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`-CLASS GROUPS OF FIELDS IN KUMMER TOWERS
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Abstract: Let ` and p be prime numbers and Kn,m = Q(p
1
`n , ζ2`m ). We study

the `-class group of Kn,m in this paper. When ` = 2, we determine the structure
of the 2-class group of Kn,m for all (n,m) ∈ Z2

≥0 in the case p ≡ 3, 5 mod 8, and

for (n,m) = (n, 0), (n, 1), or (1,m) in the case p ≡ 7 mod 16, generalizing the
results of Parry about the 2-divisibility of the class number of K2,0. We also obtain

results about the `-class group of Kn,m when ` is odd and in particular when ` = 3.

The main tools we use are class field theory, including Chevalley’s ambiguous class
number formula and its generalization by Gras, and a stationary result about the

`-class groups in the 2-dimensional Kummer tower {Kn,m}.
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1. Introduction

In this paper we let ` and p be prime numbers. For n and m non-nega-
tive integers, let Kn,m = Q(p

1
`n , ζ2`m). Let An,m and hn,m be the `-part

of the class group and the class number of Kn,m. The aim of this paper
is to study the `-class groups of Kn,m when n and m vary.

First let us assume ` = 2. In 1886, Weber ([21]) proved that the class
number h0,m of Q(ζ2m+1) is odd for any m ≥ 0. In fact, by inductively
using a result of Iwasawa [9], one easily obtains that 2 - hn,m for any n, m
in the case p = 2. For odd primes p, it is well known that the class
number h1,0 of Q(

√
p) is odd by the genus theory of Gauss. By a more

careful application of genus theory for quartic fields, Parry ([19]) showed
that A2,0 is cyclic and

(i) If p ≡ 3, 5 mod 8, then 2 - h2,0.
(ii) If p ≡ 7 mod 16, then 2 ‖ h2,0.
(iii) If p ≡ 15 mod 16, then 2 | h2,0.
(iv) If p ≡ 1 mod 8, then 2 | h2,0. Moreover, if 2 is not a fourth power

modulo p, then 2 ‖ h2,0.

For p ≡ 9 mod 16, Lemmermeyer showed that 2 ‖ h2,0; see [17]. For
p ≡ 15 mod 16, one can show that 4 | h2,0; see [14].
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Our first result of this paper is

Theorem 1.1. Let p be a prime number, Kn,m = Q(p
1
2n , ζ2m+1). Let

An,m be the 2-part of the class group and hn,m the class number of Kn,m.

(1) If p ≡ 3 mod 8, then hn,m is odd for n,m ≥ 0.
(2) If p ≡ 5 mod 8, then hn,0 and h1,m are odd for n,m ≥ 0 and

2 ‖ hn,m for n ≥ 2 and m ≥ 1.
(3) If p ≡ 7 mod 16, then An,0 ∼= Z/2Z, An,1 ∼= Z/2Z× Z/2Z for n ≥

2, and A1,m
∼= Z/2m−1Z for m ≥ 1.

We give an interesting consequence on 2-adic properties of units. Let
p ≡ 3 mod 8 and ε = a + b

√
p be the fundamental unit of Q(

√
p).

Parry ([19]) and Zhang–Yue ([22]) showed that a ≡ −1 mod p and
v2(a) = 1. Applying Theorem 1.1, we obtain the following analogue
of their results.

Theorem 1.2. Assume p ≡ 7 mod 16. Let ε be the fundamental unit
of Q(

√
p).

(1) There exists a totally positive unit η of Q( 4
√
p) such that N(η) = ε

and the group of units O×Q( 4
√
p) = 〈η, ε,−1〉.

(2) For any unit η′∈N−1(ε) in Q( 4
√
p), one has vl(TrQ( 4

√
p)/Q(

√
p)(η

′))=

3 and η′ ≡ − sgn(η′) mod 4
√
p, where l is the unique prime of Q(

√
p)

above 2 and sgn is the signature function.

Remark 1.3. (1) We may call the unit η the relative fundamental unit
of Q( 4

√
p). The first part of this theorem is due to Parry; see [19,

Theorem 3]. We include a proof here for completeness.
(2) For η′ ∈ O×Q( 4

√
p) such that N(η′) = ε, we know η′ is either totally

positive or totally negative since ε is totally positive. Therefore the
sign of η′ is well defined.

Now assume ` is odd. Recall that ` is called regular if ` does not
divide h0,1, the class number of Q(ζ`). We have the following result:

Theorem 1.4. Assume ` is an odd regular prime, and p is either ` or
a prime generating the group (Z/`2Z)×. Then ` - hn,m, the class number

of Kn,m = Q(p
1
`n , ζ`m) for any n,m ≥ 0.

Again the case p = ` can be deduced from [9]. For the particular
case ` = 3, the following results about the 3-class groups of Q( 3

√
p) and

Q( 3
√
p, ζ3) were obtained by several authors:

(i) If p = 3 or p ≡ 2 mod 3, then 3 - h1,1 and 3 - h1,0 ([8]).
(ii) If p ≡ 1 mod 3, then rank3A1,0 = 1 and rank3A1,1 = 1 or 2 ([4]).
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(iii) If p ≡ 4, 7 mod 9, then A1,0
∼= Z/3Z; moreover A1,1

∼= Z/3Z if(
3
p

)
3
6= 1 and A1,1

∼= (Z/3Z)2 if
(

3
p

)
3

= 1. See [16].

(iv) If p ≡ 1 mod 9, then rank3A1,1 = 1 if and only if 9 | h1,0 ([1], [5]).

We refer to [5] and [16] for more details. However, hn,m and An,m for
general n and m has rarely been studied in the literature as far as we
know. We have the following result in this case:

Theorem 1.5. Let p be a prime number. Let An,m be the 3-part of the

class group and hn,m the class number of Kn,m = Q(p
1
3n , ζ3m).

(1) If p = 3 or p ≡ 2, 5 mod 9, then 3 - hn,m for n,m ≥ 0.
(2) If p ≡ 4, 7 mod 9 and the cubic residue symbol

(
3
p

)
3
6= 1, then

An,m ∼= Z/3Z for n ≥ 1, m ≥ 0.

Remark 1.6. A. Lei ([12]) obtained the growth formula of class numbers

in Zd−1
` oZ`-extensions for an odd prime `. Under the conditions in The-

orem 1.4 or 1.5, the Kummer tower K∞,∞/K0,1 satisfies the conditions
in Lei’s paper. Then by [12, Corollary 3.4], one has that for each m,
there exist integers µm and λm such that

v`(hn,m) = µm`
n + λmn+O(1) for n� 0.

Theorems 1.4 and 1.5 thus imply that the invariants µm = λm = 0 for
all m.

To prove our results, we need to use Chevalley’s ambiguous class num-
ber formula and its generalization by Gras. The most technical part of
our paper is a stationary result of `-class groups in a cyclic Z/`2Z-ex-
tension under certain conditions, and its application to the study of
`-class groups in the 2-dimensional Kummer tower {Kn,m}. We empha-
size that the stationary result could be used in other situations. Due to
the computational nature of our results, we impose conditions to simplify
computation. It would be of interest to study other cases, for example,
replacing p by some positive integer with two or more prime factors.

The organization of this paper is as follows. In §2 we introduce no-
tation and conventions for the paper, and present basic properties of
Hilbert symbols and Gras’ formula on genus theory. In §3 we prove our
stationary result on `-class groups in certain cyclic `-extensions by us-
ing arguments from Iwasawa theory, and then prove a stationary result
about the `-class groups of Kn,m. We devote §4 to the proof of results for
the easier case that ` is odd and §5 to the more complicated case ` = 2.
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2. Preliminary

2.1. Notations and conventions. The numbers ` and p are always
prime numbers. The `-Sylow subgroup of a finite abelian group M is
denoted by M(`). ζn is a primitive n-th root of unity and µn is the
group of n-th roots of unity.

For a number field K, we denote by ClK , hK , Ok, EK , and cl the
class group, the class number, the ring of integers, the unit group of the
ring of integers, and the ideal class map of K respectively. For w a place
of K, Kw is the completion of K by w. For p a prime of K, vp is the
additive valuation associated with p.

For an extension K/F of number fields, v, a place of F , and w, a place
of K above v, let ew/v = e(w/v,K/F ) be the ramification index in K/F
if v is finite and ew/v = [Kw : Fv] if v is infinite. We say that w/v is
ramified if ew/v > 1, and that w/v is totally ramified if ew/v = [K : F ];
in this case w is the only place above v and we can also say that v is
totally ramified in K/F . Note that when v is infinite, w/v is ramified if
and only if w is complex and v is real, and in this case ew/v = 2. Hence
an infinite place v is totally ramified if and only if K/F is quadratic,
Fv = R, and Kw = C. When K/F is Galois, then ew/v is independent
of w and we denote it by ev.

Denote by NK/F the norm map from K to F , and the induced
norm map from ClK to ClF . If the extension is clear, we use N instead
of NK/F .

When K = Kn,m = Q(p
1
`n , ζ2m+1), we write Cln,m = ClK , hn,m =

hK , On,m = OK , and En,m = EK for simplicity. The group An,m is the
`-Sylow subgroup of Cln,m.

2.2. Hilbert symbol. Let n ≥ 2 be an integer. Let k be a finite
extension of Qp containing µn. Let φk be the local reciprocity map
φk : k× → Gal(kab/k). Given a, b ∈ k×, the n-th Hilbert symbol is de-
fined by (

a, b

k

)
n

=
φk(a)( n

√
b)

n
√
b

∈ µn ⊂ k.

The following results about the Hilbert symbol can be found in standard
textbooks on number theory, for example [18, Chapters IV and V].

Proposition 2.1. Let a, b ∈ k×.

(1)
(
a,b
k

)
n

= 1⇔ a is a norm from the extension k( n
√
b)/k.

(2)
(
aa′,b
k

)
n

=
(
a,b
k

)
n

(
a′,b
k

)
n

and
(
a,bb′

k

)
n

=
(
a,b
k

)
n

(
a,b′

k

)
n

.

(3)
(
a,b
k

)
n

=
(
b,a
k

)−1

n
.



`-Class Groups of Fields in Kummer Towers 239

(4)
(
a,1−a
k

)
n

= 1 and
(
a,−a
k

)
n

= 1.

(5) Let $ be a uniformizer of k. Let q = |Ok/($)| be the cardinal-

ity of the residue field of k. If p - n, then
(
$,u
k

)
n

= ω(u)
q−1
n ,

where ω : O×k → ζq−1 is the unique map such that u ≡ ω(u) mod $

for u ∈ O×k .

