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Let p be a prime number and q = ph. For f(x) = xd + ax ∈
Fq[x] (a �= 0), we obtain the slopes of the Newton polygons of 
the L-functions of the exponential sums associated to f(x) for 
any nontrivial finite character χ. For χ of order p, our result 
recovers Zhu’s genericity result [10] by giving p an explicit 
bound. The general χ case is based on improvement of results 
of Davis–Wan–Xiao [2].

© 2015 Elsevier Inc. All rights reserved.

1. Introduction and main results

Let p be a fixed prime number, h a positive integer and q = ph. For any positive 
integer m, denote by Fpm the finite field of pm elements, and by Qpm the unramified 
extension of Qp of degree m in a fixed algebraic closure Qp of Qp. Let Cp be the p-adic 
completion of Qp. Denote by ord the additive valuation on Cp normalized by ordp = 1.

For a Laurent polynomial f(x1, x2, · · · , xn) ∈ Fq[x±1
1 , x±1

2 , · · · , x±1
n ], denote by f̂(x)

the Teichmüller lifting of f(x) in Qq[x±1
1 , x±1

2 , · · · , x±1
n ]. Let χ : Zp → C×

p be a nontrivial 
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additive finite character. We suppose that its order is pmχ from now on, that is, mχ =
logp(#χ(Zp)). The L-function

L∗(f, χ, t) = exp
( ∞∑

m=1
S∗
m(f, χ) t

m

m

)
, (1.1)

where S∗
m(f, χ) is the exponential sum

S∗
m(f, χ) =

∑
(x1,x2,···,xn)∈(μqm−1)n

χ(TrQqm/Qp
(f̂(x1, x2, · · · , xn))), (1.2)

is a rational function of t over Qp(ζpmχ ) by well-known theorems of Dwork–Bombieri–
Grothendieck. Furthermore, if f is non-degenerate, L∗(f, χ, t)(−1)n−1 is shown to be a 
polynomial for χ of order p by Adolphson–Sperber [1] and by Liu–Wei [5] for general χ.

From now on we suppose f(x) ∈ Fq[x] monic of degree d. Then L∗(f, χ, t) is a poly-
nomial of degree pmχ−1d. We fix Ψ a character of order p and write

L∗(f, t) = L∗(f,Ψ, t). (1.3)

For any i = 0, 1, 2, · · · , d −1, we can write ip uniquely in the form kid + ri with ki ∈ Z

and 0 ≤ ri < d. Denote

wi = ki + ri − i

p− 1 = i

d
+ d− 1

d(p− 1)(ri − i). (1.4)

The following theorem is the main result of this paper.

Theorem 1.1. Let q = ph and let

N(d) =
{

d2(d−1)
4 + 1, if q = p;

d2(d−1)
2 + 1, if q > p.

(1.5)

Suppose f(x) = xd + ax ∈ Fq[x], a �= 0. For any non-trivial finite character χ of order 
pmχ , if

p >

{
N(d), if mχ = 1,
max{N(d), hd(d−1)

4 + 1}, if mχ > 1,

the q-adic Newton polygon of L∗(f, χ, t) has slopes

pmχ−1−1⋃
i=0

{
i + w0

pmχ−1 ,
i + w1

pmχ−1 , · · · ,
i + wd−1

pmχ−1

}
.
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Remark. (1) The case mχ = 1 (i.e., χ = Ψ) was first obtained (albeit in a slightly 
different form) by H.J. Zhu [10] if q = p ≥ (d −1)3+2. Through this she proved D. Wan’s 
Conjecture (see [8]) in this case. Earlier R. Yang [9] obtained the first slope w1, and other 
slopes in the case p ≡ −1 mod d. To obtain our result in this case, we need Zhu’s Rigid 
Transformation Theorem [11, Theorem 5.3] to study the slopes of Fredholm determinants 
of nuclear matrices when q is general.

(2) For the case mχ > 1, we need an improvement of results in [2] about the Newton 
polygons of L-functions of Artin–Shreier–Witt towers associated to a monic polynomial 
f(x) ∈ Fq[x], especially [2, Theorems 1.2 and 3.8]. Our results are stated as Theorem 4.1
and Theorem 4.2.

