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Preface

This thesis is a systematic study of the universal ordinary distribution, its group

cohomology and application. We use tools from homological algebra, especially the

spectral sequence method, to study the {±1}-cohomology and the general group

cohomology of the universal ordinary distribution. The former one is applied to

study the index formula of the Stickelberger ideal, the latter one is used to study

the cyclotomic Euler system.

We give an overall picture in Chapter 1. It consists of some history, an overview

of research done in this thesis and an outlook to future study. In Chapter 2, we

study Anderson’s remarkable idea about constructing a Koszul-type torsion-free

resolution of the universal ordinary distribution. We investigate further properties

of this resolution and give necessary tools for the spectral sequence method. Our

method in Chapters 3 and 4 is based on Anderson’s resolution and the spectral

sequence theory.

Chapter 3 is a detailed study of the {±1}-cohomology of the universal ordinary

distribution and the universal ordinary predistribution. By using the abstract index

formula proposed by Anderson and proved here, we reprove of Sinnott’s index

formula for the Stickelberger ideal in a cyclotomic field.

In Chapter 4, we study the general group cohomology of the universal ordi-

nary distribution of level r under the assumption r squarefree. We give a complete

description of this group cohomology. In the 0-th and 1-st case, the cohomology

groups have close connections with the cyclotomic Euler system. Though not com-

pleted yet, we explain briefly these connections in Chapter 5.
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CHAPTER 1

Introduction

Some background The theory of distributions has a deep root in number

theory, especially in the theory of cyclotomic fields. An extensive search could

find the idea of distributions everywhere in the classical books by Lang [20] and

Washington [37]. We see a couple of examples here.

(1). For the cyclotomic units 1− ζr, we know the relation

(1.1) 1− ζar =
m/r−1∏
j=0

(1− ζa+rjm ), if r | m,

which is fundamental in the study of cyclotomic units(see, for example Washing-

ton [37], Chapter 8).

(2). The first Bernoulli polynomial

B1(X) = X − 1
2

satisfies the following relation

(1.2) B1(〈x〉) =
∑

ry=x mod Z
B1(〈y〉), x ∈ Q

where 〈x〉 means the fractional part of x ∈ Q.

These phenomena prompt number theorists to introduce the definition of the

universal ordinary distribution Ur. For positive integers k and r, the k-dimensional

universal ordinary distribution of level r is the abelian group

Ur = Ukr =

〈
[a] : a ∈ 1

rZk/Zk
〉

〈
[a]−

∑
pb=a

[b] : p | r prime, a ∈ p
rZk/Zk

〉 .
Let Gr = GLk(Z/rZ). Viewing a ∈ Qk/Zk as a k-dimensional column vector, Ur

becomes a Gr-module under matrix multiplication.

1



1. INTRODUCTION 2

One of the first appearances of the universal ordinary distribution is in Sinnott’s

paper [35]. To compute the index formulas of the circular units and the Stickel-

berger ideal in cyclotomic fields, Sinnott constructed a module U . He also computed

the {±1}-cohomology of this module U(though earlier papers by Schmidt [30] and

Yamamoto [40] studied similar objects). These results are essential to the compu-

tation of the index formulas. Sinnott’s method is very influential for later study in

this subject.

Shortly after Sinnott’s investigation, Kubert [16] gave the first systematic treat-

ment of the universal ordinary distribution. He showed that Sinnott’s module U is

nothing but the 1-dimensional universal ordinary distribution Ur. He also showed

that the universal ordinary distribution is a free abelian group. In [17], Kubert

then studied the {±1}-cohomology of Ur for any k and thereby generalized the

1-dimensional case to arbitrary dimension.

For the case k = 2, Kubert and Lang did an extensive study of Ur and its

connections with modular units. Their results were included in the book Kubert-

Lang [19].

Inspired by the success of Sinnott’s index computation, many authors, for ex-

ample, Galovich-Rosen [10] and Yin [41], obtained results in the function field case

analogous to Sinnott’s. The method, more or less, is the one used by Sinnott: con-

struct a function field analogue of Sinnott’s module U(i.e., the universal ordinary

distribution in function fields) and then study the sign-cohomology of this module.

Sinnott’s method is highly successful but in some way is rather complicated.

The study of Sinnott’s module U and its {±1}-cohomology used a detailed analysis

of the interactions of factors of r and also used a substantial amount of homological

algebra. The idea behind his computation is illuminating, however, the actual index

computation is an long intricate induction.

This situation was changed in Anderson [1]. In that paper, he gave another

point of view on the index formula, and during the proof gave a basis for the

universal ordinary distribution. Then in the course of the proof of a conjecture

proposed by Yin [41], Anderson [2] constructed a torsion-free Koszul type complex.

This complex is the starting point of Anderson’s resolution, which he constructed in

a secret work note [3] and now ultimately published in the appendix of Ouyang [24].



1. INTRODUCTION 3

Briefly to say, Anderson’s resolution L•r for the universal ordinary distribution

Ur is a graded free abelian group given by

Lpr = 〈[a, g] : g | r, a ∈ g

r
Zk/Zk, g squarefree and has −p prime factors〉

with the differential

dr[a, g] =
∑
p|g

(−1)|{p
′|g,p′<p}|

(
[a,

g

p
]−

∑
pb=a

[b,
g

p
]
)
.

It is easy to see that H0(L•r) = Ur, moreover, Anderson shows that the complex

L•r is acyclic in nonzero degree, i.e.,

Hn(L•r) =

0, if n 6= 0;

Ur, if n = 0.

This complex possesses very nice properties, such as an explicit basis with good

lattice structure etc. With these good properties, the study of the universal ordinary

distribution becomes easier to handle.

An example here is the study of algebraic monomials in special values of the

Γ-function. Previous studies by Deligne [8] and [9] applied his theorem of absolute

Hodge cycles on abelian varieties, which certainly is quite advanced. Now by using

Anderson’s resolution, Das [7] studied the spectral sequences of a double complex

which gives the {±1}-cohomology of the universal ordinary distribution. By lifting

the canonical basis of this {±1}-cohomology group, Das obtained elementary proofs

of some of Deligne’s results about algebraic Γ-monomials, and used these cocycles

to construct double coverings of cyclotomic fields.

Another side of the story is the theory of Euler systems. In [26], Rubin stud-

ied a certain family of cyclotomic units ξr indexed by certain squarefree integers

r which he(after Kolyvagin [15]) called the Euler system. The study of the deriv-

ative classes generated by the Euler system gave an astonishingly simple proof of

the Main Conjecture of Iwasawa theory. Those ξr’s, in effect, form a 1-dimensional

ordinary distribution of level r. Generalizing this observation, Rubin [28] intro-

duced the concept of a universal Euler system which, in the cyclotomic case, is just

the universal ordinary distribution. The derivative classes are just certain group

cohomology classes with coefficients in the universal Euler system. Thus it is quite

interesting to study H∗(Gr, Ur).



1. INTRODUCTION 4

What we do in this thesis This thesis is a systematic study of the univer-

sal ordinary distribution Ur and Anderson’s resolution L•r . We study the {±1}-

cohomology of Ur and then use the results to give another proof of Sinnott’s index

formula about the Stickelberger ideal. We compute the Gr-cohomology of Ur for

the case k = 1 and r squarefree. The results are then used to study the cyclotomic

Euler system.

We start Chapter 2 by giving the definitions of the ordinary distribution and the

universal ordinary distribution. The next two section are basically from Anderson’s

exposition in [1, 2, 3, 24]. We introduce a certain polynomial ring Λ. The free

abelian group Ar = L0
r becomes a Λ-module by a certain action. We then prove

Theorem 2.2.3 which is due to Anderson(see Appendix of [24]). The corollary of

Theorem 2.2.3 is a major result of Kubert [16](See also Washington [37], Chapter

12), but the proof here is much simpler. Then we construct Anderson’s resolution

L•r and show that L•r is acyclic in nonzero degree(Theorem 2.3.2, see also [24]). In

§2.4, we study the order ideal structure of L•r and Ur by using the explicit bases of

L•r and Ur. We also study various double complex structures for L•r (resp. filtration

structures for Ur). This study lays the foundation for the proofs of Theorem A and

Theorem B in Chapter 4. In the last section of Chapter 2, we list basic properties

of spectral sequences and group cohomology.

Chapter 3 is the result of a project proposed by Anderson to find a spectral-

sequence-based proof of Sinnott’s famous index formula(See [35], Theorem) about

the Stickelberger ideal in cyclotomic fields. In that project, Anderson proposed an

Abstract Index Formula (3.3), and defined a connecting map between Anderson’s

resolution of the universal ordinary distribution and the universal ordinary predis-

tribution. We complete the project here by reproving Sinnott’s formula using An-

derson’s resolution. We start with the definition of the regulator reg(A,B, λ) for two

finite generated abelian groups A, B and an R-linear isomorphism λ : RA → RB.

The regulator has a property(Proposition 3.1.5) similar to the Euler characteristic,

namely, invariance under cohomology. We then show Theorem 3.1.6 by using this

property. As suggested by Anderson, we study the spectral sequences of the double

complexes whose total cohomologies are the {±1}-cohomologies of the universal dis-

tribution and predistribution, respectively. We thus obtain the {±1}-cohomologies
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of the universal distribution and predistribution in Theorem 3.4.1, which repro-

duces the results of Kubert [17]. By applying the Abstract Index Formula, we

recover Sinnott’s result in Theorem 3.5.1.

Chapter 4 is devoted to the study of H∗(Gr, Ur), the general group cohomology

of the universal ordinary distribution. Assuming that k = 1 and r is odd squarefree,

we prove the following theorem:

Theorem A . We have

Hn(Gr, Ur) =
⊕
r′|r

H
n+nr′
r′ (Gr,Z)

where nr′ =number of prime factors of r′ and

Hn
r′(Gr,Z) :=

⋂
`|r′

ker(Hn(Gr,Z) res→ Hn(Gr/`,Z)),

where Gr/` is viewed as a subgroup of Gr. In particular, in the case n = 0, we have

H0(Gr, Ur) = Z;

and in the case n = 1, we have

H1(Gr, Ur) =
∏
r′|r

Z/mr′Z

where mr′ = gcd{`− 1 : ` | r′}.

The proof of Theorem A is a display of the power of spectral sequences. By

using the resolution L•r of Ur, we construct a double complex K•,•
r whose total

cohomology is H∗(Gr, Ur). Studying the nontrivial spectral sequence of this double

complex, we are able to find that it degenerates at E2. Moreover, we find a quasi-

isomorphism between K•,•
r and a quotient complex Q•,•

r of K•,•
r . With this quasi-

isomorphism, we are able to prove Theorem A.

Our investigation doesn’t stop here. For application to Euler systems, we study

the group H0(Gr, Ur/MUr), where M is a common factor of ` − 1 for all prime

factors ` of r. Assuming the familiarity with the derivative operator Dr′ here(see

§4.2 for detail), we prove the following theorem:

Theorem B . The image of the family{
Dr′

[ ∑
`|r′

1
`

]
: ∀ r′|r

}
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in Ur/MUr is a Z/MZ-basis for H0(Gr, Ur/MUr).

This result gives some rationale for Kolyvagin’s ingenious construction of the

derivative classes of the cyclotomic Euler system.

In Chapter 5, we investigate the connections of the universal ordinary distribu-

tion with the theory of Euler systems. This part is still not fully understood, but

there is hope(for example, Theorem B) to believe that strong connections do exist.

A look to the future We finish the introduction with some look to the future

on the study of the universal ordinary distribution. As said above, Anderson’s

resolution L•r has very delicate structure. What we use in this thesis is only part of

the features of L•r . From my point of view, there are still a few problems to think

about:

(1). In Chapter 3, the Abstract Index Formula is a very powerful tool to study

the index problem. It shouldn’t only be applied to the Stickelberger ideal index.

In the short run, one should replace θ = 1 + c by 1 − c and obtain results about

the index of the circular units; in the long run, we might apply it to study more

general index problems, for example, some generalization of Sinnott [36].

(2). In Chapter 4, we limit ourselves to the case k = 1 and r squarefree.

However, it is of great interest to know if we can remove these restrictions. The

study by Kubert and Lang [19] reveals a strong connection of modular units with

the 2-dimensional universal ordinary distribution. With the connection of modular

units to the elliptic Euler system, and the likeness between the cyclotomic Euler

system and the elliptic Euler system(see Rubin [25], we couldn’t help but speculate

that some connection might exist between the 2-dimensional universal ordinary

distribution and the elliptic Euler system.

Notation Throughout this thesis, N,Z,Q,R,C will always mean the sets of

positive integers, of integers, of rational numbers, of real numbers and of complex

numbers. The prime numbers will be denoted by p, pi, ` or `i.

For any finite set S, the cardinality of S will be denoted by |S|. The free abelian

group generated by S will be denoted by 〈S〉.

For any complex, we denote the cochain complex(i.e., the differential has degree

1) with superscript • and chain complex(i.e., the differential has degree −1) with
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subscript •. For any cochain complex C•, the complex C•[n] is the complex with

components Cm[n] = Cm+n. For any complex C• of Z-modules, we write C•M the

module C• ⊗ Z/MZ.

For any double complex K•,• = (Kp,q; d, δ), we call the filtration

′F pK• =
⊕
p′≥p

⊕
q

Kp′,q

the first filtration or the filtration by p; we call the filtration

′′F qK• =
⊕
p

⊕
q′′≥q

Kp,q′′

the second filtration or the filtration by q.



CHAPTER 2

Universal Ordinary Distribution and Anderson’s

Resolution

This chapter is devoted to the study of the universal ordinary distribution Ur

and Anderson’s resolution L•r of Ur. First we introduce the definitions of the ordi-

nary distribution and the universal ordinary distribution and give many examples

from various parts of number theory. We then construct a resolution of free abelian

groups(Anderson’s resolution) for the universal ordinary distribution, which is of

great importance to our later exploration in Chapters 3 and 4. Since the theory

of double complexes and spectral sequences is a basic tool for our study, we give a

brief introduction at the end of this chapter.

2.1. Ordinary distributions: Definitions and Examples

Let k be a fixed positive integer. Let A be any abelian group.

Definition 2.1.1. A map φ : Qk/Zk → A is called an ordinary distribution of

dimension k if

φ(a) =
∑
nb=a

φ(b), ∀ a ∈ Qk/Zk, n ∈ N.

For simplicity, we call it a distribution. Furthermore , if φ(a) = φ(−a), then φ is

called an even distribution; if φ(a) = φ(−a), φ is called an odd distribution.

A map φ : (Qk/Zk)\{0} → A is called a punctured distribution if

φ(a) =
∑
nb=a

φ(b), ∀ a ∈ (Qk/Zk)\{0}, n ∈ N.

Definition 2.1.2. Let r be a positive integer. A map φ : 1
rZk/Zk → A is

called (ordinary) distribution of level r if

φ(a) =
∑
nb=a

φ(b), ∀ a ∈ n

r
Zk/Zk, n | r.

Similarly we can define even(odd, punctured) distributions of level r.

8
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Let Ak be the free abelian group equipped with a basis [a] indexed by Qk/Zk.

Fix a positive integer r, let Ak
r be the subgroup of Ak generated by the set {[a] :

a ∈ 1
rZk/Zk}. We write a ∈ Qk/Zk as a column vector. For any r, let Gkr =

GLk(Z/rZ), then Ar becomes a Gkr -module by the natural action M([a]) = [Ma]

for anyM ∈ Gkr . Moreover, note that Ak is the injective limit of Ak
r , and is therefore

naturally a Gk = GLk(Ẑ)-module, where Ẑ is the projective limit of Z/rZ.

Definition 2.1.3. For any positive integer k, let Uk be the quotient of Ak by

the subgroup generated by all elements of the form

[a]−
∑
nb=a

[b], a ∈ Qk/Zk.

The map

υ : Qk/Zk −→ Uk, a 7−→ [a]

is called the universal ordinary distribution of dimension k. By abuse of nota-

tion, we call Uk the universal ordinary distribution. Uk clearly inherits Gk-module

structure.

Similarly, let Ukr be the quotient of Ar by the subgroup generated by all ele-

ments of the form

[a]−
∑
nb=a

[b], a ∈ n

r
Zk/Zk, n | r.

The map

υ :
1
r

Zk/Zk −→ Ukr , a 7−→ [a]

is called the universal ordinary distribution of level r and dimension k. By abuse of

notation, we also call Ukr the universal distribution of level r, which is a Gkr -module.

Note 2.1.4. From now on we drop the superscript k from our notation if the

dimension k is clear from context.

By definition, for any distribution φ : Qk/Zk → A, there exists a unique homo-

morphism φ∗ : U → A, such that φ = φ∗ ◦ υ. In this sense, we say U(similarly Ur)

is universal. Thus the properties of universal distribution should unveil properties

of distributions. In the remaining part of this section, we give some examples of

ordinary distributions, which come from various fields of number theory. These

distributions play an important role in the theory of numbers and elliptic curves.
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Example 2.1.5. Bernoulli distribution: Let B1(X) = X − 1
2 be the first

Bernoulli polynomial. For any a ∈ Q/Z, let

B1(a) = B1(〈a〉) = 〈a〉 − 1
2
, a ∈ Q/Z

where 〈 〉 means the fractional part. Then B1 is an odd ordinary distribution of

dimension 1. In Kubert [17], for any k > 1, Kubert also constructed k-dimensional

distributions with the k-th Bernoulli polynomial. The Bernoulli distribution is an

odd(resp. even) distribution if k is odd(resp. even).

Example 2.1.6. For any a ∈ (Q/Z)\{0}, let

φ(a) = −1
2

log |1− e2πia|,

then φ is an even punctured distribution.

Example 2.1.7. Stickelberger distribution: For k = 1, we identify Gr = G1
r =

Gal(Q(µr)/Q). Let σt be the element of Gr sending a r-th root of unity to its t-th

power. Let

Str :
1
r

Z/Z→ Q[Gr], a 7→
1
|Gr|

∑
G

B1(at)σ−1
t ,

Then this distribution is an odd distribution of level r. Moreover, if we take the

injective limit of Str, then we obtain a distribution

lim
→
Str : Q/Z −→ lim Q[Gr].