(6) Let M/k be a finite extension. For a ∈ M×, b ∈ k×, one has the
following norm-compatible property:(

a, b

M

)
n

=

(
NM/k(a), b

k

)
n

.

When k = R, µn ⊂ R if and only if n = 1 or 2. For a, b ∈ k× define(
a, b

k

)
2

=

{
−1 if a < 0 and b < 0;

1 otherwise.

When k = C, define
(
a,b
k

)
n

= 1 for any a, b ∈ k×.

The following is the product formula of Hilbert symbols; see [18,
Chapter VI, Theorem 8.1].

Proposition 2.2. Let K be a number field containing µn. For any

place v of K, set
(
a,b
v

)
n

:= ι−1
v

(( ιv(a),ιv(b)
Kv

)
n

)
, where ιv is the canon-

ical embedding K → Kv. Then for a, b ∈ K×, one has∏
v

(
a, b

v

)
n

= 1,

where v runs over all places of K.

Hilbert symbols are invariant under Galois actions as follows. Let K
be a number field containing µn. Let v be a prime ideal of K. Suppose
σ ∈ Hom(K,K). Then σ(v) is also a prime ideal of K. Note that ιv◦σ−1

is an embedding from K to the completion of K at σ(v). We shall often
say that this embedding is the corresponding embedding induced by the
prime ideal σ(v). By definition, we have

(2.1) σ

((
a, b

v

)
n

)
=

(
σ(a), σ(b)

σ(v)

)
n

.

2.3. Three useful lemmas.

Lemma 2.3. Suppose K/F is a cyclic `-extension with Galois group G
and C is a G-submodule of ClK . Then ` - |(ClK /C)G| implies that

ClK(`) = C(`). In particular, ` - |ClGK | implies that ` - hK .



240 J. Li, Y. Ouyang, Y. Xu, S. Zhang

Proof: Consider the action ofG on (ClK/C)(`). The cardinality of the or-
bit of c∈(ClK/C)(`)\(ClK/C)(`)G is a multiple of `. Thus |(ClK/C)(`)|≡
|(ClK /C)(`)G| mod `. Hence ` - |(ClK /C)G| implies (ClK /C)(`) = 0
and then ClK(`) = C(`) by the exact sequence 0 → C(`) → ClK(`) →
(ClK /C)(`).

Lemma 2.4. Let Kn/K0 be a cyclic extension of number fields of de-
gree `n. Let Ki be the unique intermediate field such that [Ki : K0] = `i

for 0 ≤ i ≤ n. If a prime ideal p of K0 is ramified in K1/K0, then p is
totally ramified in Kn/K0.

Proof: Let Ip be the inertia group of p. Then K
Ip
n = Ki for some i

and K
Ip
n /K is unramified at p. Since K1/K0 is ramified at p, we must

have K
Ip
n = K0. In other words, p is totally ramified.

Lemma 2.5. Suppose the number field extension M/K contains no un-
ramified abelian subextension other than K. Then the norm map ClM →
ClK is surjective. In particular, hK | hM .

Proof: This is [20, Theorem 10.1].

2.4. Gras’ formula on class groups in cyclic extensions.

Theorem 2.6 (Gras). Let K/F be a cyclic extension of number fields
with Galois group G. Let C be a G-submodule of ClK . Let D be a subgroup
of fractional ideals of K such that cl(D) = C. Denote by ΛD = {x ∈
F× | (x)OF ∈ ND}. Then

(2.2) |(ClK /C)G| = |ClF |
|NC|

·
∏
v ev

[K : F ]
· 1

[ΛD : ΛD ∩NK×]
,

where the product runs over all places of F .

Proof: See [6, Section 3]. Alternatively, an adelic proof is given by the
first named author and Yu in [15].

Remark 2.7. (1) The index [ΛD : ΛD ∩ NK×] is independent of the
choice of D.

(2) Take C = {1} and D = {1}, then ΛD is the unit group EF , and
Gras’ formula is nothing but the ambiguous class number formula
of Chevalley:

(2.3) |ClGK | = |ClF | ·
∏
v ev

[K : F ]
· 1

[EF : EF ∩NK×]
.
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In fact, the proof of Gras’ formula is based on Chevalley’s formula,
whose proof can be found in [11, Chapter 13, Lemma 4.1].

One can use Hilbert symbols to compute the index [ΛD : ΛD∩NK×].

Lemma 2.8. Let F be a number field and µd ⊂ F . Assume K = F ( d
√
a)

is a Kummer extension of F of degree d. Let D be any subgroup of the
group of fractional ideals of K and ΛD = {x ∈ F× | (x)OF ∈ ND}.
Define

ρ = ρD,K/F : ΛD −→
∏
v

µd, x 7−→
((x, a

v

)
d

)
v

,

where v passes through all places of F ramified in K/F . Then

(1) Ker(ρ) = ΛD ∩NK×. In particular, [ΛD : ΛD ∩NK×] = |ρ(ΛD)|.
(2) Let Π be the product map

∏
v µd → µd, then Π ◦ ρ = 1 and hence

ρ(ΛD) ⊂ ker Π := (
∏
v µd)

Π=1.
(3) Ker(ρ) and |ρ(ΛD)| are independent of the choice of a.

Proof: Let IK be the group of fraction ideals of K. Note that if D ⊂ IK ,
then ΛD ⊂ Λ := ΛIK . Therefore it suffices to prove the results in the
case D = IK .

(1) For v, a place of F , let w be a place ofK above v. Recall that
(
x,a
v

)
d

=

1 if and only if x ∈ NKw/Fv (K×w ). We claim that if v is unramified,

then x ∈ NKw/Fv (K×w ) for x ∈ Λ. Suppose v is an infinite unramified

place. Then Fv = Kw and clearly x ∈ NKw/Fv (K×w ). Suppose v is a
finite unramified place. Since x ∈ Λ, we have (x)OF = N(I). Then
locally (x)OFv = NKw/Fv (J) for some fractional ideal J of OKw . Since

OKw is a principal ideal domain, J = (α) for some α ∈ K×w . Hence
x = uNKw/Fv (α) with u ∈ O×Fv . Since v is unramified, we have u ∈
NKw/Fv (K×w ) by local class field theory. Therefore x ∈ NKw/Fv (K×w ).

Now for x ∈ Ker(ρ), we have x ∈ NKw/Fv (K×w ) for every place v of F .

Hasse’s norm theorem ([18, Chapter VI, Corollary 4.5]) gives x ∈ NK×.
So Ker(ρ) ⊂ Λ ∩NK×. The other direction is clear. This proves (1).

(2) We have proved that if v is unramified, then
(
x,a
v

)
d

= 1 for x ∈ Λ.

Therefore (2) follows from the product formula of Hilbert symbols.

(3) is a consequence of (1).

3. Stability of `-class groups

We now give a stationary result about `-class groups in a finite cyclic
`-extension. We first introduce the ramification hypothesis RamHyp. Let
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F be a number field and K an algebraic extension (possibly infinite) of F .
Then K/F satisfies the ramification hypothesis RamHyp if

Every place of K ramified in K/F is totally ramified in K/F
and there is at least one prime ramified in K/F .

Lemma 3.1. Let G be a finite `-cyclic group with generator σ. Then
Z`[G] is a local ring with maximal ideal (`, σ − 1).

Proof: Note that Z`[G] ∼= Z`[T ]/(T `
n − 1) by sending σ to T , where `n

is the order of G. Let m be a maximal ideal of Z`[T ]/(T `
n − 1). Then

m ∩ Z` is a prime ideal of Z`. We claim that m ∩ Z` = `Z`.
Otherwise m ∩ Z` = 0, namely m is disjoint with the multiplica-

tive subset Z` \ {0}. Then m corresponds to a prime ideal of the ring
Q`[T ]/(T `

n − 1). Each prime ideal of Q`[T ]/(T `
n − 1) is generated by

a monic irreducible polynomial f(T ) with f(T ) | T `n − 1. By Gauss’
lemma, f(T ) has Z`-coefficients. Then m = (f(T )). But Z`[T ]/(f(T )) is
not a field since Z`[T ]/(f(T )) is integral over Z` and Z` is not a field.
So m ∩ Z` = `Z`.

Then m corresponds to a maximal ideal of F`[T ]/(T `
n−1)=F`[T ]/(T−

1)`
n

. The latter is obviously a local ring with maximal ideal (T − 1).
Hence m = (`, T − 1). Therefore the maximal ideal of Z`[G] is (`, σ −
1).

Proposition 3.2. Let K2/K0 be a cyclic extension of number fields of
degree `2 satisfying RamHyp. Let K1 be the unique non-trivial interme-
diate field of K2/K0. Then for any n ≥ 1,

|ClK0
/`n ClK0

| = |ClK1
/`n ClK1

|

implies that

ClK2
/`n ClK2

∼= ClK1
/`n ClK1

∼= ClK0
/`n ClK0

.

In particular, |ClK0(`)| = |ClK1(`)| implies that ClK0(`) ∼= ClK1(`) ∼=
ClK2(`).

Proof: Denote by G = Gal(K2/K0) = 〈σ〉. Let Li be the maximal un-
ramified abelian `-extension of Ki and Xi = Gal(Li/Ki). By class field
theory Xi

∼= ClKi(`). By the maximal property, L2/K0 is a Galois ex-

tension. Let G̃ := Gal(L2/K0). The Galois group G acts on X := X2

via xσ = σ̃xσ̃−1, where σ̃ ∈ G̃ is any lifting of σ. By this action X be-
comes a module over the local ring Z`[G]. Since K0 ⊂ K1 ⊂ K2 satisfies
RamHyp, we have L0 ∩K2 = K0. Then X/M = Gal(K2L0/K2) ∼= X0,
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where M = Gal(L2/K2L0). Note that K2L0/K0 is Galois, so M and
X/M are also Z`[G]-modules.

L2

K2L0

K2

L1

K1

L0

K0

M
X=X2

X/M∼=X0

X1

〈σ`〉

X0

G=〈σ〉

G̃

We have the following claim:

Claim. X/ωM ∼= X1, where ω = 1 + σ + · · ·+ σ`−1 ∈ Z`[G].

Now for any n ≥ 1, by the claim,

X0/`
nX0

∼=
X

M + `nX
and X1/`

nX1
∼=

X

ωM + `nX
.

By the assumptions, M+`nX = ωM+`nX. Since ω lies in the maximal
ideal of Z`[G], we have M ⊂ `nX by Nakayama’s lemma. Hence we have
isomorphisms which are induced by the restrictions

X/`nX ∼= X1/`
nX1

∼= X0/`
nX0.

