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Abstract. We study vectorial functions with maximal number of bent com-
ponents in this paper. We first give a construction of such functions from
known ones, thus obtain two new classes from the Niho class and the Maiorana-
McFarland class. Our construction gives a partial answer to an open prob-
lem proposed by Pott et al., and also solves an open problem proposed by
Mesnager. We then show that the vectorial function F : F22m → F22m ,
x 7→ x2m+1 + x2i+1 has maximal number of bent components if and only if
i = 0.
Keywords Vectorial bent functions, Vectorial functions, Bent components,
Niho quadratic function, Maiorana-McFarland class.

1. Introduction

Bent functions, as a special class of Boolean functions, were introduced by
Rothaus [1] and have been extensively studied (see [2, 3, 4, 5, 6, 7, 8, 9]) due
to their important applications in cryptography, coding theory and combinatorics.

The bentness of Boolean functions can be extended to a general vectorial function
F : F2n → F2k by requesting all component functions fc(x) = Tr2k/2(cF (x)) (c ∈
F∗
2k) of F to be bent. Nyberg [10] showed that vectorial bent functions can only

exist if n is even and n ≥ 2k, and presented two different constructions of such
functions from known classes of bent functions. The reader can refer to [11, 12,
13, 14, 15, 16, 17, 18] for more constructions of vectorial bent functions. However,
relatively little work was done to construct bent functions from known vectorial
bent functions. In this direction, Mesnager [19] proved the following result:

Theorem. If F : F2n → F2k is a vectorial bent function, and c1, c2, c3 ∈ F∗
2k

satisfying c1+c2+c3 6= 0 and f∗
c1+f∗

c2+f∗
c3 = f∗

c1+c2+c3 , then fc1fc2+fc1fc3+fc2fc3
is bent and its dual is f∗

c1f
∗
c2 + f∗

c1f
∗
c3 + f∗

c2f
∗
c3 .

She raised an open problem to find vectorial bent functions satisfying the above
condition.

Another interesting and important question in studying bentness of vectorial
functions is that how large the number of bent components of a vectorial function
could be. Suppose F : F2n → F2k is a vectorial function. Nyberg’s condition [10]
is equivalent to that the possible maximum 2k − 1 can be attained only if n is
even and k ≤ n

2 . For k ≥ n
2 , Zheng et al. [20] showed that this number is at

2020 Mathematics Subject Classification. 11T71, 94A60.
Corresponding author: Yi Ouyang (yiouyang@ustc.edu.cn).
Partially supported by Innovation Program for Quantum Science and Technology (Grant

No. 2021ZD0302904) and Anhui Initiative in Quantum Information Technologies (Grant No.
AHY150200).

1



2 XIANHONG XIE1, YI OUYANG2,3

most 2k − 2k−
n
2 and presented a class of vectorial functions with 2k − 2k−

n
2 bent

components. The special case k = n was proved by Pott et al. [21], where a class
of binomial functions attaining the upper bound was presented. Further, Pott et
al. [21] raised the following problem:

Problem 1. Determine all linear mappings ℓ(x) over F2n such that the number of
bent components of xℓ(x) is 2n − 2

n
2 .

Let n = k = 2m. There are four known classes of vectorial functions from F2n

to itself with 2n − 2m bent components:
(a) F (x) = x2m+1 ([22]);
(b) F (x) = x2i(x+ x2m) = x2iTr2n/2m(x), 0 ≤ i ≤ n− 1 ([21]);

(c) F (x) = x2i(Tr2n/2m(x) +
ρ∑

j=1

γ(j)Tr2n/2m(x)2
tj
), where γ(j) ∈ F2m , ρ ≤ m

such that
∑ρ

j=1(γ
(j))2

m−tj
z2

k−tj−1+1 6= 0 and
∑ρ

j=1(γ
(j))2

m−j

z2
tj−1+1 6=

0 for any x ∈ F2m ([18]);
(d) F (x) = xh(Tr2n/2m(x)), where h : F2m → F2m is a permutation ([20]).

We note that functions in (a) and (b) are of the form xℓ(x).
We shall work on vectorial functions from F2n to itself with maximal number of

bent components in this paper. Our main contributions are:
(A) We present two new classes of vectorial functions from F2n to itself with

maximal number of bent components via the Niho quadratic function and
the Maiorana–McFarland class. Moreover,

- From the Niho quadratic function, we obtain a new class of quadratic
vectorial functions of the form

F (x) = x2m+1 + u1xTr2n/2(u2x) = xℓ(x),

where u1, u2 ∈ F2n−F2m satisfying u2m

1 u2 ∈ F2m and Tr2m/2(u
2m

1 u2) =
0. This gives a partial answer to Problem 1.

- From the Maiorana–McFarland class, we obtain a family of vectorial
bent functions and find three distinct bent components Gc1 , Gc2 , Gc3

such that G∗
c1 + G∗

c2 + G∗
c3 = G∗

c , where c1, c2, c3 ∈ F∗
2m and c =

c1 + c2 + c3 6= 0, so that the conditions of Mesnager [19] are satisfied.
(B) We prove that the binomial vectorial function F (x) = x2m+1 + x2i+1 (0 ≤

i ≤ m− 1) has 2n − 2m bent components if and only if i = 0.

2. Preliminaries

2.1. Basic Notations. Let n and k be positive integers. For k | n, the trace

function from F2n to its subfield F2k is Tr2n/2k(x) =

n
k −1∑
i=0

x2ki .

For a finite dimensional F2-vector space V , we always fix a non-degenerate inner
product 〈 , 〉 = 〈 , 〉V on V . In particular, if V = Fn

2 , we let

〈(vi), (wi)〉 =
n∑

i=1

viwi;

If V = F2n , let
〈ω, x〉 = Tr2n/2(ωx).



