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We improve Adj et al.’s bound in [1, Theorem 12] from p > 4�
to p > 3� for the loops of E0 : y2 = x3 + 1 in the �-isogeny 
graph G�(Fp2 , −2p) of supersingular elliptic curves over Fp2

with trace −2p.
© 2019 Elsevier Inc. All rights reserved.

Let � and p be distinct prime numbers. The �-isogeny graph G�(Fp2) over Fp2 is the 
graph whose vertices are Fp2-isomorphism classes of supersingular elliptic curves defined 
over Fp2 and edges are equivalent classes of �-isogenies defined over Fp2 . If replacing the 
field of definition Fp2 of the curves and isogenies by the algebraic closure Fp of Fp, we get 
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the definition of G�(Fp). By Tate’s result ([4]), two elliptic curves over a finite field Fq are 
isogenous over Fq if and only if the traces of the Frobenius (x �→ xq) on their Tate modules 
are the same. For a fixed t ∈ Z, let G�(Fp2 , t) be the subgraph of G�(Fp2) consisting 
of vertices whose underlying curves are of Frobenius trace t and edges connecting the 
vertices. In this graph, two isogenies from E1 to E2 are equivalent if they have the 
same kernel. Then the graph G�(Fp2) is the disjoint union of G�(Fp2 , 0), G�(Fp2 , ±p) and 
G�(Fp2 , ±2p), as the trace of Frobenius (x �→ xp2) of a supersingular elliptic curve over 
Fp2 must belong to the set {0, ±p, ±2p}. Adj et al. determined the subgraphs G�(Fp2 , 0)
and G�(Fp2 , ±p) in [1, Theorems 3-5]. The subgraphs G�(Fp2 , 2p) and G�(Fp2 , −2p) are 
isomorphic, hence to study G�(Fp2), it suffices to study G�(Fp2 , −2p). One problem of 
interest is to determine the number of loops in G�(Fp2 , −2p).

Let E0 be the curve y2 = x3 + 1 if p ≡ 2 mod 3 and E1728 be the curve y2 = x3 + x if 
p ≡ 3 mod 4. Then E0 and E1728 are supersingular elliptic curves over Fp2 of Frobenius 
trace −2p and j-invariants 0 and 1728 respectively. Adj et al. [1, Theorems 10 and 12]
determined the number of loops of E0 and E1728 in the subgraph G�(Fp2 , −2p) if p > 4�. 
In this note, we improve the bound p > 4� in [1, Theorem 12] to p > 3� for E0 and prove 
the following theorem:

Theorem. Suppose p and � are distinct prime numbers, p ≡ 2 mod 3 and p > 3�. If 
� ≡ 1 mod 3, E0 has exactly two loops in G�(Fp2 , −2p). If � ≡ 2 mod 3, E0 has no loop 
in G�(Fp2 , −2p). If � = 3, E0 has one loop in G�(Fp2 , −2p).

Remark. (1) From Table 1 in [1], if � = 5, 7 and 17, the largest prime p satisfying 
p ≡ 2 mod 3 and p < 3� is 11, 17 and 47, the number of loops at E0 in G�(Fp2 , −2p) is 
at least 1, 3 and 1 respectively, larger than the prediction in our theorem. In this sense, 
the bound p > 3� is sharp (hence p > 3� + 1 since p ≡ 2 mod 3). On the other hand, 
there are many examples that � ≡ 1 mod 3 (resp. � ≡ 2 mod 3), p is the largest prime 
satisfying p < 3� and p ≡ 2 mod 3, and E0 has exactly two loops (resp. no loop) in 
G�(Fp2 , −2p).

(2) The method in our proof can be applied to give a new proof of [1, Theorem 10]. 
One just needs to work on the order End(E1728) and solve the Diophantine equation 
(2a + c)2 + (2b + d)2 + p(c2 + d2) = 4� if p > 4�.

Proof. First note that by [1, Theorem 6], G�(Fp2 , −2p) ∼= G�(Fp), hence we can and will 
work on the graph G�(Fp) instead.

For p ≡ 2 mod 3, we can represent the definite quaternion algebra Bp,∞ over Q
ramified only at p and ∞ as Q ⊕Qi ⊕Qj ⊕Qk with i2 = −3, j2 = −p, ij = −ji = k. 
From [3],

O = End(E0) = Z + Z
−1 + i

2 + Zj + Z
3 + i + 3j + k

6

is a maximal order of Bp,∞.
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By Deuring’s Correspondence Theorem (see [2,3,5]), the �-isogeny classes from E0 to 
itself defined over Fp correspond to the left principal O-ideals with reduced norm �. To 
find the number of loops at E0 in the graph G�(Fp), it suffices to find the number of left 
principal O-ideals with reduced norm �.

For the left principal O-ideal I = (a + b−1+i
2 + cj + d3+i+3j+k

6 ), its reduced norm

Nrd(I) =
(
a− b

2 + d

2

)2

+ 3
(
b

2 + d

6

)2

+ p

(
c + d

2

)2

+ p · d
2

12 .

We are reduced to solve the Diophantine equation

(2a− b + d)2

4 + (3b + d)2

12 + p(3c2 + 3cd + d2)
3 = �.

We solve this equation when p > 3�.
If (0, 0) 	= (c, d) ∈ Z2, then 3c2 + 3cd + d2 ≥ 1 and p(3c

2+3cd+d2)
3 > �, not possible. 

This means c = d = 0. We are reduced to solve a2 − ab + b2 = �.
Since the class number of Q(

√
−3) is one, its ring of integers Z[ 1+

√
−3

2 ] is a PID. 
Every ideal of Z[ 1+

√
−3

2 ] is of the form (−a + b1+
√
−3

2 ), whose norm is a2 − ab + b2. We 
need to study the decomposition of the ideal (�).

For � 	= 2 and � ≡ 2 mod 3, 
(−3

�

)
= −1 and � is inert in Q(

√
−3), so there is no 

(a, b) ∈ Z2 such that a2 − ab + ab = �. This means there is no �-isogeny from E0 to itself 
defined over Fp, and hence E0 has no loop in G�(Fp) ∼= G�(Fp2 , −2p). For � ≡ 1 mod 3, (−3

�

)
= 1 and � is split in Q(

√
−3). Up to units, there are two pairs of (a, b) ∈ Z2

such that a2 − ab + ab = � and hence two left principal O-ideals of reduced norm �. 
This means there are two �-isogeny classes from E0 to itself defined over Fp, and E0
has exactly two loops in G�(Fp2 , −2p). For � = 2, there is no (a, b) ∈ Z2 such that 
a2 − ab + b2 = 2, hence E0 has no loop in G2(Fp2 , −2p). For � = 3, � is ramified in 
Q(

√
−3). Then (a, b) = ±(1, 2), ±(2, 1) or ±(1, −1), all corresponding to the same left 

principal O-ideal. This means E0 has one loop in G3(Fp2 , −2p). �
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