The distributions from Examples 2.1.6 and 2.1.7 are critical to the study of cyclo-

tomic units and the Stickelberger ideal.

Example 2.1.8. Kolyvagin distribution: Let e be an injective homomorphism

from Q/Z to Qab×. Let m be an odd integer and r be an integer whose prime

factors are 1 modulo m. For any a ∈ 1
rZ/Z, let

ξ(a) =
(
e(a+

1
m

)− 1
)(

e(a− 1
m

)− 1
)
.

Then ξ is an ordinary distribution of level r. This distribution appears in the

construction of cyclotomic Euler system. We’ll study it in more detail in Chapter 5.
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Example 2.1.9. Sinnott’s module: Let Gr be given as in Example 2.1.7.

For any a ∈ 1
rZ/Z, let fa be the order of a. Let Ha = {σt ∈ Gr : t ≡ faa

mod fa, (t, r) = 1} and let s(Ha) denote the sum of the elements of Ha in C[Gr].

For any prime p of r, let σ̄p =
∑
χ χ̄(p)eχ, where χ is a primitive Dirichlet character

of conductor dividing r and eχ the idempotent related to χ. Now set

S(a) = s(Ha)
∑
p|fa

(1− σ̄p).

S then gives a distribution of level r. Actually this distribution is isomorphic to

the universal distribution Ur. We call it Sinnott’s module since it first appeared in

Sinnott’s famous calculation [35] of the index formula in the cyclotomic fields.

Example 2.1.10. Siegel distribution: Let a = (a1, a2) ∈ Q2, define

ga = −q(1/2)B2(a1)
τ e2πia2(a1−1)/2(1− qz)

∞∏
n=1

(1− qnτ qz)(1− qnτ q−1
z ),

where z = a1τ + a2, qτ = e2πiτ and B2(X) = X2 − X + 1
6 is the 2nd Bernoulli

polynomial. Now if a ≡ a′ (mod Z2), then ga ≡ ga′ modulo constants. If we let A

be the group generated by the functions ga modulo constants, then g : a 7→ ga is an

ordinary distribution. See Kubert Kubert1 for more details about this distribution.

2.2. The Λ-module A

From now on, we concentrate on the study of the universal distribution. We

fix the dimension k here. By definition, U and Ur are quotients of A and Ar

respectively. Therefore it is necessary to study the abelian group A first. We equip

A with a certain module structure besides the natural GLk(Ẑ)-module.

Definition 2.2.1. A supernatural number is a formal product
∏
pnp , where

p runs over the set of prime numbers, and where np is an integer ≥ 0 or +∞. In

an obvious way, one defines the product and also the gcd and lcm of any family of

supernatural numbers. We write the set of supernatural numbers as N̄ and consider

N as a subset of N̄. We shall also call a supernatural number just a number.

Let Σ be the set of all primes of N. We have the following table:

{T : T ⊆ Σ} ⇐⇒ {g : g ∈ N̄ squarefree}

T ←→
∏
p∈T p

{p : p | g} ←→ g
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By this one to one correspondence, we call the set associated to a squarefree su-

pernatural number g the support of g and write it as Tg; conversely, we call the

squarefree number associated to a given subset T the number attached to T and

write it as gT . We can easily see that the union(resp. intersection) of subsets of

Σ corresponds to the lcm(resp. gcd) of squarefree supernatural numbers. For any

number r ∈ N, we say the T -part of r is the gcd of r and g∞T and the non-T part

r/(r, g∞T ).

Let Λ = Z[X2, X3, · · · , Xp, · · · ] = Z[Xp : p ∈ Σ] be the polynomial ring gener-

ated by indeterminates Xp for all prime numbers p. Moreover, let Λ(T ) = Z[Xp :

p ∈ T ] for every subset T of Σ. For every positive integer n =
∏
pnp , put

Xn =
∏

Xp
np , Yn =

∏
(1−Xp)np .

We equip A with a Λ-module structure by the rule

Xp[a] =
∑
pb=a

[b]

for every prime p and every a ∈ Qk/Zk. Let A(T ) be the subgroup of A generated

by symbols [a] where a ∈ 1
g∞T

Zk/Zk. It is easy to see that A(T ) has a Λ(T )-module

structure. One has

U = A/
∑
p

YpA and Ur = Ar/
∑
p|r

YpAr.

Recall that each x ∈ Q/Z has a unique partial fraction expansion

x ≡
∑
p

∑
v

xpv
pv

(mod Z),

where the sum is extended over primes p and positive integers v, the coefficient xpv

are integers in the range 0 ≤ xpv < p and xpv = 0 for all but finite many pairs

(p, v). Now for any a = (a1, ..., ak)t ∈ Qk/Zk, we have a partial fraction

a ≡
∑
p

∑
v

apv
pv

(mod Zk),

where apv is a vector with all entries in the range 0, · · · , p−1. For each nonnegative

integer n we define Rn to be the set of a ∈ Qk/Zk such that there exist at most n

prime numbers p such that ap1 = (p − 1, 0, · · · , 0). In particular, R0 is the set of

a ∈ Qk/Zk such that ap1 6= (p− 1, 0, · · · , 0) for all prime numbers p.
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Lemma 2.2.2. The number of elements in the set R0 ∩ 1
rZk/Zk is equal to the

number of primitive elements in 1
rZk/Zk(i.e., elements whose order is r), which we

denote by ϕk(r).

Proof. Let r =
∏
p p

np , let v1 = (1, 0, · · · , 0), we define a map

f :
1
r

Zk/Zk −→ 1
r

Zk/Zk

where

a =
∑
p

∑
v

apv
pv
7−→

∑
p

∑
v

apv + v1

pnp−v+1
.

This map is clearly one to one and sends R0 ∩ 1
rZk/Zk to the set of primitive

elements in 1
rZk/Zk. �

Theorem 2.2.3. (1). For each positive integer r, the collection

{Xn[a] : n | r, n ∈ N, a ∈ R0 ∩
n

r
Zk/Zk}

constitutes a basis for the free abelian group Ar.

(2). For each positive integer r and a fixed subset T of Σ, write r = r1r2 where

r1 is the T -part of r. Then the collection

{Xn[a] : n | r1, n ∈ N, a ∈ R0 ∩
n

r1
Zk/Zk +

1
r2

Zk/Zk}

constitutes a basis for the free abelian group Ar.

(3). The collection

{Xn[a] : n ∈ N, n | g∞T , a ∈ R0 ∩A(T )}

constitutes a basis for the free abelian group A(T ). In particular, the collection

{Xn[a] : n ∈ N, a ∈ R0} constitutes a basis for the free abelian group A.

(4). As a Λ(T )-module A(T ) is free with a Λ(T )-basis {[a] : a1 ∈ R0 ∩A(T )}.

In particular, as a Λ-module A is free with a Λ-basis {[a] : a1 ∈ R0}.

(5). In (1), (2) and (3), if we change Xn to Yn, the corresponding results still

hold.

Proof. We first prove (1). By Lemma 2.2.2, the number of elements at the

set in question is ∑
n|r

ϕk(n) = rk,
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hence it suffices to show that the given collection generates Ar. For n ≥ 1, suppose

that a ∈ Rn and ap1 = (p− 1, 0, · · · , 0), since

[a] = −
∑
pb=pa
b 6=a

[b] +Xp[pa],

where b ∈ Rn−1 and [pa] ∈ Ar/p. Now by double induction on n and r, (1) follows.

The proof of (2) is similar to (1). (3) and (4) follow directly from (1) and (2).

For (5), note that the identity

Xn − (−1)
∑
niYn =

∑
m|n
m6=n

cnmXm,

holds for any n =
∏
pni
i and integer constants cnm, therefore (5) follows immedi-

ately from (1), (2) and (3). �

Corollary 2.2.4. The following hold:

(1). For each positive integer r, the group Ur is free abelian and the family

{[a]} indexed by a ∈ 1
rZk/Zk ∩ R0 gives rise to a basis for Ur.

(2). The group U is free abelian and the family {[a]} indexed by a ∈ R0 gives

rise to a basis for U .

(3). The natural map Ur → U is a split monomorphism.

Remark 2.2.5. Theorem 2.2.3 is due to Anderson [24], Corollary 2.2.4 is due

to Kubert [16]. The proof given here is essentially Anderson’s.

2.3. Anderson’s resolution

2.3.1. Construction of the complexes L• and L•r,f . We now assign Σ a

total order ω, which may or may not inherited from N. Let g be a squarefree integer.

Set

ω(p, g) :=

(−1)|{q∈Tg:q<ωp}|, if p | g;

0, if p - g.

Let L be a free abelian group equipped with a basis {[a, g]} indexed by pairs

(a, g) with a ∈ Qk/Zk and g a squarefree positive integer. We make L a graded

abelian group by declaring the symbol [a, g] to be of degree −|Tg|. Note that L
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possesses a natural GLk(Ẑ)-module structure. For any prime p, set

dp[a, g] := ω(p, g)
( [
a,
g

p

]
−

∑
pb=a

[
b,
g

p

])
,

Now for any given squarefree supernatural number f , set

df =
∑
p|f

dp.

We have

df [a, g] =
∑
p|(f,g)

ω(p, g)
( [
a,
g

p

]
−

∑
pb=a

[
b,
g

p

])
,

In particular, we denote df by d if Tf = Σ.

Lemma 2.3.1. (1). For any prime p, d2
p = 0.

(2). For distinct primes p and q, dpdq + dqdp = 0.

(3). For any squarefree supernatural number f , d2
f = 0.

Proof. An easy calculation. �

By Lemma 2.3.1, we equip the group L with a grading and a differential df

of degree 1 for any squarefree supernatural number f . We write L as (L•, df )

to respect the graded structure of L and the differential df . Note that the map

[a, 1] 7→ [a] induces an isomorphism H0(L•, d)∼→U .

Fix a positive integer r and a squarefree supernatural number f . Denote by

L•r,f the graded subgroup of L spanned by

{[a, g] : g | (r, f), a ∈ g

r
Zk/Zk}.

It is clear that L•r,f is df -stable, therefore L•r,f is a cochain complex with differential

df . Note that

L•r,(r,f) = L•r,f .

Thus without loss of generality, we can suppose that f | r. Now let r̄ be the product

of p | r, then for any f divisible by r̄,

L•r,f = L•r,r̄.

We write this complex as L•r . Note that the map [a, 1] 7→ [a] induces an isomorphism

H0(L•r)
∼→Ur.

The remaining part of this section is devoted to prove the following theorem:
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Theorem 2.3.2 (Anderson [24], Theorem 2). The following hold:

(1). For each positive integer r and squarefree supernatural number f , the

complex L•r,f is acyclic in nonzero degree.

(2). The complex (L•, df ) is acyclic in nonzero degree.

Remark 2.3.3. From Theorem 2.3.2, L•r(resp. L•) is a Gr-module(resp. G)

resolution of the universal distribution Ur(resp. U). We call it Anderson’s resolu-

tion. To be consistent, we write H0(L•r,f ) as Ur,f . By Theorem 2.2.3, then Ur,f is

a free abelian group generated by

{[a] : a ∈ 1
r1

Zk/Zk ∩ R0 +
1
r2

Zk/Zk}

where r1 is the Tf -part of r and r2 the non Tf -part of r.

2.3.2. The noncommutative ring Λ̃. Let Λ̃ be the exterior algebra over Λ

generated by a family of symbols {Ξp} indexed by primes p. For squarefree positive

integer g = p1 · · · pm, p1 < · · · < pm, put

Ξg := Ξp1 ∧ · · · ∧ Ξpm ∈ Λ̃,

and declare Ξg to be of degree −|Tg| = −m, thereby defining a Λ-basis {Ξg} for Λ̃

indexed by squarefree positive integers g and equipping Λ̃ with a Λ-linear grading.

For a fixed subset T of Σ, let f be the number attached to T . Let Λ̃(T ) be the

subalgebra of Λ̃ with a Λ-basis {Ξg} such that g | f . Let dp be the unique Λ-linear

derivation of Λ̃ of degree 1 such that

dp Ξp = Yp

for a given p. One has

dp Ξg = ω(p, g)YpΞg/p.

Set df =
∑
p|f dp.

Now fix a positive integer r. Let r1 be the T -part of r. Let Λ̃r,f be the graded

subgroup of Λ̃ generated by all elements of the form YhΞg where gh divides r1. It

is clear that Λ̃r,f is df -stable. Furthermore, one has

Lemma 2.3.4. The complex Λ̃r,f is acyclic in nonzero degree.
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Proof. For any factor r′ of r1, consider the subgroup Λ̃r,f (r′) of Λ̃r,f generated

by {YhΞg : hg = r′ | r}. Λ̃r,f (r′) is df -stable and Λ̃r,f is a direct sum of Λ̃r,f (r′).

Now Λ̃r,f (r′) is Koszul-type complex. Except the case r′ = 1, Λ̃r,f (r′) is acyclic. �

Now we equip L• with graded left Λ̃-module structure by the rules

Ξp[a, g] =

ω(p, gp)[a, gp] if p - g

0 if p | g

and

Xp[a, g] =
∑
pb=a

[b, g].

Lemma 2.3.5. One has

d(ξη) = (dξ)η + (−1)deg ξξ(dη)

for all homogeneous ξ ∈ Λ̃ and η ∈ L.

Proof. By straightforward calculation. �

Proof of Theorem 2.3.2. We have only to prove the first statement. Let

r = r1r2 where r1 is the Tf -part of r. By Theorem 2.2.3 and a straightforward

calculation that we omit, one has

Lr,f =
⊕
(a,g)

Λ̃g,f [a, 1]

where the direct sum is indexed by pairs (a, g) with a ∈ 1
r1

Zk/Zk ∩ R0 + 1
r2

Zk/Zk

and g is the largest positive integer such that a ∈ g
r1

Zk/Zk + 1
r2

Zk/Zk. Each of the

subcomplexes (Λ̃g,f [a, 1], d) is an isomorphic copy of (Λ̃g,f , dT ), and the latter we

have already observed to be acyclic in nonzero degree by Lemma 2.3.4. �

2.4. Further study of Anderson’s resolution

2.4.1. Order ideals and Anderson’s resolution. Let r be a fixed positive

integer. Let r̄ :=
∏
p|r p. In the previous section, we studied the complex L•r,f for

any squarefree number f . As noted in that section, we assume that f dividesr̄.

By Theorem 2.3.2, L•r,f is acyclic in nonzero degree. In particular, the complex

L•r = L•r,r̄ is a resolution of the universal distribution of level r. In this section, we

give more details concerning the complexes L•r,f and L•r .
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First let us consider the two complexes L•r,f and L•r′,f ′ . We see that

r′ | r, f ′ | f ⇒ L•r′,f ′ ⊆ L•r,f

Now for any two pairs (r1, f1) and (r2, f2), consider the sum and the intersection of

the complexes L•r1,f1 and L•r2,f2 . Similarly, consider the sum and the intersection

of the groups Ur1,f1 and Ur2,f2 .

Lemma 2.4.1. For any two pairs (r1, f1) and (r2, f2), let r0 be the gcd of r1

and r2, let f0 be the gcd of f1 and f2, then

(1). L•r1,f1 ∩ L•r2,f2 = L•r0,f0 .

(2). Ur1,f1 ∩ Ur2,f2 = Ur0,f0 .

Proof. Consider the bases given in §2.2 and §2.3. �

Now for a fixed r, consider the set Facr = {(h, f) : h | r, f | r̄}. Suppose that

(h, f) ≤ (h′, f ′) if h | h′ and f | f ′. By this ordering, Facr becomes a distributive

lattice. We recall a definition from combinatorics(see, for example Stanley [29]).

Definition 2.4.2. Let (Lat,≤) be a lattice. An order ideal of Lat is a subset I

of Lat such that if x ∈ I, then y ∈ I for any y ≤ x. For any x ∈ Lat, the associated

order ideal Ix is defined to be the set {y ∈ Lat : y ∈ x}.

Remark 2.4.3. (1). For two order ideals I1, I2 , then I1 ∪ I2 and I1 ∩ I2 are

also order ideals.

(2). Each order ideal is uniquely determined by its set of maximal elements.

From now on, we concentrate on the lattice Facr. Suppose I is an order ideal

of Facr. Put

L•r(I) =
∑

(h,f)∈I

L•h,f and Ur(I) =
∑

(h,f)∈I

Uh,f .

Note that for any (h, f) ∈ Facr, L•r(Ih,f ) = L•h,f and Ur(Ih,f ) = Uh,f . By

Lemma 2.4.1, we have

Proposition 2.4.4. Let I1 and I2 be two order ideals of Facr, then

(1). L•r(I1 ∩ I2) = L•r(I1) ∩ L•(I2), Ur(I1 ∩ I2) = Ur(I1) ∩ Ur(I2).

(2). L•r(I1 ∪ I2) = L•r(I1) + L•r(I2), Ur(I1 ∪ I2) = Ur(I1) + Ur(I2).

The following theorem is a generalization of Theorem 2.3.2:
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Proposition 2.4.5. The complex L•r(I) is acyclic with the 0-cohomology Ur(I).

Proof. We let L̃•r(I) be the complex

0 −→ L−|Tr|
r (I) −→ · · · −→ L0

r(I)
u−→ Ur(I) −→ 0.

Hence it suffices to show that L̃•r(I) is exact. Let x be a maximal element in the

order ideal I. Let I ′ be the order ideal whose set of maximal elements is obtained

from the set of maximal elements of I by excluding x, then

I = I ′ ∪ Ix.

By Proposition 2.4.4, we have

L̃•r(I)/L̃
•
r(Ix) = L̃•r(I

′)/L̃•r(I
′ ∩ Ix).

Now we prove the Proposition by induction on the cardinality of the set of maximal

elements of I. If I has only one maximal element, this is just Theorem 2.3.2. In

general, both I ′ and I ′ ∩ Ix have fewer maximal elements than I has. Thus the

exactness of L̃•r(I) follows from the exactness of the three complexes L̃•r(Ix), L̃•r(I
′)

and L̃•r(I
′ ∩ Ix). �

Now tensoring L•r(resp. L•r(I)) by Z/MZ for any positive integer M , since L•r

is composed of free abelian groups, immediately from Proposition 2.4.5, along with

Theorems 2.2.3 and 2.3.2,

Corollary 2.4.6. (1). One has

Hn(L•r/ML•r) =

Ur/MUr, if n = 0;

0, if n 6= 0.