2. Preliminaries

2.1. Dwork’s trace formula

Let E(t) be the Artin–Hasse exponential series:

E(t) = exp
( ∞∑

m=0

tp
m

pm

)
∈ (Zp ∩Q)[[t]]. (2.1)

Let γ ∈ Qp(ζp) be a root of 
∞∑

m=0

tp
m

pm = 0 satisfying ordγ = ord(ζp − 1) = 1
p−1 . Fix a 

system of elements {γ1/1, γ1/2, γ1/3, · · ·} ⊂ Qp such that(
γ1/(m1m2)

)m1
= γ1/m2 , for all m1,m2 ≥ 1.

Denote γn/m =
(
γ1/m)n for any n ∈ Z and any positive integer m. The Frobenius 

automorphism x 
→ xp of Gal(Fp/Fp) lifts to a generator ϕ of Qur
p /Qp which is extended 

to Qur
p (γ1/1, γ1/2, γ1/3, · · ·) by requiring that ϕ(γ1/m) = γ1/m for all m ≥ 1. Dwork’s 

splitting function

θ(t) = E(γt) =
∞∑

m=0
γmtm (2.2)

has coefficients γm ∈ Qp(ζp) satisfying

ordγm ≥ m

p− 1 , and γm = γm

m! for 0 ≤ m ≤ p− 1. (2.3)

Let f(x) ∈ Fq[x] of degree d and I be the finite set of all i ∈ N such that the coefficient 
of f at xi is not 0. Then one can write

f(x) =
∑

aix
i, ai �= 0.
i∈I
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Let âi be the Teichmüler lifting of ai in Qq. Set

F (f, x) =
∏
i∈I

θ(âixi). (2.4)

Write F (f, x) =
∞∑
r=0

Fr(f)xr. Then

Fr(f) =
∑
τ

(∏
i∈I

γτi â
τi
i

)
, (2.5)

where τ = (τi) ∈ NI is over all solutions of the linear system 
∑

i∈I iτi = r. By (2.3), 
ord(

∏
i∈I

γτi â
τi
i ) ≥

∑
i∈I

τi
p−1 ≥ r

d(p−1) . Thus

ord(Fr(f)) ≥ r

d(p− 1) . (2.6)

Let A1(f) be the nuclear matrix

A1(f) = (as,r(f)) =
(
Fps−r(f)γ(r−s)/d

)
s,r≥0

(2.7)

over Qq(γ1/d) indexed by (s, r) ∈ N2. We have

ordas,r(f) = ordFps−r(f)γ(r−s)/d ≥ ps− r

d(p− 1) + r − s

d(p− 1) = s

d
. (2.8)

Let Ah(f) be the nuclear matrix

Ah(f) = A1(f)A1(f)ϕ · · ·A1(f)ϕ
h−1

. (2.9)

Theorem 2.1 (Dwork’s trace formula). For f(x) ∈ Fq[x], we have

S∗
m(f) = (qm − 1)Trϕ

−1
(Ah(f)m). (2.10)

Equivalently,

L∗(f, t) = detϕ
−1

(I − tAh(f))
detϕ−1(I − tqAh(f))

, (2.11)

where det is the Fredholm determinant.

Remark. Note that all objects above can be defined for any Laurent polynomial 
f(x1, x2, · · · , xn) ∈ Fq[x±1

1 , x±1
2 , · · · , x±1

n ], and Dwork’s trace formula also holds after 
a slight modification. See [7,9] for details.
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2.2. Zhu’s Rigid Transformation Theorem

Let U = (usr)s,r∈N be a nuclear matrix over Qq(γ1/d). Then the Fredholm determi-
nants det(I − tU) is well defined and p-adic entire (see [6]). Write

det(I − tU) = c0 + c1t + c2t
2 + · · · . (2.12)

For 0 ≤ i1 < i2 < · · · < is, denote by U(i1, · · · , is) the principal sub-matrix of U formed 
by removing all the rows and columns except the ik-th (1 ≤ k ≤ s) ones. In particular, 
denote U [s] = U(0, 1, · · · , s − 1). Then we have c0 = 1 and for k ≥ 1,

ck = (−1)k
∑

0≤i1<i2<···<ik

detU(i1, i2, · · · , ik). (2.13)

Denote

Uh = NQq/Qp
(U) = U · Uϕ · · ·Uϕh−1

. (2.14)

Write

det(I − tUh) = C0 + C1t + C2t
2 + · · · . (2.15)

Zhu [11, Theorem 5.3] proved the following result.