By class field theory we have isomorphisms which are induced by the
norm maps

ClK2 /`
n ClK2

∼= ClK1 /`
n ClK1

∼= ClK0 /`
n ClK0 .

Let n→ +∞; we get ClK2
(`) ∼= ClK1

(`) ∼= ClK0
(`).
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Let us prove the claim. Note that G = G̃/X. Let {p1, . . . , pt} be the
set of places of K0 ramified in K2/K0. Note that pi is not an infinite
place by RamHyp. For each pi, choose a prime ideal p̃i of L2 above pi.

Let Ii ⊂ G̃ be the inertia subgroup of p̃i. The map Ii ↪→ G̃� G induces
an isomorphism Ii ∼= G, since L2/K2 is unramified and K2/K0 is totally
ramified. Let σi ∈ Ii such that σi ≡ σ̃ mod X. Then Ii = 〈σi〉. Let
ai = σiσ

−1
1 ∈ X. Then 〈I1, . . . , It〉 = 〈σ1, a2, . . . , at〉. Since L0 is the

maximal unramified abelian `-extension of K0, we have

Gal(L2/L0) = 〈G̃′, I1, . . . , It〉 = 〈G̃′, σ1, a2, . . . , at〉,

where G̃′ is the commutator subgroup of G̃. In fact, G̃′ = (σ − 1)X. The

inclusion (σ − 1)X ⊂ G̃′ is clear. Furthermore, it is easy to check that

(σ − 1)X is normal in G̃ and X/(σ − 1)X is in the center of G̃/(σ − 1)X.

Since G̃/X ∼= G is cyclic, from the exact sequence

1 −→ X/(σ − 1)X −→ G̃/(σ − 1)X −→ G −→ 1,

we obtain that G̃/(σ − 1)X is abelian. Thus we have

Gal(L2/L0) = 〈(σ − 1)X,σ1, a2, . . . , at〉.
Since ai ∈ X and X ∩ I1 = {1}, we have

X ∩Gal(L2/L0) = 〈(σ − 1)X, a2, . . . , at〉.

Thus the map X ↪→ G̃ induces the following isomorphism:

X/〈(σ − 1)X, a2, . . . , at〉 ∼= G̃/Gal(L2/L0) = X0.

Therefore 〈(σ − 1)X, a2, . . . , at〉 = M . By repeating the above argument
to L2/K1, we obtain

X/〈(σ` − 1)X, b2, . . . , bt〉 ∼= X1,

where bi = σ`iσ
−`
1 for each i. Obviously, (σ` − 1)X = ω(σ − 1)X. Recall

that σi is a lifting of σ, so by definition xσ = σixσ
−1
i for x ∈ X. We have

bi = σ`iσ
−`
1 = σ`−1

i aiσ
−(`−1)
1 = σ`−2

i aiσ1aiσ
−1
1 σ

−(`−2)
1

= σ`−2
i ai

1+σσ
−(`−2)
1 = · · · = a1+σ+···+σ`−1

i = ωai.

So 〈(σ` − 1)X, b2, . . . , bt〉 = ωM and then X1 = X/ωM . This finishes
the proof of the claim.

Remark 3.3. (1) Let K∞/K be a Z`-extension and Kn its n-th layer.
It is well known that there exists n0 such that K∞/Kn0

satis-
fies RamHyp. Then Proposition 3.2 recovers the following result
of Fukuda [3]: If |ClKm(`)| = |ClKm+1(`)| (resp. |ClKm/`ClKm | =
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|ClKm+1
/`ClKm+1

|) for some m ≥ n0, then |ClKm(`)| = |ClKm+i
(`)|

(resp. |ClKm/`ClKm | = |ClKm+i
/`ClKm+i

|) for any i ≥ 1. In fact,
our proof is essentially the same as the proof of the corresponding
results for Z`-extensions; see [20, Lemmas 13.14 and 13.15] and [3].

(2) Let K be a number field containing µ`2 . Let a ∈ K×\K×` and
Kn = K( `n

√
a). Then Gal(Km+2/Km) ∼= Z/`2Z for any integerm≥

0. One can show that there exists some n0 such that K∞/Kn0 sat-
isfies RamHyp. If |ClKm(`)| = |ClKm+1(`)| for some m ≥ n0, then
by repeatedly applying Proposition 3.2, one obtains |ClKm+i

(`)| =
|ClKm(`)| for any i ≥ 0.

Now let ` and p be prime numbers and Kn,m = Q(p
1
`n , ζ2`m). The

following result is a consequence of Proposition 3.2. Since we know that
2 - hn,m if (`, p) = (2, 2), we assume for simplicity that (`, p) 6= (2, 2) in
the following proposition.

Proposition 3.4. Suppose (`, p) 6= (2, 2). Assume that all the primes
above ` in Kn0,m0 are totally ramified in Kn0+1,m0+1 for some inte-
gers n0 ≥ 0 and m0 ≥ 1. Then

(1) All primes above ` in Kn0,m0
are totally ramified in Kn,m/Kn0,m0

for all (n,m) ≥ (n0,m0).
(2) If |An0,m0 | = |An0+1,m0+1|, then An,m ∼= An0,m0 for all (n,m) ≥

(n0,m0).
(3) If ` - hn0+1,m0+1, then ` - hn,m for all (n,m) ≥ (n0,m0).

Proof: By the assumption for n0 andm0, one has [Kn0+1,m0+1 :Kn0,m0
]=

`2 and

Gal(Kn0,m0+2/Kn0,m0
) ∼= Gal(Kn0+1,m0+2/Kn0+1,m0

)

∼= Gal(Kn0+2,m0+2/Kn0,m0+2) ∼= Z/`2Z.

Consider the following diagram.

Kn0,m0+2 Kn0+1,m0+2 Kn0+2,m0+2

Kn0,m0+1 Kn0+1,m0+1

Kn0,m0 Kn0+1,m0

For (1), let l be a prime of Kn0,m0 above `. Apply Lemma 2.4 to the
two vertical lines in the diagram; we obtain that l is totally ramified
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in Kn0+1,m0+2/Kn0,m0
. Apply Lemma 2.4 to the top horizontal line in

the diagram; we get that l is totally ramified in Kn0+2,m0+2/Kn0+2,m0
.

Hence l is totally ramified in Kn0+2,m0+2/Kn0,m0
. Repeatedly using the

above argument, we obtain that l is totally ramified in Kn,m/Kn0,m0 for
all n ≥ n0 and m ≥ m0.

For (2), by Lemma 2.5, |An0,m0 | = |An0+1,m0+1| implies that

An0+1,m0+1
∼= An0+1,m0

∼= An0,m0+1
∼= An0,m0

.

If p = `, the two vertical lines and the top horizontal line in the diagram
satisfy RamHyp by (1). If p 6= `, let p be a prime of K0,m above p. For

any n ≥ 1, note that x`
n − p is a p-Eisenstein polynomial in K0,m[x].

Therefore Kn,m/K0,m is totally ramified at p for each n, m. In partic-
ular the horizontal line is totally ramified at p. Since K∞,∞/Kn0,m0

is
unramified outside ` and p, the two horizontal lines and the rightmost
vertical line in the diagram all satisfy RamHyp by (1).

Since Kn0,m0+2/Kn0,m0
is a cyclic extension of degree `2, applying

Proposition 3.2 to this extension, we get

An0,m0+2
∼= An0,m0+1

∼= An0,m0 .

Similarly, applying Proposition 3.2 to Kn0+1,m0+2/Kn0+1,m0
, we obtain

An0+1,m0+2
∼= An0+1,m0+1

∼= An0+1,m0
.

Therefore An0+2,m0+1
∼= An0+2,m0 . Note that Kn0+2,m0+2/Kn0,m0+2 is

also a cyclic extension of degree `2. Applying Proposition 3.2 to this
extension, we obtain

An0+2,m0+2
∼= An0+1,m0+2

∼= An0,m0+2.

Thus An0+2,m0+2
∼= An0+1,m0+1. Using the above argument inductively,

we have An0+k,m0+k
∼= An0,m0

for any k ≥ 1. Finally we have An,m ∼=
An0,m0

by Lemma 2.5.

For (3), ` - hn0+1,m0+1 implies that ` - hn0,m0
by Lemma 2.5. Then the

result follows from (2).

4. The case in which ` is odd

Lemma 4.1. Assume that p = ` or p`−1 6≡ 1 mod `2. Then ` is totally
ramified in Kn,m for any (n,m) > (0, 0).

Proof: For n ≥ 1, (x + p)`
n − p is an Eisenstein polynomial in Q`[x]

by the assumptions on p and `, hence is irreducible in Q`[x]. This im-

plies that the extension Q`(p
1
`n )/Q` is totally ramified of degree `n and
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µ` 6⊂ Q`(p
1
`n ). As a result, Q`(p

1
`n )/Q`(p

1

`n−1 ) is non-Galois of degree `,

and one has that Q`(p
1
`n , ζ`m)/Q`(p

1

`n−1 , ζ`m) is also of degree `. By
induction,

[Q`(p
1
`n , ζ`m) : Q`] = ` · [Q`(p

1

`n−1 , ζ`m) : Q`] = `n(`m − `m−1).

Then the extension Q`(p
1
`n , ζ`n)/Q`(ζ`n) is cyclic of degree `n, with the

only subextensions of the form Q`(p
1

`k , ζ`n) for 0 ≤ k ≤ n. If Qab
` ∩

Q`(p
1
`n , ζ`n) ) Q`(ζ`n), then there exists k > 0 such that p

1

`k ∈ Qab
` and

hence p
1
` ∈ Qab

` , impossible. Hence Qab
` ∩Q`(p

1
`n , ζ`n) = Q`(ζ`n). Thus

` is totally ramified in Kn,n for any n ≥ 1, and therefore totally ramified
in Kn,m for all (n,m) > (0, 0).

Proof of Theorem 1.4: By Proposition 3.4 and Lemma 4.1, if ` - h1,2,
then ` - hn,m for any (n,m) ≥ (1, 2) and then ` - hn,m for any (n,m) ≥
(0, 0) by Lemma 2.5. We prove ` - h1,2 by applying Chevalley’s for-
mula (2.3) to K1,2/K0,2. We deal with the case p 6= ` and leave the
case p = ` to the readers.

Since p is inert in K0,2, the ramified primes in K1,2/K0,2 are pO0,2

and (1−ζ`2)O0,2. As ` is regular, one has that ` does not divide the class
number K0,m for any m ≥ 1; see [20, Corollary 10.5]. We now calculate
the unit index in Chevalley’s formula. Recall the following map as in
Lemma 2.8 (let D = {1} so that ΛD = E0,2):

ρ : E0,2 −→ µ` × µ`

x 7−→

((
x, p

pO0,2

)
`

,

(
x, p

(1− ζ`2)

)
`

)
.