(2). Moreover, for any order ideal I of Facr, one has

Hn(L•r(I)/ML•r(I)) =

Ur(I)/MUr(I), if n = 0;

0, if n 6= 0.
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2.4.2. A double complex structure when r is squarefree. In this sub-

section supposing that r is squarefree, i.e., r = r̄, we construct a double complex

with total complex L•r . Consider the sublattice Divr = {f : f | r} ∼= {(f, f) : f |

r} ⊆ Facr. Let I be an order ideal of Divr. Thus we can define

L•r(I) =
∑
f∈I

L•f , and Ur(I) =
∑
f∈I

Uf .

If we change I by I in Propositions 2.4.4 and 2.4.5, the corresponding results still

hold. In particular, we let I(n) be the order ideal generated by all f with |Tf | ≤ n.

Let L•r(n) = L•r(I(n)) and Ur(n) = Ur(I(n)).

For any p | r, for any a ∈ Qk/Zk such that p - ord(a), the Frobenius Frp is

given by a 7→ pa. For the symbol [a, g] where p | g, let

d1p[a, g] = −ω(p, g)
∑

v∈Fk
p\{0}

[Fr−1
p a+

v

p
,
g

p
]

and

d2p[a, g] = ω(p, g)
(
[a,

g

p
]− [Fr−1

p a,
g

p
]
)
;

if p - g, let d1p[a, g] = d2p[a, g] = 0. Furthermore, we let d1r =
∑
p|r d1p and

d2r =
∑
p|r d2p, then easily we can check that d2

1r = d2
2r = 0 and d1rd2r+d2r̄d1r = 0.

For any pair of factors g | g′ | r, set

Lr(g′, g) := 〈[a, g] : ord a = r/g′〉,

For any p | g, the map

ϕp : Lr(g′, g)→ Lr(g′, g/p), [a, g] 7→ [a, g/p]

defines a natural isomorphism between Lr(g′, g) and Lr(g′, g/p). Now for any g | r,

L•g =
⊕

(g1,g2)

Lr(g1, g2), where g2 | g1,
rg2
g1
| g.

Let Γ(I) := {(g1, g2) : g2 | g1, rg2
g1
∈ I}, then

L•r(I) =
⊕

(g1,g2)∈Γ(I)

Lr(g1, g2).

In general for any p | r, define

ϕp : Lp → Lp+1, [a, g] 7→ χg(p)[a, g/p]
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where χg(p) = 1 if p | g and 0 otherwise. Let ϕ(Lp) be the subgroup of Lp+1

generated by ϕp(Lp) for all p ∈ r, inductively, let ϕn(Lp) be the subgroup of Lp+n

generated by ϕp(ϕn−1(Lp)) for all p ∈ r. By this setup, there is a filtration of Lp

given by

ϕs+p(L−s) ⊆ ϕs+p−1(L−s+1) ⊆ · · · ⊆ Lp.

This filtration enables us to define the double complex structure of L•r compatible

with the differentials d1r and d2r. For the element [a, g] ∈ L•r , we say [a, g] is of

bidegree (p1, p2) if [a, g] ∈ ϕp2(Lp1)\ϕp2+1(Lp1−1), more explicitly, if

p1 = |Tord a| − s, p2 = s− | supp a| − |Tg|.

Then we see that the elements of Lr(g′, g) are of bidegree (−|Tg′ |, |Tg′ | − |Tg|). Let

Lp1,p2r be the subgroup of L•r generated by all symbols [a, g] with bidegree (p1, p2),

then

Lp1,p2r =
⊕

|Tg|=−p1−p2

⊕
|Tg′ |=−p1

g|g′

Lr(g′, g).

Then we see that d1r maps Lp1,p2r to Lp1+1,p2
r and d2r maps Lp1,p2r to Lp1,p2+1

r .

Hence we construct a double complex (L•,•r ; d1, d2) with the single total complex

L•r . Note that the second filtration of L•r is given by the map ϕ.

Proposition 2.4.7. The E1 term of the spectral sequence arising from the

double complex (L•,•r ; d1, d2) by the first filtration(i.e., Hp1
d1

(L•,p2r )) is

Ep1,p21 =

US(s− p2)/US(s− p2 − 1), if p1 = −p2;

0, otherwise.

where s = |Tr|. Thus the spectral sequence for the first filtration degenerates at E1.

Proof. Note that

L•r(n) =
⊕

p2≥s−n

Lp1,p2r

then it is easy to see that L•,p2r [−p2] is nothing but the quotient complex

L•r(s− p2)/L•r(s− p2 − 1). The short exact sequence

0 −→ L•r(s− p2 − 1) −→ L•r(s− p2) −→ L•,p2r [−p2] −→ 0
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induces a long exact sequence

· · · → Hi(L•r(s− p2))→ Hi(L•,p2r [−p2])→ Hi+1(L•r(s− p2 − 1))→ · · ·

By Proposition 2.4.5, for i 6= 0 and −1, both Hi(L•r(s − p2)) and Hi+1(L•r(s −

p2 + 1)) are 0, so is Hi(L•,p2r [−p2]). Therefore the above long exact sequence is

just the exact sequence

0→ H−1(L•,p2r [−p2])→ Ur(s− p2 − 1)→ Ur(s− p2)→ H0(L•,p2r [−p2])→ 0,

Since the map from Ur(s−p2 − 1) to Ur(s−p2) is injective, the proposition follows

immediately. �

Remark 2.4.8. It is an interesting problem to investigate the spectral sequence

coming from the second filtration of L•,•.

2.4.3. Another double complex structure of L•r. . In the above subsec-

tion, we give a double complex structure for L•r when r is squarefree. Actually

in general, L•r has another double complex structure. Write dr̄ =
∑
p|r dp. By

Lemma 2.4.1, for any p | r, d2
p = d2

r̄/p = dpdr̄/p + dr̄/pdp = 0. Hence

Proposition 2.4.9. The complex L•r is the total single complex of the double

complex (L•,•r ; dp, dr̄/p) given by

Lp,qr =


〈[a, g] ∈ Lpr : p - g〉 if q = 0

〈[a, g] ∈ Lp−1
r : p | g〉 if q = −1

0 if otherwise.

Moreover, we have L•,0r = L•r,r̄/p and L•,1r ∼= L•r̄/p.

Proof. Clear. �

Remark 2.4.10. This observation enables us to regard L•r as a double complex.

More generally, we can even consider |Tr̄|-tuple complex structure in L•r . In the

sequel, we won’t need this double complex structure. We include it here for the

hope that it could be used for future investigation on this topic.
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2.5. Basic Theory of Spectral Sequences and Group Cohomology

Let R be a commutative ring. Any module in this section will be referred as a

R-module. We outline basic theory of spectral sequences and group cohomology in

this section. Our goal is to include necessary results for future study. For details,

one should read the classical books such as Cartan-Eilenberg [5], Mac Lane [22]

and Serre [32].

2.5.1. Basic theory of spectral sequences.

Definition 2.5.1. A spectral sequence E = (Er, dr) is a sequence of bigraded

modules Er, r ≥ 1 with a differential

dr : Ep,qr −→ Ep+r,q−r+1
r , r = 0, 1, · · ·

of bidegree (r, 1− r) and with the isomorphism

H∗(Er, dr) ∼= Er+1, r = 0, 1, · · · .

In practice, we always have Er = Er+1 = · · · for r ≥ r0. We call this limit group

E∞ and say the spectral sequence (Er) converges to E∞.

Definition 2.5.2. Let E′ be a second spectral sequence, a homomorphism

f : E → E′ is a family of homomorphism

fr : Er −→ E′r, r = 0, 1, 2, · · · ,

of bigraded modules, each of bidegree (0, 0), such that drfr = frdr and such that

each fr+1 is the map induced by fr on cohomology.

We now work with the most general sources of spectral sequences. Let (K•, d)

be a cochain complex(i.e., deg d = 1). A filtration F of K• is a family of subcom-

plexes {F pK•, subject to the conditions:

· · · ⊆ F pK• ⊆ F p+1K• ⊆ · · · ,
⋃
F pK• = K•,

and for convenient, set F∞K• = 0 and F−∞K• = K•. If there exists p ∈ Z, such

that F pK• = K•, then the filtration F is called bounded below ; if there exist p ∈ Z,

F pK• = 0, then F is called bounded above. If F is both bounded above and below,

then F is called bounded.
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Theorem 2.5.3. Let K• be a filtered complex as above. Then there exists a

spectral sequence {Er} with

Ep,q0 =
F pKp+q

F p+1Kp+q
,

Ep,q1 =Hp+q(GrpK•),

Ep,q∞ =Grp(Hp+q(K•)).

Remark 2.5.4. The last statement of the above proposition is usually written

as Er ⇒ H∗(K•) and said as “the spectral sequence abuts to H∗(K•)”.

Let K•
1 and K•

2 be two filtered complexes. Let f : K•
1 → K•

2 be a homo-

morphism compatible with the filtrations, i.e., f(F p(K•
1 )) ⊆ F p(K•

2 ). f clearly

induces a homomorphism between the two spectral sequences. Moreover, we have

a comparison theorem:

Theorem 2.5.5. Let f : K•
1 → K•

2 be given as above. Suppose that the two

filtrations of K•
1 and K•

2 are bounded. Then if for certain index k, the induced

map fk : Er(K1)→ Er(K2) is an isomorphism then the same holds for every finite

index r ≥ k and r =∞. f∗ : H(K1)→ H(K2) is also an isomorphism.

Remark 2.5.6. The hypothesis in the preceding theorem is much stronger than

necessary. For more general results, see Cartan-Eilenberg [5], p318, Theorem 1.2.

A special but also the most common example of a filtered complex is one arising

from a double complex. In a word, a double complex is a bigraded abelian group

K•,• =
⊕
p

⊕
q

Kp,q

equipped with anticommuting differentials d and δ of bidegree (1, 0) and (0, 1)

respectively. We write it as (K•,•; d, δ) hereafter. The total single complex K•
total

is then the complex with degree n component

Kn
total =

⊕
p+q=n

Kp,q

and with differential d+ δ. The total complex comes with two natural filtrations:

′F pK =
⊕
p′≥p

Kp′,q,
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and
′′F qK∗,∗ =

⊕
q′′≥q

Kp,q′′ .

Corresponding to the above two filtrations, we have

′Ep,q1 (K) = Hq
δ (K

p,•),′′Ep,q1 (K) = Hp
d (K

•,q).

′Ep,q2 (K) = Hp
d (H

q
δ (K)),′′Ep,q2 (K) = Hq

δ (H
p
d (K)).

Remark 2.5.7. From now on in this thesis, we call ′F pK the first filtration of

K, or the filtration given by d(by p); we call ′′F pK the second filtration of K, or

the filtration given by δ(by q);

2.5.2. Group cohomology. Let A be an abelian group. Let G be a group.

Let A be an abelian group, equipped with a G-action. Then A becomes a Z[G]-

module. Consider the trivial Z[G]-module Z, let P• be a projective resolution of Z,

then the group cohomology

(2.1) Hq(G,A) := ExtqG(Z, A) = Hq(HomG(P•, A)).

For each exact sequence of G-modules

0 −→ A −→ B −→ C −→ 0

then there exists a long exact sequence

· · · −→ Hq(G,B) −→ Hq(G,C) −→ Hq+1(G,A) −→ Hq+1(G,B) −→ · · ·

From the definition, to compute the group cohomology, it is essential to choose a

projective resolution of Z first. We first recall the “standard bar resolution” here.

Let P• =
⊕

i≥0 Pi where Pi is the free Z-module

Pi =
⊕
gj∈G

Z · (g0, · · · , gi)

with the G-operation by

g(g0, · · · , gi) = (gg0, · · · , ggi).

The homomorphism ∂ : Pi → Pi−1 is defined by

∂(g0, · · · , gi) =
i∑

j=0

(−1)j(g0, · · · , ĝj , · · · , gi)
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This complex is well known to be a projective resolution for the trivial module

Z. Now for any G-module A, form the complex K• = HomG(P•, A). An element

of Ki = HomG(Pi, A) can then be identified with a function f(g0, · · · , gi) having

values in A and satisfying the homogeneous condition

f(s · g0, · · · , s · gi) = s · f(g0, · · · , gi).

Thus f is uniquely determined by its values at (1, g1, · · · , g1 · · · gi). Write

f̂(g1, · · · gi) = f(1, g1, · · · , g1 · · · gi),

by the one to one correspondence of f and f̂ , we regard f̂ as elements in Ki. Then

the differential d induced by ∂ is given by

df̂(g1, · · · , gi+1) =g1 · f̂(g2, · · · , gi+1)

+
i∑

j=1

(−1)j f̂(g1, · · · , gjgj+1, · · · , gi+1) + (−1)i+1f̂(g1, · · · , gi).

We now compute the group cohomology of A in the case q = 0 and 1 :

(1). q = 0. In this case,

H0(G,A) = HomG(Z, A) = AG = {a ∈ A : ga = a for all g ∈ G}.

(2). q = 1. A 1-cocycle is a map c of G into A satisfying the identity

c(gg′) = gc(g′) + c(g).

It is also called a crossed homomorphism. It is a coboundary if there exists a ∈ A

such that c(g) = ga− a for all g ∈ G.



CHAPTER 3

{±1}-cohomology of the Universal Distribution

Ever since Sinnott proved his famous result on the index of the Stickelberger

ideal and the circular units of cyclotomic fields in [35], the sign(or {±1}) cohomol-

ogy of the universal ordinary distribution has been closely connected with the index

formula. Actually the computation of the sign cohomology handled by Kubert [17]

follows the idea employed in [35]. In this chapter, we use Anderson’s resolution to

give a brand new way to compute the sign cohomology of the universal ordinary

distribution and predistribution. Not surprisingly, this new point of view gives a

new proof of Sinnott’s index formula for the Stickelberger ideal in cyclotomic fields.

In this chapter, we assume that the dimension of the universal distribution is 1.

However, our computation is also adaptable to the higher dimensional case. We

also suppose that r is not 2 mod 4 and the number of prime factors of r is s = |Tr̄|.

3.1. Regulators and an abstract index formula

3.1.1. Definition of regulator reg(A,B, λ). Let A and B be lattices in a

finite dimensional vector space V over R. Necessarily there exists some R-linear

automorphism φ of V such that φ(A) = B. Put

(A : B)V := |detφ|,

which is a positive real number independent of the choice of φ. We call it the

Sinnott symbol of A to B. Context permitting, we drop the subscript and write

simply (A : B).

Note that

(1). For lattices A, B ⊆ V , if B ⊆ A, then (A : B)V = #(A/B).

(2). Given lattices A, B, C ⊆ V , then (A : B)(B : C) = (A : C).

(3). Let f : V1 → V2 be an isomorphism of vector spaces. Let A and B be

lattices in V1, then (A : B)V1 = (f(A) : f(B))V2 .

27



3.1. REGULATORS AND AN ABSTRACT INDEX FORMULA 28

For more results about the Sinnott symbol, see Sinnott [35] and [36].

Given a finitely generated abelian group A, we denote the tensor product A⊗R

by RA. Now let two finitely generated abelian groups A and B, and an R-linear

isomorphism λ : RA → RB be given. Choose free abelian subgroups A′ ⊆ A

and B′ ⊆ B of finite index. Then A′ and B′ are of the same rank and hence

isomorphic. Choose any isomorphism φ : B′ → A′, it can be naturally extended to

an isomorphism Rφ : RB′ → RA′, and make the evident identifications RA′ = RA

and RB′ = RB. Now put

(3.1) reg(A,B, λ) :=
|det Rφ ◦ λ| ·#B/B′

#A/A′
,

which is a positive real number independent of the choice of A′, B′ and φ. We call

reg(A,B, λ) the regulator of λ with respect to A and B. We often write it reg λ in

abbreviation.

Here we calculate a few examples of the regulator:

Example 3.1.1. If both A and B are finite, then reg(A,B, 0) = #B/#A.

Example 3.1.2. Let f : A → B be any homomorphism of finitely generated

abelian groups with finite kernel and cokernel, then reg(A,B,Rf) =

# coker f/# ker f .

Example 3.1.3. Let A, B and C be finitely generated abelian groups. Let

λ : RA → RB and µ : RB → RC be R-linear isomorphisms. Then regµ ◦ λ =

regµ · reg λ.

Example 3.1.4. Let V be a finite dimensional R-vector space. Let A,B ⊆ V

be lattices. Let α : RA→ V and β : RB → V be the natural isomorphisms induced

by the inclusions A ⊆ V and B ⊆ V respectively. Then reg(A,B, β−1 ◦ α) =

(B : A)V .

3.1.2. Regulators attached to maps of complexes. Consider bounded

complexes of finitely generated abelian groups

(A, dA) : · · · → Ai → Ai+1 → · · ·

and

(B, dB) : · · · → Bi → Bi+1 → · · ·
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and an isomorphism

λ : RA −→ RB

of bounded complexes of finite dimensional vector spaces. The map λ induces an

isomorphism

Hi(λ) : Hi(RA) −→ Hi(RB)

in each degree i. Note that we also have RHi(A) = Hi(RA) and RHi(B) =

Hi(RB).

Proposition 3.1.5. With the hypotheses above, then

(3.2)
∏
i

(reg λi)(−1)i

=
∏
i

(reg Hi(λ))(−1)i

.

Proof. First we claim that there exist subcomplexes A′ ⊆ A and B′ ⊆ B

satisfying the following conditions:

(1). A′i and B′i are free abelian groups of the same rank as Ai for all i.

(2). Hi(A′) and Hi(B′) are torsion free for all i.

(3). A′ and B′ are isomorphic complexes of abelian groups.

(4). The sequences

0→ Hi(A′)→ Hi(A)→ Hi(A/A′)→ 0

and

0→ Hi(B′)→ Hi(B)→ Hi(B/B′)→ 0

are exact for all i.