VECTORIAL FUNCTIONS WITH MAXIMAL NUMBER OF BENT COMPONENTS 3

For W a subspace of V , let W⊥ = {v ∈ V, 〈v, w〉 = 0 for all w ∈ W} be the
orthogonal complementary of W , then dimW⊥ = dimV − dimW .

For a vectorial function F : V → W , the component function of F at w ∈ W is
the function Fw : v → F2, v 7→ 〈w,F (v)〉W .

2.2. Bent and vectorial bent functions. We call F : V → F2 a Boolean function
where V is a finite dimensional F2-vector space. In particular, if V = Fn

2 , then F
is represented by a unique reduced polynomial R(X1, X2, · · · , Xn) over F2.

The Walsh transform of F : V → F2 is

WF (w) =
∑
v∈V

(−1)F (v)+⟨w,v⟩, w ∈ V, (1)

its inverse Walsh transform is

(−1)F (v) =
1

2dimV

∑
w∈V

WF (w)(−1)⟨w,v⟩. (2)

In particular, if V = Fn
2 , the Walsh transform of F is

WF (w1, · · · , wn) =
∑

(v1,··· ,vn)∈Fn
2

(−1)
F (v1,··· ,vn)+

n∑
i=1

wivi
, (3)

its inverse Walsh transform is

(−1)F (v1,··· ,vn) =
1

2n

∑
(w1,··· ,wn)∈Fn

2

WF (w1, · · · , wn)(−1)

n∑
i=1

wivi
; (4)

if V = F2n , the Walsh transform of F is

WF (ω) =
∑

x∈F2n

(−1)F (x)+Tr2n/2(ωx), (5)

its inverse Walsh transform is

(−1)F (x) =
1

2n

∑
w∈F2n

WF (w)(−1)Tr2n/2(wx). (6)

Definition 1. A Boolean function F : V → F2 is called bent if WF (w) = ±2
dimV

2

for all w ∈ V .
The dual of a bent function F , denoted as F ∗, is defined via the equality

WF (w) = 2
dimV

2 (−1)F
∗(w).

Lemma 1. A Boolean function F : V → F2 is bent if and only if its first derivative
DaF (v) = F (v + a) + F (v)

in the direction of a is balanced for all 0 6= a ∈ V .

For a vectorial function F : V → W , the Walsh transform WF (a, ) of F is

WF (a, ω) = WFa
(ω) =

∑
v∈V

(−1)Fa(v)+⟨ω,v⟩, a ∈ W − {0}, ω ∈ V.

In particular, if F : F2n → F2k , the Walsh transform WF (a, ω) of F is

WF (a, ω) = WFa
(ω) =

∑
x∈F2n

(−1)Tr2k/2
(aF (x))+Tr2n/2(ωx), a ∈ F∗

2n , ω ∈ F2n ,
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Definition 2. A vectorial Boolean function F : V → W is called bent if WF (a, ω) =

WFa
(ω) = ±2

dimV
2 for any a ∈ W − {0} and ω ∈ V , i.e., its component functions

Fa for all a 6= 0 are bent.

Lemma 2 ([10]). If F : V → W is a vectorial bent function, then dimV is even
and dimW ≤ dimV

2 .

2.3. Bent components.

Proposition 1. Let n = 2m = dimV and F : V → V be a vectorial function. Set
SF := {v ∈ V : Fv is not bent}.

Then
(1) (Pott et al. [21]) |SF | ≥ 2m, and |SF | = 2m if and only if SF is an

m-dimensional F2-subspace of V .
(2) (Hu et al.[22]) Moreover, if V = F2n and |SF | = 2m, then SF = F2m .

3. Construction of Vectorial Functions With Maximum Number of
Bent Components

Assume n = 2m. The main goal of this section is to construct vectorial functions
from V of dimension n to itself with maximal number of bent components.

3.1. A Generic construction. This construction is inspired by recent work of
Mesnager [19] and Tang et al. [3].

Definition 3. Suppose f : V → F2 and {u1, u2, . . . , uk} ⊆ V for 2 ≤ k ≤ n. We
say that (f ;u1, · · · , uk) satisfies Condition A if f(x) is a bent function and

DuiDujf
∗(x) = 0 for all pairs 1 ≤ i < j ≤ k. (7)

Eq. (7) means that f∗(x + ui + uj) = f∗(x + ui) + f∗(x + uj) + f∗(x). By
induction, for any (w1, w2, · · · , wk) ∈ Fk

2 , one has

f∗(x+

k∑
i=1

wiui) = f∗(x) +

k∑
i=1

wiDuif
∗(x). (8)

Theorem 1. Suppose G : V → V , 0 6= β ∈ V , 2 ≤ k ≤ n and {u1, u2, . . . , uk} ⊆ V
such that (Gβ(x);u1, · · · , uk) satisfies Condition A. Then for any reduced polyno-
mial H(X1, · · · , Xk) over F2, the function

Fβ(x) := Gβ(x) +H(〈u1, x〉, · · · , 〈uk, x〉) (9)
is a bent function, whose dual is

F ∗
β (x) = G∗

β(x) +H(Du1
G∗

β(x), · · · , Duk
G∗

β(x)).

Our proof of this theorem is almost identical to that of [3, Theorem 8], which
we include here for completeness.

