p w'NQ=I l£p wNQ=I
= #Xx()#{xe?") : xg @D (1) = 1}p™
I#p
Y #XkO# e+ T xpr P (1) = 1)pm
I#p
=Y #Xk(O)p" #{xe TP xr odd, xg@ (1) = 1}.
I#p

For p =2, we have F D L and L = L™. So

=Y #Xk() D 1= #Xge(1) ) 1

l#p u'|q=l l#p u|gQ=l
= #X5 (1) 2772 #a¥ ™ v (0) = 13 (1)
l#p

Let E = F, we have

Z( (V/u') = 1) = (e(v/u) = 1)

v

—22’” 2# X gnp (DFOATD v @ (1) = 1} (2)
I#p
Since
[Es:Fs|=[E:F], f(o//v)) =1

we have

e(w' /v)g(W'/V') = [E : F],
and

e(w'/u") = e(w' [V )e(V [u'),
then

B F]Z( (v'/u) = 1)
—Zg (w'/v")(e(w'/u') = e(w'/V1))
Z W' [V')).
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The same is true for w, u,v. By (1) and (2), we obtain that
Y (e V) =1) =) (elw/v) = 1)
=2 2" TN () — B Pl X e O} # D™ e @) =1} O
l#p

Now we begin our proof of the main Theorem 1.

Proof. We know that for any imaginary abelian field k, A(p, S) has the following

relation (cf.[9]):
A (D, S) =+ > > Aw™),
6 w(T)

where the outer sum is taken over all odd characters of k/Q and the inner sum is
taken over all #1) € Gal(Qr/Q)" with A(0¥(1)) # 0, and 0k = 1 if and only if w,
is a character of k/Q. Therefore

Ag(p,S) — 0 = Z Z Axe?™D)

XE odd w(T)

:ZZZ)‘(XLXKW(T)) (**)

XL XK w(T)

where xxxr is odd.
When p > 2, the conductor of x € Gal(K/Q)" is not divisible by p since fg is
not divisible by p? and [K : Q] is p-power. Note L = F and K = K™ in this case,

by Proposition 1 and Proposition 2, we have

= 22> Dowr™)+ >0

xrodd Xk ¥(T) Uf(xx)
xr? 1) (1)=1
=[E:F] Y Y A0+ Y Y D #xkOp
xrodd @(T) xrodd w(T) l#p
xr? M (1)=1
= [B:F]O\g(p, ) —dr) + Y _p" " #Xk(]) > 1
l#p XFOdd,XFW(T) (l):].
= [E:F|(A\p(p,S) — 6p) + Y _p" ' # Xk (D#{xe?") : xp odd, xg @™ (1) = 1}
I#p
= [E:F](\p — 0p) + Z )= > (e(w/v) —1).

When p = 2, L = L™, L C F and the conductor of each character of K is not
divisible by 8. By [6. Th.1]

> Axk) =D 2 THXE () - [KT: Q.
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Since KN F' is an imaginary abelian extension of Q, we can choose a primitive odd

character xo of Gal((F NK)/Q) with order 2. Then, for any x € Xg, X = xoX

with ¥ € Xk+. By Proposition 1 and Proposition 2, we have

Yo Aboa?™)

xxodd xp w(T)£1

= 22X (D# Y™ # 1o v (1) =1}
I#p

+[KT: Q] Z A xoxe ™).

xL¥ (1) #1

Therefore

o) =Y > > Axxn#r ™)

XL xkodd w(T)

= Z Z Axxxe?™) + Z Alxx)

xkodd yp(T)£1 xkodd

=[K":QI( Y. Alxoxe?™)-1)

xL¥ (M #1

+ ) 2P HEX g (A# D v (1) =1}
l#p

If we set E = F in the above equality, then we obtain

)\E (27 S) - (sF
=K*NF:QJ( ) Aloxe?™®)-1)
xLP (T)#£1
+ ) 2" X e (# O™ x (1) = 13
l#p

(4)

By (3) — [ET : FT|(4) we obtain the result as desired since [ET : FT][KtT NF :

Q=[K":Q]and [E:F]=[ET:Ft]|=[Es:Fg]. O
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