We have the index [E0,2 : E0,2 ∩ NK×0,2] = |ρ(E0,2)| ≤ ` by product

formula. Since p is a primitive root modulo `2, we have `2 - p`−1 − 1.
Then by Proposition 2.1(6) and (5), we have(

ζ`2 , p

pO0,2

)
`

=

(
ζ`, p

pO0,1

)
`

= ζ
− p

`−1−1
`

` 6= 1.

Thus |ρ(E0,2)| = ` and Chevalley’s formula gives ` - |ClG1,2 |, where
G = Gal(K1,2/K0,2). Therefore ` - h1,2 by Lemma 2.3.

Proof of Theorem 1.5: (1) is a special case of Theorem 1.4.
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For (2), by Lemma 4.1, we obtain that 3 is totally ramified in Kn,n/Q
for any n ≥ 1. To prove (2), we first show that A2,2

∼= A1,1
∼= Z/3Z. We

apply Gras’ formula (2.2) in the case

K2,2/K0,2, C = 〈cl(l2,2)〉, D = 〈l2,2〉,
where l2,2 is the unique prime ideal of K2,2 above 3. In this case

ΛD = 〈±ζ9, 1− ζ9, 1− ζ2
9 , 1− ζ4

9 〉.
Since p ≡ 4, 7 mod 9, we have pO0,2 = p1p2. The ramified primes of K0,2

in K2,2 are l0,2, p1, p2. For the map

ρ : ΛD −→ µ9 × µ9 × µ9

x 7−→

((
x, p

p1

)
9

,

(
x, p

p2

)
9

,

(
x, p

l0,2

)
9

)
defined in Lemma 2.8, we know ρ(ΛD) ⊂ (µ9 × µ9 × µ9)

∏
=1, [ΛD :

ΛD ∩N(K×2,2)] = |ρ(ΛD)| and [E0,2 : E0,2 ∩N(K×2,2)] = |ρ(E0,2)|.
Now Lemma 4.2 tells us that |ρ(ΛD)| = 81 and |ρ(E0,2)| = 27. Hence

Gras’ formula implies that 3 - (Cl2,2 /C)G, where G = Gal(K2,2/K0,2).

This means A2,2 = C by Lemma 2.3. In particular, A2,2 = ClG2,2(3). By

Chevalley’s formula (2.3), we have |A2,2| = |ClG2,2 | = 3. For m ≤ 2, n ≤
2, the norm map from A2,2 to Am,n is surjective. It has been shown in [4]
that 3 divides |A1,0|, whence A1,0

∼= Z/3Z. The inequalities |A1,0| ≤
|A1,1| ≤ |A2,2| then imply that A2,2

∼= A1,1
∼= Z/3Z.

By Proposition 3.4, we have An,m ∼= Z/3Z for any n ≥ 1,m ≥ 1.
For n ≥ 1, note that 3 = |A1,0| ≤ |An,0| ≤ |An,1| = 3, then An,0 ∼= Z/3Z.
This completes the proof of (2).

Lemma 4.2. We have |ρ(ΛD)| = 81 and |ρ(E0,2)| = 27.

Proof: By the product formula, |ρ(ΛD)| ≤ 81. To get equality, it suffices
to show |ρ(ΛD)| ≥ 81.

We first compute ρ(ζ9). In the local field Qp(ζ9), one has(
ζ9, p

Qp(ζ9)

)
9

= ζ
− p

3−1
9

9

which is a primitive 9-th root of unity since p ≡ 4, 7 mod 9. The prime
ideals p1 and p2 above p induce two embeddings from K0,2 to Qp(ζ9)

which are not Gal(Qp/Qp)-conjugate. We choose the corresponding em-

beddings by setting ι1(ζ9) = ζ9 ∈ (K0,2)p1
= Qp(ζ9) and ι2(ζ9) = ζ−1

9 ∈
(K0,2)p1

; here we use the convention for the embedding below Proposi-
tion 2.2. Then (

ζ9, p

p1

)
9

=

(
ζ9, p

p2

)
9

= ζ
− p

3−1
9

9 .
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By the product formula, one has

ρ(ζ9) = (ζ
− p

3−1
9

9 , ζ
− p

3−1
9

9 , ζ
2(p3−1)

9
9 ), whence |〈ρ(ζ9)〉| = 9.

To prove |ρ(ΛD)| ≥ 81, it suffices to show that ρ(1 − ζ9)3 6∈ 〈ρ(ζ9)〉.
We have (

1− ζ9, p
Qp(ζ9)

)3

9

=

(
1− ζ9, p
Qp(ζ9)

)
3

=

(
1− ζ3, p

Qp

)
3

.

For a ∈ (Z/9Z)×, let σa ∈ Gal(Q(ζ9)/Q) be given by σa(ζ9) = ζa9 . So
we have σ−1(p1) = p2. We have(

1− ζ9, p
p1

)3

9

· σ−1

((
1− ζ9, p

p2

)3

9

)
=

(
1− ζ9, p

p1

)3

9

(
1− ζ−1

9 , p

p1

)3

9

=

(
1− ζ9, p
Qp(ζ9)

)
3

(
1− ζ−1

9 , p

Qp(ζ9)

)
3

=

(
1− ζ3, p

Qp

)
3

(
1− ζ−1

3 , p

Qp

)
3

=

(
3, p

Qp

)
3

6= 1,

where the first equality is by (2.1), the second equality is by definition
(more precisely, here we identify K0,2 with ι1(K0,2) ⊂ Qp(ζ9)), the third
equality is by the norm compatibility of Hilbert symbols, and the last
equality is by assumptions on p. Comparing with ρ(ζ9), we conclude that
ρ(1− ζ9)3 6∈ 〈ρ(ζ9)〉. This proves that |ρ(ΛD)| = 81.

Now we compute |ρ(E0,2)|. Since 3 | h1,0, one has 3 | h2,2 by Lem-
ma 2.5. By Chevalley’s formula and Lemma 2.3, we must have

|ρ(E0,2)| ≤ 27.

Since p ≡ 4, 7 mod 9, we have σ4(pi) = pi (i = 1, 2). It then follows that(
1− ζ4

9 , p

pi

)
9

≡(1−ζ4
9 )

p3−1
9 mod pi=σ4

((
1− ζ9, p

pi

)
9

)
=

(
1− ζ9, p

pi

)4

9

.

Therefore ρ
( 1−ζ49

1−ζ9

)
= ρ(1− ζ9)3. As we have proved,

|ρ(E0,2)| ≥
∣∣∣∣〈ρ(ζ9), ρ

(
1− ζ4

9

1− ζ9

)〉∣∣∣∣ = 27.

Hence |ρ(E0,2)| = 27.
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5. The case ` = 2

In this section, Kn,m = Q(p
1
2n , ζ2m+1), An,m, and hn,m are the 2-part

of the class group and the class number of Kn,m respectively.

5.1. The cases p ≡ 3, 5 mod 8.

Lemma 5.1. Suppose p ≡ 3 mod 8.

(1) The unique prime above 2 in K1,1 is totally ramified in K∞,∞/K1,1.
(2)

∏
v ev = 32 where v runs over the places of K0,2 and ev is the

ramification index of v in K2,2/K0,2.
(3) [E0,2 : E0,2 ∩NK×2,2] = 8.

Proof: (1) We only need to show that the unique prime above 2 in K1,1

is totally ramified in K2,2/K1,1 by Proposition 3.4.
It is easy to see that K1,2/K1,1 is ramified at the prime above 2. To

see that the prime above 2 is also ramified in K2,2/K1,2, we consider the
local field extension Q2(ζ8, 4

√
p)/Q2(ζ8,

√
p). Note that

Q2( 4
√
p) =

{
Q2( 4
√

3) if p ≡ 3 mod 16,

Q2( 4
√

11) if p ≡ 11 mod 16.

Since the fields Q2( 4
√

3) and Q2( 4
√

11) are not Galois over Q2,

Qun
2 ∩Q2(ζ8, 4

√
p) ⊂ Qab

2 ∩Q2(ζ8, 4
√
p) = Q2(ζ8,

√
p),

where Qun
2 (resp. Qab

2 ) is the maximal unramified (resp. abelian) exten-
sion of Q2. Thus Q2(ζ8, 4

√
p)/Q2(ζ8,

√
p) is totally ramified. So K2,2/K1,1

is totally ramified at 2.

(2) Since p ≡ 3 mod 8, we have pO0,2 = p1p2, with p1, p2 totally ram-
ified in K∞,2. Then epi = [Qp( 4

√
p, ζ8) : Qp(ζ8)] = 4. Let l0,2 be the

unique prime ideal above 2 in K0,2. Then el0,2 = 2 as Q2(
√
p, ζ8)/Q2(ζ8)

is unramified. Since K2,2/K0,2 is unramified outside 2 and p, we have∏
v ev = 32.

(3) Note that E0,2 = 〈ζ8, 1 +
√

2〉. Recall the following map as in Lem-
ma 2.8:

ρ : E0,2 −→ µ4 × µ4 × µ4

x 7−→

((
x, p

p1

)
4

,

(
x, p

p2

)
4

,

(
x, p

l0,2

)
4

)
.

We have |ρ(E0,2)| = [E0,2 : E0,2 ∩NK×2,2] and ρ(E0,2) ⊂ (µ4 × µ4 ×
µ4)

∏
=1.
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Let ι1, ι2 : Q(ζ8)→ Qp(ζ8) be the corresponding embeddings of p1, p2

such that ι1(ζ8)=ζ8 and ι2(ζ8)=ζ−1
8 . By definition

(
x,p
pj

)
4

= ι−1
j

( ιj(x),p
Qp(ζ8)

)
4

for j = 1, 2.
We first compute ρ(ζ8). Since the residue field of Qp(ζ8) is Fp2 , we

have (
ζ±1
8 , p

Qp(ζ8)

)
4

=

(
p, ζ±1

8

Qp(ζ8)

)−1

4

= ζ
∓ p

2−1
4

8 .

Thus (
ζ8, p

p1

)
4

=

(
ζ8, p

p2

)
4

= ζ
− p

2−1
4

8 = ±i.

By the product formula
(
ζ8,p
l0,2

)
4

= −1. Therefore ρ(ζ8) = (±i,±i,−1).

Now we compute ρ(1 +
√

2). In the local field Qp(ζ8),(
1 +
√

2, p

Qp(
√

2)

)2

4

=

(
1 +
√

2, p

Qp(
√

2)

)
2

=

(
−1, p

Qp

)
2

= −1.

