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1. Introduction and main results

Let p be a fixed prime number, h a positive integer and ¢ = p”. For any positive
integer m, denote by F,~ the finite field of p™ elements, and by Q,= the unramified
extension of Q, of degree m in a fixed algebraic closure Q, of Q,. Let C, be the p-adic
completion of @,. Denote by ord the additive valuation on C, normalized by ordp = 1.

For a Laurent polynomial f(x1,ze, -, x,) € Fq[zlﬂ,xéﬂ, -,z denote by f(x)
the Teichmiiller lifting of f(x) in Q, [t 25t - aEl). Let x : Zy — C be a nontrivial
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additive finite character. We suppose that its order is p™x from now on, that is, m, =
log,, (#x(Zy)). The L-function

m

L*(faX7t) = €Xp (Z Sr*n(.ﬂX)tm) ) (1'1)

m=1

where S, (f, x) is the exponential sum

S (f.x) = > X(Trg, . jq, (F@1, 22, 2))), (1.2)

(1,22, 20 ) E(pgm _1)™

is a rational function of ¢ over Q,(¢ymx) by well-known theorems of Dwork—Bombieri—
Grothendieck. Furthermore, if f is non-degenerate, L*(]ﬂx,t)(_l)w1 is shown to be a
polynomial for y of order p by Adolphson—Sperber [1] and by Liu-Wei [5] for general .

From now on we suppose f(z) € F,[x] monic of degree d. Then L*(f, x,t) is a poly-
nomial of degree p™x~1d. We fix ¥ a character of order p and write

L*(f,t) = L*(f, ¥, 1). (1.3)

For any i =0,1,2,---,d—1, we can write ¢p uniquely in the form k;d+r; with k; € Z
and 0 < r; < d. Denote

ki+r,—1i ) d—1 .
_mamoh T ), 1.4
R A =Y (1.4)

w;
The following theorem is the main result of this paper.

Theorem 1.1. Let ¢ = p” and let

?(d-1) | 4 Y
N(d) = { (1) o Z.fq P (1.5)
—5—+1, ifq>p.

Suppose f(z) = 2% + ax € F,[x], a # 0. For any non-trivial finite character x of order
P, if
{N(d)» ifmlev
>

max{N(d), 24=D 41}, ifmy > 1,

the g-adic Newton polygon of L*(f,x,t) has slopes

pmx—171

U z+w0 z—i—wl i+wd,1
e pmxfl ’ pmxfl ) ’ pmxfl :
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Remark. (1) The case m, = 1 (i.e., x = ¥) was first obtained (albeit in a slightly
different form) by H.J. Zhu [10] if ¢ = p > (d—1)3+2. Through this she proved D. Wan’s
Conjecture (see [8]) in this case. Earlier R. Yang [9] obtained the first slope w1, and other
slopes in the case p = —1 modd. To obtain our result in this case, we need Zhu’s Rigid
Transformation Theorem [11, Theorem 5.3] to study the slopes of Fredholm determinants
of nuclear matrices when ¢ is general.

(2) For the case m, > 1, we need an improvement of results in [2] about the Newton
polygons of L-functions of Artin—Shreier—Witt towers associated to a monic polynomial
f(x) € Fylx], especially [2, Theorems 1.2 and 3.8]. Our results are stated as Theorem 4.1
and Theorem 4.2.

2. Preliminaries
2.1. Dwork’s trace formula

Let E(t) be the Artin—Hasse exponential series:

0o tpm
E(t) = exp (Z p_m> € (Z, NQ)[]]- (2.1)
m=0
Let v € Qp(¢p) be a root of Y t:: = 0 satisfying ordy = ord((, — 1) = p—il. Fix a
0

system of elements {y'/1,41/2 41/3 ...} € Q, such that
m
(’yl/(m1m2)> f o 71/m2, for all mq,mg > 1.

Denote /™ = (’yl/ m)n for any n € Z and any positive integer m. The Frobenius
automorphism z — zP of Gal(F,/F,) lifts to a generator ¢ of Q,"/Qp which is extended
to Qgr('yl/l,'ylﬂ,'yl/?’, --+) by requiring that @(y'/™) = ~¥/™ for all m > 1. Dwork’s
splitting function

0(t) = E(yt) = Y ymt™ (2.2)

has coefficients 7, € Q,((,) satisfying
m

ord’ymzﬂ, and’ym:’y— for 0<m<p-—-1. (2.3)
p—1 m!