Theorem 2.2 (Rigid Transformation Theorem). Suppose (βs)s≥0 is a strictly increasing 
sequence such that

lim
s→+∞

βs = ∞, and βs ≤ inf
r≥0

ord(usr).

Suppose the inequalities

∑
s<i

βs ≤ ord detU [i] ≤
∑
s<i

βs + βi+1 − βi

2

hold for every 1 ≤ i ≤ k. Then ordq(Ci) = ordp detU [i] for 1 ≤ i ≤ k and

NPq(det(1 − tUh[k])) = NPp(det(1 − tU [k])).

3. Slopes of the Newton polygon of L∗(f, t)

In this section we shall use Dwork’s trace formula and Zhu’s Rigid Transformation 
Theorem to compute the slopes of the Newton polygon of L∗(f, t) where f(x) = xd+ax ∈
Fq[x] and a �= 0. We denote A1 = A1(f) and Ah = Ah(f). Recall that ip = kid + ri, 
0 ≤ ri < d.
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Lemma 3.1. We have

Fip−j(f) ≡ γki
γri−j â

ri−j mod γki+ri−j+1, for 0 ≤ j ≤ ri;

and

Fip−j(f) ≡ 0 mod γki+ri−j+1, for j > ri.

Proof. For m ∈ Z+, write m = kd + r for unique integers k, r such that 0 ≤ r < d. By 
definition,

Fm(f) = γk · γr · âr + γk−1 · γr+d · âr+d + γk−2 · γr+2d · âr+2d + · · · + γ0γmâm

≡ γk · γr · âr mod γk+r+1.

The lemma follows from this fact. �
By Lemma 3.1, if 0 ≤ j ≤ ri, we have

aij(f) ≡ γ
j−i
d γki

γri−j â
ri−j

=
(
γki

γri− i
d âri

)
·
(
γ

j
d−j â−j

)
· 1
(ri − j)! mod γ

j−i
d +ki+ri−j+1. (3.1)

If j > ri, we have

aij(f) = γ
j−i
d Fip−j(f) ≡ 0 mod γ

j−i
d +ki+ri−j+1. (3.2)

Hence we get the following result.

Lemma 3.2. For any 0 < s ≤ d, we have

T1A1[s]T2 ≡

⎛⎜⎜⎜⎝
1 r0 r0(r0 − 1) · · ·
1 r1 r1(r1 − 1) · · ·
· · · · · · · · · · · ·
1 rs−1 rs−1(rs−1 − 1) · · ·

⎞⎟⎟⎟⎠ mod γ (3.3)

where

T1 = diag
(

1
γk0γ

r0− 0
d âr0r0!

,
1

γk1γ
r1− 1

d âr1r1!
, · · · , 1

γki
γrs− s−1

d ârs−1rs−1!

)

and

T2 = diag
(
γ0− 0

d â0, γ1− 1
d â1, · · · , γ(s−1)− s−1

d âs−1
)
.
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Proposition 3.3. If p ≥ d, then for any s = 1, · · · , d,

ord(detA1[s]) =
s−1∑
i=0

wi ≤
s2 − s

2d + d(d− 1)
4(p− 1) . (3.4)

Proof. As s ≤ d, r0, r1, · · · , rs−1 are distinct. The determinant of the matrix of the right 
hand side of (3.3) equals to 

∏
0≤i<j≤s−1 (rj − ri) �= 0, of which the prime factors are less 

than d. Therefore the determinant is invertible in Fp for p ≥ d. In this case, one has

ord detA1[s] = −ord detT1 − ord detT2.

Recall that wi = ki+ri−i
p−1 = i

d + d−1
d(p−1) (ri − i), we have

ord detA1[s] =
s−1∑
i=0

wi = s2 − s

2d + d− 1
d(p− 1)

s−1∑
i=0

(ri − i).

However

s−1∑
i=0

(ri − i) ≤
s−1∑
i=0

(d− 1 − 2i) = (d− s)s ≤ d2

4 . (3.5)

This finishes the proof. �
We are now ready to prove our main result in the case χ = Ψ:

Proposition 3.4. If p > N(d), then the q-adic Newton polygon of L∗(f, t) has slopes 
{w0, w1, · · · , wd−1}.

Proof. Write

det(I − tA1) =
∑
i≥0

cit
i, det(I − tAh) =

∑
i≥0

Cit
i.