Hence (
1 +
√

2, p

Qp(
√

2)

)
4

= ±i.

Since ι1(1 +
√

2) = ι2(1 +
√

2) = 1 +
√

2 and ι1(i) = i, ι2(i) = −i, we
have (

1 +
√

2, p

p1

)
4

= ±i,

(
1 +
√

2, p

p2

)
4

= ∓i.

By the product formula,
(

1+
√

2,p
l0,2

)
4

= 1.

Therefore, ρ(ζ8) = (±i,±i,−1) and ρ(1 +
√

2) = (±i,∓i, 1). In each
case, we have |ρ(E0,2)| = 8.

Proof of Theorem 1.1 for p ≡ 3 mod 8: We know that the class number
of K0,2 = Q(ζ8) is 1, the product of the ramification indices is 32, and

the index [E0,2 : E0,2 ∩NK×2,2] = 8 by Lemma 5.1, then |ClG2,2| = 1 by

Chevalley’s formula (2.3). Thus 2 - h2,2 by Lemma 2.3. Now Proposi-
tion 3.4 implies 2 - hn,m for n,m ≥ 1. Since Kn,1/Kn,0 is ramified at the
real places, we have 2 - hn,0 by Lemma 2.5.

Lemma 5.2. Suppose p ≡ 5 mod 8.

(1) The unique prime in K1,0 above 2 is totally ramified in K∞,∞/K1,0.
(2)

∏
v e(v,K3,2/K0,2) = 28 where v runs over the places of K0,2.

(3)
∏
v e(v,K2,1/K0,1) = 25 where v runs over the places of K0,1.

(4)
∏
v e(v,K1,2/K0,2) = 4 where v runs over the places of K0,2.



252 J. Li, Y. Ouyang, Y. Xu, S. Zhang

Proof: (1) Note that Q2( 4
√
p)/Q2 is not Galois, so 4

√
p /∈ Qab

2 . Then the
proof is the same as the case p ≡ 3 mod 8.

(2) We only need to consider the primes above 2 and p. Since pO0,2 =
p1p2 and e(p,K3,0/Q)=8, we have e(p1,K3,2/K0,2) = e(p2,K3,2/K0,2) =
8. From (1), we can easily obtain that e(l0,2,K3,2/K0,2) = 4 for l0,2, the
only prime above 2 in K0,2. Hence the product of ramification indices
is 28.

The proofs of (3) and (4) are easy; we leave them to the readers.

Lemma 5.3. Let p ≡ 5 mod 8. Let Λ0,2 = 〈(1− ζ8)2, ζ8, 1 +
√

2〉 ⊂ K×0,2
and Λ0,1 = 〈(1− i)2, i〉 ⊂ K×0,1. We have

(1) [Λ0,2 : Λ0,2 ∩NK×3,2] = 32 and [E0,2 : E0,2 ∩NK×3,2] = 16.

(2) [Λ0,1 : Λ0,1 ∩NK×2,1] = 8 and [E0,1 : E0,1 ∩NK×2,1] = 4.

(3) [E0,2 : E0,2 ∩NK×1,2] = 2.

Proof: Denote by ln,m the unique prime ideal of Kn,m above 2 for each

n,m ≥ 0. Note that E0,2 = 〈ζ8, 1 +
√

2〉. Then Λ0,2 = Λ〈l3,2〉 corre-
sponds to the extension K3,2/K0,2 and Λ0,1 = Λ〈l2,1〉 corresponds to the
extension K2,1/K0,1 as in Lemma 2.8.

Since p ≡ 5 mod 8, we have pO0,1 = p1p2 and pO0,2 = P1P2. Note
that P1, P2, l0,2 are exactly the ramified places in K3,2/K0,2. For (1),
we study the map as in Lemma 2.8:

ρ := ρ〈l3,2〉,K3,2/K0,2
: Λ0,2 −→ µ8 × µ8 × µ8

x 7−→

((
x, p

P1

)
8

,

(
x, p

P2

)
8

,

(
x, p

l0,2

)
8

)
.

By Lemma 2.8, ρ(Λ0,2) ⊂ (µ8 × µ8 × µ8)
∏

=1, [Λ0,2 : Λ0,2 ∩N(K×3,2)] =

|ρ(Λ0,2)|, and [E0,2 : E0,2 ∩N(K×3,2)] = |ρ(E0,2)|.
Let ιj : Q(ζ8) → Qp(ζ8) be the corresponding embeddings for Pj

forj = 1, 2. We choose ιj so that ι1(ζ8) = ζ8 (and hence ι(i) = i, ι(
√

2) =√
2) and ι2(ζ8) = ζ−1

8 (and hence ι2(i) = −i, ι2(
√

2) =
√

2). The Hilbert

symbol
(
x,p
Pi

)
8

by definition is ι−1
i

( ιi(x),p
Qp(ζ8)

)
8
.

We first compute ρ(ζ8). In the local field Qp(ζ8),(
ζ±1
8 , p

Qp(ζ8)

)
8

=

(
p, ζ±8
Qp(ζ8)

)−1

8

= ζ
∓ p

2−1
8

8 ,

we have (
ζ8, p

P1

)
8

=

(
ζ8, p

P2

)
8

= ζ
− p

2−1
8

8 .

Hence ρ(ζ8) = (ζ
− p

2−1
8

8 , ζ
− p

2−1
8

8 ,±i) by the product formula.
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Now we compute ρ(1 +
√

2). In Qp(ζ8),(
1 +
√

2, p

Qp(ζ8)

)2

8

=

(
1 +
√

2, p

Qp(ζ8)

)
4

=

(
−1, p

Qp

)
4

= −1,

where the second equality is due to the norm-compatible property of
Hilbert symbols and the fact that i ∈ Qp for p ≡ 5 mod 8. The last
equality is due to the fact that −1 is a square but not a fourth power
in Z/pZ for p ≡ 5 mod 8. Therefore(

1 +
√

2, p

Qp(ζ8)

)
8

= ±i.

Since ι1(
√

2) = ι2(
√

2) =
√

2 and ι1(i) = i, ι2(i) = −i, we have(
1 +
√

2, p

P1

)
8

= ±i,

(
1 +
√

2, p

P2

)
8

= ∓i.

Hence ρ(1 +
√

2) = (±i,∓i, 1) by the product formula. In each case, we

always have |ρ(E0,2)| = |〈ρ(ζ8), ρ(1 +
√

2)〉| = 16.
Finally we compute ρ((1− ζ8)2). In Qp(ζ8),

a± :=

(
(1− ζ±1

8 )2, p

Qp(ζ8)

)
8

=

(
1− ζ±1

8 , p

Qp(ζ8)

)
4

=

(
(1− ζ±1

8 )(1 + ζ±1
8 ), p

Qp

)
4

=

(
1∓ i, p
Qp

)
4

.

Then a+a− =
(

2,p
Qp

)
4

= ±i and a−

a+ =
(
i,p
Qp

)
4

= ±i. Therefore

(a+, a−) = (±i, 1), (±i,−1), (1,±i), (−1,±i).

By definition,
( (1−ζ8)2,p

P1

)
8

= a+ and
( (1−ζ8)2,p

P2

)
8

= ι−1
2 (a−). Therefore((

(1− ζ8)2, p

P1

)
8

,

(
(1− ζ8)2, p

P2

)
8

)
=(±i, 1), (±i,−1), (1,∓i), (−1,∓i).

In each case, we always have |ρ(Λ0,2)| = |〈ρ((1−ζ8)2), ρ(ζ8), ρ(1+
√

2)〉| =
32. This proves (1).

For (2), we study the map

ρ4 := ρ〈l2,1〉,K2,1/K0,1
: Λ0,1 −→ µ4 × µ4 × µ4

x 7−→

((
x, p

p1

)
4

,

(
x, p

p2

)
4

,

(
x, p

l0,1

)
4

)
.
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We always have (
i, p

Qp

)
4

=

(
p, i

Qp

)−1

4

= i−
p−1
4 = ±i.

Let τ1, τ2 be the embeddings corresponding to p1, p2 respectively. We
assume that τ1(i) = i and τ2(i) = −i. Then(

i, p

p1

)
4

= τ−1
1

(
τ1(i), p

Qp

)
4

= ±i = τ−1
2

(
τ2(i), p

Qp

)
4

=

(
i, p

p2

)
4

.

Hence ρ4(i) = (±i,±i,−1) by the product formula. So [E0,1 : E0,1 ∩
NK×2,1] = |ρ4(E0,1)| = |〈ρ4(i)〉| = 4.

Now we compute ρ4((1 + i)2). Since(
(1− i)2, p

Qp

)
4

(
(1 + i)2, p

Qp

)
4

=

(
1− i, p
Qp

)
2

(
1 + i, p

Qp

)
2

=

(
2, p

Qp

)
2

=−1,

we have (
(1− i)2, p

p1

)
4

= ±1,

(
(1− i)2, p

p2

)
4

= ∓1.

Hence ρ4((1 − i)2) = (±1,∓1,−1). Therefore, [Λ0,1 : Λ0,1 ∩ NK×2,1] =

|〈ρ4((1− i)2), ρ4(i)〉| = 8. This proves (2).

(3) follows from the values of the following quadratic Hilbert symbols:(
ζ8, p

Qp(ζ8)

)
2

=

(
−i, p
Qp

)
2

= −1,

(
1 +
√

2, p

Qp(ζ8)

)
2

=

(
−1, p

Qp

)
2

= 1.

Proof of Theorem 1.1 for p ≡ 5 mod 8: We first prove that 2‖h3,2, 2‖h2,1

and 2 - h1,2.
We apply Gras’ formula (2.2) to the case

K3,2/K0,2, C = 〈cl(l3,2)〉, D = 〈l3,2〉,
where ln,m is the unique prime ideal of Kn,m above 2. Then ΛD =
Λ0,2 as in Lemma 5.3. By the above computation and Lemma 2.3,
A3,2 = 〈cl(l3,2)〉(2). Note that C is invariant under the action of G :=
Gal(K3,2/K0,2). We have A3,2 = AG3,2. Chevalley’s formula (2.3) and the

above computation imply that |A3,2| = |AG3,2| = 2.
Similarly, applying Gras’ formula to the case

K2,1/K0,1, C = 〈cl(l2,1)〉, D = 〈l2,1〉
shows that A2,1 = 〈cl(l2,1)〉(2). In particular, A2,1 is invariant under the
action of Gal(K2,1/K0,1). Apply Chevalley’s formula to K2,1/K0,1, we
obtain |A2,1| = 2.
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By Applying Chevalley’s formula to the extension K1,2/K0,2 and
Lemma 2.3, we have 2 - h1,2. Hence 2 - h1,1 by Lemma 2.5.

