On a conjecture of Wan about limiting Newton polygons

Yi Ouyang, Jinbang Yang*
Wu Wen-Tsun Key Laboratory of Mathematics, School of Mathematical Sciences, University of Science and Technology of China, Hefei, Anhui 230026, PR China

A R T I C L E I N F O

Article history:

Received 24 October 2015
Received in revised form 25
February 2016
Accepted 12 May 2016
Available online 26 May 2016
Communicated by Daqing Wan

MSC:

primary 11 T 23
secondary 11L07, 11 M 38
Keywords:
Newton polygon
Hodge polygon
L-function
Zeta function

Abstract

We show that for a monic polynomial $f(x)$ over a number field K containing a global permutation polynomial of degree >1 as its composition factor, the Newton Polygon of $f \bmod \mathfrak{p}$ does not converge for \mathfrak{p} passing through all finite places of K. In the rational number field case, our result is the "only if" part of a conjecture of Wan about limiting Newton polygons. © 2016 Elsevier Inc. All rights reserved.

1. Introduction and main results

Let K be a number field and $f(x)$ be a monic polynomial in $K[x]$ of degree $d \geq 1$. For a finite place \mathfrak{p} of K, denote the completion of K at \mathfrak{p} by $K_{\mathfrak{p}}$. Let $\mathcal{O}_{\mathfrak{p}}$ be the ring of \mathfrak{p}-adic integers and $k_{\mathfrak{p}}$ be the residue field. Then $k_{\mathfrak{p}}$ is a finite field of $q=q_{\mathfrak{p}}=p^{h}$

[^0]elements for some rational prime $p=p_{\mathfrak{p}}$ and some positive integer $h=h_{\mathfrak{p}}$. Denote by $k_{\mathfrak{p}}^{m}$ the unique field extension of $k_{\mathfrak{p}}$ of degree m. Denote by $\Sigma_{K}:=\Sigma_{K}(f)$ the set of finite places \mathfrak{p} of K such that $f(x) \in \mathcal{O}_{\mathfrak{p}}[x]$ and $(d, p)=1$. Note that almost all finite places of K are contained in Σ_{K}.

Let \mathfrak{p} be a place in Σ_{K}. By modulo \mathfrak{p}, we get the reduction \bar{f} of f, a polynomial over $k_{\mathfrak{p}}$. For a nontrivial character $\chi: \mathbb{F}_{p} \rightarrow \mu_{p}$, the L-function

$$
\begin{equation*}
L(\bar{f}, \chi, t)=L\left(\bar{f} / k_{\mathfrak{p}}, \chi, t\right)=\exp \left(\sum_{m=1}^{\infty} S_{m}(\bar{f}, \chi) \frac{t^{m}}{m}\right) \tag{1.1}
\end{equation*}
$$

where $S_{m}(\bar{f}, \chi)$ is the exponential sum

$$
\begin{equation*}
S_{m}(\bar{f}, \chi)=S_{m}\left(\bar{f} / k_{\mathfrak{p}}, \chi\right)=\sum_{x \in k_{\mathfrak{p}}^{m}} \chi\left(\operatorname{Tr}_{k_{\mathfrak{p}}^{m} / \mathbb{F}_{p}}(\bar{f}(x))\right), \tag{1.2}
\end{equation*}
$$

is a polynomial of t of degree $d-1$ over $\mathbb{Q}_{p}\left(\zeta_{p}\right)$ by well-known theorems of Dwork-Bombieri-Grothendieck and Adolphson-Sperber [1]. The q-adic Newton polygon $\mathrm{NP}_{\mathfrak{p}}(f)$ of this L-function does not depend on the choice of the nontrivial character χ.

Let $\operatorname{HP}(f)$ be a convex polygon with break points

$$
\left\{\left.\left(i, \frac{i(i+1)}{2 d}\right) \right\rvert\, 0 \leq i \leq d .\right\},
$$

which only depends on the degree of f. Adolphson and Sperber [2] proved that $\mathrm{NP}_{\mathfrak{p}}(f)$ lies above $\operatorname{HP}(f)$ and that $\operatorname{NP}_{\mathfrak{p}}(f)=\operatorname{HP}(f)$ if $p \equiv 1 \bmod d$. Obviously, there are infinitely many $\mathfrak{p} \in \Sigma_{K}$ such that $p \equiv 1 \bmod d$, thus if $\lim _{\mathfrak{p} \in \Sigma_{K}} \operatorname{NP}_{\mathfrak{p}}(f)$ exists, then $\lim _{\mathfrak{p} \in \Sigma_{K}} \operatorname{NP}_{\mathfrak{p}}(f)=\operatorname{HP}(f)$.