If p > d2(d−1)
4 + 1, then (3.4) implies that

ord detA1[s] <
s2 − s

2d + 1
d

holds for 0 ≤ s < d. By (2.8), ordas,r(f) ≥ s
d . Then for {i1, · · · , is} �= {0, 1, · · · , s − 1}, 

one has

detA1(i1, · · · , is) ≡ 0 mod p
s2−s+2

2d .

Therefore for 0 ≤ s < d,
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ord cs = ord(detA1[s]) =
s−1∑
i=0

wi.

Then w0, w1, · · ·, wd−1 are d slopes of NPp(det (I − tA1)), all of which are less than 1.
Moreover, if p > d2(d−1)

2 + 1, then (3.4) implies that

ord detA1[s] <
s2 − s

2d + 1
2d

holds for 0 ≤ s < d. Let βs = s
d . Then the assumptions of Theorem 2.2 are satisfied, 

ord Cs = ord cs for 0 ≤ s < d and NPq(det(I − tAh[s])) = NPp(det(I − tA1[s])). Hence 
w0, w1, · · ·, wd−1 are d slopes of NPq(det ϕ−1(I − tAh)), all of which are less than 1.

By Theorem 2.1,

det ϕ−1
(I − tAh) = L∗(f, t) det ϕ−1

(I − tqAh).

As the valuation of any item in Ah is ≥ 0, the q-adic slopes of the Newton polygon of 
det(I − tAh) are all ≥ 0. Hence the q-adic slopes of det ϕ−1(I − tAh) are also ≥ 0 and 
those of det ϕ−1(I − tqAh) are all ≥ 1. Consequently, the q-adic slopes of the Newton 
polygon of det ϕ−1(I− tAh) less than 1 must be the q-adic slopes of the Newton polygon 
of its factor L∗(f, t). However the degree of L∗(f, t) is d, {wi} must be all the q-adic 
slopes of L∗(f, t). �
4. Slopes of Newton polygons of L∗(f, χ, t)

In this section, we fix a monic polynomial f(x) = xd+bd−1x
d−1+· · ·+b0 ∈ Fq[x] whose 

degree d is not divisible by p. We will use Davis–Wan–Xiao’s result [2] to study Newton 
polygons of the L-functions L∗(f, χ, t) for general finite characters χ. For such a χ, we 
set πχ = χ(1) − 1 and recall mχ = logp(#χ(Zp)).

4.1. T -adic L-function

For a positive integer k, the T -adic exponential sum of f over F×
qk

is the sum:

S∗
k(f, T ) :=

∑
x∈F

×
qk

(1 + T )TrQ
qk

/Qp f̂(x̂)
. (4.1)

The associated T -adic L-function of f over Gm,Fq
is the generating function

L∗(f, T, t) = exp
( ∞∑

S∗
k(f, T ) t

k

k

)
∈ 1 + tZp[[T ]][[t]]. (4.2)
k=1
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Note that L∗(f, T, t) is the L-function associated to the character Zp → Zp[[T ]]× sending 
1 to 1 + T . It is clear that for a finite character χ, we have

L∗(f, T, t)|T=πχ
= L∗(f, χ, t). (4.3)

The T -adic characteristic function of f over Gm,Fq
is the generating function

C∗(f, T, t) = exp
( ∞∑

k=1

1
1 − qk

S∗
k(f, T ) t

k

k

)
. (4.4)

Clearly, we have

C∗(f, T, t) = L∗(f, T, t)L∗(f, T, qt)L∗(f, T, q2t) · · · , (4.5)

and

L∗(f, T, t) = C∗(f, T, t)
C∗(f, T, qt) . (4.6)

In particular, C∗(f, T, t) ∈ 1 + tZp[[T ]][[t]]. Evaluating C∗(f, T, t) at T = πχ, we have

C∗(f, χ, t) = C∗(f, T, t) |T=πχ
.

It follows that

C∗(f, χ, t) = L∗(f, χ, t)L∗(f, χ, qt)L∗(f, χ, q2t) · · · , (4.7)

and

L∗(f, χ, t) = C∗(f, χ, t)
C∗(f, χ, qt) . (4.8)

Liu–Wan [4] showed that the T -adic characteristic function C∗(f, T, t) is T -adically 
entire in t. Thus one can write it in the form

C∗(f, T, t) = 1 + a1(T )t + a2(T )t2 + · · · ∈ 1 + tZp[[T ]][[t]]. (4.9)

Liu–Wan [4] also proved

vTh(p−1)(ak(T )) ≥ k(k − 1)
2d , (4.10)

where vTm is the normalized valuation on Q[[T ]] such that vTm(Tm) = 1. In other words, 
each ak(T ) can be written as a power series in T :

ak(T ) = ak,λk
Tλk + ak,λk+1T

λk+1 + ak,λk+2T
λk+2 + · · · ,
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with ak,i ∈ Zp, ak,λk
�= 0 and

λk ≥ k(k − 1)h(p− 1)
2d .

