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Let K be a field of characteristic 0 complete with respect to a non-trivial discrete valuation
with perfect residue field k of characteristic p > 0. Let V be a p-adic representation
of the absolute Galois group of K . We compute explicitly Kato’s filtration on the
continuous cohomology group H1(K , V ). When k is finite, we give a simple proof of
Hyodo’s celebrated result H1

g(K , V ) = H1
st(K , V ) when V is a potentially semi-stable Galois

representation.
© 2014 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

Soit K un corps de caractéristique 0 complet pour une valuation discrète non triviale à
corps résiduel parfait k de caractéristique p > 0. Soit V une représentation p-adique du
groupe de Galois absolu de K . On calcule explicitement la filtration de Kato sur le groupe
de cohomologie continue H1(K , V ). Lorsque k est fini, on en déduit une preuve simple
du résultat bien connu de Hyodo qui dit que, si V est potentiellement semi-stable, alors
H1

g(K , V ) = H1
st(K , V ).

© 2014 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Explicit computation of Kato’s filtration on the Galois cohomology

We fix a prime number p and a perfect field k of characteristic p > 0. We denote K0 the fraction field of Witt vectors
with coefficients in k and we fix a finite totally ramified extension K of K0. We choose an algebraic closure K of K and set
G K = Gal(K/K ).

The topological Qp-vector spaces V equipped with a linear and continuous action of G K form, in an obvious way,
a Qp-linear additive exact category CQp (G K ). For any object V of this category and i ∈ N, we denote Hi(K , V ) =
Hi

cont(G K , V ) the i-th group of continuous cohomology (see Tate [7, §2]). Given a short exact sequence

0 −→ V ′ −→ V −→ V ′′ −→ 0
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of CQp (G K ), we have an obvious exact sequence1

0 → H0(K , V ′) → H0(K , V ) → H0(K , V ′′) → H1(K , V ′) → H1(K , V ) → H1(K , V ′′)

With the extension K/K are associated the p-adic completion C of K and the usual rings of p-adic periods BdR, Bcris
and Bst which are topological rings equipped with a Qp -linear and continuous action of G K = Gal(K/K ) (cf. [3] or [4]).

Let’s choose a non-zero topologically nilpotent element π of K and a sequence � = (� (n))n∈N of elements of K such
that �(0) = π and (� (n+1))p = �(n) for all n ∈ N. Recall that this choice defines an element u = log[� ] of Bst and that
we can view also u as an element of BdR by deciding that log(π) = 0 (then we identify u to

∑+∞
n=1(−1)n−1 ([u]−1)n

nπn ). With
these choices,

Bst = Bcris[u]
is a polynomial algebra in u with coefficients in Bcris and is a G K -stable subring of BdR. Moreover BdR is a field containing
K and, if we denote K0 the fraction field of the ring W (k) of Witt vectors with coefficients in k, we have:

H0(K , B+
dR

) = H0(K , BdR) = K and H0(K , Bcris) = H0(K , Bst) = K0.

The ring Bst is equipped with an endomorphism ϕ semi-linear with respect to the absolute Frobenius on K0 and the
Bcris-derivation N = −d/du. The operators ϕ and N commute with G K and satisfy Nϕ = pϕN . Therefore Bcris is the subring
of Bst kernel of N and we define the ring Be as the subring of Bcris, which is fixed by ϕ −1. We have short exact sequences:

0 −→ Bcris −→ Bst
N−→ Bst −→ 0, (1)

0 −→ Be −→ Bcris
ϕ−1−−→ Bcris −→ 0. (2)

We set B̃dR = BdR/B+
dR and, for all b ∈ BdR, we denote b̃ its image in B̃dR. The fundamental exact sequence of p-adic Hodge

theory is the exact sequence

0 −→ Qp −→ Be −→ B̃dR −→ 0 (3)

where Be �→ B̃dR is the compositum of the inclusion Be ⊂ BdR with the projection BdR → B̃dR.
We now consider a p-adic Galois representation, i.e. a finite-dimensional Qp-vector space V equipped with a continuous

linear action of G K . Recall that we have a natural filtration by sub-Qp-vector spaces on H1(K , V ), the Kato’s filtration:

0 ⊂ H1
e (K , V ) ⊂ H1

f (K , V ) ⊂ H1
st(K , V ) ⊂ H1

g(K , V ) ⊂ H1(K , V )

where

H1
e (K , V ) = ker

(
H1(K , V ) −→ H1(K , Be ⊗Qp V )

)
,

H1
f (K , V ) = ker

(
H1(K , V ) −→ H1(K , Bcris ⊗Qp V )

)
,

H1
st(K , V ) = ker

(
H1(K , V ) −→ H1(K , Bst ⊗Qp V )

)
,

H1
g(K , V ) = ker

(
H1(K , V ) −→ H1(K , BdR ⊗Qp V )

)
.