This claim can be proved by induction. First since A and B are bounded complexes

of finitely generated abelian groups, without loss of generality we may suppose these

complexes to be of the form

(A, dA) : · · · 0→ A−n → · · · → A−1 → A0 → 0 · · ·

and

(B, dB) : · · · 0→ B−n → · · · → B−1 → B0 → 0 · · · .

Consider the subgroup im(dA : A−1 → A0) of A0. Let r be the rank of im A−1

and let {e1, · · · , er} be a maximal independent set in im A−1. We can enlarge

it into a maximal independent set E0 = {e1, · · · , es} of A0. Set A′0 be the sub-

group generated by E0. Then A0/A′0 is finite. Now consider the inverse image of
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A′0, it is a subgroup of A−1. Moreover, it must have the same rank as A−1. Since

ker(dA : A−1 → A0) is contained in the inverse image of A′0, so is

im (dA : A−2 → A−1). Find {f1, · · · , fs} ⊆ A−1 such that dA(fi) = ei. This

set is an independent set in the inverse image of A′0 and has only trivial in-

tersection with ker(dA : A−1 → A0). We select a maximal independent set in

im(A−2 → A−1), enlarge it to a maximal independent set in ker(A−1 → A0), to-

gether with {f1, · · · , fs} ⊆ A−1, we get a maximal independent set E−1 in the

inverse image of A′0. Denote the free subgroup generated by E−1 by A′−1. Con-

tinuing this setup, we obtain a subcomplex A′ of A such that A′i is free, (A/A′)i

is finite and Hi(A′) is torsion free. Similarly for the complex B, we can construct

a subcomplex B′ of B such that B′i is free, (B/B′)i is finite and Hi(B′) is torsion

free. Hence A′ and B′ satisfy conditions (1) and (2). But (3) and (4) easily follow

from (1) and (2). Hence we proved our claim.

Now choose an isomorphism φ : B′ → A′ of complexes. We have

∏
i

(reg λi)(−1)i

=
∏
i

(
|det Rφi ◦ λi| ·#(B/B′)i

#(A/A′)i

)(−1)i

=
∏
i

(
|det RHi(φ) ◦Hi(λ)| ·#Hi(B/B′)

#Hi(A/A′)

)(−1)i

=
∏
i

(reg Hi(λ))(−1)i

.

Here we use the following facts: (1). If A is a complex of finite abelian group, then

∏
i

(#Hi(A))(−1)i

=
∏
i

(#Ai)(−1)i

.

(2). If V is a complex of R-vector spaces, φ is an automorphism of V , then

∏
i

|detφi|(−1)i

=
∏
i

|detHi(φ)|(−1)i

.

�
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3.1.3. The abstract index formula. Consider the following data

(V, L, G, θ; d1, d2, φ):

• A finite group G.

• A bounded graded finitely generated left R[G]-module

V =
⊕
i

V i such that V i = 0 for i > 0 and i� 0,

equipped with two differentials d1 and d2 of degree 1.

• An R[G]-linear isomorphism φ: (V, d1)
∼

longrightarrow (V, d2) of cochain

complexes.

• A lattice Li in V i for each i such that L =
⊕

i L
i is G, d1 and d2-stable.

• Hi
d1

(L) = Hi
d2

(L) = 0 for all i 6= 0.

• H0
d1

(L) and H0
d2

(L) are free abelian groups.

• An arbitrary left ideal θ ⊆ Z[G].

For any left Z[G]-module M , let Mθ be the subgroup of M annihilated by θ. From

these data, we have the following trivial consequences:

• Hi
d1

(V θ) = Hi
d2

(V θ) = 0 for all i 6= 0.

• Liθ is a lattice in V iθ for all i.

• H0
d2

(L)θ and H0
d2

(φL)θ are lattices in H0
d2

(V θ).

By Proposition 2.1, as suggested by Anderson [3], we have

Theorem 3.1.6 (Abstract Index Formula). Data (V,L,G, θ; d1, d2) as above,

(3.3) (H0
d2(L)θ : H0

d2(φL)θ) =
∏
i

|det(φi |V iθ)|(−1)i

· I(L, d1; θ)−1 · I(L, d2; θ),

where for any bounded complex of Z[G]-modules A, we define

(3.4) I(A; θ) :=
# coker(H0(Aθ)→ H0(A)θ)

# torH0(Aθ) ·
∏
i 6=0 #Hi(Aθ)(−1)i

provided that the cardinalities of all the groups involved are finite.

Proof. Consider the complexes (Lθ, d1) and (Lθ, d2) with the restriction map

φ : V θ → V θ. Note that:

(1). reg(Li θ, Li θ, φi) = |det(φi |V iθ)| for all i.

(2). Since Hi
d1

(V θ) = Hi
d2

(V θ) = 0 for all i 6= 0, Hi
d1

(Lθ) and Hi
d2

(Lθ) are both

finite and Hi(φ) = 0. Hence reg(Hi
d1

(Lθ),Hi
d2

(Lθ),Hi(φ)) = #Hi
d2

(Lθ)/#Hi
d1

(Lθ)

for all i 6= 0.
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(3). Now for j = 0, 1, consider the map αj : H0
dj

(Lθ) → H0
dj

(L)θ. We have

H0(φ) ◦ Rα1 = Rα2 ◦H0(φ). Then

reg(H0
d1(L

θ),H0
d2(L

θ),H0(φ))

= reg(α1) · reg(α2)−1 · reg(H0
d1(L)θ,H0

d2(L)θ,H0(φ)),

where

reg(αj) =
# coker(H0

dj
(L)θ → H0

dj
(Lθ))

# torH0
dj

(Lθ)

and

reg(H0
d1(L)θ,H0

d2(L)θ,H0(φ)) = (H0
d2(L)θ : H0

d2(φL)θ).

Now applying Formula (3.2) in Proposition 2.1 to the case A = (Lθ, d1), B =

(Lθ, d2) and λ = φ, we immediately get (3.3). �

3.2. Spectral sequences revisited

Let G be a group and let Z[G] be the integral group ring of G. Let θ be a left

ideal of Z[G]. Let M = Z[G]/θ, let (P, ∂) :

· · · → Pi → · · · → P1 → P0 → 0

be a projective resolution of M . Assume that we have a complex of left G-modules

(A, d) : · · · → Ai → Ai+1 → · · ·

satisfying

• Ai = 0 for i > 0 and i� 0.

• Hi(A) = 0 for i 6= 0.

Let Kp,q = HomG(Pq, Ap), therefore we have a double complex K•,• = (Kp,q; d, δ)

with the differentials d and δ induced by d and ∂ respectively. Let K• be the total

complex of K•,•. From the theory of double complex as introduced in § 2.5, there

exist two filtrations of the double complex K•,•. For the first filtration, we have

′Ep,q2 = Hp(ExtqG(M,A));

for the second one,

′′Ep,q2 =

0, if p 6= 0;

ExtqG(M,H0(A)), if p = 0.
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Since the second case collapses at p = 0, we have

Hi(K•) = ExtiG(M,H0(A)).

From now on we will focus only on the first case. We omit the symbol ′ from our

notations. Then

Ep,q2 = Hp(ExtqG(M,A))⇒ Extp+qG (M,H0(A)).

Let q = 0, then

Ep,02 = Hp(Ext0G(M,A)) = Hp(Aθ).

Lemma 3.2.1. E0,0
∞ = im (H0(Aθ)→ H0(A)θ).

Proof. Because Fil1K• is trivial, we have

E0,0
∞ = Fil0H0(K•) = im (H0(Fil0K•)→ H0(K•)).

It is easy to see that H0(Fil0K•) = A0 θ and therefore

E0,0
∞ = im (A0 θ → H0(A)θ).

Consider the following diagram with exact rows:

0 −−−−→ A0 θ −−−−→ K0,0 δ−−−−→ K0,1xd xd xd
0 −−−−→ A−1 θ −−−−→ K−1,0 δ−−−−→ K−1,1

we see that A−1 θ is contained in the boundary of K0 =
⊕
Kp,−p. Furthermore,

noting that H0(Aθ) = coker(A−1 θ → A0 θ), the lemma follows immediately. �

Proposition 3.2.2. Under the assumption above, if one has

(3.5) # Ext1G(M,H0(A)) =
∏
q

#H1−q(ExtqG(M,A)),

then

(3.6) I(A; θ) =
∏

p+q≤0
q>0

#Hp(ExtqG(M,A))(−1)p+q

=
∏

p+q≤0
q>0

(#Ep,q2 )(−1)p+q

.
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Proof. First note that the given identity (3.5) is nothing but∏
q

#E1−q,q
∞ =

∏
q

#E1−q,q
2 .

From the theory of spectral sequences, H•(Er) = Er+1, then

#Ep,q2 ≥ #Ep,q3 ≥ · · · ≥ #Ep,q∞ .

Hence by (3.5),

#E1−q,q
2 = #E1−q,q

3 = · · · = #E1−q,q
∞ ,

which means that for r ≥ 2,

im(dr : E1−q−r,q+r−1
r → E1−q,q

r ) = im(dr : E1−q,q
r → E1−q+r,q−r+1

r ) = 0.

Therefore we have a shorter complex:

· · · → E1−q−2r,q+2r−2
r → E1−q−r,q+r−1

r → 0.

Now we set to prove the following fact:

(3.7)
∏

p+q≤0
(p,q) 6=(0,0)

(#Ep,qr )(−1)p+q

·# torE0,0
r is independent of r.

Observe that in the set {Ep,qr : p+ q ≤ 0, q ≥ 0}, the only term not finite is E0,0
r .

If we substitute E0,0
r by its torsion, we get a collection of complexes composed of

finite abelian groups and with differential dr. The cohomology groups are Ep,qr+1(or

torE0,0
r+1). By the invariance of Euler characteristic under cohomology, (3.7) is

proved. Note that E0,0
∞ is free and∏

p+q≤0
(p,q) 6=(0,0)

(#Ep,q∞ )(−1)p+q

= # coker(H0(Aθ)→ H0(A)θ).

The formula (3.6) now follows immediately. �

3.3. The universal distribution and predistribution

From now on, we shall apply the abstract index formula to the study of Sinnott’s

index formula on the Stickelberger ideal. In this section, we are going to produce

the data satisfying the hypothesis of Theorem 3.1.6. To achieve this goal, we first

introduce the concept of the universal predistribution.
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3.3.1. Universal predistribution. From the study in §§ 2.2 and 2.3, we have

an abelian group Ar =< [a] : a ∈ 1
rZ/Z > and operators Xn and Yn on Ar. The

universal distribution of level r is given by

Ur = Ar/
∑
p|r

YpAr.

The Anderson’s resolution of Ur is given by

L•r =
⊕

Lpr =
⊕
p

< [a, g] : g | r, |Tg| = −p, a ∈
g

r
Z/Z >

with differential

dr[a, g] =
∑
p|g

ω(p, g)Yp[a, g/p]

where Yp[a, g] = (1 − Xp)[a, g] = [a, g] −
∑
pb=a[b, g]. This leads us to give the

following definition:

Definition 3.3.1. The (dimension 1) universal predistribution of level r is the

abelian group

Or = Ar/
∑
p|r

XpAr.

The (dimension 1) universal predistribution is the abelian group

O = A/
∑

p prime

XpAr.

Almost parallel to the theory of the universal distribution, we immediately have

Proposition 3.3.2. (1). For each positive integer r, the group Or is free

abelian and the family {[a]} indexed by a ∈ 1
rZ/Z ∩R0 gives rise to a basis for Or.

(2). The group O is free abelian and the family {[a]} indexed by a ∈ R0 gives

rise to a basis for O.

(3). The natural map Or → O is a split monomorphism.

Proposition 3.3.3. The complex L•r with differential

d̂r[a, g] =
∑
p|g

ω(p, g)Xp[a, g/p]

gives a free abelian resolution for the universal predistribution Or.
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As known from Chapter 2, Ar has a Gr = GLk(Z/rZ)-module structure. In

the one-dimensional case, Gr = GL1(Z/rZ) = (Z/rZ)×, we identify Gr with the

Galois group Gal(Q(µr)/Q). Thus for σt ∈ Gr such that σt(ζr) = ζtr for any r-th

root of unity ζr, let σt([a]) = [ta] and σt([a, g]) = [ta, g], then Ur and Or become

Gr-modules and (L•r , dr) (resp. (L•r , d̂r)) becomes Gr-module resolution of Ur(resp.

Or).

In Example 2.1.9, the Sinnott module is a model of universal distribution de-

scribed as a submodule in R[Gr]. Here we give an example of the universal predis-

tribution.

Proposition 3.3.4. The universal predistribution Or is isomorphic to OQ(µr),

the integer ring of the cyclotomic field Q(µr).

Proof. Define er : Ar −→ OQ(µr)∑
ni[ai] 7−→

∑
ni exp(2πiai)

Then immediately we have

(a). er is surjective.

(b). ker er ⊇ 〈
∑
nb=a[b], n|r, a ∈

n
rZ/Z〉.

By (b), er induces a map from Or to OQ(µr). Since both Or and OQ(µr) are free

abelian groups of the same rank ϕ(r), by (a), the map induced by er is an isomor-

phism. �

3.3.2. The data (Vr, Lr, J, θ; dr, d̂r, φr). In order to apply the abstract index

formula, now we generate the data (Vr, Lr, J ; dr, d̂r, φr) satisfying the hypotheses

of Theorem 3.1.6. We denote by Lr the abelian group structure of L•r . Let Lr,g be

the free abelian group generated by the symbol [a, g]. Let Vr,g, V ir and Vr be the

R-extensions of Lr,g, Lir and Lr respectively. Naturally the differentials dr and d̂r

can be extended to Vr. Let c = σ−1 be the complex conjugation in Gal(Q(µr)/Q).

Let J = {1, c} and let θ = (1 + c)Z[ J ]. We only need to produce the connecting

map φr.

Let φr : R⊗Ar → R⊗Ar given by

[a] 7−→
∑
n|r∞

[na]
n
.
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Then φr is an automorphism of R-vector space RAr, the inverse map is given by

φ−1
r : [a] 7−→

∑
n|r∞

µ(n)[na]
n

,

where µ(n) is the Möbius function. We have

Lemma 3.3.5. φr induces an isomorphism from RUr to ROr.

Proof. A straightforward calculation. �

Identifying V 0
r and R ⊗Ar under the map [a, 1] 7→ [a], we extend φr to Vr as

follows:

φr : Vr −→ Vr, [a, g] 7−→
∑
n|r∞

(n,g)=1

[na, g]
n

.

Then φr is an automorphism of the vector space Vr with the inverse map φ−1
r given

by

[a, g] 7−→
∑
n|r∞

(n,g)=1

µ(n)[na, g]
n

.

The following proposition establishes the connection between (Vr, dr) and (Vr, d̂r).

Proposition 3.3.6. φr is an isomorphism from cochain complex (Vr, dr) to

cochain complex (Vr, d̂r), i.e. ,

d̂rφr = φrdr.

Proof. By direct calculation. �

The remaining part of this chapter is devoted to the study of the application

of Theorem 3.1.6 to this data. First note that V θr has a basis consisting of

{[a, g]− [−a, g] : 0 < a < 1/2}.

Denote by φθr the restriction of φr to V θr . Then φθr is an automorphism of V θr . We

have

Proposition 3.3.7.

(3.8)
∏
i

det(φθr : V iθr )(−1)i

=
∏
χ odd

∏
p|r

(1− χ(p)p−1)−1.
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Proof. First notice that Vr,g is invariant under φr. Moreover, let h = r/g, for

any f | h, define

V fr,g = R ⊗ 〈[x, g] : fx = 0〉,

then clearly V fr,g is invariant under φr. By definition, we have V hr,g = Vr,g. Put

V (f)
r,g = V fr,g/

∑
p|f

V f/pr,g ,

We can see that V (f)
r,g is a real vector space with a basis {[ af , g] : (a, f) = 1}.

Furthermore V (f)
r,g is a free R[Gf ]-module of rank 1. The induced map φr on V

(f)
r,g

is an automorphism. Let

Tf,g = Tr̄ − Tf̄ ∪ Tg.

For each p ∈ Tf,g, define

τp : V (f)
r,g −→ V (f)

r,g

[x, g] 7−→
∑
n|p∞

[nx, g]
n

.

Note that τpi ◦ τpj = τpj ◦ τpi and

φr|V (f)
r,g

= τp1 ◦ · · · ◦ τpt

where pi passes through Tf,g. Moreover, the subspace V (f)θ
m,g has a basis {[ af , g] −

[− a
f , g] : (a, f) = 1, 0 < a < f/2}. The restriction maps φθr and τθp have the relation:

φθr|V (f)θ
r,g

= τθp1 ◦ · · · ◦ τ
θ
pt
.

Since the map τp is exactly the left multiplication map by the group ring element∑
i

σi
p

pi on V (f)θ
r,g , by [36] Lemma 1.2(b), we have

det τθp := ap,f =
∏

χ even∈Ĝf

χ(
∑
i

σip
pi

) =

(1− p−cp,f )−ϕ(f)/2cp,f , if cp,f odd;

(1 + p−cp,f/2)−ϕ(f)/cp,f , if cp,f even.

where cp,f is the smallest number satisfying pcp,f ≡ 1 (mod f). We have

det(φθr : V (f)θ
r,g ) =

∏
p∈Tf,g

ap,f .

Now by the Inclusion-Exclusion Principle, we have

det(φθr :
∑
p|f

V f/p θr,g ) =
∏

f ′|f,f ′ 6=1

det(φr : V f/f
′ θ

r,g )−µ(f ′).
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Hence ∏
p∈Tf,g

ap,f =
∏
f ′|f

det(φr : V f/f
′ θ

r,g )µ(f ′).

By the Möbius inverse formula,

det(φr : V θr,g) =
∏
f | r

g

∏
p∈Tf,g

ap,f

Therefore we have∏
i

det(φr : V i θr )(−1)i

=
∏
g|r

(∏
f | r

g

∏
p∈Tf,g

ap,f

)µ(g)

.