Let f(z) € Fy[x] of degree d and I be the finite set of all i € N such that the coefficient
of f at z' is not 0. Then one can write

f(l‘) = Z&imi, a; 7é 0.

icl
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Let @; be the Teichmiiler lifting of @; in Q4. Set

F(f,x) =[] 0@a"). (2.4)

iel

Write F'(f,z) = i F.(f)x". Then
r=0

F.(f) = Z <H 'Vria;—i) ) (2.5)
T i€l

where 7 = (7;) € N' is over all solutions of the linear system Y, i, = r. By (2.3),
OI‘d(H ’-)/TLZL\Z—I) Z Zie[ Z% Z ﬁ Thus

iel
r
ond(F (1) 2 - (2.6)
Let A;1(f) be the nuclear matrix
AP = (@ (F) = (Fpomr (1) (2.7)
over Q,(v'/?) indexed by (s,r) € N2. We have
orda . (f) = ordFpe_,(f)y"=9/4 > d}ZIi : :) + d(;_—sl) = 2 (2.8)
Let An(f) be the nuclear matrix
Al = MDA ()7 (2.9)
Theorem 2.1 (Dwork’s trace formula). For f(z) € Fylz], we have
Smlf) = (" = )T (An()™). (2.10)
Equivalently,

o det? T (I — tgAR(f))’

where det is the Fredholm determinant.

Remark. Note that all objects above can be defined for any Laurent polynomial

flz1, 20, 2,) € Fq[xlil,xgﬂ, .-, xF1, and Dwork’s trace formula also holds after

a slight modification. See [7,9] for details.
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2.2. Zhu’s Rigid Transformation Theorem

Let U = (usy)s,ren be a nuclear matrix over Qq(vl/d). Then the Fredholm determi-
nants det(I — tU) is well defined and p-adic entire (see [6]). Write

det(I —tU) = co + c1t + ot + -+ (2.12)

For 0 < i1 <ig < -+ < ig, denote by Uiy, --,is) the principal sub-matrix of U formed
by removing all the rows and columns except the ig-th (1 < k < s) ones. In particular,
denote U[s] = U(0,1,---,s — 1). Then we have ¢y = 1 and for k > 1,

= (—1)* > detUliy,ia, -, ix). (2.13)
0<i1 <ig < - <ip
Denote
Up = Ng, /o, (U) =U-U?-..U" " (2.14)
Write
det(I — tUp) = Cy + Oyt + Ot + - - . (2.15)

Zhu [11, Theorem 5.3] proved the following result.

Theorem 2.2 (Rigid Transformation Theorem). Suppose (Bs)s>o0 is a strictly increasing
sequence such that

. _ < '
SEI-POO Bs = 00, and B < ;IZI% ord(us;)

Suppose the inequalities

S 6, < orddetUfi] < 3 g, + 2t =i

‘ , 2
s<1 s<1

hold for every 1 < i < k. Then ord,(C;) = ord, det U[i] for 1 <i <k and
NP, (det(1 — tU[k])) = NP, (det(1 — tU[k])).
3. Slopes of the Newton polygon of L*(f,t)

In this section we shall use Dwork’s trace formula and Zhu’s Rigid Transformation
Theorem to compute the slopes of the Newton polygon of L*(f,t) where f(z) = z%+ax €
F,lx] and @ # 0. We denote Ay = A;(f) and Ay, = Ap(f). Recall that ip = k;d + r;,
0<r; <d.
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Lemma 3.1. We have
Fip—j () = Wyri—3@" ™ mod A I for 0 < j <y
and
Fip—i(f)=0 mod ARETTITL for o>y

Proof. For m € Z,, write m = kd + r for unique integers k, r such that 0 < r < d. By
definition,