Proof. Applying the inverse Walsh transform to the Boolean function H : Fk
2 → F2

defined by H(X1, · · · , Xk), we get

(−1)H(X1,X2,··· ,Xk) =
1

2k

∑
(w1,··· ,wk)∈Fk

2

WH(w1, · · · , wk)(−1)
∑k

i=1 wiXi . (10)
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Take Xi = xi = 〈ui, x〉 for 1 ≤ i ≤ k and then multiply both sides of the above
identity by (−1)Gβ(x)+⟨ω,x⟩, note that

∑k
i=1 wixi = 〈

∑k
i=1 wiui, x〉, we get

(−1)Gβ(x)+H(x1,··· ,xk)+⟨ω,x⟩

=
1

2k

∑
(w1,··· ,wk)∈Fk

2

WH(w1, · · · , wk)(−1)
Gβ(x)+⟨ω+

k∑
i=1

wiui,x⟩
,

which leads to
WFβ

(ω) =
∑
x∈V

(−1)Gβ(x)+H(x1,··· ,xk)+⟨ω,x⟩

=
1

2k

∑
x∈V

∑
(w1,··· ,wk)∈Fk

2

WH(w1, · · · , wk)(−1)
Gβ(x)+⟨ω+

k∑
i=1

wiui,x⟩

=
1

2k

∑
(w1,··· ,wk)∈Fk

2

WH(w1, · · · , wk)WGβ
(ω +

k∑
i=1

wiui).

By definition of the dual of a bent function, then

WFβ
(ω) =

2m

2k

∑
(w1,··· ,wk)∈Fk

2

WH(w1, · · · , wk)(−1)
G∗

β(ω+
k∑

i=1
wiui)

=
2m

2k
(−1)G

∗
β(ω)

∑
(w1,··· ,wk)∈Fk

2

WH(w1, · · · , wk)(−1)

k∑
i=1

wiDui
G∗

β(ω)
.

This together with (10) yields

WFβ
(ω) = 2m(−1)G

∗
β(ω)+H(Du1G

∗
β(ω),Du2G

∗
β(ω),··· ,Duk

G∗
β(ω)).

Hence Fβ is bent and
F ∗
β (x) = G∗

β(x) +H(Du1
G∗

β(x), · · · , Duk
G∗

β(x)). □

3.2. Construction via the Niho quadratic function. Take V = F2n with the
inner product given by the trace map. By Proposition 1 and Theorem 1, we have

Theorem 2. Suppose G : F2n → F2n has 2n − 2m bent components. Suppose
2 ≤ k ≤ n and {u1, · · · , uk} ⊆ F2n such that (Gβ(x);u2, · · · , uk) satisfies Condition
A and Dβu1

Duj
G∗

β(x) = 0 for 1 < j ≤ k for all β ∈ F2n − F2m . Then for any
reduced polynomial R(X2, · · · , Xk) over F2, the vectorial function

F (x) := G(x) + u1xR(Tr2n/2(u2x),Tr2n/2(u3x), · · · ,Tr2n/2(ukx)) (11)
has 2n−2m bent components. Furthermore, the component Fβ(x) = Tr2n/2(βF (x))
is bent and its dual

F ∗
β (x) = G∗

β(x) +Dβu1
G∗

β(x)R(Du2
G∗

β(x), · · · , Duk
G∗

β(x)).

Remark 1. (1) Comparing with the constructions in [21, 20], the vectorial function
constructed by Theorem 2 is new and its dual is explicitly given.

(2) Comparing with the constructions presented in [3] and [27], the vectorial func-
tions with maximal number of bent components by our construction can have high
algebraic degrees if we choose the reduced polynomial R with high algebraic degree
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and u1, u2, . . . , uk linearly independent over F2, in this case the algebraic degree of
R(Tr2n/2(u1x), . . . ,Tr2n/2(ukx)) is equal to the algebraic degree of R(X1, . . . , Xk)
(see [3]).

From now on in this subsection, let G(x) = x2m+1. For β ∈ F2n − F2m , let
γ = β + β2m ∈ F∗

2m .

The component function of G at β is the monomial Niho quadratic function
Gβ : x ∈ F2n 7→ Tr2n/2(βx

2m+1). (12)
It is a bent function (see [19]) and its dual G∗

β is given by

G∗
β(x) = Tr2m/2(γ

−1x2m+1) + 1. (13)
To apply Theorem 2, we first show that the function Gβ(x) satisfies Condition

A when u1, u2, · · · , uk are appropriately chosen.

Lemma 3. Suppose β ∈ F2n − F2m , k ≤ m and {u1, u2, · · · , uk} ⊆ F2n such that
Tr2n/2(γ

−1u2m

j ui) = 0 for all 1 ≤ i < j ≤ k. Then (Gβ(x);u1, · · · , uk) satisfies
Condition A and for 1 ≤ j ≤ k,

Duj
G∗

β(x) = Tr2n/2(γ
−1xu2m

j ) + Tr2m/2(γ
−1u2m+1

j ).

Proof. By Eq. (13), the derivative of G∗
β(x) in the direction of uj ∈ F2n is

Duj
G∗

β(x) = Tr2m/2(γ
−1x2m+1) + 1 + Tr2m/2(γ

−1(x+ uj)
2m+1) + 1

= Tr2n/2(γ
−1u2m

j x) + Tr2m/2(γ
−1u2m+1

j ).

Then the second order derivative in the direction of (ui, uj) is
Dui

Duj
G∗

β(x) = Duj
G∗

β(x+ ui) +Duj
G∗

β(x)

= Tr2n/2(γ
−1u2m

j x) + Tr2n/2(γ
−1u2m

j (x+ ui))

= Tr2n/2(γ
−1u2m

j ui) = 0,

with the last equality followed by our assumption. □
By Lemma 3 and Theorem 1, then we have

Theorem 3. Let β ∈ F2n − F2m and Gβ(x) = Tr2n/2(βx
2m+1). If k ≤ m and

{u1, u2, · · · , uk} ⊆ F2n satisfying Tr2n/2(γ
−1u2m

j ui) = 0 for any 1 ≤ i < j ≤ k,
then the function

Fβ(x) := Gβ(x) + Tr2n/2(u1x)R(Tr2n/2(u2x), · · · ,Tr2n/2(ukx)) (14)
where R(X2, · · · , Xn) is any reduced polynomial over F2, is bent and its dual is

F ∗
β (x) = G∗

β(x) +Du1
G∗

β(x)R(Du2
G∗

β(x), · · · , Duk
G∗

β(x)).