Recall that a global permutation polynomial (GPP) over K is a polynomial $P(x) \in$ $K[x]$ such that $x \mapsto \bar{P}(x)$, where \bar{P} is the reduction of P modulo \mathfrak{p}, is a permutation on $k_{\mathfrak{p}}$ for infinitely many places $\mathfrak{p} \in \Sigma_{K}$.

In 1999, D. Wan proposed a conjecture, whose complete version in [16, Chapter 5] and [4, Conjecture 6.1] is as follows:

Conjecture 1.1 (Wan). Let f be a non-constant monic polynomial in $\mathbb{Q}[x]$. Then f contains a GPP over \mathbb{Q} of degree >1 as its composition factor if and only if $\lim _{\mathfrak{p} \in \Sigma_{\mathbb{Q}}} N_{p}(f)$ does not exist.

In this note, we give a proof of the "only if" part of Wan's conjecture. Moreover, we get the following main result.

Theorem 1.2. Let f be a non-constant monic polynomial in $K[x]$. If f contains a GPP over K of degree >1 as its composition factor, then $\lim _{\mathfrak{p} \in \Sigma_{K}} N_{\mathfrak{p}}(f)$ does not exist.

Remark. The "If" part of Conjecture 1.1 is much harder. So far, we know the following results:
(1) polynomials of small degree. This is shown by Sperber [13] and Hong [8,9].
(2) polynomials of the form $x^{d}+a x^{s}$. This is proved by Yang [16], Zhu [17,18], LiuNiu [11] and Ouyang-Zhang [12].
(3) polynomials of the form $P\left(x^{s}\right)$. This can be deduced by Blache-Férard-Zhu's results in [4].
(4) the general case. This is proved in Zhu [17].

Remark. If we replace \mathbb{Q} in Conjecture 1.1 by any number field K, then the "if" part does not hold in general. We give an example here. Let ℓ be a prime number greater than 3. Let $K=\mathbb{Q}\left(\zeta_{\ell}\right)$ and $f(x)=$ the Dickson polynomial $D_{\ell}(x, 1)$. By Lemma 2.5, f is not a permutation polynomial for all $k_{\mathfrak{p}}$ with $\mathfrak{p} \nmid 3 \ell \omega$. Thus f is not a GPP over K. By Lemma 2.5 , one can easily check that f is a GPP over \mathbb{Q}. Theorem 1.2 implies that $\lim _{p \in \Sigma_{\mathbb{Q}}} N_{p}(f)$ does not exist. By Proposition 2.3, $\lim _{\mathfrak{p} \in \Sigma_{K}} \mathrm{NP}_{\mathfrak{p}}(f)$ also does not exist.

2. Preliminary

2.1. Zeta functions and L-functions of exponential sums

We fix a rational prime p, a positive integer h and let $q=p^{h}$. Let C be a curve over \mathbb{F}_{q}. The Zeta function of C

$$
\begin{equation*}
Z(C, t)=\exp \left(\sum_{m=1}^{\infty} N_{m}(C) \frac{t^{m}}{m}\right) \tag{2.1}
\end{equation*}
$$

is a rational function over \mathbb{Q}, where

$$
N_{m}(C)=\# C\left(F_{q^{m}}\right)
$$

is the number of $\mathbb{F}_{q^{m}}$-rational points of C. If C is smooth and proper, by Weil [15], $Z(C, t)$ is of the form $\frac{P_{C}(t)}{(1-t)(1-q t)}$, where $P_{C}(t)$ is a polynomial of t of degree $2 g(C)$ over \mathbb{Z} and $g(C)$ is the genus of C. Denote the q-adic Newton polygon of $P_{C}(t)$ by $\mathrm{NP}_{q}(C)$.

