Loops of isogeny graphs of supersingular elliptic curves at $j=0$

Yi Ouyang, Zheng Xu*
Wu Wen-Tsun Key Laboratory of Mathematics, School of Mathematical Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China

A R T I C L E I N F O

Article history:

Received 23 December 2018
Received in revised form 2 April 2019
Accepted 11 April 2019
Available online xxxx
Communicated by Neal Koblitz

MSC:

11G20
11G15
14G15
14H52
94A60
Keywords:
Supersingular elliptic curves over finite fields
Isogeny graphs

A B S T R A C T

We improve Adj et al.'s bound in [1, Theorem 12] from $p>4 \ell$ to $p>3 \ell$ for the loops of $E_{0}: y^{2}=x^{3}+1$ in the ℓ-isogeny graph $G_{\ell}\left(\mathbb{F}_{p^{2}},-2 p\right)$ of supersingular elliptic curves over $\mathbb{F}_{p^{2}}$ with trace $-2 p$.
© 2019 Elsevier Inc. All rights reserved.

Let ℓ and p be distinct prime numbers. The ℓ-isogeny graph $G_{\ell}\left(\mathbb{F}_{p^{2}}\right)$ over $\mathbb{F}_{p^{2}}$ is the graph whose vertices are $\mathbb{F}_{p^{2}}$-isomorphism classes of supersingular elliptic curves defined over $\mathbb{F}_{p^{2}}$ and edges are equivalent classes of ℓ-isogenies defined over $\mathbb{F}_{p^{2}}$. If replacing the field of definition $\mathbb{F}_{p^{2}}$ of the curves and isogenies by the algebraic closure $\overline{\mathbb{F}}_{p}$ of \mathbb{F}_{p}, we get

[^0]the definition of $G_{\ell}\left(\overline{\mathbb{F}}_{p}\right)$. By Tate's result ([4]), two elliptic curves over a finite field \mathbb{F}_{q} are isogenous over \mathbb{F}_{q} if and only if the traces of the Frobenius $\left(x \mapsto x^{q}\right)$ on their Tate modules are the same. For a fixed $t \in \mathbb{Z}$, let $G_{\ell}\left(\mathbb{F}_{p^{2}}, t\right)$ be the subgraph of $G_{\ell}\left(\mathbb{F}_{p^{2}}\right)$ consisting of vertices whose underlying curves are of Frobenius trace t and edges connecting the vertices. In this graph, two isogenies from E_{1} to E_{2} are equivalent if they have the same kernel. Then the graph $G_{\ell}\left(\mathbb{F}_{p^{2}}\right)$ is the disjoint union of $G_{\ell}\left(\mathbb{F}_{p^{2}}, 0\right), G_{\ell}\left(\mathbb{F}_{p^{2}}, \pm p\right)$ and $G_{\ell}\left(\mathbb{F}_{p^{2}}, \pm 2 p\right)$, as the trace of Frobenius $\left(x \mapsto x^{p^{2}}\right)$ of a supersingular elliptic curve over $\mathbb{F}_{p^{2}}$ must belong to the set $\{0, \pm p, \pm 2 p\}$. Adj et al. determined the subgraphs $G_{\ell}\left(\mathbb{F}_{p^{2}}, 0\right)$ and $G_{\ell}\left(\mathbb{F}_{p^{2}}, \pm p\right)$ in $\left[1\right.$, Theorems 3-5]. The subgraphs $G_{\ell}\left(\mathbb{F}_{p^{2}}, 2 p\right)$ and $G_{\ell}\left(\mathbb{F}_{p^{2}},-2 p\right)$ are isomorphic, hence to study $G_{\ell}\left(\mathbb{F}_{p^{2}}\right)$, it suffices to study $G_{\ell}\left(\mathbb{F}_{p^{2}},-2 p\right)$. One problem of interest is to determine the number of loops in $G_{\ell}\left(\mathbb{F}_{p^{2}},-2 p\right)$.