Fm(f) =% Tr 'ar"i"ykrfl '7r+d'aT+d

k+r+1

+ Yooz - Yraod - A T2 Yo yma™

T

=% -Y-a  mod vy
The lemma follows from this fact. O

By Lemma 3.1, if 0 < j < r;, we have

i—

aij(f) =77 i yrs—ga

i 1 PR N
= (vm’”"’ﬁa’"i) : (Wﬂa J) - ———— mod T FRitTimiHL (37
(ri — )
If j > r;, we have
aij(f) =77 Fip_j(f) =0 mod "7 Fhitri=itl, (3.2)
Hence we get the following result.
Lemma 3.2. For any 0 < s < d, we have
1 To 7’0(7‘0 — 1)
1 -1
=] " mod (3.3)
1 re Ts—l(rs—l - 1)
where
1 1 1
lediag 0~ ) T P s—1
VoY darorel g,y T @@y ! VYT AT !
and
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Proposition 3.3. If p > d, then for any s=1,---,d,

s—1 2
s?—s dd-1)
ord(det A1 [s]) ;w <54 +4(p—1) (3.4)
Proof. As s <d, rg,7r1, - ,7rs—1 are distinct. The determinant of the matrix of the right

hand side of (3.3) equals to J[o<;;<, 1 (rj —73) # 0, of which the prime factors are less
than d. Therefore the determinant is invertible in IF,, for p > d. In this case, one has

orddet A;[s] = —ord det Ty — ord det T5.

Recall that w; = ki;‘jil L=14 d(p 1)( — 1), we have

d—1
orddet A [ w; = i —1).
ils Z -1 ;;( )
However
s—1 s—1 2
Sri—i) <> (d=1-2i)=(d—s)s < — (3.5)

This finishes the proof. O
We are now ready to prove our main result in the case y = U:

Proposition 3.4. If p > N(d), then the g-adic Newton polygon of L*(f,t) has slopes
{w07w17 e 7wd71}°

Proof. Write

det(I —tAr)) = cit', det(I —tA,) =Y Cit'.

>0 >0
Ifp> & (d U 41, then (3.4) implies that
s2—s 1
A — + =
orddet A;[s] < 5 + pi

holds for 0 < s < d. By (2.8), ordas,(f) > 5. Then for {i1,---,is} # {0,1,---,s — 1},
one has

—s42

det Ay (i1, --,is) =0 mod pg 2d

Therefore for 0 < s < d,
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ord ¢; = ord(det A s Z w;.

Then wg, w1, -+, wq—1 are d slopes of NP, (det (I —tA;)), all of which are less than 1.
Moreover, if p > m + 1, then (3.4) implies that
52 — 1

orddet A;[s] < 5 ° 4 2

holds for 0 < s < d. Let s = 5. Then the assumptions of Theorem 2.2 are satisfied,

ord Cs = ord ¢, for 0 < s < d and NP, (det(I — tAp[s])) = NP,(det(I — tA;][s])). Hence

W, Wi, -+, Wqg—1 are d slopes of NP, (det ‘pfl(I —tAy)), all of which are less than 1.
By Theorem 2.1,

det® (I —tAp) = L*(f,t)det® (I — tqAp).
As the valuation of any item in Aj is > 0, the g-adic slopes of the Newton polygon of
det(I —tAy) are all > 0. Hence the g-adic slopes of det S”71(1 — tAp) are also > 0 and
those of det W_l(l — tqAp) are all > 1. Consequently, the g-adic slopes of the Newton
polygon of det o (I —tAp) less than 1 must be the g-adic slopes of the Newton polygon

of its factor L*(f,t). However the degree of L*(f,t) is d, {w;} must be all the g-adic
slopes of L*(f,t). O

4. Slopes of Newton polygons of L*(f, x,t)

In this section, we fix a monic polynomial f(z) = z%+bs_129" 1+ - +by € F,[z] whose
degree d is not divisible by p. We will use Davis—Wan-Xiao’s result [2] to study Newton
polygons of the L-functions L*(f,x,t) for general finite characters x. For such a x, we
set my, = x(1) — 1 and recall m, = log, (#x(Zp))-

4.1. T-adic L-function

For a positive integer k, the T-adic exponential sum of f over ]quk is the sum:

ST = 3 (14 1) "I, (4.1)

IG]F:,C

The associated T-adic L-function of f over Gy, r, is the generating function

> k
L*(f,T,t) = exp (Z Si(f; T)tk> € 1+1Z[[T][[¢])- (4.2)
k=1
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Note that L*(f, T, t) is the L-function associated to the character Z, — Z,[[T]]* sending
1to 1+ T. It is clear that for a finite character y, we have

L*(f7T7t)|T:7TX :L*(.ﬁXat) (43)

The T-adic characteristic function of f over G, r, is the generating function

C*(f,T,1) = exp (g ﬁs;(f, T)%) . (4.4)
Clearly, we have
C*(f,T,t) = L*(f, T, ) L*(f, T, qt)L* (f, T, ¢*t) - - -, (4.5)
and
L*(f.T,t) = % (4.6)

In particular, C*(f,T,t) € 1+ tZ,[[T]][[t]]. Evaluating C*(f,T,t) at T = m,, we have

C*(faX7t) = C*(fa T, t) |T:7rx .