Let g be a polynomial in $\mathbb{F}_{q}[x]$ of degree d with $(d, p)=1$. The fraction field of the integral domain $\mathbb{F}_{q}[x, y] /\left(y^{p}-y-g\right)$, denoted by L_{g}, is a Galois extension of $\mathbb{F}_{q}(x)$, which is the function field of $\mathbb{P}_{\mathbb{F}_{q}}^{1}$. So $C(g)$, the normalization of $\mathbb{P}_{\mathbb{F}_{q}}^{1}$ in L_{g}, is a Galois cover of $\mathbb{P}_{\mathbb{F}_{q}}^{1}$ with Galois group isomorphic to \mathbb{F}_{p}. The Zeta function of the $C(g)$ admits the following decomposition

$$
Z(C(g), t)=\prod_{\chi: \mathbb{F}_{p} \rightarrow \mu_{p}} L(g, \chi, t), \quad P_{C(g)}(t)=\prod_{\chi \neq 1} L(g, \chi, t) .
$$

Hence the study of the polynomial $P_{C(g)}(t)$ reduces to the study of $L(g, \chi, t)$ for nontrivial characters χ.

For polygon P, denote by $\operatorname{Len}(P, \lambda)$ the horizontal length of the segment of slope λ. As the Newton polygon $\operatorname{NP}_{\mathfrak{p}}(f)$ of $L(\bar{f}, \chi, t)$ is independent of the choice of $\chi \neq 1$, we have the following result:

Lemma 2.1. For any $\lambda, \operatorname{Len}\left(\mathrm{NP}_{q}(C(\bar{f})), \lambda\right)=(p-1) \operatorname{Len}\left(\mathrm{NP}_{\mathfrak{p}}(f), \lambda\right)$.
By [7, Corollary 5.2.6], if $P_{C}(t)=\prod_{i=1}^{2 g(C)}\left(1-\alpha_{i} t\right)$, then $P_{C / \mathbb{F}_{q^{n}}}(t)=\prod_{i=1}^{2 g(C)}\left(1-\alpha_{i}^{n} t\right)$. By the same method there, one has the following result.

Lemma 2.2. Write $L(g, \chi, t)$ in the form $\left(1-\alpha_{1} t\right)\left(1-\alpha_{2} t\right) \cdots\left(1-\alpha_{d-1} t\right)$. For any $n \geq 1$, we have

$$
S_{m}(g, \chi)=-\left(\alpha_{1}^{m}+\alpha_{2}^{m}+\cdots+\alpha_{d-1}^{m}\right)
$$

and

$$
L\left(g / \mathbb{F}_{q^{n}}, \chi, t\right)=\left(1-\alpha_{1}^{n} t\right)\left(1-\alpha_{2}^{n} t\right) \cdots\left(1-\alpha_{d-1}^{n} t\right)
$$

In particular, the q-adic Newton polygon of $L(g, \chi, t)$ is the same as the q^{n}-adic Newton polygon of $L\left(g / \mathbb{F}_{q^{n}}, \chi, t\right)$.

Proposition 2.3. Let L / K be a finite extension of number fields and \mathfrak{P} a place of L above \mathfrak{p} a place of K. Then

$$
\mathrm{NP}_{\mathfrak{p}}(f)=\mathrm{NP}_{\mathfrak{P}}(f)
$$

In particular, $\lim _{\mathfrak{p} \in \Sigma_{K}} \mathrm{NP}_{\mathfrak{p}}(f)$ exists if and only if $\lim _{\mathfrak{P} \in \Sigma_{L}} \mathrm{NP}_{\mathfrak{P}}(f)$ exists.

Proof. By definition, $\mathrm{NP}_{\mathfrak{p}}(f)$ is the q-adic Newton polygon of $L\left(\bar{f} / k_{\mathfrak{p}}, \chi, t\right)$ and $\mathrm{NP}_{\mathfrak{P}}(f)$ is the $q^{\left[k_{\mathfrak{P}}: k_{\mathfrak{p}}\right]}$-adic Newton polygon of $L\left(\bar{f} / k_{\mathfrak{P}}, \chi, t\right)$. By Lemma 2.2, we have $\mathrm{NP}_{\mathfrak{p}}(f)=$ $\mathrm{NP}_{\mathfrak{P}}(f)$.

We also need the following result about the divisibility of Zeta functions of curves.