Let E_{0} be the curve $y^{2}=x^{3}+1$ if $p \equiv 2 \bmod 3$ and E_{1728} be the curve $y^{2}=x^{3}+x$ if $p \equiv 3 \bmod 4$. Then E_{0} and E_{1728} are supersingular elliptic curves over $\mathbb{F}_{p^{2}}$ of Frobenius trace $-2 p$ and j-invariants 0 and 1728 respectively. Adj et al. [1, Theorems 10 and 12] determined the number of loops of E_{0} and E_{1728} in the subgraph $G_{\ell}\left(\mathbb{F}_{p^{2}},-2 p\right)$ if $p>4 \ell$. In this note, we improve the bound $p>4 \ell$ in [1, Theorem 12] to $p>3 \ell$ for E_{0} and prove the following theorem:

Theorem. Suppose p and ℓ are distinct prime numbers, $p \equiv 2 \bmod 3$ and $p>3 \ell$. If $\ell \equiv 1 \bmod 3, E_{0}$ has exactly two loops in $G_{\ell}\left(\mathbb{F}_{p^{2}},-2 p\right)$. If $\ell \equiv 2 \bmod 3, E_{0}$ has no loop in $G_{\ell}\left(\mathbb{F}_{p^{2}},-2 p\right)$. If $\ell=3, E_{0}$ has one loop in $G_{\ell}\left(\mathbb{F}_{p^{2}},-2 p\right)$.

Remark. (1) From Table 1 in [1], if $\ell=5,7$ and 17, the largest prime p satisfying $p \equiv 2 \bmod 3$ and $p<3 \ell$ is 11,17 and 47 , the number of loops at E_{0} in $G_{\ell}\left(\mathbb{F}_{p^{2}},-2 p\right)$ is at least 1,3 and 1 respectively, larger than the prediction in our theorem. In this sense, the bound $p>3 \ell$ is sharp (hence $p>3 \ell+1$ since $p \equiv 2 \bmod 3$). On the other hand, there are many examples that $\ell \equiv 1 \bmod 3($ resp. $\ell \equiv 2 \bmod 3), p$ is the largest prime satisfying $p<3 \ell$ and $p \equiv 2 \bmod 3$, and E_{0} has exactly two loops (resp. no loop) in $G_{\ell}\left(\mathbb{F}_{p^{2}},-2 p\right)$.
(2) The method in our proof can be applied to give a new proof of [1, Theorem 10]. One just needs to work on the order $\operatorname{End}\left(E_{1728}\right)$ and solve the Diophantine equation $(2 a+c)^{2}+(2 b+d)^{2}+p\left(c^{2}+d^{2}\right)=4 \ell$ if $p>4 \ell$.

Proof. First note that by $[1$, Theorem 6$], G_{\ell}\left(\mathbb{F}_{p^{2}},-2 p\right) \cong G_{\ell}\left(\overline{\mathbb{F}}_{p}\right)$, hence we can and will work on the graph $G_{\ell}\left(\overline{\mathbb{F}}_{p}\right)$ instead.

For $p \equiv 2 \bmod 3$, we can represent the definite quaternion algebra $B_{p, \infty}$ over \mathbb{Q} ramified only at p and ∞ as $\mathbb{Q} \oplus \mathbb{Q} i \oplus \mathbb{Q} j \oplus \mathbb{Q} k$ with $i^{2}=-3, j^{2}=-p, i j=-j i=k$. From [3],

$$
\mathcal{O}=\operatorname{End}\left(E_{0}\right)=\mathbb{Z}+\mathbb{Z} \frac{-1+i}{2}+\mathbb{Z} j+\mathbb{Z} \frac{3+i+3 j+k}{6}
$$

is a maximal order of $B_{p, \infty}$.

By Deuring's Correspondence Theorem (see [2,3,5]), the ℓ-isogeny classes from E_{0} to itself defined over $\overline{\mathbb{F}}_{p}$ correspond to the left principal \mathcal{O}-ideals with reduced norm ℓ. To find the number of loops at E_{0} in the graph $G_{\ell}\left(\overline{\mathbb{F}}_{p}\right)$, it suffices to find the number of left principal \mathcal{O}-ideals with reduced norm ℓ.