We want to compute these cohomology groups. Recall that [5, Chap. I, §2.2.1] the tangent space of V is the K -vector
space:

tV = H0(K , B̃dR ⊗ V ).

We let N and ϕ act on Bst ⊗Qp V via N(b ⊗ v) = Nb ⊗ v and ϕ(b ⊗ v) = ϕb ⊗ v . These actions commute with the action
of G K , hence N and ϕ act also on

D = Dst(V ) = H0(K , Bst ⊗Qp V )

which is a finite-dimensional K0-vector space.

1 If there is a (set-theoretic) continuous splitting of the projection V → V ′′ , we even get the usual long exact sequence (loc. cit.), but we will not use
this fact.
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1.1. H1
e (K , V )

Tensoring with V , we get from (3) a short exact sequence

0 −→ V −→ Be ⊗ V −→ B̃dR ⊗ V −→ 0

inducing a long exact sequence

0 → H0(K , V ) → D N=0,ϕ=1 → tV −→ H1
e (K , V ) −→ 0 (Se)

where

D N=0,ϕ=1 = H0(K , Be ⊗ V ) = {
x ∈ D

∣∣ Nx = 0, ϕ(x) = x
}
.

1.2. H1
f (K , V )

Consider the map Bcris → Bcris ⊕ B̃dR sending b to (ϕb − b, b̃). From the exactness of (2) and (3), we get the exactness of

0 −→ Qp −→ Bcris −→ Bcris ⊕ B̃dR −→ 0. (4)

Tensoring with V , we get a short exact sequence

0 −→ V −→ Bcris ⊗ V −→ (Bcris ⊗ V ) ⊕ (B̃dR ⊗ V ) −→ 0

inducing a long exact sequence

0 → H0(K , V ) → D N=0 → D N=0 ⊕ tV −→ H1
f (K , V ) −→ 0. (S f )

1.3. H1
st(K , V )

Let

B ′
st = {

(x, y) ∈ (Bst)
2
∣∣ pϕx − x = N y

}
.

If z ∈ Bst, then (Nz,ϕz − z) ∈ B ′
st. We denote ι : Bst → B ′

st ⊕ B̃dR the map z �→ ((Nz,ϕz − z), z̃).

Lemma 1. The sequence

0 −→ Qp −→ Bst
ι−→ B ′

st ⊕ B̃dR −→ 0 (5)

is exact.

Proof. It is clear that ker(ι) = B N=0,ϕ=1
st ∩ B+

dR = Qp . We only need to show that ι is surjective. Let ((x, y), w) ∈ B ′
st ⊕ B̃dR. By

surjectivity of N : Bst → Bst, there is a z1 ∈ Bst such that Nz1 = x. We have N(y − (ϕz1 − z1)) = pϕx − x − N(ϕz1 − z1) = 0,
i.e. y − (ϕz1 − z1) ∈ Bcris. By surjectivity of ϕ − 1 : Bcris → Bcris, there is a z2 ∈ Bcris such that ϕz2 − z2 = y − (ϕz1 − z1).
By surjectivity of Be → B̃dR, there is a z3 ∈ Be such that z̃3 = w − (z̃1 + z̃2). Let z = z1 + z2 + z3 ∈ Bst, then we have
ι(z) = ((x, y), w). �

Tensoring (5) with V , we get a short exact sequence

0 −→ V −→ Bst ⊗ V −→ (
B ′

st ⊗ V
) ⊕ (B̃dR ⊗ V ) −→ 0

inducing a long exact sequence

0 → H0(K , V ) → D → D ′ ⊕ tV −→ H1
st(K , V ) −→ 0 (Sst)

where D ′ = H0(K , B ′
st).

Moreover D ′ can be easily computed from D:

Proposition 2. Denote x �→ x the projection of D onto D/N D and consider the maps

ι0 : D N=0 −→ D ⊕ D N=0, w �→ (w,−ϕw + w),

ι1 : D ⊕ D N=0 → D ⊕ D, (u, v) �→ (Nu,ϕu − u + v),

ι2 : D ′ → D/N D, (x, y) �→ x.
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The image of ι1 is contained in D ′ , the image of ι2 is contained in (D/N D)ϕ=p−1 and the sequence

0 −→ D N=0
ι0−→ D ⊕ D N=0

ι1−→ D ′ ι2−→ (D/N D)ϕ=p−1 −→ 0

is exact.

Proof. The inclusions

Image(ι1) ⊂ D ′ and Image(ι2) ⊂ (D/N D)ϕ=p−1

are obvious. We have:

D ′ = {
(x, y) ∈ D2

∣∣ pϕx − x = N y
}
.

If x ∈ D lifts s ∈ (D/N D)ϕ=p−1 , then there exists y ∈ D such that N y = pϕx − x and (x, y) is in D ′ and such that ι2(x, y) = s,
hence ι2 is onto.