It follows that

C*(f,x:t) = L*(f, . O L* (fo x, a) L (fo x, 4°1) - - (4.7)
and
. O (f,x )

Liu—Wan [4] showed that the T-adic characteristic function C*(f,T,t) is T-adically
entire in ¢. Thus one can write it in the form

C*(f,T,t) =1+ a1 (D)t + ax(T)t* + - - - € 1+ tZ,[[T[[t]]- (4.9)
Liu—Wan [4] also proved

k(k — 1)

4.1
2, (410)

Vph(p—1) (CUC (T)) >

where vpm is the normalized valuation on Q[[T]] such that vpm (T™) = 1. In other words,
each ai(T) can be written as a power series in T

Ak A1 Ak +2
ap(T) = ap 2, T + arn 1 T 4 ag a2 T2 4
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with ki € Zp, Ak Ay 7& 0 and

k(k — 1)h(p — 1)

Ak 5 .

v

=1 _adic

Now we let NP(f, x, ) be the piecewise linear function whose graph is the w;
Newton polygon of C*(f, x,t), and let HP(f,z) be the piecewise linear function whose

graph is the polygon with vertices
E(k—1)
ky, ———— k=0,1,2,---.
( b 2d > ) b ) )
Then we have NP(f, x,z) > HP(f, z). Set

gap(f,x) = rggg{NP(ﬁx,x) —HP(f,2)}, (4.11)

which is the maximum gap between NP(f, x,x) and HP(f,z). Proposition 3.2(1) and
Lemma 3.7 in [2] imply that for any finite character Yy,

h(d —1)?

- (4.12)

0 < gap(f,x) <

Theorem 3.8 in [2] implies that NP(f, x, z) is independent of the choice of x if m, >

1 +log, h(dgdl)Q. We denote this function by NP(f, Xo0, ). We make an improvement of

this result in the following

Theorem 4.1. If for some non-trivial finite character xo, my, > 1+1log,(h - gap(f, xo0)),
then for any finite character x such that m, > my,,

NP(f, x;z) = NP(f, Xoo, ©)-

In particular, we have

NP(fa XO’:E) = NP(fa Xooax)

Proof. We only need to show that NP(f, x,z) = NP(f, xo, z). Recall that

a‘k‘(ﬂ—xo) = ak,)\kWX())\k + ak,)\k+17rxo/\k+1 + ak,)\k+27TX0>\k+2 +oee

Firstly suppose p | agx for all A > Xx. By definition of m,,, xo(1) is a primitive
root of unity of order p™xo and hence the m,,-adic order of p is (p — 1)p™x0~1. As
My, > 14log,(h-gap(f,xo)), we have ordw;xz(()p_n (p) > gap(f,xo0). Thus

k(k—1)

> .
2d = NP(faXUak)

ord nip-n (ak(Ty,)) > gap(f, xo) +
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Similarly, as m, > m,,, we have

ord ne-n (ar(my)) > NP(f, xo, k).

Secondly suppose that there is some A > Ay such that ax ) is a p-adic unit. Denote
by A}, > Ai the smallest integer such that ay, A, 1s a p-adic unit. It is clear that

’ ’
ak(Ty,) = ak7/\;c7TX0)\k mod (pTrXO)\k77rXO>\k+1)

b
and

>\§C+1)
X .

ap(my) = ak,%wx)‘;ﬁ mod (pm, M, 7

As ord -1 (pm3k) > NP(f, x0, %) and ord_np-1) (ak(my,)) > NP(f, x0, %), we have
X0 ™0

A = h(p = YNP(f, x0, 7).