We have 2 ‖ hn,m for n ≥ 2,m ≥ 1 by Proposition 3.4 and 2 - h1,m

for n = 1,m ≥ 1 by Proposition 3.2.
It remains to prove that 2 - hn,0. The proof consists of three steps:

Step 1: Let ε be the fundamental unit of Q(
√
p). We show that

( ε,√p√
p

)
2

=

−1.
Write ε =

a+b
√
p

2 , a, b ∈ Z. Then(
ε,
√
p

(
√
p)

)
2

=

(
a/2,
√
p

(
√
p)

)
2

=

(
a/2,−p

p

)
2

=

(
a/2

p

)
.

It is well known that NQ(
√
p)/Q(ε) =

(
a
2

)2 − p( b2)2 = −1. Since
(
a
2

)2 ≡
−1 mod p and p ≡ 5 mod 8, we have

(a/2
p

)
≡
(
a
2

) p−1
2 ≡ −1 mod p.

Step 2: We show that [En,0 : En,0 ∩NK×n+1,0] = 4 for each n ≥ 1.
Consider the map as in Lemma 2.8,

ρ : En,0 −→ µ2 × µ2 × µ2

x 7−→

((
x, p

1
2n

∞n

)
2

,

(
x, p

1
2n

(p
1
2n )

)
2

,

(
x, p

1
2n

ln,0

)
2

)
,

where ∞n is the real place of Kn,0 such that ∞n(p
1
2n ) < 0. We know

[En,0 : En,0 ∩NK×n,0] = |ρ(En,0)| and ρ(En,0) ⊂ (ζ2 × ζ2 × ζ2)
∏

=1. In

particular, |ρ(En,0)| ≤ 4.
Since −1, ε ∈ En,0, it is enough to prove that |〈ρ(−1), ρ(ε)〉| = 4. By

Step 1, we have(
ε, p

1
2n

(p
1
2n )

)
2

=

(
ε,−p

1

2n−1

(p
1

2n−1 )

)
2

= · · · =
(
ε,−√p
(
√
p)

)
2

= −1.

Therefore, ρ(ε) = (±1,−1,∓1). Since ρ(−1) = (−1, 1,−1), we have
|〈ρ(−1), ρ(ε)〉| = 4 and hence |ρ(En,0)| = 4.

Step 3: We prove 2 - hn,0 for any n ≥ 1.
We prove it by induction on n. The case n = 1 is well known. As-

sume that 2 - hn,0. The product of ramification indices of Kn+1,0/Kn,0

is 8. Using the result in Step 2, Chevalley’s formula (2.3) for the exten-
sion Kn+1,0/Kn,0, and Lemma 2.3 then imply 2 - hn+1,0.

5.2. The case p ≡ 7 mod 16. The main purpose of this subsection is
to prove Theorem 1.1(3). We first give a brief description of the proof.
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• Apply Gras’ formula (2.2) inductively to the extensionKn,0/Kn−1,0

to show that An,0 is generated by the unique prime above 2. Then
apply (2.2) to Kn,1/Kn,0 to show that An,1 equals the 2-primary
part of 〈classes of primes above 2〉. Next we apply Chevalley’s for-
mula (2.3) to the extensions K3,1/K1,1 and K2,1/K1,1 to deduce
A2,1

∼= A3,1
∼= Z/2Z× Z/2Z. Proposition 3.2 then implies An,1 ∼=

Z/2Z×Z/2Z for n ≥ 2. Finally from this one can get An,0 ∼= Z/2Z
for n ≥ 2.
• Apply (2.2) inductively to K1,m/K0,m to show that A1,m is a

quotient of Z/2m−1Z, then use Kida’s λ-invariant formula to get
|A1,m| ≥ 2m−1. This leads to A1,m

∼= Z/2m−1Z for any m ≥ 1.

For each n ≥ 1, Kn,0 has two real places. Let ∞n be the real place

such that∞n(p
1
2n ) < 0. Then∞n is ramified in Kn+1,0/Kn,0, while the

other real place is unramified in Kn+1,0/Kn,0.

The prime p is totally ramified as pOn,0 = p2n

n,0 in Kn,0, where pn,0 =

(p
1
2n ). Since p is inert inK0,1, pn,0 is inert inKn,1. Write pn,0On,1 = pn,1.

The prime p0,1 = (p) is totally ramified in K∞,1/K0,1.

Since (x+1)2n−p is a 2-Eisenstein polynomial, 2 is totally ramified as
2On,0 = l2

n

n,0 in Kn,0. Since 2 splits in Q(
√
−p)/Q, ln,0 splits as ln,0On,1 =

ln,1l
′
n,1 in Kn,1/Kn,0 for each n ≥ 1. The primes l1,1 and l′1,1 are totally

ramified in K∞,1/K1,1.

The prime 2 is also totally ramified as 2O0,m = l2
n

0,m in K0,m, where
l0,m = (1 − ζ2m+1)O0,m. The prime l0,m splits as l0,mO1,m = l1,ml′1,m
in K1,m for each m ≥ 1.

Since 2 - h1,0, l1,0 is principal. Let π = u+ v
√
p be a totally positive

generator of l1,0. We must have N(π) = u2 − pv2 = 2, since −2 is not
a square modulo p. Let ε be the fundamental unit of K1,0. Note that
π2

2 is a unit. We must have π2

2 = εk for some odd integer k; otherwise,√
2 would belong in K1,0 = Q(

√
p), which is plainly impossible. Replace

the generator π by πε
1−k
2 . We may assume that π2

2 = ε. So E1,0 =〈
−1, π

2

2

〉
.

Lemma 5.4. The class number h1,1 of K1,1 = Q(
√
p, i) is odd and

E1,1 =
〈
π

1+i , i
〉
.

Proof: Apply Chevalley’s formula to the extension K1,1/K0,1 and Lem-
ma 2.3; one has 2 - h1,1.

By [2, Theorem 42, p. 195],[
E1,1 :

〈
π2

2
, i

〉]
= 1 or 2.
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Note that π
1+i is a unit and

[〈
π

1+i , i
〉

:
〈
π2

2 , i
〉]

=2; we must have E1,1 =〈
π

1+i , i
〉
.

Lemma 5.5. We have

(1)
(π,√p

p1,0

)
2

= −1 and
(π,√p

l1,0

)
2

= −1.

(2) [E1,0 : E1,0 ∩NK×2,0] = 2.

(3) [E1,1 : E1,1 ∩NK×3,1] = 4 and [E1,1 : E1,1 ∩NK×2,1] = 1.

Proof: (1) Since π = u+v
√
p is totally positive, we have u > 0, u2−pv2 =

2, and 2 - uv. Note that 2 is a square modulo v, so v ≡ ±1 mod 8. Then
u2 ≡ 9 mod 16 since p ≡ 7 mod 16. In other words, u ≡ ±3 mod 8. We
have(
π,
√
p

p1,0

)
2

=

(
u,
√
p

p1,0

)
2

=

(
u,−p
p

)
2

=

(
u

p

)
=

(
−p
u

)
=

(
2

u

)
= −1.

The fourth equality is due to the quadratic reciprocity law. We have(π,√p
∞1

)
2

= 1 as π is totally positive, thus
(π,√p

l1,0

)
2

= −1 by the product

formula.

(2) Since the infinite place∞1 is ramified, −1 is not a norm of K2,0. For

the fundamental unit π2

2 , we have(
π2

2 ,
√
p

p1,0

)
2

=

(
2,
√
p

p1,0

)
2

=

(
2,−p
p

)
2

= 1,

(
π2

2 ,
√
p

∞1

)
2

= 1.

By the product formula, (
π2

2 ,
√
p

l1,0

)
2

= 1.

Then π2

2 is a norm of K2,0 by Hasse’s norm theorem. This proves (2).

(3) We need to study the map

ρ : ρ : E1,1 −→ µ4 × µ4 × µ4

x 7−→

((
x,
√
p

p1,1

)
4

,

(
x,
√
p

l1,1

)
4

,

(
x,
√
p

l′1,1

)
4

)
.

Then ρ(E1,1) ⊂ (µ4 × µ4 × µ4)
∏

=1 and [E1,1 : E1,1∩NK×3,1] = |ρ(E1,1)|.
We first compute ρ(i). Since p ≡ 7 mod 16 and the residue field of p1,1

is Fp2 , we have(
i,
√
p

Qp(
√
p, i)

)
4

=

( √
p, i

Qp(
√
p, i)

)−1

4

= i−
p2−1

4 = 1.
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Thus (
i,
√
p

p1,1

)
4

= 1.

Note that the localization of K1,1 at l1,1 is Q2(
√
p, i) = Q2(i). Note

that
√
−p ∈ Q2. Since(
i, i

Q2(i)

)
4

=

(
i,−1

Q2(i)

)
94

(
i,−i
Q2(i)

)
4

=

(
i,−1

Q2(i)

)
4

=

(
i, i

Q2(i)

)
2

= 1,

we have(
i,
√
p

Q2(i)

)
4

=

(
i,
√
−p

Q2(i)

)
4

=


(
i,
√
−7

Q2(i)

)
4

=
(
i,11
Q2(i)

)
4

if p ≡ 7 mod 32;(
i,
√
−23

Q2(i)

)
4

=
(

i,3
Q2(i)

)
4

if p ≡ 23 mod 32.

Applying the product formula to the quartic Hilbert symbols on Q(i)
gives (

i, 11

Q2(i)

)
4

=

(
i, 11

Q11(i)

)−1

4

= i−
112−1

4 = −1,(
i, 3

Q2(i)

)
4

=

(
i, 3

Q3(i)

)−1

4

= i−
32−1

4 = −1.

Therefore,
( i,√p
Q2(i)

)
4

= −1 and we have ρ(i) = (1,−1,−1).

Next we compute ρ
(
π

1+i

)
. By (1), we have π

p−1
2 ≡ −1 mod p1,0. Since

p ≡ 7 mod 16, π
p2−1

4 ≡ 1 mod p1,0. Hence
(π,√p

p1,1

)
4

= 1. Since (1 +

i)
p2−1

4 = (2i)
p2−1

8 = −2
p2−1

8 ≡ −1 mod p, we have
( 1+i,

√
p

p1,1

)
4

= −1.

Thus ( π
1+i ,
√
p

p1,1

)
4

= −1.

To compute
( π

1+i ,
√
p

l1,1

)
4
, we first compute its square:( π

1+i ,
√
p

l1,1

)2

4

=

( π
1+i ,
√
p

l1,1

)
2

=

(
π,
√
p

l1,1

)
2

(
1 + i,

√
p

l1,1

)
2

.