Our first construction of vectorial functions with maximal number of bent com-
ponents is the following result:

Theorem 4. Let 3 ≤ k ≤ m and {u1, u2, · · · , uk} ⊆ F2m satisfy Tr2m/2(u1uj) = 0
for j ≥ 2. Then for any reduced polynomial R(X2, · · · , Xk) over F2,

F (x) = x2m+1 + u1xR(Tr2n/2(u2x),Tr2n/2(u3x), · · · ,Tr2n/2(ukx)),

has 2n − 2m bent components. More precisely, for β ∈ F2n − F2m , Fβ is bent and
F ∗
β (x) = G∗

β(x) +Dβu1
G∗

β(x)R(Du2
G∗

β(x), · · · , Duk
G∗

β(x)).
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Proof. Since ui ∈ F2m and Tr2m/2(u1uj) = 0, we have γ−1ujui ∈ F2m ,

Dui
Duj

G∗
β(x) = Tr2n/2(γ

−1ujui) = 0, 2 ≤ i < j ≤ k ≤ m,

and
Dβu1

Duj
G∗

β(x) = Tr2n/2(γ
−1ujβu1) = Tr2m/2(uju1) = 0, 2 ≤ j ≤ k.

Therefore, (gβ(x);βu1, u2, . . . , uk) satisfies A for any β ∈ F2n − F2m . □

Remark 2. In Theorem 4, if we take {ui : 1 ≤ i ≤ m} to be an orthogonal basis of
F2m over F2 under the inner product 〈x, y〉 = Tr2m/2(xy), and take the polynomial
R(X2, . . . , Xm) = X2 · · ·Xm, then the function

F (x) = x2m+1 + u1x

m∏
i=2

Tr2n/2(uix)

has maximal algebraic degree m and maximal number of bent compnents 2n − 2m.

For k = 2, we have the following result.

Theorem 5. Suppose u1, u2 ∈ F2n such that u1u
2m

2 ∈ F2m and Tr2m/2(u1u
2m

2 ) = 0.
Then

F (x) = x2m+1 + u1xTr2n/2(u2x)

has 2n − 2m bent components: for β ∈ F2n − F2m , Fβ is bent and

F ∗
β (x) =Tr2m/2(λ

−1x2m+1) + 1+
(
Tr2n/2(λ

−1(βu1)
2mx) + Tr2m/2(λ

−1(βu1)
2m+1)

)
×
(
Tr2n/2(λ

−1u2m

2 x) + Tr2m/2(λ
−1u2m+1

2 )
)
.

Note that the function F (x) given by Theorem 5 is of the form xℓ(x), thus is a
solution of Problem 1. We now show it is not equivalent to the functions in cases
(a) and (b) in the introduction. Recall for a vectorial function F and a, b ∈ V ,
δF (a, b) := |{x ∈ F2n : F (x+ a) + F (x) = b}|. The differential spectrum of F is

{δF (a, b) : a ∈ F∗
2n , b ∈ F2n}.

It was shown in [23] and [21] respectively that

δx2m+1(a, b) ∈ {0, 2m} and δx2i (1+x2m )(a, b) ∈ {0, 2gcd(i,m), 2m} (0 < i < m).

Then the inequivalence of our function in Theorem 5 to theirs follows from

Theorem 6. Suppose u1, u2 ∈ F2n − F2m , u1u
2m

2 ∈ F2m and Tr2m/2(u1u
2m

2 ) = 0.
Then the differential spectrum of F (x) = x2m+1 + u1xTr2n/2(u2x) is given by

δF (a, b) ∈

{
{0, 2}, if Tr2n/2(u2a) = 1,

{0, 2m−1, 2m}, if Tr2n/2(u2a) = 0.

Proof. We have
F (x+ a) + F (x)

= x2ma+ xa2
m

+ a2
m+1 + u1xTr2n/2(u2a) + u1aTr2n/2(u2(x+ a)).

Notice that if x is a solution of F (x+ a) + F (x) = b, so is x+ a.
(A) Assume Tr2n/2(u2a) = 1. The equation F (x+ a) + F (x) = b is reduced to

x2ma+ xa2
m

+ a2
m+1 + u1x+ u1aTr2n/2(u2x) + u1a = b, (15)
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and then to one of the following two systems of equations:{
x2ma+ xa2

m

+ u1x = b+ a2
m+1 + u1a,

Tr2n/2(u2x) = 0;

{
x2ma+ xa2

m

+ u1x = b+ a2
m+1,

Tr2n/2(u2x) = 1.

We claim that x2ma+xa2
m

+u1x is a permutation over F2n . Then δF (a, b) ∈ {0, 2}
follows from the claim immediately.

For x, y ∈ F2n , let

x2ma+ xa2
m

+ u1x = y2
m

a+ ya2
m

+ u1y.

Set z = Tr2n/2m(xa2
m

)− Tr2n/2m(ya2
m

) ∈ F2m , then y = x+ u−1
1 z and

z = Tr2n/2m(xa2
m

− ya2
m

) = −Tr2n/2m(a2
m

u−1
1 z) = −zTr2n/2m(a2

m

u−1
1 )

⇒ z(1 + Tr2n/2m(a2
m

u−1
1 )) = 0.

Suppose Tr2n/2m(a2
m

u−1
1 ) = 1. Notice that u2m

1 u2 ∈ F∗
2m and au−2m

1 = au2

u2m
1 u2

,
thus

Tr2n/2m(a2
m

u−1
1 ) = Tr2n/2m(au−2m

1 ) = Tr2n/2m(
au2

u2m
1 u2

) =
Tr2n/2m(au2)

u2m
1 u2

= 1

⇒ Tr2n/2m(au2) = u2m

1 u2.