Now let’s look at the right hand side of the above identity. The exponent of ap,f is

∑
g| r

f , (p,g)=1

µ(g) =
∑
g| r

fpα

µ(g) =

1, if m
fpα = 1;

0, otherwise.

here pα‖ r. Write r = rp · pα, then∏
i

det(φr : V i θr )(−1)i

=
∏
p|r

ap,rp
=

∏
χ odd

∏
p|r

(1− χ(p)p−1)−1.

�

3.4. More spectral sequences

We apply the spectral sequence method in §3.2 to our data (Vr, Lr, J, θ; dr, d̂r, φr).

Let d = dr or d̂r. Let M = coker(Z[J ] 1+c→ Z[J ]). Then M has a projective resolu-

tion

(P, ∂) : · · · ∂q+1−→ Z[J ]q+1
∂q−→ Z[J ]q

∂q−1−→ · · · ∂0−→ Z[J ]0 −→ 0

where Z[J ]q = Z[J ] and ∂q = 1 + (−1)q · c. Now let

Kp,q =

HomG(Z[J ]q, Lpr) := (Lpr , q), if q ≥ 0

0, if q < 0

and let K•,• = (Kp,q;d, δ) where

d(x, q) = (d(x), q), δq(x, q) = ((−1)p(1 + (−1)qc)x, q + 1).

From §3.2, the spectral sequence of the second filtration collapses at E2, and

Hn(K•) = ExtnJ(M,H0
d(Lr)).
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We introduce a complete resolution

(F, ∂) : · · · ∂q+1−→ Z[J ]q+1
∂q−→ Z[J ]q

∂q−1−→ · · · ∂0−→ Z[J ]0
∂−1−→ · · ·

Let F p,q = HomG(Z[J ]q, Lpr) = (Lpr , q) for any q. Let F •,• = (F p,q;d, δ). We can

see that the double complex K•,• is a subcomplex of F •,•. Moreover, for n ≥ 0, by

the degeneration of the second spectral sequence,

Hn(K•) = Hn(F •) = ExtnJ(M,H0
d(Lr)) = Ĥn+1(J,H0

d(Lr)).

Now consider the first filtration. For q > 0, we always have

′Ep,q2 (K) =′ Ep,q2 (F ).

Now we compute ′Ep,q2 (F )(we drop ′ in the sequel). First we show that the spectral

sequence degenerates at E2. For this purpose, let

SF p,q =

(Lpr , q), if q even;

(β(Lpr), q), if q odd.

where

β([a, g]) =

[a, g], if 2a 6= 0;

2[a, g], if 2a = 0.

It is easy to verify that SF •,• = (SF p,q, d, δ) is a subcomplex of F •,•. Furthermore,

the quotient complex QF •,• = F •,•/SF •,• has vertical differential 0, hence the

spectral sequence of Q related to the first filtration degenerates at E2(for the second

filtration, degenerates at E1). Now look the quotient map f : F •,• → QF •,•. It

induces maps

fr : Ep,qr (F •,•) −→ Ep,qr (QF •,•).

We claim that f1 is an isomorphism. Note that (recall r 6≡ 2 mod 4)

Lr,g =


⊕

2a6=0(Z[a, g]
⊕

Z[−a, g])
⊕

Z[0, g]
⊕

Z[ 12 , g], if r even;⊕
2a6=0(Z[a, g]

⊕
Z[−a, g])

⊕
Z[0, g], if r odd.

Every subspace Z[a, g]
⊕

Z[−a, g] is a trivial Z[J ]-module, therefore has trivial

cohomology. Since

′Ep,q1 (F •,•) =
⊕

|Tg|=−p

Ĥq+1(J, Lr,g),
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f1 is clearly an isomorphism. By this isomorphism, for all r > 1 the map fr is an

isomorphism. Since the first filtration is finite, hence bounded, by Theorem 2.5.5,

the quotient map f is a quasi-isomorphism and the spectral sequence of the first

filtration of F •,• degenerates at E2. Now we compute Ep,q2 (F •,•) = Ep,q2 (QF •,•).

Denote by xg the cocycle represented by [0, g] and by yg the cocycle represented by

[1/2, g], then for q > 0,

Ep,q1 = Ĥq+1(J, Lpr) =


⊕

g(〈xg〉
⊕
〈yg〉), if q odd, r even;⊕

g〈xg〉, if q odd, r odd;

0, if q even.

Here 〈x〉 represents the Z/2Z vector space generated by x. Immediately we have

Ep,q2 = 0 for q even. Now for q odd, if r is odd, the induced differential d1 is

xg
d17−→ 0, xg

d̂17−→
−p∑
i=1

xg/pi
;

if r is even, the induced differential d1 is

xg
d17−→ δ2p1yg/2, xg

d17−→ δ2p1yg/2.

and

xg
d̂17−→

−p∑
i=1

xg/pi
+ δ2p1yg/2, yg

d̂17−→
−p∑
i=1

yg/pi
+ δ2p1yg/2.

Write X•r the chain complex E•,q for q odd. This is well defined since this complex

only depends on r. We calculate the cohomology groups for X•r for different r and

d:

(1). r is odd and d1 = d1. This is trivial:

(Ep,q2 , d) = Ep,q1 = (Z/2Z)(
s
−p).

(2). r is odd and d1 = d̂1. In this case, if r = pα, it is easy to see that

H0(X•pα , d̂1) = H−1(X•pα , d̂1) = 0. Now if r = r1r2 and (r1, r2) = 1, we can check

(X•r , d̂
1
r) = (X•r1 , d

1
2r1)

⊗
(X•r2 , d

1
2r2).

By Künneth’s formula, Hp(X•r , d̂
1) = 0. Therefore we have

(Ep,q2 , d̂) = · · · = (Ep,q∞ , d̂) = 0.
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(3). r is even and d1 = d1. Since X•r is a Z/2Z-vector space, by the formula

above about d1, we always have

dimZ/2Z im(Xpr → Xp+1
r ) =

(
s− 1
−p− 1

)
,

By counting the Z/2Z-dimension, i.e.,

dimEp,q2 = dim ker(Xpr → Xp+1
r )− dim im(Xp−1

r → Xpr)

we have

(Ep,q2 , d) = (Z/2Z)(
s
−p).

(4). r is even and d1 = d̂1. In this case, if r = 2α,

H0(X•2α , d̂1) = H−1(X•2α , d̂1) = Z/2Z.

Now if r = 2αr′, r′ > 1 odd, set

X′
p
r′ =

⊕
g|r′

(〈xg〉
⊕
〈yg〉)

and

d′2 : xg 7−→
−p∑
i=1

xg/pi
, yg 7−→

−p∑
i=1

yg/pi
.

Then we have

(X•r , d
1
2) = (X•2α , d1

2)
⊗

(X
′•
r′ , d

′
2).

Similar to the case (2), we can see Hp(X
′•
r′ , d

′
2) = 0. By Künneth’s formula again,

(′Ep,q2 , d̂) = Hp(X•r , d̂
1) = 0.

Combining all the cases above, for d = d, we have

(3.9) (Ep,q2 , d)(F •,•) =

(Z/2Z)(
s
−p), if q odd;

0, otherwise.

For d = d̂, we have

(3.10) (Ep,q2 , d̂)(F •,•) =

Z/2Z, if q odd, r = 2α, p = 0 or − 1;

0, otherwise.

By results of (3.9) and (3.10), we easily have
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Theorem 3.4.1. The group Gr acts trivially on the cohomology groups

Hi(J,Or) and Hi(J, Ur) for i = 1 or 2, moreover,

(3.11) H1(J,Or) = H2(J,Or) =

Z/2Z, if r = 2α;

0, otherwise.

and

(3.12) H1(J, Ur) = H2(J, Ur) = (Z/2Z)2
s−1

.

Remark 3.4.2. 1. The second statement is first proved in Yamamoto [40].

The spectral sequence method employed here makes the calculation significantly

simpler than those in [40] and in [35]. Moreover, this same spectral sequence

method can also be applied to the universal distribution of higher dimension, thus

we can recover the results in Kubert [17].

2. For any cyclic group C ∈ Gr which has trivial intersection with Gpi for all

pi‖r, we can also obtain a similar result without any extra difficulty.

Proposition 3.4.3.

I(Lr, d; θ) =

2, if s = 1;

22s−2
, if r > 1.

I(Lr, d̂; θ) =

2, if r = 2α;

1, otherwise.

Proof. SinceK•,• and F •,• have same E2-terms for q > 0, and since the (first)

spectral sequence of F •,• degenerates at E2, the condition in Proposition 3.2.2 is

satisfied. For d = d, by (3.9), then the exponent of 2 in I(Lr, d; θ) is equal to

∑
p+q≤0
q>0 odd

(−1)p+1

(
s

−p

)
=

1, if s = 1;

2s−2, if s > 1.

The case d = d̂ immediately follows from Proposition 3.2.2 and (3.10). �

3.5. Sinnott’s index formula

With all our efforts, now we can use the abstract index formula to to prove

Sinnott’s index formula on the Stickelberger ideal, i.e., we prove here the following

theorem:
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Theorem 3.5.1 (See [35], Theorem). Let R = Z[Gr] and let S be the Stickel-

berger ideal of Q(µr). Then

[R− : S−] = 2ah−,

where a = 0 if s = 1 and a = 2s−2 − 1 if s > 1.

Note 3.5.2. In this section, the subscript r is omitted from our notations(i.e.,

G is the Galois group Gr and so on). p is always a prime factor of r. The superscript

“-” is in accordance with the superscript “θ” in the previous sections.

Proof. We consider the following diagram:

RU−
ϕ−

//

α(s) ##HH
HH

HH
HH

H RO−
ψ(x)

// RO−

β{{www
ww

ww
ww

R[G]−

where x > 1 and ϕ− = ϕ|RU− ,

ψ(x)([a]− [−a]) =
∑

(n,r)=1

[na]− [−na]
nx

,

β([a]− [−a]) =
1

2πi

∑
t∈(Z/rZ)×

(exp(2πiat)− exp(−2πiat))σ−1
t

and

α(x) = β ◦ ψ(x) ◦ ϕ−.

ψ(x) is well defined and all the above maps are isomorphisms of vector spaces. Then

we have

(R− : α(x)(U−))

=(R− : β(O−)) · (β(O−) : βψ(x)(O−)) · (βψ(x)(O−) : α(x)(U−))

=(R− : β(O−)) · (O− : ψ(x)(O−)) · (O− : ϕ−(U−))

(3.13)

Here for the second equality, we use the property that if V1 and V2 are two vector

spaces and f is an isomorphism from V1 to V2, then (A : B)V1 = (f(A) : f(B))V2 .

Now for the three factors at the last line of (3.13), we have:
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Lemma 3.5.3.

(3.14) (R− : β(O−)) =

(2π)−ϕ(r)/2
√
d(Kr)/d(K+

r ), if r 6= 2α;

1
2 (2π)−ϕ(r)/2

√
d(Kr)/d(K+

r ), if r = 2α.

Proof of Lemma 3.5.3. We first consider the following diagram with exact

rows:
0 −−−−→ O+ i−−−−→ O

1−c−−−−→ im(1− c) −−−−→ 0∥∥∥ xi xi
0 −−−−→ O+ i−−−−→ O+ ⊕ O−

1−c−−−−→ 2O− −−−−→ 0

where i is the natural inclusion map. By Theorem 3.4.1, if r is not a power of 2,

O− = im(1− c); if r is a power of 2, then O−/ im(1− c) = Z/2Z. Therefore,

(O : O+ ⊕ O−) = (im(1− c) : 2O−) =

2ϕ(r)/2, if r 6= 2α;

2ϕ(r)/2−1, if r = 2α.

Now let T be the map from CO to C[G] such that T ([a]) =
∑
t exp(2πita)σ−t , then

we have T |CO− = 2πiβ|CO− . Then on one hand,

(R+ ⊕R− : T (O+ ⊕ O−)) = (R+ : T (O+)) · (R− : T (O−))

on the other hand,

(R+ ⊕R− : T (O+ ⊕ O−)) = (R+ ⊕R− : R) · (R : T (O)) · (O : O+ ⊕ O−).

But we know (R+ ⊕ R− : R) = 2−ϕ(r)/2, and by the definition of T , (R : T (O)) =√
d(K) and (R+ : T (O+)) =

√
d(K+). Now the lemma follows from the above

results and

(R− : β(O−)) = (2π)−ϕ(r)/2(R− : 2πiβ(O−)).

�

Lemma 3.5.4. Let S = Tr̄ = {p : p | r}, then

(3.15) (O− : ψ(x)(O−)) =
∏
χ odd

LS(x, χ).

Proof of Lemma 3.5.4. Note that if we let

ΘS(x) =
∑

(n.m)=1

σn
nx
,
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then ψ(x) is just the left multiplication of ΘS(x) on RO−. By [36] Lemma 1.2(b),

we have

(O− : ψ(x)(O−)) =
∏
χ odd

χ(ΘS(x)) =
∏
χ odd

LS(x, χ).

�

Lemma 3.5.5.

(3.16) (O− : ϕ−(U−)) =


2−2s−2 ∏

p|r

∏
χ odd

(1− χ(p)−1)p−1, if s > 1;

1
2 , if s = 1, r 6= 2α;

1, if r = 2α.

Proof of Lemma 3.5.5. This follows from the abstract index formula (3.3),

Proposition 3.3.7 and Proposition 3.4.3. �

Now let x approach 1, then

lim
x→1

α(x)([a]− [−a]) = lim
x→1

βψ(x)H0(ϕ)([a]− [−a])

=
1

2πi

∑
t

σ−1
t

∑
n∈N

exp(2nπiat)− exp(−2nπiat)
n

=
∑
t

(
1
2
− {at})σ−1

t .

(3.17)

If we let α = limx→1 α
(x), by (3.13), (3.14),(3.15) and (3.16), with the class number

formula,

h− = (2π)−ϕ(r)/2
∏
χ odd

L(1, χ)
√
d(Kr)/d(K+

r )ωQ,

and since (U− : (1− c)U) = 22s−1
, then we have

(R− : α((1− c)U)) = lim
x→1

(R− : α(x)(U−)) · (U− : (1− c)U)

=


h−

ωQ · 2
2s−2

, if s > 1;

h−

ωQ , if s = 1.

(3.18)

But by (3.17), α((1 − c)U) is nothing but e−S′ in [35]. and by [35], Lemma 3.1,

we have (e−S′ : S−) = ω. This is enough to finish the proof of the theorem.. �



CHAPTER 4

General Group Cohomology of the Universal

Ordinary Distribution

This chapter is the core part of the thesis. We use Anderson’s resolution to

study the Gr-cohomology of Ur for any odd squarefree integer r. In §1, we offer

a detailed study of the cohomology group H∗(Gr,Z) and H∗(Gr,Z/MZ). In §2,

we construct a double complex K•,• whose cohomology is exactly the group coho-

mology H∗(Gr, Ur). We then study the spectral sequence of K•,• under the first

filtration. This spectral sequence is shown to degenerate at E2. We thus get a com-

plete description of H∗(Gr, Ur). In the last section, we give an explicit description

of the 0-th Gr -cohomology group of Ur/MUr where M is an integer dividing `− 1

for all primes ` dividing r. The results obtained will be used in the next chapter to

provide a rationale for Kolyvagin’s construction of “derivative classes”.

4.1. The cohomology groups H∗(G,Z)

In this section, let G be a finite abelian group. By the structure theorem of

finite abelian groups, then there exists a decomposition

(4.1) G =
s∏
i=1

Gi

where Gi =< σi > is a cyclic group of order mi. We let S = {1, · · · , s}. For any

T ⊆ S, let GT =
∏
i∈T Gi ⊆ G and let mT = gcd{mi : i ∈ T}. Let M be a given

factor of mS . Let R = Z≥0[S]. For any e = (ei) ∈ R, set

• supp e = {i ∈ S : ei 6= 0}.

• deg e =
∑
i∈S ei.

• ω(e) = (ω(e)i) ∈ R, where ω(e)i =
∑
j<i ej .

For any e, e′ ∈ R, set ω(e, e′) =
∑
j<i e

′
jei.

We compute the cohomology group H∗(GT ,Z) and H∗(GT ,Z/MZ) in this

section. Recall in § 2.5, to compute the group cohomology, it is necessary to find a

47
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projective resolution of the trivial G-module Z. We explained in § 2.5 the standard

bar resolution. In this section, we’ll introduce another projective resolution of Z,

depending on the decomposition (4.1). This projective resolution is constructed by

forming a tensor product. First we give the following definition:

Definition 4.1.1. Let (X,≤) be a finite totally ordered set and x ∈ X. Sup-

pose that to every x of X we have a module Ax associated to x. We call

AX = Ax1 ⊗ · · · ⊗Axn

the standard tensor product of Ax over X if X = {x1, · · · , xn} and x1 < · · · < xn.

Similarly, we can define the standard tensor product of elements ax ∈ Ax and of

complexes A•x.

4.1.1. A projective resolution of Z. Let

(Pi•, ∂i) : · · · ∂i,j+1−→ Pi,j+1
∂ij−→ Pij · · ·

∂i0−→ Pi0 −→ 0

with Pij = Z[Gi] for any j ≥ 0, ∂ij is the multiplication by 1− σi if j is even and

by
∑mi−1
k=0 σki if j is odd. It is well known that Pi• is a Z[Gi]-projective resolution

of trivial module Z. For any T ⊆ S, let PT• be the standard tensor product of Pi•

over i ∈ T . It is well known by homological algebra that PT• is a Z[GT ]-projective

resolution of trivial module Z. Now for the collection {Pi,ei
: i ∈ T}, the standard

product of Pi,ei over T is a rank 1 free Z[GT ]-module whose grade is
∑
i ei. Now

let e ∈ R be the element whose i-th component is ei if i ∈ T and 0 if not, and write

the standard product of Pi,ei
over T as Z[GT ][e], then

PT• =
⊕

supp e⊆T

Z[GT ][e].

For any x = (· · · ⊗ xi ⊗ · · · ) ∈ Z[GT ][e], the differential is given by

∂T (x) =
∑
i∈T

(−1)ω(e)i(· · · ⊗ ∂i,ei−1(xi)⊗ · · · ).