Note that Q2(
√
p) = Q2(i). By part (1) of Lemma 5.5, we have

−1 =

(
π,
√
p

l0,1

)
2

=

(
π,
√
p

Q2(
√
p)

)
2

=

(
π,
√
p

l1,1

)
2

.
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Note that
√
−p ≡ ±3 mod 8. So we have the following equality of qua-

dratic Hilbert symbols:(
1± i,√p
Q2(i)

)
2

=

(
1± i,

√
−p

Q2(i)

)
2

=

(
2,
√
−p

Q2

)
2

= −1.

Therefore ( π
1+i ,
√
p

l1,1

)2

4

= 1 =

(
π

1+i ,
√
p

l′1,1

)2

4

.

By the product formula we must have ρ
(
π

1+i

)
= (−1,±1,∓1). Hence

|ρ(E1,1)| = 4. This implies [E1,1 : E1,1 ∩NK×3,1] = 4.

To compute [E1,1 : E1,1 ∩NK×2,1], we need to consider the following
map:

ρ′ : E1,1 −→ µ2 × µ2 × µ2

x 7−→

((
x,
√
p

p1,1

)
2

,

(
x,
√
p

l1,1

)
2

,

(
x,
√
p

l′1,1

)
2

)
.

Then ρ′ = ρ2 by Proposition 2.1(7). Thus ρ′(i) = ρ(i)2 = (1, 1, 1)

and ρ′
(
π

1+i

)
= ρ

(
π

1+i

)2
= (1, 1, 1). Therefore [E1,1 : E1,1 ∩ NK×2,1] =

|ρ′(E1,1)| = 1.

Proposition 5.6. We have

(1) An,0 = 〈cl(ln,0)〉 for n ≥ 1 and A2,0
∼= Z/2Z.

(2) An,1 = 〈cl(ln,1), cl(l′n,1)〉(2) for n ≥ 2.

Proof: (1) We prove this by induction. The case n = 1 is well known.
Suppose the result holds for n. We apply Gras’ formula (2.2) to

Kn+1,0/Kn,0, C = 〈cl(ln+1,0)〉, D = 〈ln+1,0〉.

Note that N(C) = 〈cl(ln,0)〉 = An,0 by the assumption. The product of
ramification indices is 8. Consider the map

ρ := ρD,Kn+1,0/Kn,0 : ΛD −→ µ2 × µ2 × µ2

x 7−→

((
x, p

1
2n

∞n

)
2

,

(
x, p

1
2n

pn,0

)
2

,

(
x, p

1
2n

ln,0

)
2

)
.

We have |ρ(ΛD)| = [ΛD : ΛD∩NK×n+1,0] and ρ(ΛD) ⊂ (µ2×µ2×µ2)
∏

=1,

in particular, |ρ(ΛD)| ≤ 4. Notice that ΛD ⊃
〈
π, π

2

2 ,−1
〉
.
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Since ∞n(p
1
2n ) < 0, (

−1, p
1
2n

∞n

)
2

= −1.

By the norm compatibility of Hilbert symbols,(
−1, p

1
2n

pn,0

)
2

=

(
−1,−p

1

2n−1

pn−1,0

)
2

= · · · =
(
−1,−p

(p)

)
2

= −1.

Then ρ(−1) = (−1,−1, 1). Since π is totally positive,(
π, p

1
2n

∞n

)
2

= 1.

By the norm compatibility of Hilbert symbols and the above lemma,(
π, p

1
2n

pn,0

)
2

=

(
π,−√p
p1,0

)
2

= −1.

Hence ρ(π) = (1,−1,−1). Therefore |ρ(ΛD)| ≥ |〈ρ(π), ρ(−1)〉| = 4.
This shows that |ρ(ΛD)| = 4. Then Gras’ formula and Lemma 2.3
tell us An+1,0 = 〈cl(ln+1,0)〉(2). Note that l2

n

n+1,0 = l1,0 = (π), so
〈cl(ln+1,0)〉(2) = 〈cl(ln+1,0)〉. By induction, An+1,0 = 〈cl(ln+1,0)〉.

In particular, A2,0 is invariant under the action of Gal(K2,0/K1,0).

Since E1,0 =
〈
−1, π

2

2

〉
and [E1,0 : E1,0∩NK×2,0] = 2 by the above lemma,

applying Chevalley’s formula (2.3) to K2,0/K1,0 gives A2,0
∼= Z/2Z.

(2) We apply Gras’ formula to

Kn,1/Kn,0, C = 〈cl(ln,1), cl(l′n,1)〉, D = 〈ln,1, l′n,1〉.
Then NC = 〈cl(ln,0)〉 = An,0 by (1). Only the two infinite places are
ramified in Kn,1/Kn,0, so −1 is not a norm. This shows that the in-
dex [ΛD : ΛD ∩ NK×n+1,0] ≥ 2. By Gras’ formula and Lemma 2.3,

An,1 = 〈cl(ln,1), cl(l′n,1)〉(2).

Theorem 5.7. For p ≡ 7 mod 16, we have An,1 ∼= Z/2Z × Z/2Z and
An,0 ∼= Z/2Z for any n ≥ 2.

Proof: The extensionK∞,1/K1,1 satisfies RamHyp and Gal(Kn+2,1/Kn,1)
is cyclic of order 4 for each n ≥ 1. By Proposition 3.2, to show An,1 ∼=
Z/2Z× Z/2Z, it suffices to show A2,1

∼= A3,1
∼= Z/2Z× Z/2Z.

Let G2,1 =Gal(K2,1/K1,1). We have A2,1 =〈cl(l2,1), cl(l′2,1)〉(2)=A
G2,1

2,1

by Proposition 5.6. Since h1,1 is odd, cl(l2,1)2 = cl(l1,1O2,1) has odd
order. In other words, A2,1 is a quotient of Z/2Z × Z/2Z. Note that
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A2,1 = A
G2,1

2,1 . The product of ramification indices of K2,1/K1,1 is

8. By Lemma 5.5 and Chevalley’s formula (2.3) for K2,1/K1,1, we obtain

|A2,1| = |A
G2,1

2,1 | = 4. So A2,1
∼= Z/2Z× Z/2Z.

By Proposition 5.6, A3,1 = A
G3,1

3,1 , where G3,1 = Gal(K3,1/K1,1). The

product of ramification indices of K3,1/K1,1 is 64. By Lemma 5.5 and

Chevalley’s formula for K3,1/K1,1, we get |A3,1| = |A
G3,1

3,1 | = 4. Since the
norm map from A3,1 to A2,1 is surjective by Lemma 2.5, we must have
A3,1

∼= Z/2Z× Z/2Z.
Now we compute An,0. Since Kn,1/Kn,0 is ramified at the real places

of Kn,0, the norm map from An,1 to An,0 is surjective by Lemma 2.5.
In particular, An,0 is a quotient of Z/2Z× Z/2Z. We know that An,0 is
cyclic by Proposition 5.6. Since the norm map from An,0 to A2,0

∼= Z/2Z
is surjective, we must have An,0 ∼= Z/2Z for n ≥ 2.

To compute the 2-class group of K1,m for m ≥ 1, we first note that
K1,m is the m-th layer of the cyclotomic Z2-extension of K1,1.

Proposition 5.8. For p ≡ 7 mod 16, we have A1,m = 〈cl(l1,m)〉(2)
for m ≥ 1.

Proof: We first reduce the result to the case m = 2. Suppose A1,2 =
〈cl(l1,2)〉(2). Note that K1,∞/K1,1 is totally ramified at l1,1 and l′1,1, and
unramified outside l1,1 and l′1,1. Applying Gras’ formula (2.2) to

K1,2/K1,1, C1 = 〈cl(l1,2)〉, D1 = 〈l1,2〉
gives

[ΛD1
: ΛD1

∩NK×1,2] = 2.

Next we apply Gras’ formula to

K1,3/K1,2, C2 = 〈cl(l1,3)〉, D2 = 〈l1,3〉.
Note that N(C)(2) = A1,2. To prove A1,3 = C2, we need to prove that

[ΛD2
: ΛD2

∩NK×1,3] = 2 by Lemma 2.3. Note that K1,2 = K1,1(
√
−i)

and K1,3 = K1,2(
√
ζ8). We need to study the following two maps:

ρ1 = ρD1,K1,2/K1,1
: ΛD1

−→ µ2 × µ2

x 7−→

((
x,−i
l1,1

)
2

,

(
x,−i
l′1,1

)
2

)
and

ρ2 = ρD2,K1,3/K1,2
: ΛD2 −→ µ2 × µ2

x 7−→

((
x, ζ8
l1,2

)
2

,

(
x, ζ8
l′1,2

)
2

)
.
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We have |ρ2(Λ2)| = [ΛD2
: ΛD2

∩NK×1,3] ≤ 2 by Lemma 2.8. Note
that ΛD1

⊂ ΛD2
. By the norm-compatible property of Hilbert symbols,(

x,ζ8
l1,2

)
2

=
(
x,−i
l1,1

)
2
. So the following diagram is commutative:

ΛD2
µ2 × µ2

ΛD1

ρ2

ρ1

Thus 2 = |ρ1(ΛD1
)| ≤ |ρ2(ΛD2

)| ≤ 2 and [ΛD2
: ΛD2

∩ NK×1,3] = 2,

which implies that A1,3 = 〈cl(l1,3)〉(2) by Lemma 2.3. Repeating this
argument, we get A1,m = 〈cl(l1,m)〉(2) for m ≥ 2.

Consider the case

K/F = K1,2/K0,2, C = 〈cl(l1,2)〉, D = 〈l1,2〉.
Note that C is a Gal(K1,2/K0,2)-submodule of A1,2. This can be seen
from that, for σ ∈ Gal(K1,2/K0,2), we have σ(l1,2)l1,2 = l0,2O1,2 =
(1 − ζ8)O1,2 and therefore σ(cl(l1,2)) = cl(l1,2)−1. If we can show [ΛD :
ΛD ∩NK×1,2] = 2, then by Gras’ formula (2.2) and Lemma 2.3, we have

A1,2 = 〈cl(l1,2)〉(2).