Since Tr2n/2(u2a) = 1, we have Tr2n/2(u2a) = Tr2m/2(u
2m

1 u2) = 1, which is a
contradiction to the assumption Tr2m/2(u

2m

1 u2) = 0. Thus z = 0 and x2ma +

xa2
m

+ u1x is a linear permutation over F2n .
(B) Assume Tr2n/2(u2a) = 0. The equation F (x+ a) + F (x) = b is reduced to

x2ma+ xa2
m

+ a2
m+1 + u1aTr2n/2(u2x) = b. (16)

Assume that x, y are two solutions of (16). Then

x2ma+ xa2
m

+ a2
m+1 + u1aTr2n/2(u2x) = b, (17)

y2
m

a+ ya2
m

+ a2
m+1 + u1aTr2n/2(u2y) = b, (18)

which means that z = x+ y is a solution of

z2
m

a+ za2
m

+ u1aTr2n/2(u2z) = 0. (19)

or equivalently,{
z2

m

a+ za2
m

= 0,

Tr2n/2(u2z) = 0;
or

{
z2

m

a+ za2
m

= u1a,

Tr2n/2(u2z) = 1.

Thus δF (a, b) = 0 or the number of solutions of these two systems of equations.
Let Xu = {x ∈ F2n : Tr2n/2(ux) = 0}. The zero set of the first system of

equations is the F2-vector space a−2mF2m ∩ Xu2 . Note that dimF2 a
−2mF2m = m

and dimF2
Xu2

= n− 1, a−2mF2m ∩Xu2
must be of dimension either m− 1 or m.

For the second system, note that z2
m

a+ za2
m ∈ F2m , we must have u1a ∈ F2m .

Hence u2a
−2m =

u2m

1 u2

(u1a)2
m ∈ F2m . The solution of z2ma+za2

m

= u1a is z = u1a
a2m (1+ξ)
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with ξ2
m+1 = 1. Then

Tr2n/2(u2z) = Tr2n/2(
u2u1a

a2m(1 + ξ)
) = Tr2n/2(

u2a
−2mu1a

1 + ξ
)

= Tr2m/2(u2a
−2mu1a) = Tr2m/2(u2u

2m

1 ) = 0.

Hence the second system has no zeroes at all. □

3.3. Construction via the Maiorana-MacFarland class. In this case, we let
V = F2m × F2m and the corresponding inner product be

〈(y1, z1), (y2, z2)〉 = Tr2m/2(y1y2) + Tr2m/2(z1z2).

Let ϕ be a permutation of F2m , and G be the associated map defined by
G : F2m × F2m −→ F2m × F2m

(y, z) 7−→ (yϕ(z), z).

Then G has maximal number of bent components: for (a, b) ∈ F∗
2m × F2m , the

component function
Ga,b(y, z) = Tr2m/2(ayϕ(z) + bz), (20)

at (a, b) is a bent function in the Maiorana- MacFarland class, whose dual
G∗

a,b(y, z) = Tr2m/2((z + b)ϕ−1(a−1y)). (21)
We assume ϕ is an automorphism of F2m from now on in this subsection.

Theorem 7. Let 2 ≤ k ≤ m, (a, b) ∈ F∗
2m × F2m , ϕ and G be given as above. If

the set {ui = (ui,1, ui,2) ∈ V : 1 ≤ i ≤ k} satisfies

Tr2m/2

(
uj,2ϕ

−1(a−1ui,1) + ui,2ϕ
−1(a−1uj,1)

)
= 0 for all 1 ≤ i < j ≤ k,

then (Ga,b(y, z);u1, · · · , uk) satisfies Condition A and for 1 ≤ i ≤ k,

DuiG
∗
a,b(y, z) = Tr2m/2

(
(z + b)ϕ−1(a−1ui,1) + ui,2ϕ

−1(a−1(y + ui,1))
)
.

As a consequence, for any reduced polynomial H(X1, · · ·Xk) over F2, the function
Fa,b(y, z) = Ga,b(y, z) +H(Tr2m/2(u1,1y + u1,2z), . . . ,Tr2m/2(uk,1y + uk,2z))

is bent and its dual is
F ∗
a,b(y, z) = G∗

a,b(y, z) +H(Du1
G∗

a,b(y, z), . . . , Duk
G∗

a,b(y, z)).

Proof. It suffices to check that (Ga,b(y, z);u1, · · · , uk) satisfies Condition A. By
Eq. (21), the derivative of G∗

a,b(y, z) in the direction of ui is

Dui
G∗

a,b(y, z) = G∗
a,b(y + ui,1, z + ui,2) +G∗

a,b(y, z)

= Tr2m/2

(
(z + b)ϕ−1(a−1ui,1) + ui,2ϕ

−1(a−1(y + ui,1))
)
.

Then the second order derivative in the direction (ui, uj) is
Duj

Dui
G∗

a,b(y, z)

= DujG
∗
a,b(y + ui,1, z + ui,2) +DujG

∗
a,b(y, z)

= Tr2m/2

(
ϕ−1(a−1)(uj,2ϕ

−1(ui,1) + ui,2ϕ
−1(uj,1))

)
= 0. □

Our second construction of vectorial functions with maximal number of bent
components is the following result:
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Theorem 8. Let 2 ≤ k ≤ m, ϕ and G be given as above. Suppose u = (u1,1, 0)
and choose ui = (ui,1, ui,2) for 2 ≤ i ≤ k such that

Tr2m/2(ϕ
−1(u1,1)ui,2) = 0 and ui,1 = ϕ(ui,2).