In particular, for T = S, let

P• = PS• =
⊕
e∈R

Z[GS ][e].

For any T ′ ⊆ T , we have a natural inclusion ι : Z[G′T ][e] ↪→ Z[GT ][e] for any e ∈ R

such that supp e ⊆ T ′. By this inclusion, PT ′• becomes a subcomplex of PT•.
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Now we define a diagonal map ΦT : PT• → PT• ⊗PT•. First set

Φiei,ie′i
: Pi,ei+e′i

−→ Piei
⊗ Pie′i

1 7−→



1⊗ 1, if ei even;

1⊗ σi, if ei odd, e′i even;∑
0≤m<n≤mi−1

σmi ⊗ σni , if ei odd, e′i odd;

Then the map Φi : Pi• → Pi• ⊗ Pi• given by Φiei,ie′i
is the diagonal map for

the cyclic group Gi (see Cartan-Eilenberg [5], P250-252). For any e, e′ ∈ R with

support contained in T , consider the standard product Pe,e′ of Piei
⊗Pie′i over i ∈ T .

The isomorphism

α : Piei ⊗ Pje′j −→ Pje′j ⊗ Piei

x⊗ y 7−→ (−1)eie
′
iy ⊗ x

induces an isomorphism α : Pe,e′ → Z[GT ][e]⊗ Z[GT ][e′] by

(· · · (xi ⊗ yi) · · · ) 7−→ (−1)ω(e,e′)(· · ·xi · · · )⊗ (· · · yi · · · ).

On the other hand, the standard product of the diagonal maps Φiei,ie′i
over i ∈ T

defines a map β : Z[GT ][e+ e′]→ Pe,e′ . We let Φe,e′ = α ◦ β and let

ΦT,p,q =
∑

e,e′:deg e=p,deg e′=q
supp e+e′⊆T

Φe,e′ .

Then ΦT defines the diagonal map from PT• to PT• ⊗PT•. This map enables us

to compute cup product structures.

4.1.2. The cohomology groups H∗(GT ,Z) and H∗(GT ,Z/MZ). Let C•
i =

HomGi(Pi•,Z), then C•
i is the complex

Z 0−→ Z mi−→ Z 0−→ Z mi−→ · · ·

with the initial term at degree 0. We denote by Cji the j-th term of C•
i . By the

theory of group cohomology,

H∗(Gi,Z) = H∗(C•
i ).
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Now for any T ⊆ S, let C•
T be the standard tensor product of C•

i for i ∈ T . If

write

HomGT
(Z[GT ][e],Z) = Z[e],

then

C•
T = HomGT

(PT•,Z) =
⊕

supp e⊆T

Z[e].

and

H∗(GT ,Z) = H∗(C•
T ).

Moreover, for any T ′ ⊆ T , the inclusion ι : PT ′• ↪→ PT• induces a map

ι∗ : C•
T −→ C•

T ′ ,

which is just the natural projection of⊕
supp e⊆T

Z[e] −→
⊕

supp e⊆T ′
Z[e].

On the other hand, GT ′ can also be considered naturally as a quotient group of

GT , by this meaning, the inflation map is just the injection⊕
supp e⊆T ′

Z[e] ↪→
⊕

supp e⊆T

Z[e].

Now for any j ∈ Z≥0 even, let

C•j
i =

· · · 0 −→ C0
i −→ 0 · · · , if j = 0;

· · · 0 −→ Cj−1
i

mi−→ Cji −→ 0 · · · , if j > 0.

For any e = (ei) ∈ 2R, i.e., ei even for all i ∈ S, we let C•
e be the standard product

C•ei
i over i ∈ S. If supp e ⊆ T , then C•

e is a subcomplex of C•
T and

C•
T =

⊕
e∈2R

supp e⊆T

C•
e.

Figure 1 shows us what the decomposition looks like in the case S = {1, 2}. Denote

by Ae the cohomology group H∗(C•
e) and Ane its n-th component. Then

H∗(GT ,Z) =
⊕
e∈2R

supp e⊆T

Ae, H
n(GT ,Z) =

⊕
e∈2R

supp e⊆T

Ane .

We now study the abelian group Ae. First we need a lemma from linear algebra:
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Figure 4.1. The complex C•
S when S = {1, 2}.

Lemma 4.1.2. Let v = (m1,m2, · · · ,mn)t be an n-dimensional column vector

with integer entries mi, then the greatest common divisor of the mi is 1 if and only

if there exists an n× n matrix B ∈ SLn(Z) whose first column is v.

Proof. Well known. �

Now suppose supp e = T = {i1, · · · , it} and |T | = t. If t = 0, then T = ∅, it

is easy to see that Ae = A0
e = Z. Now if T 6= ∅, we claim that C•

e[deg e − t] is

isomorphic to the exterior algebra Λ(x1, · · · , xt) with differential d(x) =
∑
mixi∧x

and deg xi = 1. This claim is easy to check: First if t = 1, let T = {i}, then

C•ei
i = Cei−1⊕Cei . This case is trivial. In general, if C•ei

i [ei− 1] is isomorphic to

Λ(xi), the tensor product of C•ei
i [ei−1] is nothing but C•

e[deg e− t] and the tensor

product of Λ(xi) is just Λ(x1, · · · , xt), hence they are isomorphic to each other.

Now since the greatest common divisor ofmi/mT is 1, let B be the matrix given

by Lemma 4.1.2 corresponding to the vector (· · · , .mi/mT , · · · ). Let (y1, · · · , yt) =

(x1, · · · , xt)B. Then {y1, · · · , yt} is a set of new generators for the above exterior

algebra and we have d(x) = mT y1 ∧ x. We see easily that

H∗(Λ(x1, · · · , xt)) = (Z/mTZ)2
t−1

and

Hj(Λ(x1, · · · , xt)) = (Z/mTZ)(
t−1

j ), 0 ≤ j ≤ t− 1.

Combining the above analysis, we have
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Proposition 4.1.3. There exists a family of complexes

{C•
e ⊆ C• = HomGS

(P•,Z) : e ∈ 2R}

such that

(1). For each T ⊆ S, we can identify C•
T = HomGT

(PT•,Z) with
⊕
e∈2R

supp e⊆T

C•
e

through the following splitting exact sequence

0 −→
⊕
e∈2R

supp e6⊆T

C•
e −→ C• −→ C•

T −→ 0

(2). The cohomology groups H∗(C•
e) = Ae and Hn(C•

e) = Ane are given by:

(a). If supp e 6= ∅, let me be the greatest common divisor of `i−1

for i ∈ supp e, then Ae is the abelian group (Z/meZ)2
| supp e|−1

,

and

Ane =

(Z/meZ)(
| supp e|−1

j ), if n = deg e− j and 0 ≤ j ≤ | supp e| − 1;

0, if otherwise.

(b). If supp e = ∅, then Ae = A0
e = Z.

For the case H∗(G,Z/MZ), the situation is much easier. We have

Proposition 4.1.4. There exists a family

{[e] ∈ H∗(GS ,Z/MZ) : e ∈ R}

with the following properties:

(1). For each T ⊆ S and n ∈ Z≥0, the restriction of the family

{[e] : e ∈ R, supp e ⊆ T, deg e = n}

to Hn(GT ,Z/MZ) is a Z/MZ-basis of the latter.

(2). For each T ⊆ S and e ∈ R such that supp e * T , the restriction of [e] to

H∗(GT ,Z/MZ) vanishes.

(3). One has the cup product structure in H∗(GT ,Z/MZ) given by

[e] ∪ [e′] = (−1)ω(e,e′)
∏
i∈S

eie
′
i≡1(2)

(
mi

2

)
[e+ e′]

for all e, e′ ∈ R.
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Proof. The complex C•
M,i = HomGi(Pi•,Z/MZ) by definition, is a complex

with Cj
M,i = Z/MZ for j ≥ 0 and the differential 0. In general, C•

M,T = C•
T⊗Z/MZ

is exactly the standard tensor product of C•M,i for all i ∈ T . Write

C•
M,T = HomGi(PT•,Z/MZ) =

∑
supp e⊆T

Z/MZ[e].

Since now C•
M,T has differential 0, H∗(C•

M,T ) = C•
M,T . The restriction map is easy

to see. This finishes the proof of 1) and 2).

For the cup product, the diagonal map ΦT given above naturally induces a

map:

C•
M,T ×C•

M,T −→ C•
M,T

which defines the cup product structure. More specifically, the cup product map

Z/MZ[e]× Z/MZ[e′] −→ Z/MZ[e+ e′]

is induced from Φe,e′ . Now the claim follows quickly from the explicit expression

of Φe,e′ . �

4.2. Study of H∗(Gr, Ur)

From now on, we compute the cohomology group H∗(Gr, Ur) for the dimension

1 level r universal distribution Ur when r is odd squarefree. We denote by `

or `i the prime factor of r. We want to use the results of §4.1. Similar to the

decomposition (4.1), we have the decomposition:

(4.2) Gr =
∏
`|r

G`.

This similarity enable us to observe the following correspondences:

(1). i ∈ S  `i | r,

• i < j  `i <ω `j ,

• mi  `i − 1,

• Gi = 〈σi〉 G`i = 〈σ`i〉.

(2). T ⊆ S  g | r,

• mT  mg,

• GT  Gg,

• PT•  Pg•.

(3). R = Z≥0[S] {h : h | r∞}, e ∈ R h | r∞,
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• supp e h̄ =
∏
`|h `,

• deg e =
∑
i ei  deg h =

∑
` v`(h),

• ω(e, e′) =
∑
j<i e

′
jei  ω(h, h′) =

∑
`j<ω`i

v`j (h
′)v`i(h).

We define

N` =
`−2∑
k=0

σk` , D` =
`−2∑
k=0

iσk` ∈ Z[G`].

Moreover, define

Ng =
∏
`|g

N`, Dg =
∏
`|g

D` ∈ Z[Gg].

4.2.1. The complex Kr. Set

K•,•
r := HomGr

(Pr•,L•r).

Let d and δ be the differentials of K•,•
r induced by the differentials d of L•r and ∂

of P•r respectively. If we let

[a, g, h] := ([h] 7→ [a, T ]) ∈ HomGr (Ph, 〈[a, g]〉),

then

Kp,q =
〈
[a, g, h] : a ∈ g

r
Z/Z, |Tg| = −p,deg h = q

〉
;

d[a, g, h] =
∑
`|g

ω(`, g)
(
[a, g/`, h]−

∑
`b=a

[b, g/`, h]
)
;

δ[a, g, h] = (−1)|Tg|
∑
`|r

(−1)v`(ω(h)) ·

(1− σ`)[a, g, h`], if v`(h) even;

N`[a, g, h`], if v`(h) odd.

For any g | r, set

K•,•
r (g) = HomGr

(Pr•,L•g) =
〈
[a, g′, h] : [a, g′] ∈ L•g, h | r∞

〉
and

K•,•
g = HomGg (Pg•,L•g) =

〈
[a, g′, h] : [a, g′] ∈ L•g, h | g∞

〉
.

Furthermore, for any order ideal I, set

K•,•
r (I) := HomGr

(Pr•,L•r(I)) =
∑
g∈I

K•,•
r (g).

and set

K•,•
r (n) := HomGr

(Pr•,L•r(n)).
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Set

U•
r := HomGr

(Pr•, Ur) =

〈
[a, h] : a ∈ 1

rZ/Z, h | r∞
〉

〈
[a, h]−

∑
`b=a[b, h] : a ∈ `

rZ/Z, h | r∞
〉 ,

with the differential δ induced by ∂. Correspondingly,

U•
r(I) :=

〈
[a, h] : a ∈ 1

gZ/Z for some g ∈ I, h | r∞
〉

〈
[a, h]−

∑
`b=a[b, h] : a ∈ `

gZ/Z for some g ∈ I, h | r∞
〉 ,

which is a subcomplex of U•
r . We consider U•

r as the double complex (U•,•
r ; 0, δ)

concentrated on the vertical axis. We have a map

u : K•,•
r → U•,•

r , [a, g, h] 7→

[a, h], if g = 1;

0, if g 6= 1.

Proposition 4.2.1. The map u(resp. its restriction) is a quasi-isomorphism

between K•,•
r (resp. K•,•

r (I)) and U•,•
r (resp. U•,•

r (I)). Therefore

(1). H∗
total(K

•,•
r ) = H∗(Gr, Ur), H∗

total(K
•,•
r (I)) = H∗(Gr, Ur(I)).

(2). H∗
total(K

•,•
r,M ) = H∗(Gr, Ur/MUr),

H∗
total(K

•,•
r,M (I)) = H∗(Gr, Ur(I)/MUr(I)).

Proof. Immediately from Theorem 2.3.2(resp. Proposition 2.4.5 for I), we

see that ker u is d-acyclic, and hence, by spectral sequence argument, it is (d+ δ)-

acyclic. On the other hand, u is surjective. Thus u is a quasi-isomorphism. Now

(1) follows directly from the quasi-isomorphism. For (2), just consider u⊗ 1, which

is also a quasi-isomorphism. �

From Proposition 4.2.1, the Gr-cohomology of Ur is isomorphic to the total

cohomology of the double complex (K•,•
r ; d, δ). Therefore we can use the spectral

sequence of the double complex K•,•
r to study the Gr-cohomology of Ur. The

spectral sequence of K•,•
r from the second filtration has given us Proposition 4.2.1.

Now we study the spectral sequence from the first filtration. Then

Ep,q1 (K•,•
r ) = Hq

δ (K
p,•
r ) = Hq(Gr, Lp).

Recall the double complex structure given in §2.4.2, we have

Lp =
⊕

p1+p2=p

Lp1,p2 =
⊕

|Tg|=−p

⊕
g|g′

Lr(g′, g),
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then

Ep,q1 (K•,•
r ) =

⊕
|Tg|=−p

⊕
g|g′

Hq(Gr, Lr(g′, g)).

For the double complex K•,•
r (I), Recall

Γ(I) = {(g1, g2) : rg2/g1 ∈ I, g2 | g1}

from §2.4.2. We have

Ep,q1 (K•,•
r (I)) =

⊕
(g′,g)∈Γ(I)

Hq(Gr, Lr(g′, g)).

4.2.2. A Lemma. Let S be a totally ordered finite set in this subsection.

Suppose that for any T ⊆ S, there is an abelian group BT associated to T , and set

AT =
⊕
T ′′⊆T

BT ′′ .

Then for any T ′ ⊇ T , there is a natural projection from AT ′ to AT . Now let C•S,T

be the cochain complex with components given by

CnS,T =
⊕

|T ′|=s−n
T ′⊇(S\T )

AT ′ ,

and differential d given by

d : AT ′ −→
⊕

i∈T ′∩T
AT ′\{i}

x 7−→
∑

i∈T ′∩T
ω(i, T ′ ∩ T )x|T ′\{i},

where x|T ′\{i} is the projection of x in AT ′\{i}. It is easy to verify that C•S,T is

indeed a chain complex. Furthermore, we have

Lemma 4.2.2. For any T ⊆ S,

Hn(C•S,T , d) =


⊕

T ′⊇T BT ′ , if n = 0;

0, otherwise.

Proof. Let C̃•S,T be the subcomplex of C•S,T with the same components as

C•S,T except at degree 0, where

C̃0
S,T =

⊕
T ′ 6⊇T

BT ′ .
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We only need to show that C̃•S,T is exact. We show it by double induction to the

cardinalities of S and T . If T = ∅, we get a trivial complex. If S consists of only

one element, or if T consists only one element, it is also trivial to verify. In general,

suppose i0 = max{i : i ∈ T}. Let S0 = S\{i0} and T0 = T\{i0}. Then we have the

following commutative diagram which is exact on the columns:

0 −−−−→ C̃0
S,T0

d̄−−−−→ C̃1
S,T0

d̄−−−−→ · · · C̃t−1
S,T0

−−−−→ 0 −−−−→ 0xp xp xp xp
0 −−−−→ C̃0

S,T
d−−−−→ C̃1

S,T
d−−−−→ · · · C̃t−1

S,T
d−−−−→ C̃tS,T −−−−→ 0xi xi xi xi

0 −−−−→
⊕

S0⊇T ′⊇T0

BT ′
d−−−−→ AS0

d−−−−→ · · · C̃t−1
S0,T0

d−−−−→ C̃tS0,T0
−−−−→ 0

Here p means projection and i means inclusion. The differential d̄ is induced by

the differential d of the second row. Notice that the third row is a variation of the

chain complex C̃•S0,T0
, the first row is the chain complex C̃•S,T0

. By induction, the

first row and and the third row are exact, so is the middle one. �

We shall apply the above lemma to study the E2 terms of K•,•
r . Again we’ll

use the one to one correspondence of `, r, g to i, S, T .

4.2.3. The Study of E2 terms. By §4.2.1, we know that

Ep,q1 (K•,•
r ) =

⊕
|Tg|=−p

⊕
g|g′

Hq(Gr, Lr(g′, g)).

Now let’s consider the induced differential d̄r of dr in the E1 term. As we know in

§2.4.2, dr = d1r + d2r, we can write d̄r = d̄1r + d̄2r. We first look at d̄2r, which is

induced by the map

Lr(g′, g) −→
⊕
`|g

Lr(g′, g/`),

[a, g] 7−→
∑
`|g

ω(`, g)(1− Fr−1
` )[a, g/`].

Since for any ` | g, Lr(g′, g) and Lr(g′, g/`) are Gr-isomorphic by the map ϕ` given

in §2.4.2, and since for any q ≥ 0, Hq(G,A) is a trivial G-module, we have

d̄2r =
∑
`|g

ω(`, g)(1− Fr−1
` )ϕ̄` = 0.
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The map d̄1r is induced by the map

Lr(g′, g) −→
⊕
`|g

Lr(g′/`, g/`),

[a, g] 7−→ −
∑
`|g

ω(`, g)N`[Fr−1
` a+

1
`
, g/`].

For any ` | g, consider the map

ψ` : Lr(g′, g) −→ Lr(g′/`, g/`),

[a, g] 7−→ N`[Fr−1
` a+

1
`
, g/`].