If ) = h(p — 1)NP(f, xo, ), then

N
ordﬂfxz(()p—1>((lk(71'><o)) = m = NP(.fa Xoa$)7
and
)\I
ordﬂ;;(p_m(ak(ﬂx)) = h(p—il) = NP(fa XO?I)'

On the other hand, if A}, > h(p — 1)NP(f, xo,x), then

/

A
Ord,r;ép—l)(ak(ﬂxo)) 2 min{h(pil)’ Ordﬂ;/ép—l)(PW;\ﬁ)} > NP(f, x0, ),

and, as my > My,

/

A
Ordﬂ_;(p—l)(ak(ﬂ'x)) > min {}L(Tfl),ordﬂgpl)(pw;k)} > NP(f, xo0, ).
Thus the ﬂﬁ(p_l)—adic Newton polygon of C*(f, x,t) is the same as that of C*(f, xo,1),
which means that NP(f, x,z) = NP(f, x0,z). O

If xo is a finite character such that the assumption m,, > 1+ log,(h - gap(f, xo))
holds, by Theorem 4.1, then the slopes of L*(f, x,t) for m, > m,, are determined by
the slopes of L*(f, xo,t) just as in [2, Theorem 1.2].

Moreover, if gap(f, xo0) < #, then my, > 1> 1+log,(h-gap(f, x0)). The assumption
in Theorem 4.1 trivially holds. In particular, if gap(f, ¥) < %, we apply Theorem 4.1 to
get a variation of [2, Theorem 1.2]:
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Theorem 4.2. Let f(z) € Fy[z] be a monic polynomial of degree d. Let 0 = g < o1 <
coo < g1 < 1 be the slopes of the q-adic Newton polygon of L*(f,t). If gap(f, ¥) < %,
then the g-adic Newton polygon of L*(f, x,t) has slopes

prx—1_1

i+040 i+0¢1 i+ad_1
LJ() pmx—l’pmx—l’.“’ pmx_l ’
i=

for any non-trivial finite character x.
Proof. As C*(f, W, t) = L*(f, W, t)L*(f,V,qt)L*(f, ¥, ¢*t) - - -,

U{it+aoi+on, - i+aa} (4.13)
i>0

are the slopes of the g-adic Newton polygon of C*(f, ¥, t). As gap(f, V) < %, the assump-
tion 1 = my > 1+ log,(h-gap(f, ¥)) in Theorem 4.1 holds. For any finite character ¥,

Z(p_l)—adic Newton

we have m, > 1 = my. Theorem 4.1 implies that the slopes of the 7
polygon of C*(f, x,t) are also given by (4.13) and hence the slopes of the g-adic Newton

polygon of C*(f, x,t) are

U i+0&0 i+0l1 i+ad_1
0 prnx—l’pmx—l7 ’ pmx_l )

Then the theorem follows from the relation

_ C(fixt)

L) = &ty

Remark. Suppose that Wan’s Conjecture (see [8]) holds for f(z) € Z[x], which means
that lim gap(f(z)modp,¥) = 0. Then there is a positive integer N; such that
p—00

gap(f(z) modp, V) < 1 for all p > Nj,.

Proof of Theorem 1.1. In our situation f(z) = x¢ + az, the case y = W is just
Proposition 3.4. For x general, by Theorem 4.2, it suffices to show gap(f, ¥) < % for
p > max{N(d), w + 1}. For p > N(d), the slopes of the g-adic Newton polygon of

C*(f,¥,t) are

U{i+w0,z‘+w1,~~,i+wd_1}.
>0

Denote wggqts = k 4+ w; for all k € Nand 0 < s < d. It is easy to see that

NP(f, U, kd + S) =wot+wi + -+ Wkdss—1,
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and

kd+s—1
o

1
HP(f kd +5) = - + - y

SH e}

Aswo+wi+--+wg1 =J+5I+ -+ %7 NP(f,¥,2) —HP(f,z) is a periodic function
of period d. For all 0 < k < d,

0 1 k-1
NP(P,\I/,k)—HP(P,k;):(wo+w1+-~-+wk—1)—(a+a+~--7)
k—1
d—1 L _dd=1) 1
dp—1) i:()(“ DS 3-D < h

by (3.5) if p > w + 1. This finishes the proof. O
5. Note added in proof

After the paper was accepted, we were informed by the authors of [3] that Theorem 1.1
was also proved in [3, Theorem 1.6].
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