Proposition 2.4 ([3, Proposition 5]). Let X, Y be two smooth separated complete curves over \mathbb{F}_{q}. If there is some finite \mathbb{F}_{q}-morphism $\pi: Y \rightarrow X$, then

$$
P_{X}(t) \mid P_{Y}(t)
$$

2.2. Global permutation polynomials and Dickson polynomials

Let a be an element in a commutative ring R. For any $n \geq 1$, the Dickson polynomial of the first kind associated to a of degree n, denote by $D_{n}(x, a)$, is the unique polynomial over R such that

$$
\begin{equation*}
D_{n}\left(x+\frac{a}{x}, a\right)=x^{n}+\frac{a^{n}}{x^{n}} . \tag{2.2}
\end{equation*}
$$

One can easily check that

$$
\begin{equation*}
D_{n}(x, 0)=x^{n} \tag{2.3}
\end{equation*}
$$

and

$$
\begin{equation*}
D_{m n}(x, a)=D_{m}\left(D_{n}(x, a), a^{n}\right) \tag{2.4}
\end{equation*}
$$

Lemma 2.5. Let $a \in \mathbb{F}_{q}$ and n be a positive integer.
1). If $a=0$, then $D_{n}(x, 0)=x^{n}$ is a permutation polynomial of \mathbb{F}_{q} if and only if ($n, q-$ 1) $=1$.
2). If $a \neq 0$, then $D_{n}(x, a)$ is a permutation polynomial of \mathbb{F}_{q} if and only if $\left(n, q^{2}-1\right)=1$.

Proof. Due to [5], see [10, Theorem 7.16] for quick reference.
Proposition 2.6 (Fried-Turnwald). Let f be a GPP over K. Then f is a composition of linear polynomials $\alpha_{i} x+\beta_{i} \in K[x]$ and the Dickson polynomials $D_{n_{j}}\left(x, a_{j}\right)$, where $a_{j} \in K$ and n_{j} are positive integers.

Proof. See [6, Theorem 2] or [14, Theorem 2].

3. Proof of main result

We first show
Proposition 3.1. Suppose that f contains $D_{n}(x, a)$ as a composition factor. Then for $\mathfrak{p} \in \Sigma_{K}$ such that
(1) $a \in \mathcal{O}_{\mathfrak{p}}$;
(2) $\mathfrak{p} \nmid 3 n \omega$, where ω is the number of the roots of unity in K;
(3) $D_{n}(x, \bar{a})$ is a permutation polynomial on $k_{\mathfrak{p}}$,
there exists $v_{0} \in \mathbb{Q}$ such that $\operatorname{Len}\left(\mathrm{NP}_{\mathfrak{p}}(f), v_{0}\right) \geq 2$ and hence the gap between $N P_{\mathfrak{p}}(f)$ and $\operatorname{HP}(f)$ is at least $\frac{1}{2 d}$.

Proof. Write f in the form $f_{1} \circ D_{n}(x, a) \circ f_{3}$. As $D_{n}(x, \bar{a})$ is a permutation polynomial on $k_{\mathfrak{p}}$, by Lemma 2.5, $(n, q-1)=1$. As $\mathfrak{p} \nmid \omega$, the reduction induces an inclusion $\mu_{K} \subset \mu_{k_{\mathrm{p}}}$, and hence $\omega \mid q-1$. So we have $(n, \omega)=1$. By (2.4), we may assume that n is an odd prime number. Set $e=1$ if $\bar{a}=0$ and otherwise $e=2$. By Lemma 2.5, we have $\left(q^{e}-1, n\right)=1$. As n is an odd prime number, $\left(q^{(n-1) s+1}\right)^{e} \equiv q^{e} \not \equiv 1 \bmod n$ and so $\left(\left(q^{(n-1) s+1}\right)^{e}-1, n\right)=1$. Using Lemma 2.5 again, $D_{n}(x, \bar{a})$ is permutation polynomial of $k_{\mathfrak{p}}^{m}$, where $m=(n-1) s+1$ and s is a non-negative integer. For these m and any nontrivial character $\chi: \mathbb{F}_{p} \rightarrow \mu_{p}$, we have that

$$
\begin{equation*}
S_{m}\left(\bar{f}_{1}, \chi\right)=S_{m}\left(\bar{f}_{1} \circ D_{n}(x, \bar{a}), \chi\right) \tag{3.1}
\end{equation*}
$$