Now we let NP(f, χ, x) be the piecewise linear function whose graph is the πh(p−1)
χ -adic 

Newton polygon of C∗(f, χ, t), and let HP(f, x) be the piecewise linear function whose 
graph is the polygon with vertices(

k,
k(k − 1)

2d

)
, k = 0, 1, 2, · · · .

Then we have NP(f, χ, x) ≥ HP(f, x). Set

gap(f, χ) = max
x≥0

{NP(f, χ, x) − HP(f, x)}, (4.11)

which is the maximum gap between NP(f, χ, x) and HP(f, x). Proposition 3.2(1) and 
Lemma 3.7 in [2] imply that for any finite character χ,

0 ≤ gap(f, χ) ≤ h(d− 1)2

8d . (4.12)

Theorem 3.8 in [2] implies that NP(f, χ, x) is independent of the choice of χ if mχ ≥
1 + logp

h(d−1)2
8d . We denote this function by NP(f, χ∞, x). We make an improvement of 

this result in the following

Theorem 4.1. If for some non-trivial finite character χ0, mχ0 > 1 + logp(h · gap(f, χ0)), 
then for any finite character χ such that mχ ≥ mχ0 ,

NP(f, χ, x) = NP(f, χ∞, x).

In particular, we have

NP(f, χ0, x) = NP(f, χ∞, x).

Proof. We only need to show that NP(f, χ, x) = NP(f, χ0, x). Recall that

ak(πχ0) = ak,λk
πχ0

λk + ak,λk+1πχ0
λk+1 + ak,λk+2πχ0

λk+2 + · · · .

Firstly suppose p | ak,λ for all λ ≥ λk. By definition of mχ0 , χ0(1) is a primitive 
root of unity of order pmχ0 and hence the πχ0-adic order of p is (p − 1)pmχ0−1. As 
mχ0 > 1 + logp(h · gap(f, χ0)), we have ord

π
h(p−1)
χ0

(p) > gap(f, χ0). Thus

ord h(p−1)(ak(πχ0)) > gap(f, χ0) + k(k − 1) ≥ NP(f, χ0, k).

πχ0 2d
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Similarly, as mχ ≥ mχ0 , we have

ord
π
h(p−1)
χ

(ak(πχ)) > NP(f, χ0, k).

Secondly suppose that there is some λ ≥ λk such that ak,λ is a p-adic unit. Denote 
by λ′

k ≥ λk the smallest integer such that ak,λ′
k

is a p-adic unit. It is clear that

ak(πχ0) ≡ ak,λ′
k
πχ0

λ′
k mod (pπχ0

λk , πχ0
λ′
k+1),

and

ak(πχ) ≡ ak,λ′
k
πχ

λ′
k mod (pπχ

λk , πχ
λ′
k+1).

As ord
π
h(p−1)
χ0

(pπλk
χ0

) > NP(f, χ0, x) and ord
π
h(p−1)
χ0

(ak(πχ0)) ≥ NP(f, χ0, x), we have

λ′
k ≥ h(p− 1)NP(f, χ0, x).

If λ′
k = h(p− 1)NP(f, χ0, x), then

ord
π
h(p−1)
χ0

(ak(πχ0)) = λ′
k

h(p− 1) = NP(f, χ0, x),

and

ord
π
h(p−1)
χ

(ak(πχ)) = λ′
k

h(p− 1) = NP(f, χ0, x).

On the other hand, if λ′
k > h(p− 1)NP(f, χ0, x), then

ord
π
h(p−1)
χ0

(ak(πχ0)) ≥ min
{

λ′
k

h(p− 1) , ord
π
h(p−1)
χ0

(pπλk
χ0

)
}

> NP(f, χ0, x),

and, as mχ ≥ mχ0 ,

ord
π
h(p−1)
χ

(ak(πχ)) ≥ min
{

λ′
k

h(p− 1) , ord
π
h(p−1)
χ

(pπλk
χ )

}
> NP(f, χ0, x).