Then for any reduced polynomial R(X2, · · ·Xk) over F2, the vectorial function
F (y, z) = (yϕ(z), z) + (u1,1y, 0)R(Tr2m/2(u2,1y + u2,2z), . . . ,Tr2m/2(uk,1y + uk,2z))

has 2n − 2m bent components: for any (a, b) ∈ F∗
2m × F2m ,

Fa,b(y, z) = 〈(a, b), F (y, z)〉 = Tr2m/2(ayϕ(z) + bz)

+ Tr2m/2(au1,1y)R(Tr2m/2(u2,1y + u2,2z), . . . ,Tr2m/2(uk,1y + uk,2z))

is bent and
F ∗
a,b(y, z) = G∗

a,b(y, z) +Du1,1a,0G
∗
a,b(y, z)R(Du2

G∗
a,b(y, z), . . . , Duk

G∗
a,b(y, z)).

Proof. Since Tr2m/2(ϕ
−1(u1,1)ui,2) = 0 and ui,1 = ϕ(ui,2), we have

DuiD(au1,1,0)G
∗
a,b(y, z) = Tr2m/2(ϕ

−1(a−1)ui,2ϕ
−1(au1,1))

= Tr2m/2(ui,2ϕ
−1(u1,1)) = 0.

for 2 ≤ i ≤ k, and
D(uj

DuiG
∗
a,b(y, z) = Tr2m/2

(
ϕ−1(a−1)(uj,2ϕ

−1(ui,1) + ui,2ϕ
−1(uj,1))

)
= 0

for 2 ≤ i < j ≤ k. Therefore, (Ga,b; (au1,1, 0), u2, . . . , uk) satisfies Condition A for
(a, b) ∈ F∗

2m × F2m . □

Suppose m′ is a divisor of m, then (20) can be written as
Ga,b(y, z) = Tr2m/2(ayϕ(z) + bz) = Tr2m′/2(G

′
a,b(y, z)),

where G′
a,b(y, z) = Tr2m/2m′ (ayϕ(z) + bz).

Theorem 9. Suppose m′ is a divisor of m, G′
a,b(y, z) = Tr2m/2m′ (ayϕ(z) + bz).

Then G′
a,b(y, z) is a vectorial bent function for (a, b) ∈ F∗

2m × F2m . Furthermore,
for c ∈ F∗

2m′ , Gca,cb(y, z) = Tr2m′/2(cG
′
a,b(y, z)) is a bent function and its dual is

G∗
ca,cb(y, z) = Tr2m/2

(
zϕ−1((ac)−1y) + bcϕ−1((ac)−1y)

)
.

Proof. Note that for any c ∈ F∗
2m′ , one has (ca, cb) ∈ F∗

2m × F2m , thus Gca,cb(y, z)
is bent function in the Maiorana-MacFarland class and the dual can be obtained
directly from (21). □

Remark 3. Take a = b = 1. Let c1, c2, c3 be three pairwise distinct elements in F∗
2m′

such that c := c1 + c2 + c3 6= 0. For s ∈ {c, c1, c2, c3}, let
Gs(y, z) := Gs,s(y, z) = Tr2m/2(syϕ(z) + sz).

Then Gc and Gci are all bent functions and
Gc1(y, z) +Gc2(y, z) +Gc3(y, z) = Gc(y, z). (22)

To have the equality
G∗

c1(y, z) +G∗
c2(y, z) +G∗

c3(y, z) = G∗
c(y, z). (23)

it suffices to find an automorphism ϕ of F2m such that
(C1) ϕ−1(c−1y) = ϕ−1(c−1

1 y) + ϕ−1(c−1
2 y) + ϕ−1(c−1

3 y);
(C2) cϕ−1(c−1y) = c1ϕ

−1(c−1
1 y) + c2ϕ

−1(c−1
2 y) + c3ϕ

−1(c−1
3 y).
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Take ϕ = ϕ−1 : z 7→ z−1, then (C1) and (C2) are satisfied, so is Eq.(23). This gives
a solution of the open problem proposed by Mesnager ([19, Open Problem 2]).

4. Binomial vectorial functions with maximal number of bent
components

We still suppose n = 2m. The main result of this section is

Theorem 10. The binomial vectorial function F (x) = x2m+1 + x2i+1 for 0 ≤ i ≤
m− 1 on F2n has 2n − 2m bent components if and only if i = 0, i.e., F (x) is affine
equivalent to x2m+1.

Remark 4. The special case of odd m was proved by Zheng et al. [20].

From now on, fix i such that 0 ≤ i < m, and let
d = gcd(m+ i, 2m) = gcd(m+ i, 2i).

Let F (x) = x2m+1 + x2i+1. For a ∈ F2n , the component function Fa(x) =

Tr2n/2(ax
2m+1 + ax2i+1). Let

La(y) := a2
i

y2
2i

+ (a+ a2
m

)2
i

y2
m+i

+ ay. (24)

If a ∈ F2m , then Fa(x) = Tr2n/2(ax
2i+1) and (24) is reduced to

La(y) := a2
i

y2
2i

+ ay. (25)
For any y ∈ F∗

2n , the derivative of Fa(x) at direction y is

DyFa(x) = Tr2n/2(a((x+ y)2
m+1 + (x+ y)2

i+1)) + Tr2n/2(a(x
2m+1 + x2i+1))

= Tr2n/2(x(ay
2i + (a+ a2

m

)y2
m

+ a2
n−i

y2
n−i

)) = Tr2n/2(xLa(y)
−2i).

The root set of La(y) in F2n forms an F2d -vector space, hence the number of the
roots of La(y) in F2n is either 1 or a power of 2d.

Lemma 4. Assume v2(i) = v2(m). For ξ ∈ F2d such that ξ2d/2+1 = 1, let a = 1
1+ξ .

Then a /∈ F2m and La(y) = 0 for any y ∈ F2d .

Proof. By v2(i) = v2(m), d is even, m = d
2 ·m′ and i = d

2 · i′ with m′ and i′ both
odd. Then

ξ2
m

= ξ2
i

= ξ−1 =⇒ a2
m

= a2
i

= ξa.

This means that a /∈ F2m and

La(y) = a2
i

y2
2i

+ (a+ a2
m

)2
i

y2
m+i

+ ay = a(ξy2
2i

+ (1 + ξ)y2
m+i

+ y).