Assume that

$$
L\left(\bar{f}_{1}, \chi, t\right)=\left(1-\alpha_{1} t\right)\left(1-\alpha_{2} t\right) \cdots\left(1-\alpha_{d_{1}-1} t\right)
$$

and

$$
L\left(\bar{f}_{1} \circ D_{n}(x, \bar{a}), \chi, t\right)=\left(1-\beta_{1} t\right)\left(1-\beta_{2} t\right) \cdots\left(1-\beta_{n d_{1}-1} t\right),
$$

where d_{1} is the degree of f_{1}. Lemma 2.2 implies that

$$
S_{m}\left(\bar{f}_{1}, \chi\right)=-\left(\alpha_{1}^{m}+\alpha_{2}^{m}+\cdots+\alpha_{d_{1}-1}^{m}\right)
$$

and

$$
S_{m}\left(\bar{f}_{1} \circ D_{n}(x, \bar{a}), \chi\right)=-\left(\beta_{1}^{m}+\beta_{2}^{m}+\cdots+\beta_{n d_{1}-1}^{m}\right) .
$$

By (3.1), we have an equality of power series

$$
\sum_{m=(n-1) s+1}\left(\alpha_{1}^{m}+\alpha_{2}^{m}+\cdots+\alpha_{d_{1}-1}^{m}\right) t^{m}=\sum_{m=(n-1) s+1}\left(\beta_{1}^{m}+\beta_{2}^{m}+\cdots+\beta_{n d_{1}-1}^{m}\right) t^{m}
$$

Hence

$$
\sum_{i=1}^{d_{1}-1} \frac{\alpha_{i} t}{1-\left(\alpha_{i} t\right)^{n-1}}=\sum_{i=1}^{n d_{1}-1} \frac{\beta_{i} t}{1-\left(\beta_{i} t\right)^{n-1}}
$$

Comparing the poles on both sides, there exist $1 \leq i<j \leq n d_{1}-1$ such that

$$
\beta_{i}^{n-1}=\beta_{j}^{n-1}
$$

Denote by v_{0} the q-adic valuation of β_{i} (and of β_{j}). Then

$$
\operatorname{Len}\left(\operatorname{NP}_{\mathfrak{p}}\left(f_{1} \circ D_{n}(x, a)\right), v_{0}\right) \geq 2
$$

Denote $C^{\prime}=C\left(\bar{f}_{1} \circ D_{n}(x, \bar{a})\right)$, by Lemma 2.1,

$$
\operatorname{Len}\left(\operatorname{NP}_{q}\left(C^{\prime}\right), v_{0}\right) \geq 2(p-1)
$$

Denote $C=C(f)$, one can check that

$$
k_{\mathfrak{p}}\left(C^{\prime}\right)=k_{\mathfrak{p}}\left(x, y^{\prime}\right) \text { and } k_{\mathfrak{p}}(C)=k_{\mathfrak{p}}(x, y)
$$

where $\left(y^{\prime}\right)^{p}-y^{\prime}=\bar{f}_{1} \circ D_{n}(x, \bar{a})$ and $y^{p}-y=f(x)$. The embedding

$$
k_{\mathfrak{p}}\left(x, y^{\prime}\right) \rightarrow k_{\mathfrak{p}}(x, y)
$$

sending x to $\overline{f_{3}}$ and y^{\prime} to y induces a non-constant morphism

$$
\pi: C \rightarrow C^{\prime}
$$

of complete smooth curves. By Proposition 2.4,

$$
\operatorname{Len}\left(\mathrm{NP}_{q}(C), v_{0}\right) \geq \operatorname{Len}\left(\mathrm{NP}_{q}\left(C^{\prime}\right), v_{0}\right) \geq 2(p-1)
$$

Using Lemma 2.1 again, we have

$$
\operatorname{Len}\left(\mathrm{NP}_{\mathfrak{p}}(f), v_{0}\right) \geq 2
$$

As in the above diagram, we assume that $N_{i-1} N_{i}$ and $N_{i} N_{i+1}$ are of the same slope. The slopes of $H_{i-1} H_{i}$ and $H_{i} H_{i+1}$ are $\frac{i}{d}$ and $\frac{i+1}{d}$, respectively. As the HP is below the NP, we know that $N_{i \pm 1}$ is above $H_{i \pm 1}$. Hence the middle point N_{i} of $N_{i-1} N_{i+1}$ is above P that of $H_{i-1} H_{i+1}$. So we have

$$
\left|N_{i} H_{i}\right| \geq\left|P H_{i}\right| \geq \frac{1}{2 d}
$$

Proof of main result. Write f in the form $f_{1} \circ f_{2} \circ f_{3}$, where f_{2} is a GPP over K of degree >1. As every composition factor of a GPP is still a GPP, by Proposition 2.6, we can assume that $f_{2}=D_{n}(x, a)$ is a GPP over K, where $a \in K$ and $n \in \mathbb{Z}_{>1}$.