Thus the πh(p−1)
χ -adic Newton polygon of C∗(f, χ, t) is the same as that of C∗(f, χ0, t), 

which means that NP(f, χ, x) = NP(f, χ0, x). �
If χ0 is a finite character such that the assumption mχ0 > 1 + logp(h · gap(f, χ0))

holds, by Theorem 4.1, then the slopes of L∗(f, χ, t) for mχ ≥ mχ0 are determined by 
the slopes of L∗(f, χ0, t) just as in [2, Theorem 1.2].

Moreover, if gap(f, χ0) < 1
h , then mχ0 ≥ 1 > 1 + logp(h · gap(f, χ0)). The assumption 

in Theorem 4.1 trivially holds. In particular, if gap(f, Ψ) < 1
h , we apply Theorem 4.1 to 

get a variation of [2, Theorem 1.2]:
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Theorem 4.2. Let f(x) ∈ Fq[x] be a monic polynomial of degree d. Let 0 = α0 < α1 <

· · · < αd−1 < 1 be the slopes of the q-adic Newton polygon of L∗(f, t). If gap(f, Ψ) < 1
h , 

then the q-adic Newton polygon of L∗(f, χ, t) has slopes

pmχ−1−1⋃
i=0

{
i + α0

pmχ−1 ,
i + α1

pmχ−1 , · · · ,
i + αd−1

pmχ−1

}
,

for any non-trivial finite character χ.

Proof. As C∗(f, Ψ, t) = L∗(f, Ψ, t)L∗(f, Ψ, qt)L∗(f, Ψ, q2t) · · ·,⋃
i≥0

{i + α0, i + α1, · · · , i + αd−1} (4.13)

are the slopes of the q-adic Newton polygon of C∗(f, Ψ, t). As gap(f, Ψ) < 1
h , the assump-

tion 1 = mΨ > 1 + logp(h · gap(f, Ψ)) in Theorem 4.1 holds. For any finite character χ, 
we have mχ ≥ 1 = mΨ. Theorem 4.1 implies that the slopes of the πh(p−1)

χ -adic Newton 
polygon of C∗(f, χ, t) are also given by (4.13) and hence the slopes of the q-adic Newton 
polygon of C∗(f, χ, t) are

⋃
i≥0

{
i + α0

pmχ−1 ,
i + α1

pmχ−1 , · · · ,
i + αd−1

pmχ−1

}
.

Then the theorem follows from the relation

L∗(f, χ, t) = C∗(f, χ, t)
C∗(f, χ, qt) . �

Remark. Suppose that Wan’s Conjecture (see [8]) holds for f(x) ∈ Z[x], which means 
that lim

p→∞
gap(f(x) mod p, Ψ) = 0. Then there is a positive integer Nh such that 

gap(f(x) mod p, Ψ) < 1
h for all p > Nh.

Proof of Theorem 1.1. In our situation f(x) = xd + ax, the case χ = Ψ is just 
Proposition 3.4. For χ general, by Theorem 4.2, it suffices to show gap(f, Ψ) < 1

h for 
p > max{N(d), hd(d−1)

4 + 1}. For p > N(d), the slopes of the q-adic Newton polygon of 
C∗(f, Ψ, t) are ⋃

i≥0
{i + w0, i + w1, · · · , i + wd−1} .

Denote wkd+s = k + ws for all k ∈ N and 0 ≤ s < d. It is easy to see that

NP(f,Ψ, kd + s) = w0 + w1 + · · · + wkd+s−1,
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and

HP(f, kd + s) = 0
d

+ 1
d

+ · · · + kd + s− 1
d

.

As w0 +w1 + · · ·+wd−1 = 0
d + 1

d + · · ·+ d−1
d , NP(f, Ψ, x) −HP(f, x) is a periodic function 

of period d. For all 0 ≤ k < d,

NP(P,Ψ, k) − HP(P, k) = (w0 + w1 + · · · + wk−1) − (0
d

+ 1
d

+ · · · k − 1
d

)

= d− 1
d(p− 1)

k−1∑
i=0

(ri − i) ≤ d(d− 1)
4(p− 1) <

1
h

by (3.5) if p > hd(d−1)
4 + 1. This finishes the proof. �

5. Note added in proof

After the paper was accepted, we were informed by the authors of [3] that Theorem 1.1
was also proved in [3, Theorem 1.6].
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