The map ψ` is a Gr-homomorphism and therefore induces a map in Gr-cohomology:

Hq(ψ`) : Hq(Gr, Lr(g′, g))→ Hq(Gr, Lr(g′/`, g/`)).

We have the commutative diagram:

Lr(g′, g)
ψ`−−−−→ Lr(g′/`, g/`)yθg′

yθg′/`

Z res−−−−→ Z

where the top row are Gr-modules, the left Z is a trivial Gg′ -module, the right Z is

a trivial Gg′/`-module, and θg′ is the homomorphism sending [ g
′

r , g] to 1 and [xg
′

r , g]

to 0 if x 6= 1. Then the above diagram induces the following commutative diagram:

Hq(Gr, Lr(g′, g))
Hq(ψ`)−−−−−→ Hq(Gr, Lr(g′/`, g/`))yθ∗g′ yθ∗g′/`

Hq(Gg′ ,Z) res−−−−→ Hq(Gg′/`,Z)

where θ∗g′(and θ∗g′/`) is the isomorphism given by Shapiro’s lemma(See Serre [32],

Chap. VII, §5, Exercise). We identify Hq(Gr, Lr(g′, g)) with Hq(Gg′ ,Z), more-

over, to keep track of g, we’ll write Hq(Gg′ ,Z) as Hq(Gg′,g,Z). Then we see that

Hq(ψ`) is the restriction map from Hq(Gg′,g,Z) to Hq(Gg′/`,g/`,Z). The induced

differential d̄r = d̄1r is exactly the map

Hq(Gg′,g,Z) −→
⊕
`|g

Hq(Gg′/`,g/`,Z),

x 7−→ −
∑
`|g

ω(`, g)x`.
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where x` is the restriction of x inHq(Gg′/`,g/`,Z). Hence we have a cochain complex

C(q; r, g)

Hq(Gr,g,Z) d̄1r−→
⊕
`|g

Hq(Gr/`,g/`,Z) · · · d̄1r−→Hq(Gr/g,1,Z) −→ 0

Note that the complex E•,q1 (K•,•
r ) is just the direct sum of C(q; r, g) over all factors

g of r. Moreover, the complex E•,q1 (K•,•
r )(I) is the direct sum of C(q; r, g) over all

g ∈ I.

Recall in Proposition 4.1.3, we obtained

Hq(Gg,Z) =
⊕
h|g2∞

Aqh.

If we let

Aqg = Hq(Gg,Z), Bqg =
⊕
h|g2∞
h̄=g

Aqh.

then we have Aqg =
⊕

g′′|g B
q
g′′ . The complex C(q; r, g)[−|Tg| ]satisfies the conditions

in Lemma 4.2.2, thus the n-th cohomology of the cochain complex C(q; r, g) is 0 if

n 6= −|Tg| and
∑
g|g′

Bg′ if n = −|Tg|. We have the following proposition:

Proposition 4.2.3. One has

1). Ep,q2 (K•,•
r ) ∼=

⊕
|Tg|=−p

⊕
g|h|r2∞

Aqh.

2). Ep,q2 (K•,•
r (I)) ∼=

⊕
|Tg|=−p
g∈I

⊕
g|h|r2∞

Aqh.

4.2.4. Proof of Theorem A. Finally we are in a position to prove the main

theorem(Theorem A) in this paper. Put

S•,•r =< [a, g, h] ∈ K•,•
r , a 6= 0 if g | h > .

It is easy to verify that S•,•r is a subcomplex of K•,•
r using the explicit formulas for

d and δ given in §4.2.1. Set

Q•,•
r = K•,•

r /S•,•r =< [0, g, h] : g | h > .

Note that the differential of Q•,•
r induced by dr is 0. Moreover, set

S•,•r (I) := K•,•
r (I) ∩ S•,•r ,
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and

Q•,•(I)r := K•,•
r (I)/S•,•r (I) =< [0, g, h] : g ∈ I, g | h > .

Let f be the corresponding quotient map, then we have a commutative diagram:

K•,•
r (I) inc−−−−→ K•,•

ryf yf
Q•,•
r (I) inc−−−−→ Q•,•

r

We make the following claim

Proposition 4.2.4. The quotient map f : K•,•
r → Q•,•

r is a quasi-isomorphism.

Moreover, the quotient map f : K•,•
r (I)→ Q•,•

r (I) is a quasi-isomorphism.

Proof. Let

L•g :=< [0, g, h] : h | r∞ >= HomGr (Pr•, Lr(r, g)) ⊆ K•,•
r

and let

L
′•
g :=< [0, g, h] : g | h >, L

′′•
g :=< [0, g, h] : g - h >

Through the map Lr(r, g)→ Z, [0, g] 7→ 1, we have a commutative diagram

L•g L
′•
g

⊕
L
′′•
gy y y

C•
⊕

g|h|r2∞
C•
h

⊕ ⊕
g-h|r2∞

C•
h

where C• and C•
h are those C• and C•

e given in Proposition 4.1.3. By this diagram,

we identify L•g with C•. By Proposition 4.1.3, we have

ker(H∗(Gr,Z)→ H∗(Gr/`,Z)) = H∗(
⊕

`|h|r2∞
C•
h).

Then by the proof of Proposition 4.2.3,

ker(d̄|Hq(L•
g)) =

⋂
`|g

ker(H∗(Gr, Lr(r, g))→ H∗(Gr, Lr(r/`, g/`)))

=
⋂
`|g

H∗(
⊕

`|h|r2∞
C•
h) = H∗(

⋂
`|g

⊕
`|h|r2∞

C•
h)

=H∗(
⊕

g|h|r2∞
C•
h) = H∗(L

′•
g )
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where the second and the last identifications are made using the isomorphisms given

in the commutative diagram above. Hence we have

Ep,q2 (K•,•
r ) =

⊕
|Tg|=−p

ker(d̄r|Hq(L•
g)) =

⊕
|Tg|=−p

Hq(L
′•
g ).

On the other hand,

Q•,•
r =

⊕
g|r

L
′•
g .

Since dr = 0 in Q•,•
r , the spectral sequence of Q•,•

r by the first filtration(i.e., by dr)

degenerates at E1. We have

Ep,q1 (Q•,•
r ) = Ep,q2 (Q•,•

r ) =
⊕

|Tg|=−p

Hq(L
′•
g ).

Since the projection map from L•g to L
′•
g in the commutative diagram above is

nothing but the restriction of the quotient map f at L•g, by the above analysis, we

get an isomorphism

f2 : Ep,q2 (K•,•
r ) −→ Ep,q2 (Q•,•

r ).

Thus the spectral sequences of K•,•
r and Q•,•

r are isomorphic at Er for r ≥ 2.

In our case, the first filtration is finite, by Theorem 2.5.5, therefore f is a quasi-

isomorphism .

The case I is similar. In this case,

Ep,q2 (K•,•
r )(I) =

⊕
g∈I

|Tg|=−p

ker(d̄r|Hq(L•
g)) =

⊕
|Tg|=−p

Hq(L
′•
g ),

and

Q•,•
r (I) =

⊕
g∈I

L
′•
g .

Now follow the same analysis as above. �

For any factor g of r, set

H∗
g (Gr,Z) :=

⋂
`|g

ker(H∗(Gr,Z)→ H∗(Gr/`,Z))

we see that

H∗(L
′•
g ) ∼= H∗

g (Gr,Z)

by the identification of L•g and C•. The following theorem is the main result in the

thesis:
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Theorem A . (1). The cohomology group H∗(Gr, Ur) is given by

H∗(Gr, Ur) =
⊕
g|r

H∗
g (Gr,Z)[ |Tg| ] =

⊕
g|r

⊕
g|h|r2∞

Ah[ |Tg| ].

where Ah[ |Tg| ] represents the cohomology group H∗(C•
h[ |Tg| ]). More specifically,

we have

Hn(Gr, Ur) =
⊕
g|r

Hn+|Tg|
g (Gr,Z).

(2). The cohomology group H∗(Gr, Ur(I)) is given by

H∗(Gr, Ur(I)) =
⊕
g∈I

H∗
g (Gr,Z)[ |Tg| ] =

⊕
g∈I

⊕
g|h|r2∞

Ah[ |Tg| ].

More specifically, we have

Hn(Gr, Ur(I)) =
⊕
g∈I

Hn+|Tg|
g (Gr,Z).

Proof. We only prove (1). The proof of (2) follows the same route. By

Proposition 4.2.1 and Proposition 4.2.4, we know that

H∗(Gr, Ur) = H∗
total(K

•
r) = H∗

total(Q
•
r).

Now

Hn
total(Q

•) =
⊕
g|r

Hn+|Tg|(L
′•
g ).

Part 1) follows immediately. �

Remark 4.2.5. 1). We can see that Part (1) is actually a special case of Part

(2) when the order ideal I is Divr.

2). By Theorem A, in the case n = 0, we have

H0(Gr, Ur) = Z;

in the case n = 1, we have

H1(Gr, Ur) =
∏
g|r

Z/mgZ.

It is likely that the cohomology classes in H1(Gr, Ur) have a natural role to play

in the cyclotomic Euler system method, but this role has not yet been worked out

in detail.

In the case Z/MZ, we have



4.2. STUDY OF H∗(Gr, Ur) 63

Theorem 4.2.6. There exists a family

{cg,h ∈ H∗(Gr, Ur/MUr) : g | r, h | r∞, g | h}

with the following properties:

(1). For each n ∈ Z≥0, the subfamily

{cg,h : g | r, h | r∞, g | h,deg h = n+ |Tg|}

is a Z/MZ-basis for Hn(Gr, Ur/MUr).

(2). For any order ideal I of r, let Ur(I) =
∑
g∈I Ug. By the inclusion Ur(I) ↪→

Ur, H∗(Gr, Ur(I)/MUr(I)) can be considered as a submodule of H∗(Gr, Ur/Mr).

Furthermore, the subfamily

{cg,h : g ∈ I, h | r∞, g|h}

is a Z/MZ basis for H∗(Gr, Ur(I)/MUr(I)).

(3). One has cup product structure

[h′] ∪ cg,h = (−1)ω(h′,h)
∏

v`i
(hh′)≡1(2)

(
`i − 1

2

)
cg,hh′

for all h, h′ | r∞ and g | h.

Proof. 1). By Proposition 4.2.4, we have induced quasi-isomorphism:

f ⊗ 1 : K•,•
r,M −→ Q•,•

r,M

Now since the induced differentials of dr and δ in Q•,•
r,M are 0. Consider the cocycle

[0, g, h] in Q•,•
r,M , there exists a cocycle Cg,h(unique modulo boundary) which is the

lifting of [0, g, h] by the quotient map f ⊗ 1. Hence u(Cg,h) ⊗ 1 is a cocycle in

the complex U•
r,M . Let cg,h denote the cohomology element in H∗(Gr, Ur/MUr)

represented by the cocycle u(Cg,h)⊗1. Then {cg,h : g | h} is a canonical Z/MZ-basis

for the cohomology group H∗(Gr, Ur/MUr). This finishes the proof of (1).

(2). Similar to (1), just consider the map f ⊗ 1 : K•,•
r,M (I)→ Q•,•

r,M (I).

(3). For the cup product, there is natural homomorphism

Z/MZ⊗ Ur/MUr −→ Ur/MUr,
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therefore H∗(Gr, Ur/MUr)(and also H∗(Gr, Ur(I)/MUr(I)) has a natural

H∗(Gr,Z/MZ)-module structure. By the theory of spectral sequences(see, for ex-

ample Brown [4], Chap. 7, §5), we have the cochain cup product

C•
r,M ⊗K•,•

r,M −→ K•,•
r,M .

By using the diagonal map Φr defined in §4.1, it is easy to check that:

C•
r,M ⊗ S•,•r,M ⊆ S•,•r,M ,

hence we can pass the cup product structure to the quotient and have

C•
r,M ⊗Q•,•

r,M −→ Q•,•
r,M .

Now (3) follows immediately from the explicit expression of Φr. This concludes the

proof. �

4.3. Explicit basis of H0(Gr, Ur/MUr)

In §4.2, we obtained a canonical basis {cg,h : h | r∞, g | h} for the cohomology

group H∗(Gr, Ur/MUr). However, little is known yet for the explicit expression

of the cocycle cg,h in the complex HomGr
(P•, Ur/MUr), which makes it necessary

to study how to lift the cocycle [0, g, h] in Q•,•
r,M to the cocycle Cg,h in K•,•

r,M .

Unfortunately, we are unable to get a complete answer for this problem in this

paper. We obtain a partial solution in the 0-cocycles case, however, which is enough

for us to prove Theorem B.

4.3.1. The triple complex structure of Kr. Recall from §2.4.3, L has a

double complex structure, therefore we can make Kr a triple complex. Set

Kp1,p2,q := HomGr
(P•, L

p1,p2) = 〈[a, g, h] : [a, g] ∈ Lp1,p2 ,deg h = q〉

with the differentials (d1r, d2r, δ) given by

d1r[a, g, h] = −
∑
`|g

ω(`, g)N`[Fr−1
` a+

1
`
, g/`, h],

d2[a, g, h] =
∑
`|g

ω(`, g)(1− Fr−1
` )[a, g/`, h],
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and δ as given in the double complex K•,•
r . In this setup, we see that Kr(I) becomes

a triple subcomplex of Kr, moreover

Kr(n) =
⊕

p2≥s−n

Kp1,p2,q.

Correspondingly, we have triple complex structures on Kr,M , Kr,M (I) and Kr,M (n).

This triple complex structure enables us to construct different double complex struc-

tures in Kr and Kr,M . By studying those double complexes, we can gather more

information about Kr. This method will be illustrated in the next subsection.

4.3.2. The double complex (K•,p2,•
r,M , d1, δ). For fixed p2, let

K•,p2,•
r,M =

⊕
p1,q

Kp1,p2,q
r,M ,

with differentials d1 and δ, then we get a double complex (K•,p2,•
r,M ; d1, δ). Similarly,

we can get the double complex (K•,•
r,M ; d1 + δ, d2) whose (p1 + q, p2)-component

is
⊕
Kp1,p2,q
r,M . As before, for any I, we have double complexes K•,p2,•

r,M (I) and⊕
Kp1,p2,q
r,M (I) which are subcomplexes of K•,p2,•

r,M and
⊕
Kp1,p2,q
r,M respectively. First

we have

Proposition 4.3.1. (1). H∗
total(K

•,p2,•
r,M ; d1, δ) is a free Z/MZ-module gener-

ated by cocycles C ′g,h with leading term [0, g, h] and the remainder with q-degree less

than deg h over all pairs (g, h) satisfying |Tg| = s− p2 and g | h.

(2). Moreover, H∗
total(K

•,p2,•
r,M (I); d1, δ) is a free Z/MZ-module generated by

cocycles C ′g,h with leading term [0, g, h] and the remainder with q-degree less than

deg e over all pairs (g, h) satisfying g ∈ I, |Tg| = s− p2 and g | h.

Proof. We only prove (1). The proof of (2) is similar. First look at the

spectral sequence of K•,p2,•
r,M with the second filtration(i.e., the filtration given by

δ), then

Ep1,q1 (K•,p2,•
r,M ) = Hq(Gr, Lp1,p2).

Next for the differential d1r induced on E1, with the same analysis as in computing

the E2 terms of (K; d, δ)(see §4.2, Proposition 4.2.3), we have

Ep1,q2 (K•,p2,•
r,M ) =


⊕

|Tg|=s−p2

⊕
h: deg h=q

g|h

Z/MZ, if p1 = −s;

0, if p1 6= −s.
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Furthermore, let (Q•,p2,•
r,M ; 0, 0) be the double complex generated by all symbols

[0, g, h] satisfying |Tg| = s − p2 and g | h, which can be considered as a quotient

complex of K•,p2,•
r,M . As in the proof of Theorem A, the quotient map induces an

isomorphism between cohomology groups. Let C ′g,h be a cocycle in K•,p2,•
r,M with

image [0, g, h] in the quotient Q•,p2,•
r,M . Then C ′g,h is the sum of a leading term

[0, g, h] and a remainder contained in the direct sum of Kp′1,p2,q
′

where q′ < deg h

and p′1 + q′ = deg h− s. �

Proposition 4.3.2. The spectral sequence of the double complex (K•,•
r,M ; d1 +

δ, d2) with the first filtration, degenerates at E1. The spectral sequence of the double

complex (K•,•
r,M (I); d1 + δ, d2) with the first filtration, degenerates at E1.

Proof. We only prove the first part. The E1-terms of the spectral sequence

are

Ep1+q,p21 (K•,•
r,M ) = Hp1+q

total (K
•,p2,•
r,M ; d1, δ).

Note that |Ep,q1 | ≥ |E
p,q
2 | ≥ · · · ≥ |Ep,q∞ | in general for any spectral sequence, then

|
⊕

p1+p2+q=n

Hp1+q
total (K

•,p2,•
r,M ; d1, δ)| ≥ |Hn

total(K
•,•
r,M , d+ δ)|.

By Theorem A and Proposition 4.3.1, the left hand side and the right hand side

of the above inequality have the same number of elements, hence the inequality is

actually an identity. Therefore, the spectral sequence of K•,•
r,M with filtration given

by p1 + q degenerates at E1. �

The advantage of studying the triple complex structure of the complex Kr,M

is that we can obtain the (−p2)-cocycles of K•,p2,•
r,M rather quickly. Note that

(1− σ`)D` = N` (mod M).

Now for the (−p2)-cocycles C ′g,h, the pair (T, h) must satisfy deg h = |Tg| and

therefore g = h. In this case, for any ` | g, we always have

ω(`, g) = (−1)v`(ω(g)).

First

δ[0, g, g] = 0, d1[0, g, g] = −
∑
`|g

ω(`, g)N`[
g/`

`
, g/`, g],
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then

δ(
∑
`|g

D`[
g/`

`
, g/`, g/`]) = (−1)|Tg|d1[0, g, g],

Continue this procedure, we have

C ′g,g =
∑
g′|g

(−1)|Tg′ |(2|Tg|−|Tg′ |−1)/2Dg′ [
∑
`|g′

g/g′

`
, g/g′, g/g′].