Note that for any y0 ∈ F2d = F22i ∩ F2m+i , y22i0 = y2
m+i

0 , hence La(y0) = 0. □

We need the following two general results.

Lemma 5. [28, Theorem 5.30] Let χ′ be a multiplicative character of F∗
2m of order

2d − 1. Then for any (a, b) ∈ F∗
2m × F2m ,

∑
x∈F2m

(−1)Tr2m/2(ax
2d−1+b) = (−1)Tr2m/2(b)

2d−2∑
j=1

χ′j(a)G(χ′j),

where χ and G(χ) are the conjugate and the Gauss sum of χ.



12 XIANHONG XIE1, YI OUYANG2,3

Lemma 6. Suppose d < m is a factor of m. Let gcd(2d − 1, m
d ) = t. Then the set

N = {y ∈ F∗
2m : Tr2m/2d(y

2d−1) = 0} has order

|N | =


2m − 2d

2d
+

(2d − 1)(−1)
m
d −1

2d
∑

χ∈(F̂∗
2d

)
2d−1

t \{χ0}

G(χ)
m
d , if t 6= 1;

2m−d − 1, if t = 1.

where F̂∗
2d is the set of the multiplicative characters of F∗

2d and χ0 is the trivial
character. In particular, N is non-empty.

Proof. We have

|N | = 1

2d

∑
v∈F

2d

∑
y∈F∗

2m

(−1)Tr2d/2
(vTr

2m/2d
(y2d−1))

=
2m − 1

2d
+

1

2d

∑
v∈F∗

2d

∑
y∈F∗

2m

(−1)Tr2m/2(vy
2d−1) (26)

Suppose F∗
2m = 〈β〉, then F∗

2m =
⋃ 2m−1

2d−1
−1

i=0 βiF∗
2d . Note that gcd( 2

m−1
2d−1

, 2d − 1) =

gcd(md , 2
d − 1) = t. If t = 1, one has

|N | = 2m − 1

2d
+

2d − 1

2d

∑
v∈F∗

2d

2m−1

2d−1
−1∑

i=0

(−1)Tr2m/2(vβ
i(2d−1))

=
2m − 1

2d
+

2d − 1

2d

∑
v∈F∗

2d

2m−1

2d−1
−1∑

i=0

(−1)Tr2m/2(vβ
i)

=
2m − 1

2d
+

2d − 1

2d

∑
v∈F∗

2m

(−1)Tr2m/2(v) =
2m − 2d

2d
≥ 1.

If t 6= 1, suppose χ′ is a multiplicative character of F∗
2m of order 2d − 1, then by

Lemma 5 and Eq. (26),

|N | = 2m − 1

2d
+

1

2d

∑
v∈F∗

2d

( ∑
y∈F2m

(−1)Tr2m/2(vy
2d−1) − 1

)

=
2m − 1

2d
+

1

2d

∑
v∈F∗

2d

(2d−2∑
j=1

χ′j(v)G(χ′j)− 1
)

=
2m − 1

2d
+

1

2d

∑
v∈F∗

2d

2d−2∑
j=0

χ′j(v)G(χ′j). (27)

Suppose N is the norm mapping from F2m to F2d . For χ ∈ F̂∗
2d , it can be lifted

from F2d to F2m by χ′ = χ ◦N (see [28, Theorem 5.28]). Furthermore, χ is of order
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2d − 1 if and only if χ′ is of order 2d − 1. Then
2d−2∑
j=0

χ′j(v)G(χ′j) =
∑

χ∈F̂∗
2d

χ(N(v))G(χ ◦N) = (−1)
m
d −1

∑
χ∈F̂∗

2d

χ(v
2m−1

2d−1 )G(χ)
m
d .

Suppose δ = β
2m−1

2d−1 ∈ F∗
2d , then F∗

2d =

2d−1
t −1⋃
j=0

δj〈δ 2d−1
t 〉. By Eq. (27), we get

|N | = 2m − 1

2d
+

(−1)
m
d −1

2d

∑
v∈F∗

2d

∑
χ∈F̂∗

2d

χ(v
2m−1

2d−1 )G(χ)
m
d

=
2m − 1

2d
+

(−1)
m
d −1

2d

∑
χ∈F̂∗

2d

G(χ)
m
d

2d−1
t −1∑
j=0

∑
v∈δj⟨δ

2d−1
t ⟩

χ(v
2m−1

2d−1 )

=
2m − 1

2d
+

(−1)
m
d −1t

2d

∑
χ∈F̂∗

2d

G(χ)
m
d

2d−1
t −1∑
j=0

χ(δ
j 2m−1

2d−1 )

Note that gcd( 2m−1
t(2d−1)

, 2d−1
t ) = 1, then

2d−1
t −1∑
i=0

χ(δ
i 2m−1

2d−1 ) =

2d−1
t −1∑
i=0

χ(δit) =
∑

x∈⟨δt⟩

χ(x) =

{
0, if χ 6= χ0;
2d−1

t , if χ = χ0.

Hence we have

|N | = 2m − 2d

2d
+

(2d − 1)(−1)
m
d −1

2d

∑
χ∈(F̂∗

2d
)
2d−1

t \{χ0}

G(χ)
m
d .

By properties of Gauss sum, we have

|N | ≥ 2m − 2d − (2d − 1)(t− 1)2
m
2

2d
.

Note that t 6= 1 and

2m − 2d − (2d − 1)(t− 1)2
m
2 = 2m − t2

m
2 +d + (t− 1)2

m
2 − 2d > 2m − t2

m
2 +d.

Since t = gcd(md , 2
d − 1) ≤ 2d − 1, then 2m − t2

m
2 +d > 2m − 2

m
2 +2d ≥ 0 if m

d ≥ 4.
If m = 3d, then t = gcd(3, 2d − 1) = 3 and d is even. one has

|N | = 23d − 2d − (2d − 1)2
3d
2 +1 > 23d − 2

5d
2 +1 ≥ 0.