For the a and n, by definition of GPP, there are infinitely many $\mathfrak{p} \in \Sigma_{K}$ satisfying the three conditions in Proposition 3.1. For those \mathfrak{p}, by Proposition 3.1, the gap between $N P_{\mathfrak{p}}(f)$ and $\operatorname{HP}(f)$ is at least $\frac{1}{2 d}$. However, for places \mathfrak{p} such that $p_{\mathfrak{p}} \equiv 1 \bmod d$, we know $N P_{\mathfrak{p}}(f)=\operatorname{HP}(f)$. So the limit does not exist.

Acknowledgments

Research is partially supported by National Key Basic Research Program of China (Grant No. 2013CB834202) and National Natural Science Foundation of China (Grant Nos. 11171317 and 11571328).

References

[1] A. Adolphson, S. Sperber, Newton polyhedra and the degree of the L-function associated to an exponential sum, Invent. Math. 88 (1987) 555-569.
[2] A. Adolphson, S. Sperber, Exponential sums and Newton polyhedra: cohomology and estimates, Ann. Math. 130 (1989) 367-406.
[3] Y. Aubry, M. Perret, Divisibility of zeta functions of curves in a covering, Arch. Math. 82 (2004) 205-213.
[4] R. Blache, E. Férard, H.J. Zhu, Hodge-Stickelberger polygons for L-functions of exponential sums of $P\left(x^{s}\right)$, Math. Res. Lett. 15 (5) (2008) 1053-1071.
[5] L.E. Dickson, The analytic representation of substitutions on a power of a prime number of letters with a discussion of the linear group, Ann. Math. 11 (1-6) (1896/1897) 65-120, 161-183.
[6] M. Fried, On a conjecture of Schur, Mich. Math. J. 17 (1970) 41-55.
[7] D.M. Goldschmidt, Algebraic Functions and Projective Curves, Graduate Texts in Mathematics, vol. 215, Springer-Verlag, New York, ISBN 0-387-95432-5, 2003, xvi+179 pp.
[8] S. Hong, Newton polygons of L-functions associated with exponential sums of polynomials of degree four over finite fields, Finite Fields Appl. 7 (2001) 205-237.
[9] S. Hong, Newton polygons for L-functions of exponential sums of polynomials of degree six over finite fields, J. Number Theory 97 (2002) 368-396.
[10] R. Lidl, H. Niederreiter, Finite Fields, Encyclopedia of Mathematics and its Applications, vol. 20, Addison-Wesley Publishing Company, Reading, MA, 1983.
[11] C. Liu, C. Niu, Generic twisted T-adic exponential sums of binomials, Sci. China Math. 54 (5) (2011) 865-875.
[12] Y. Ouyang, S. Zhang, Newton polygons of L-functions of polynomials $x^{d}+a x^{d-1}$ with $p \equiv-1 \bmod d$, Finite Fields Appl. 37 (2016) 285-294.
[13] S. Sperber, On the p-adic theory of exponential sums, Am. J. Math. 108 (1986) 255-296.
[14] G. Turnwald, On Schur's conjecture, J. Aust. Math. Soc. A 58 (3) (1995) 312-357.
[15] A. Weil, Numbers of solutions of equations in finite fields, Bull. Am. Math. Soc. 55 (1949) 497-508.
[16] R. Yang, Newton polygons of L-functions of polynomials of the form $x^{d}+\lambda x$, Finite Fields Appl. 9 (1) (2003) 59-88.
[17] H.J. Zhu, p-adic variation of L functions of one variable exponential sums. I, Am. J. Math. 125 (3) (2003) 669-690.
[18] H.J. Zhu, Generic A-family of exponential sums, J. Number Theory 143 (2014) 82-101.

[^0]: * Corresponding author.

 E-mail addresses: yiouyang@ustc.edu.cn (Y. Ouyang), yjb@mail.ustc.edu.cn (J. Yang).