Apparently, we see that if g ∈ I, then the cocycles C ′g,g are all contained in the

subcomplex K•,p2,•
r,M (I). Combining the above results, we have

Proposition 4.3.3. 1). The canonical basis {C ′g,g : |Tg| = s − p2} of the

Z/MZ-module H(−p2)(K•,p2,•
r,M ) is given by

C ′g,g =
∑
g′|g

(−1)|Tg′ |(2|Tg|−|Tg′ |−1)/2Dg′ [
∑
`|g′

g/g′

`
, g/g′, g/g′].

2). If we restrict our attention in the subcomplex K•,p2,•
r,M (I), then the Z/MZ-

module H(−p2)(K•,p2,•
r,M (I)) has a canonical basis {C ′g,g : |Tg| = s− p2, g ∈ I}.

4.3.3. Proof of Theorem B. In this subsection, we prove

Theorem B . The image of the familyDr′

∑
`|r′

1
`

 : ∀ r′|r


in Ur/MUr is a Z/MZ-basis for H0(Gr, Ur/MUr).

Proof. First we claim that

Dg[
∑
`i|g

1
`
] ∈ H0(Gr, Ur/MUr) = (Ur/MUr)Gr .

We prove it by induction on g. For g = `, it is easy to see that (1 − σ`)D`[ 1` ] = 0

for all ` | r. Now in general, for any `j | g,

(1− σ`j )Dg[
∑
`|g

1
`
] = (Fr`j − 1)Dg/`j [

∑
`|(g/`j)

1
`
]

which is 0 by induction, for `j - g, it is obviously 0. Hence the claim holds.

Now we consider the double complex (K•,•
r,M , d1 + δ, d2). By Proposition 4.3.2,

we know that (K•,•
r,M , d1 +δ, d2) degenerates at E1 for the first filtration. By Propo-

sition 4.3.3, E−p2,p21 (K•,•
r,M ) is generated by {C ′g,g : |Tg| = s − p2}. We plan to lift
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C ′g,g to a 0-cocycle in K•,•
r,M , which is guaranteed by the degeneration at E1. More-

over, we can study the lifting C ′g,g in K•,•
r,M (g). Therefore there exists a cocycle C̃g,g

in K•,•
r,M (g) with the leading term C ′g,g and the remainder contained in the direct

sum of Kp′1,p
′
2,q

′

r,M (g) where p′1 + p′2 + q′ = 0 and p′2 > p2. Hence the image u(C̃g,g) is

exactly of the form

±Dg[
∑
`|g

1
`
] +Re(g),

where Re(g) is of the form

Re(g) =
∑

ord(a)|g
ord(a) 6=g

na[a].

Both u(C̃g,g) and Dg[
∑
`|g

1
` ] are 0-cocycles of Ur/MUr, and hence is Re(g).

In order to prove Theorem B, it is sufficient to prove

(∗) : Re(g) = linear combination of Dg′ [
∑
`|g′

1
`
] for g′ | g, g′ 6= g.

We show (∗) by induction on g. If g = `, this is trivial. Now in general, without

loss of generality, we may assume that g = r and for any g′ | r, Re(g′) is a

linear combination of Dg′′ [
∑
`|g′′

1
` ] for g′′ | g′ but g′′ 6= g. Then u(C̃g′,g′) for any

g′ | r, g′ 6= r is a linear combination of Dg′′ [
∑
`|g′′

1
`i

] with g′′ | g′. By Proposition 4.2.1,

Proposition 4.3.2 and Theorem A, H0(Gr, Ur(s − 1)/MUr(s − 1)) is generated

by {u(C̃g′,g′) : g′ | r, g′ 6= r} and hence by Dg′ [
∑
`|g′

1
` ]. But obviously Re(r) ∈

Ur(s− 1)/MUr(s− 1), so (∗) holds for Re(r). Theorem B is proved. �

Remark 4.3.4. One natural question to ask is if the bases of H0(Gr, Ur/MUr)

obtained in Theorem 4.2.6 and in Theorem B are the same. Unfortunately, they

are not the same even in the case |Tr| = 3. Right now, we don’t know too much

about the explicit expression of the cocycles cg,h. A deep understanding of those

cocycles might tell us more about the arithmetic of the cyclotomic fields.



CHAPTER 5

Connections with the Euler System

In this chapter, we give a brief introduction to the cyclotomic Euler system.

We then discuss possible connections of the group cohomology of the universal

distribution and the Euler system. Though the connections are still not fully un-

derstood, our investigation shows hope for future progress. We include the study

we have done so far, and some problems for further investigation. In this chapter,

for any Z[G]-module A and any element α ∈ Z[G], we denote by αA the submodule

{a ∈ A : αa = 0} and denote by Aα the quotient module A/αA.

5.1. The cyclotomic Euler system

Fix a positive integer m, and let F = Q(µm)+. For any r ∈ N , (r,m) = 1,

write Fr = F(µr) and Or = OF(µr) (note that this notation is different than the one

in Chapter 3). We identify Gr with the Galois group of F(µr)/F. Let S be the set

of positive squarefree integers divisible only by primes in Q splitting completely in

F/Q. Let s be the supernatural number attached to S. We can define µs and Gs

correspondingly.

The cyclotomic Euler system, briefly to say, is a system of the elements

{ξr ∈ Or\{0} : r ∈ N, r | s}

satisfying the following two axioms:

(1). N`ξr = (Fr` − 1)ξr/`.

(2). ξr ≡ ξr/` modulo every prime above `.

Given a Euler system {ξr : r | s}, there exists a unique Gs-homomorphism ξ

ξ : Us −→ F×s

satisfying

ξ
(
[
∑
`|r

1
`
]
)

= ξr.

69
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Remark 5.1.1. If we let ξ be the map given in Example 2.1.7 of §2.1, one

can see that the associated Euler system is the one given by Rubin [26]. Thus Us

plays a role here similar to that played by the universal Euler system defined in

Rubin [28].

Now we make the simplifying assumption that ξr ∈ O×r for all r(this assumption

is not as bad as it looks, in application, we can always modify a given Euler system

to satisfy this assumption). Now for any r | s, passing the map ξ to the Gr-

cohomology, we have

H∗(ξ) : H∗(Gr, Ur) −→ H∗(Gr,O×r ).

Fix an odd positive integer M . Let

SM = {r ∈ S : r is divisible only by primes ≡ 1 mod M}

and let m be the supernatural number attached to SM . Hereafter we suppose that

r | m. Then the map

Ur
ξ−→ O×r ↪→ F×r

induces a map

κ : H0(Gr, Ur/MUr) −→ H0(Gr,F×r /F×Mr ).

From Theorem B, we know that H0(Gr, Ur/MUr) has a Z/MZ-basis{
Dr′

[ ∑
`|r′

1
`

]
: r′ | r

}
,

therefore the images Dr′ξr′ in F×r /F×Mr are invariant by Gr.

Furthermore, since Fr doesn’t contain any M -th root of unity, we have an exact

sequence

0 −→ F×r
×M−→ F×r −→ F×r /F×Mr −→ 0

Passing to the Gr-cohomology, since

H0(Gr,F×r ) = F×, H1(Gr,F×r ) = 0(by Theorem 90),

we have an exact sequence

0 −→ F× ×M−→ F× −→ H0(Gr,F×r /F×Mr ) −→ 0.
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Thus H0(Gr,F×r /F×Mr ) = F×/F×M . For any r′ | r, we denote by κ(r′) the image

of Dr′ξr′ in F×/F×M . Note that κ(r′) is independent the choice of r. The elements

κ(r) for r ∈ SM are called Kolyvagin’s derivative classes.

Fix a prime λ of F above ` and a primitive root s modulo `. Then s is also a

primitive root modulo σλ for each σ ∈ Gal(F/Q). Now for any x ∈ F× which is

prime to `, define ϕσ(x) ∈ Z/(`− 1)Z by

x ≡ sϕσ(x) (mod σλ).

For any x ∈ F×, denote by vλ(x) the λ-valuation of x. The following proposition

tells us about the `-part prime factorization of κ(r):

Proposition 5.1.2 (Proposition 2.4, Rubin [26]). One has

(1). If ` - r, then vσλ(κ(r)) = 0 for every σ ∈ Gal(F/Q).

(2). If ` | r, then vσλ(κ(r)) = ϕσλ(κ(r/`)) for every σ ∈ Gal(F/Q).

In application, Proposition 5.1.2(especially the second relation) is the most

important fact about the Kolyvagin classes κ(r). Combining with Chebatarev’s

density theorem, Rubin [27] gave an elegant proof of the Main Conjecture over

Q in Iwasawa theory. Moreover, in [25], Rubin proved the Main Conjecture over

imaginary quadratic fields using second dimensional analogous Kolyvagin classes.

As known from above, the κ(r)’s are the images of cocycles in H0(Gr, Ur/MUr),

thus if we can recover the above relations in the group cohomology of Ur, it might

facilitate the study of the Euler systems. Our goal in this chapter is to find a way

to write down the relations in Proposition 5.1.2 using cohomological language.

5.2. Investigation of connections

5.2.1. The cohomology group H∗(G`, Ur). We keep the assumptions of

Chapter 4. For a given prime ` | r, we discuss the cohomology group H∗(G`, Ur).

In this case, since G` = 〈σ`〉 is cyclic, we choose the projective resolution P`• of

trivial G`-module Z as

· · · −→ Z[G`]
2

N`−→ Z[G`]
1

1−σ`−→ Z[G`]
0
−→ 0.

We also have an acyclic complete complex P̂`•

· · · −→ Z[G`]
1

1−σ`−→ Z[G`]
0

N`−→ Z[G`]
−1
−→ · · ·
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Thus the double complex K•,• = HomG`
(P`•, L

•
r) has total cohomology group

H∗(G`, Ur), and the double complex K̂•,• = HomG`
(P̂`•, L

•
r) has total cohomology

Ĥ∗(G`, Ur). We consider the latter one. Follow the setup in Chapter 4, then

K̂p,q = 〈[a, g, q] : a ∈ g

r
Z/Z, g squarefree | r, |Tg| = −p〉

and the differentials induced are

dr[a, g, q] =
∑
`′|g

ω(`′, g)
(
[a,

g

`′
, q]−

∑
`′b=a

[b,
g

`′
, q]

)

δ`[a, g, q] = (−1)q−1 ·

N`[a, g, q], if q ≡ 1 mod 2;

(1− σ`)[a, g, q], if q ≡ 0 mod 2.

For the second filtration, then we have

Ep,q1 (K̂•,•) = Ĥq(G`, Lpr).

Now let’s look the G`-module Lpr , we have an isomorphism of G`-modules(recall

the definition in §2.3)

Lpr
∼= Lpr/`

⊕
Lpr,r/`

[a, g] 7→

([a, g/`], 0), if ` | g;

(0, [a, g]), if ` - g.

The module Lpr/` is a direct sum of trivial G`-module Z, therefore

Ĥq(G`, L
p
r/`) =

0, if q ≡ 1 mod 2;

Lpr/`/(`− 1)Lpr/`, if q ≡ 0 mod 2.

The module Lpr,r/`, however, has the following structure

Lpr,r/`
∼= Lpr/`

⊕
IndG`

{1} L
p
r/`

[a, g] 7→

([a, g], 0), if ` - ord a;

(0, [a, g]), if ` | ord a.

The induced module IndG`

{1} L
p
r/` has trivial Tate cohomology, thus Ĥq(G`, L

p
r,r/`)

is 0 if q is odd and is another copy of Lpr/`/(`− 1)Lpr/` if q is even.
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Look at the subcomplex S•,• of K̂•,• given by

Sp,q =

K
p,q, if q ≡ 1 mod 2;

(`− 1)〈[a, g, q] : ` - ord a〉
⊕
〈[a, g, q] : ` | ord a〉, if q ≡ 0 mod 2.

The above consideration shows that S•,• is acyclic and E•,•1 (K̂•,•) is the quotient

complex with the differentials (d̄r, 0) induced by (dr, δ`). Hence the quotient map

from K̂•,• to Ep,q1 (K̂•,•) is a quasi-isomorphism. Therefore this spectral sequence

degenerates at E2. Now we compute the E2-terms.

We only need to consider the case q even. Then the complex E•,q1 (K̂•,•) is

isomorphic to a free graded Z/(`− 1)Z-module E• with a basis given by

{[a, g] : ` - ord a},

and with the differential given by

dr1[a, g] =
∑
`′|g
`′ 6=`

ω(`′, g)
(
[a,

g

`′
]−

∑
`′b=a

[b,
g

`′
]
)

+ ω(`, g)(1− Fr−1
` )[a,

g

`
]

=dr/`[a, g] + d′`[a, g]

where d′`[a, g] = ω(`, g)(1− Fr−1
` )[a, g/`′]. We check that

d2
r/` = d

′ 2
` = dr/`d

′
` + d′`dr/` = 0.

This gives us hints that the complex E• might possess a double complex structure.

For any symbol [a, g] in Ep,q1 (K̂•,q) , we declare [a, g] is of bidegree (m,n) where

m = −|{`′ : `′ | gcd(g, r/`)}|, n = −|{`′ : `′ | gcd(g, `}|.

With this bigrading, the complex E• indeed becomes a double complex E•,• with

differentials dr/` and d′`. Actually one can see E•,• is nothing but the mapping

cone defined by the map

1− Fr−1
` :

Lpr/`

`− 1
−→

Lpr/`

`− 1
.

By studying the first filtration of E•,•, the spectral sequence collapses at E2 and

Em,n2 (E•,•) =


coker(1− Fr−1

` : Ur/`/(`− 1)→ Ur/`/(`− 1)), if m = 0, n = 0;

ker(1− Fr−1
` : Ur/`/(`− 1)→ Ur/`/(`− 1)), if m = 0, n = −1;

0, if otherwise.



5.2. INVESTIGATION OF CONNECTIONS 74

Thus for q even,

Ep,q2 (K̂•,•) =


coker(1− Fr−1

` : Ur/`/(`− 1)→ Ur/`/(`− 1)), if p = 0;

ker(1− Fr−1
` : Ur/`/(`− 1)→ Ur/`/(`− 1)), if p = −1;

0, if otherwise.

Since this spectral sequences collapses at E2, we have the following proposition

Proposition 5.2.1.

Ĥq(G`, Ur) =

coker(1− Fr−1
` : Ur/`/(`− 1)→ Ur/`/(`− 1)), if q ≡ 0 mod 2;

ker(1− Fr−1
` : Ur/`/(`− 1)→ Ur/`/(`− 1)), if q ≡ 1 mod 2.

5.2.2. More on the prime factorization. Let Pr(resp. P ) be the group

generated by principal fractional ideals of Fr (resp. F). Let Ir(resp. I) be the

group generated by fractional ideals of Fr (resp. F). Consider the exact sequence

0 −→ O×r −→ F×r −→ Pr −→ 0.

Passing to the Gr-cohomology, we have

H1(Gr,O×r ) ∼=
PGr
r

P
.

Thus we have

H0(Gr, Ur/MUr)
Bock−→ MH

1(Gr, Ur)
H1(ξ)−→ MH

1(Gr,O×r )∼=M

(PGr
r

P

)
,

where “Bock” abbreviate Bockstein. Therefore we have a map

val : H0(Gr, Ur/MUr) −→ M

(PGr
r

P

)
−→ M

(IGr
r

I

)
×M−→ I

MI
.

We can show that the map val gives the same information about the prime factor-

ization of κ(r) as the valuation maps vσλ give. Hence the map

H1(ξ) : H1(Gr, Ur) −→
PGr
r

P

contains all the information we want for prime factorizations. Since our goal is to

recover Proposition 5.1.2, we also need to interpret the map ϕ` in the cohomological

level. We speculate that we need a map from H1(Gr, Ur) to H1(Gr/`, Ur/`).
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5.2.3. Two maps ρ and ρ′. First we regard G` as a subgroup of Gr, and

regard Gr/` as the quotient group. Then Hochschild-Serre spectral sequences give

the following exact sequence

0 −→ H1(Gr/`, UG`
r ) −→ H1(Gr, Ur) −→ H1(G`, Ur)Gr/` −→ H2(Gr/`, UG`

r )

By Proposition 5.2.1, we know that

H1(G`, Ur) = ker(1− Fr−1
` : Ur/`/(`− 1)→ Ur/`/(`− 1)).

Thus we have a map

ρ : H1(Gr, Ur)→ H1(G`, Ur)Gr/` ↪→ H0(Gr/`, Ur/`/(`− 1))→ H1(Gr/`, Ur/`).

Since

Ur/` ↪→ UG`
r ↪→ Ur,

we have

ι : H1(Gr/`, Ur/`) −→ H1(Gr/`, UG`
r ) ↪→ H1(Gr.Ur).

Let α` = 1− `Fr−1
` , we have a modulo ` map

Ur −→
Ur/`

α`
,

[a] 7−→ [`a].

It is easy to check that the above map is a well-defined Gr-homomorphism. This

modulo ` map thus induces a map

Hi(Gr, Ur) −→ Hi(Gr, Ur/`/α`)

for every i ≥ 0.

Given two finite abelian groups G1 and G2 of order m1 and m2 respectively.

Suppose that G1 is cyclic with a generator τ . Let G = G1 × G2. Let M be a

G-module such that H0(G1,M) = M(i.e., M has trivial G1-module structure). For

any cross homomorphism c : G→M , we have

c(στ) = σc(τ) + c(σ) = τc(σ) + c(τ).

Thus for any σ ∈ G2, we have c(τ) = σc(τ), which is to say that c(τ) ∈ H0(G2,M).

It is clear that c(τ) is independent the choice of c up to the coboundary, thus the

map

c 7−→ c(τ)
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is a well-defined map from H1(G,M) to H0(G2,M).

Now applying the above discussion to the case G1 = G`, G2 = Gr/` and

M = Ur/`/α`, we have a map

ρ′ : H1(Gr, Ur) −→ H1(Gr,
Ur/`

α`
) −→ H0(Gr/`,

Ur/`

α`
) −→ H1(Gr/`, Ur/`)

Problem 5.2.2. What is the relationship between ρ and ρ′? How to describe

images of elements of H1(Gr, Ur) in H1(Gr/`, Ur/`)?
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