If m = 2d, then t = gcd(2, 2d − 1) = 1, which contradicts to t 6= 1. Thus we
complete the proof. □

Back to our situation, we have the following result.

Lemma 7. Suppose v2(m) < v2(i), then there exists a ∈ F2n − F2m , such that
La(y) has roots in F∗

2n .
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Proof. For v2(m) < v2(i), note that d = gcd(m, i) = gcd(m + i, n). It suffices to
show that there exists a ∈ F2n − F2m such that La(y) has a root y0 ∈ F∗

2m . Note
that for y ∈ F∗

2m ,

La(y) = a2
i

y2
2i

+ (a+ a2
m

)2
i

y2
m+i

+ ay = a2
i

y2
2i

+ (a+ a2
m

)2
i

y2
i

+ ay. (28)
Then we just need to find (a, y) ∈ F2n × F∗

2m such that{
a+ a2

m

= y−2i−1v,

(ay2
i+1)2

i

+ ay2
i+1 = y2

i−22iv
(29)

for some v ∈ F∗
2d (here a /∈ F2m is automatic). Let z = av−1y2

i+1, then we just
need to find (z, y) ∈ F2n × F∗

2m such that{
z + z2

m

= 1, (30)
z2

i

+ z = y2
i−22i . (31)

We consider Eq. (31). Note that the F2d -linear maps φi : z 7→ z2
i

+ z and
φd : z 7→ z2

d

+ z from F2m to itself have the same kernel F2d and φi(z) = φd(z +

z2
d

+ · · · + z2
( i
d
−1)d

), then Im(φi) ⊆ Im(φd) and hence Im(φd) = Im(φi). Note
also that the group homomorphisms y 7→ y2

i(1−2i) and y 7→ y2
d−1 from F∗

2m to
itself have the same kernel and image. Then there is a one-to-one correspondents
of solutions (z, y) ∈ F2m × F∗

2m of Eq. (31) and of

z2
d

+ z = y2
d−1. (32)

Eq. (32) is soluble if and only if there exists y ∈ F∗
2m such that Tr2m/2d(y

2d−1) = 0,
which is guaranteed by Lemma 6 as d < m in this case. Thus there exists (z0, y0) ∈
F∗
2m × F∗

2m such that z2
i

0 + z0 = y2
i−22i

0 .
Let w ∈ F22d \ F2d satisfy w2d + w = v0, then w2m−d

= w2i = w and z =
z0 + w ∈ F2n \ F2m is a solution of Eqs. (30) and (31). Thus, y0 ∈ F∗

2m and
a = (z0 + w)y−2i−1

0 v satisfy the equation La(y) = 0. □

Lemma 8. For 0 ≤ i ≤ m − 1, if F (x) = x2m+1 + x2i+1 has 2n − 2m bent
components, then v2(m) ≤ v2(i).

Proof. Assume v2(m) > v2(i). In this case d = gcd(m, i) = gcd(n, i), and 2d =
gcd(2i,m). This means 2d−1 = gcd(2m−1, 2i−1) and 22d−1 = gcd(2m−1, 22i−1),
which then implies that 2d + 1 is a factor of 2m − 1 and thus prime to 2m + 1.

Let α be a primitive element of F2n . Let a = αk(2m+1) ∈ F∗
2m such that a2

i−1 =

α(2m+1)(2d−1). By Proposition 1, for this a, Fa(x) = Tr2n/2(ax
2i+1) is not bent. By

Lemma 1, DyFa(x) = Tr2n/2(x(ay
2i + (ay)2

n−i

)) is not balanced for some y ∈ F2n ,
i.e. a2

i−1y2
2i−1 + 1 = 0 is soluble. Let a2

i−1 = α(2m+1)(2d−1) = y1−22i

0 and let
y1 ∈ F∗

2n such that y1−22i

0 = y2
2d−1

1 . Then the congruent equation
(22d − 1)x ≡ (2d − 1)(2m + 1) mod (2n − 1)

is soluble, equivalently, the equation

(2d + 1)x ≡ 2m + 1 mod (2d + 1) · 2n − 1

22d − 1

is soluble. This is not possible since 2d + 1 is prime to 2m + 1. □
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Proof of Theorem 10. If i = 0, the result is trivial. We now assume i 6= 0 and
v2(m) ≤ v2(i).

If F (x) has maximal number of bent components, by Lemma 1, Fa(x) is bent
function for all a ∈ F2n −F2m and hence Dyfa(x) is balanced for any y ∈ F∗

2n . This
implies La(y) 6= 0 for all y ∈ F∗

2n . Hence to show F (x) does not have maximal
number of bent components, it suffices to show there exists a ∈ F2n − F2m , such
that La(y) has a root in F∗

2n :
(i) If v2(m) = v2(i), this is implied by Lemma 4.
(ii) If v2(m) < v2(i), this is implied by Lemma 7.

Thus for i 6= 0, F (x) cannot have 2n − 2m bent components. □

Remark 5. For a general binomial vectorial function F (x) = xd1 + xd2 , our exper-
imental result indicates that F (x) is affine equivalent to x2m+1 or x2i(x + x2m) if
F (x) has maximal number of bent components, but so far we do not have a proof.
We leave this as an open problem for future study.

5. Conclusion

We firstly give a generic construction of vectorial functions with maximal number
of bent components, and obtain two new classes of such vectorial functions based
on the Niho quadratic function and the Maiorana-MacFarland class. Moreover,
we solve the open problem proposed by Mesnager, and partially answer the open
problem proposed by Pott et al. We then show that the binomial function F (x) =

x2m+1 + x2i+1 : F22m → F22m has maximal number of bent components if and only
if i = 0
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