If (u, v) ∈ D ⊕ D N=0, we have ι2(ι1(u, v)) = ι2(Nu,ϕu − u + v) = 0. Conversely, if (x, y) ∈ D ′ lies in the kernel of ι2, it
means there exists u ∈ D such that Nu = x. Hence (x, y)− ι1(u,0) is an element of D ′ of the form (0, v) and N v = 0. Hence
(x, y) = ι1(u, v) and the image of ι1 is the kernel of ι2.

If w ∈ D N=0, then ι1(ι0(w)) = ι1(w,−ϕw + w) = (N w,ϕw − w − ϕw + w) = 0. Conversely, if (u, v) lies in the kernel
of ι1, we have Nu = 0 and v = −ϕu + u, hence (u, v) = ι0(u).

The map ι0 is obviously injective and it concludes the proof. �
The following result is now obvious:

Proposition 3. The Qp-vector spaces H1
f (K , V )/H1

e (K , V ) and H1
st(K , V )/H1

e (K , V ) are finite dimensional. We have:

dimQp H1
f (K , V )/H1

e (K , V ) = dimQp D N=0,ϕ=1

and

dimQp H1
st(K , V )/H1

f (K , V ) = dimQp (D/N D)ϕ=p−1 .

2. The case of a finite extension of QpQpQp

We assume now that K is a finite extension of Qp . Recall that a p-adic Galois representation V of G K is potentially
semi-stable if there is a finite extension L of K contained in K such that, if L0 is the fraction field of the ring of Witt vectors
with coefficients in the residue field of L:

dimQp V = dimL0 H0(L, Bst ⊗ V ).

In this case, we can use Proposition 3 to compute the dimension of H1
g(K , V )/H1

f (K , V ) and get Hyodo’s celebrated
result (cf. [6]):

Main Theorem. For a potentially semi-stable representation V ,

H1
g(K , V ) = H1

st(K , V ). (∗)

The original proof of Hyodo, never published, used decomposition of iso-crystals and unramified representations. This
result has been extended by Laurent Berger [1] to the general case (Berger proves that any de Rham representation is
potentially semi-stable), but his proof is much more involved.

2.1. Reduction to the semi-stable case

We consider the commutative diagram

H1(K , V )

Res

αK H1(K , Bst ⊗ V )

Res

βK H1(K , BdR ⊗ V )

Res

H1(L, V )
αL H1(L, Bst ⊗ V )

βL H1(L, BdR ⊗ V )

where L is a finite extension of K . The vertical arrows are injective by the relation Cor ◦ Res = [L : K ]. The above diagram
shows that the injectivity of βL |Im(αL) implies the injectivity of βK |Im(αK ) .
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By definition of H1
st(K , V ) and H1

g(K , V ), we have the following commutative diagram, where the two horizontal se-
quences are exact:

0 H1
st(K , V ) H1(K , V )

∼=

αK Im(αK )

βK |Im(αK )

0

0 H1
g(K , V ) H1(K , V ) H1(K , BdR ⊗ V )

By the Snake Lemma, we know that H1
st(K , V ) = H1

g(K , V ) is equivalent to the injectivity of βK |Im(αK ) . So (∗) for K is
equivalent to (∗) for L.

2.2. Computation of dim H1
g(K , V )/H1

f (K , V )

Now assume V is semi-stable. Let V ∗(1) be the dual representation twisted by the Tate module of the multiplicative
group. Recall the following result of Bloch and Kato [2, propo. 3.8]:

Lemma 4. The usual perfect pairing of class field theory (given by the cup-product)

H1(K , V ) × H1(K , V ∗(1)
) −→ H2(K ,Qp(1)

) ∼→Qp,

is such that

(1) H1
e (K , V ) and H1

g(K , V ∗(1)) are the exact annihilators of each other,

(2) H1
g(K , V ) and H1

e (K , V ∗(1)) are the exact annihilators of each other,

(3) H1
f (K , V ) and H1

f (K , V ∗(1)) are the exact annihilators of each other.

By the above Lemma, then

dimQp H1
g(K , V )/H1

f (K , V ) = dimQp H1
f

(
K , V ∗(1)

)
/H1

e

(
K , V ∗(1)

)
.

By Proposition 3, the latter one is equal to

dimQp Dst
(

V ∗(1)
)

N=0,ϕ=1 = dimQp Dst
(

V ∗)
N=0,ϕ=p−1 .

By duality, this is equal to

dimQp

(
(D/N D)∗

)ϕ=p−1 = dimQp (D/N D)ϕ=p−1
,

which is equal to dimQp H1
st(K , V )/H1

f (K , V ) by using Proposition 3 again. This concludes the proof of the Main Theo-
rem. �
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