For the left principal \mathcal{O}-ideal $I=\left(a+b \frac{-1+i}{2}+c j+d \frac{3+i+3 j+k}{6}\right)$, its reduced norm

$$
\operatorname{Nrd}(I)=\left(a-\frac{b}{2}+\frac{d}{2}\right)^{2}+3\left(\frac{b}{2}+\frac{d}{6}\right)^{2}+p\left(c+\frac{d}{2}\right)^{2}+p \cdot \frac{d^{2}}{12}
$$

We are reduced to solve the Diophantine equation

$$
\frac{(2 a-b+d)^{2}}{4}+\frac{(3 b+d)^{2}}{12}+\frac{p\left(3 c^{2}+3 c d+d^{2}\right)}{3}=\ell .
$$

We solve this equation when $p>3 \ell$.
If $(0,0) \neq(c, d) \in \mathbb{Z}^{2}$, then $3 c^{2}+3 c d+d^{2} \geq 1$ and $\frac{p\left(3 c^{2}+3 c d+d^{2}\right)}{3}>\ell$, not possible. This means $c=d=0$. We are reduced to solve $a^{2}-a b+b^{2}=\ell$.

Since the class number of $\mathbb{Q}(\sqrt{-3})$ is one, its ring of integers $\mathbb{Z}\left[\frac{1+\sqrt{-3}}{2}\right]$ is a PID. Every ideal of $\mathbb{Z}\left[\frac{1+\sqrt{-3}}{2}\right]$ is of the form $\left(-a+b \frac{1+\sqrt{-3}}{2}\right)$, whose norm is $a^{2}-a b+b^{2}$. We need to study the decomposition of the ideal (ℓ).

For $\ell \neq 2$ and $\ell \equiv 2 \bmod 3,\left(\frac{-3}{\ell}\right)=-1$ and ℓ is inert in $\mathbb{Q}(\sqrt{-3})$, so there is no $(a, b) \in \mathbb{Z}^{2}$ such that $a^{2}-a b+a b=\ell$. This means there is no ℓ-isogeny from E_{0} to itself defined over $\overline{\mathbb{F}}_{p}$, and hence E_{0} has no loop in $G_{\ell}\left(\overline{\mathbb{F}}_{p}\right) \cong G_{\ell}\left(\mathbb{F}_{p^{2}},-2 p\right)$. For $\ell \equiv 1 \bmod 3$, $\left(\frac{-3}{\ell}\right)=1$ and ℓ is split in $\mathbb{Q}(\sqrt{-3})$. Up to units, there are two pairs of $(a, b) \in \mathbb{Z}^{2}$ such that $a^{2}-a b+a b=\ell$ and hence two left principal \mathcal{O}-ideals of reduced norm ℓ. This means there are two ℓ-isogeny classes from E_{0} to itself defined over $\overline{\mathbb{F}}_{p}$, and E_{0} has exactly two loops in $G_{\ell}\left(\mathbb{F}_{p^{2}},-2 p\right)$. For $\ell=2$, there is no $(a, b) \in \mathbb{Z}^{2}$ such that $a^{2}-a b+b^{2}=2$, hence E_{0} has no loop in $G_{2}\left(\mathbb{F}_{p^{2}},-2 p\right)$. For $\ell=3$, ℓ is ramified in $\mathbb{Q}(\sqrt{-3})$. Then $(a, b)= \pm(1,2), \pm(2,1)$ or $\pm(1,-1)$, all corresponding to the same left principal \mathcal{O}-ideal. This means E_{0} has one loop in $G_{3}\left(\mathbb{F}_{p^{2}},-2 p\right)$.

Acknowledgments

Research is partially supported by Anhui Initiative in Quantum Information Technologies (Grant No. AHY150200) and NSFC (Grant No. 11571328).

References

[1] G. Adj, O. Ahmadi, A. Menezes, On isogeny graphs of supersingular elliptic curves over finite fields, Finite Fields Appl. 55 (2019) 268-283.
[2] K. Lauter, K. McMurdy, Explicit generators for endomorphism rings of supersingular elliptic curves, preprint available.
[3] K. McMurdy, Explicit representation of the endomorphism rings of supersingular elliptic curves, https://phobos.ramapo.edu/~kmcmurdy/research/McMurdy-ssEndoRings.pdf, 2014.
[4] J. Tate, Endomorphisms of abelian varieties over finite fields 2 (1966) 134-144.
[5] J. Voight, Quaternion algebras. Version v0.9.7, September 3, 2017.

[^0]: * Corresponding author.

 E-mail addresses: yiouyang@ustc.edu.cn (Y. Ouyang), xuzheng1@mail.ustc.edu.cn (Z. Xu).