Note that ΛD = 〈1−ζ8, ζ8, 1+
√

2〉 and the ramified places inK1,2/K0,2

are p0,2 and p′0,2, where p0,2p
′
0,2 = pO0,2. By Lemma 2.8, for the map

ρ = ρD,K1,2/K0,2
: −→ ΛDµ2 × µ2

x 7−→

((
x, p

p0,2

)
2

,

(
x, p

p′0,2

)
2

)
,

we have |ρ(ΛD)| = [ΛD : ΛD ∩ NK×1,2] ≤ 2. To show |ρ(ΛD)| = 2, it

suffices to show that ρ is not trivial. Let us compute ρ(1− ζ8). For p ≡
7 mod 16, the conjugate of ζ8 over Qp is ζ−1

8 . By the norm-compatible
property of Hilbert symbols, we have(

1− ζ8, p
p0,2

)
2

=

(
1− ζ8, p
Qp(ζ8)

)
2

=

(
(1− ζ8)(1− ζ−1

8 ), p

Qp

)
2

=

(
2 + ζ8 + ζ−1

8 , p

Qp

)
2

.

By Hensel’s lemma, we have that(
2 + ζ8 + ζ−1

8 , p

Qp

)
2

= 1⇔ 2 + ζ8 + ζ−1
8 mod p is a square

⇔ 2 + ζ8 + ζ−1
8 ∈ (Q×p )2.
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Notice that (ζ16 +ζ−1
16 )2 = 2+ζ8 +ζ−1

8 . Since p ≡ 7 mod 16, Frobp(ζ16 +

ζ−1
16 ) = ζ7

16 + ζ−7
16 = −(ζ16 + ζ−1

16 ), where Frobp is the Frobenius element

of Gal(Qp/Qp). Thus ζ16 + ζ−1
16 /∈ Qp and we have

(
1−ζ8,p
p0,2

)
2

= −1.

Theorem 5.9. For p ≡ 7 mod 16 and m ≥ 1, A1,m
∼= Z/2m−1Z.

Proof: Note that A1,1 is trivial and l2
m−1

1,m = l1,1. We have that A1,m =

〈cl(l1,m)〉(2) is a quotient of Z/2m−1Z. Since h1,m | h1,m+1 by Lem-
ma 2.5, if |A1,m| < 2m−1 for some m, we must have |A1,k| = |A1,k+1|
for some k. Then |A1,n| = |A1,k| for any n ≥ k by Proposition 3.2.
But Kida’s formula ([10, Theorem 1]) shows that the λ-invariant of
the cyclotomic Z2-extension of Q(

√
−p) is 1. In particular, the 2-class

numbers of Q(
√
−p, ζ2m+1 + ζ−1

2m+1) are unbounded when m→∞. Thus
the 2-class numbers of Q(

√
−p, ζ2m+1) = K1,m are also unbounded by

Lemma 2.5. We get a contradiction.

Proof of Theorem 1.1(3): Theorem 1.1(3) is just the combination of The-
orem 5.7 and Theorem 5.9.

5.3. Congruence property of the relative fundamental unit. We
are now ready to prove Theorem 1.2. We assume p ≡ 7 mod 16 and use
the same notations as in §5.2.

To prove this theorem, we need an explicit reciprocity law for a real
quadratic field F . We view F ⊂ R by fixing an embedding. For a prime
ideal p with odd norm and γ ∈ OF prime to p, define the Legendre

symbol
[
γ
p

]
∈ {±1} by the congruence

[
γ
p

]
≡ γ

Np−1
2 mod p. For coprime

γ, δ ∈ OF with (2, δ) = 1, define
[
γ
δ

]
:=
∏

p|δ
[
γ
p

]vp(δ)
. So by definition[

γ
δ

]
= 1 if δ ∈ O×F .

For γ, δ ∈ OF \ {0}, define

{γ, δ} = (−1)
sgn(γ)−1

2 · sgn(δ)−1
2 ,

where sgn(x) = 1 if x > 0 and sgn(x) = −1 if x < 0. Note that
{γ, δ1}{γ, δ2} = {γ, δ1δ2}.

Theorem 5.10. Assume that γ1, δ1, γ2, δ2 ∈ OF have odd norms, γ1

and δ1 are coprime, γ2 and δ2 are coprime, and γ1 ≡ γ2, δ1 ≡ δ2 mod 4.
Then [

γ1

δ1

] [
δ1
γ1

] [
γ2

δ2

] [
δ2
γ2

]
= {γ1, δ1}{γ′1, δ′1}{γ2, δ2}{γ′2, δ′2},

where ξ′ is the conjugate of ξ ∈ F .
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Proof: This follows from [13, Lemmas 12.12, 12.13, and 12.16] directly.

Proof of Theorem 1.2: (1) Note that E2,0/E1,0 is an abelian group of
rank 1. We claim that E2,0/E1,0 is torsion-free. Otherwise, there exists
u ∈ E2,0\E1,0 such that uj ∈ E1,0 for some j ≥ 2. Then K2,0 = K1,0(u).
The norm of u with respect to the extension K2,0/K1,0 is uζu = ζu2 ∈
E1,0 for some ζ ∈ µj ∩ K2,0. So ζ = ±1. Thus u2 ∈ E1,0 and this
implies that K2,0/K1,0 is unramified at p. This contradicts the fact that
K2,0/K1,0 is ramified at p. This proves the claim.

Let η∈E2,0 such that its image in E2,0/E1,0 is a generator of E2,0/E1,0.
Then clearly E2,0 = 〈η, ε,−1〉. By Lemma 5.5, ε ∈ NK×2,0. Let G =

Gal(K2,0/K1,0). Since AG2,0 = 〈cl(l2,0)〉 and l2,0 is a G-invariant frac-

tional ideal, by [7, Proposition 1.3.4], E1,0 ∩ NK×2,0 = NE2,0 and in

particular ε ∈ NE2,0. Therefore we must have N(±ηεk) = ε. Replac-
ing η by sgn(η)ηεk, then η is totally positive since ε is totally positive,
N(η) = ε, and E2,0 = 〈η, ε,−1〉.

(2) We first reduce it to the case η′ = η. Suppose the result holds for η.
For any η′ ∈ E2,0 such that N(η′) = ε, we can write η′ = sgn(η′)ηkεs

with k = 1 − 2s. Firstly, one can easily see that ε ≡ ±1 mod
√
p. We

claim that ε ≡ 1 mod
√
p. Since ε = N(η) = ηη, we have ε ≡ ηη ≡

η2 mod 4
√
p. Therefore, ε is a square in O2,0/( 4

√
p) ∼= Fp. Because −1 is

not a square in Fp, we obtain ε ≡ 1 mod
√
p. Then η′ ≡ sgn(η′)(−1)k ≡

− sgn(η′) mod 4
√
p. Write η = α + β 4

√
p with α, β ∈ Z[

√
p]. By the as-

sumption we have l ‖ α and l - β. It is easy to check that for odd k,
l ‖ αk also, where ηk = αk + βk 4

√
p with αk, βk ∈ Z[

√
p]. Thus we have

vl(Tr(η′)) = vl(2ε
sαk) = vl(2ε

sα) = 3.
From now on we prove the result holds for η = α + β 4

√
p. Write

α = a+ b
√
p and β = c+ d

√
p with a, b, c, d ∈ Z. Since the infinite place

is ramified in K2,0, we have NK2,0/Q(η) = 1. Hence NK2,0/Q(η) ≡ a4 ≡
1 mod 4

√
p. Since p ≡ 7 mod 16, we have η ≡ a ≡ ±1 mod 4

√
p.

Let G = Gal(K3,0/K2,0). Proposition 5.6 and Theorem 5.7 tell us that
|A3,0|=|AG3,0|=|A2,0|=2. Applying Chevalley’s formula (2.3) on K3,0/K2,0

gives [E2,0 : NK×3,0∩E2,0] = 4. This implies
((η, 4

√
p

∞2

)
,
(η, 4
√
p

( 4
√
p)

)
,
(η, 4
√
p

l2,0

))
6=

(1, 1, 1). Therefore
(
η
4
√
p ( 4
√
p)
)

=
(
η
4
√
p l2,0

)
= −1 by the total positivity

of η and the product formula. Hence η is not a square modulo 4
√
p and

we must have η ≡ −1 mod 4
√
p.

Write α = πtα0 with π - α0, and recall that π is the totally positive

generator of l such that ε = π2

2 . Now t = vl(Tr(η2 )) = vl(Tr(η)) − 2,
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so our goal is to prove t = 1. Note that α and α0 are positive. Write
ε = x + y

√
p, π = u + v

√
p. By Lemma 5.5, u and v are both odd

and v ≡ ±1 mod 8. From ε = π2

2 and N(π) = u2 − pv2 = 2, we obtain

8 ‖ x = u2 − 1 = pv2 + 1 and y ≡ ±3 mod 8.
If y ≡ 3 mod 8, then ε ≡ −√p mod 4. Take (α0,−

√
p, α0, ε) in Theo-

rem 5.10; since α0 > 0,
√
pε′ > 0, we have[

α0

−√p

] [
−√p
α0

] [α0

ε

] [ ε
α0

]
= {α0,−

√
pε}{α′0,

√
pε′} = 1.

Since α2 −√pβ2 = ε, we have[
α2 −√pβ2

α0

]
=

[
−√p
α0

]
=

[
ε

α0

]
.

By definition,
[
α0

ε

]
= 1. Combine the above two equalities,

[
α0

−√p
]

=

1. By Lemma 5.5,
[

π
−√p

]
=
(
π√
p

√
p
)

2
= −1. Thus we have

−1 =

[
α

−√p

]
=

[
π

−√p

]t [
α0

−√p

]
= (−1)t,

which means that t is odd in this case.
If y≡−3 mod 8, then ε−1 =x−y√p with −y≡3 mod 8 and N(η−1)=

ε−1. Repeating the above argument, we obtain that vl
(
Tr
(
η−1

2

))
is odd.

Let η̄ = α−β 4
√
p. We have Tr(η−1) = Tr(η̄ε−1) = ε−1 Tr(η) = ε−1 Tr(η).

Therefore t = vl
(Tr(η)

2

)
= vl

(Tr(η−1)
2

)
+vl(ε

−1) = vl
(Tr(η−1)

2

)
is also odd.

Finally let us prove t = 1. Recall that η = a+b
√
p+(c+d

√
p) 4
√
p with

a, b, c, d ∈ Z. Since t is odd, we have π | a+ b
√
p and π - c+ d

√
p. Then

c 6≡ d mod 2. From N(η) = ε = x + y
√
p we have a2 + pb2 − 2cdp = x.

Assume t ≥ 3, i.e. 2π | a+b
√
p. We must have 2 ‖ a and 2 ‖ b or 4 | a and

4 | b. In both cases, x ≡ −2cdp mod 8. Since 8 | x, we have 4 | cd. But
exactly one of c and d is odd, y = 2ab− c2 − pd2 ≡ d2 − c2 ≡ ±1 mod 8,
which is a contradiction of y ≡ ±3 mod 8. Thus t = 1.
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