Hilbert genus fields of real biquadratic fields

Yi Ouyang • Zhe Zhang

Received: 8 September 2013 / Accepted: 11 January 2014 / Published online: 14 May 2014
© Springer Science+Business Media New York 2014

Abstract

The Hilbert genus field of the real biquadratic field $K=\mathbb{Q}(\sqrt{\delta}, \sqrt{d})$ is described by Yue (Ramanujan J 21:17-25, 2010) and by Bae and Yue (Ramanujan J 24:161-181, 2011) explicitly in the case $\delta=2$ or p with $p \equiv 1 \bmod 4$ a prime and d a squarefree positive integer. In this article, we describe explicitly the case that $\delta=p, 2 p$ or $p_{1} p_{2}$ where p, p_{1}, and p_{2} are primes congruent to 3 modulo 4 , and d is any squarefree positive integer, thus complete the construction of the Hilbert genus field of real biquadratic field $K=K_{0}(\sqrt{d})$ such that $K_{0}=\mathbb{Q}(\sqrt{\delta})$ has an odd class number.

Keywords Class group • Hilbert symbol • Hilbert genus field
Mathematics Subject Classification 11R65-11R37

1 Introduction

For a number field K, the Hilbert genus field of K is the subfield E of the Hilbert class field H invariant under $\operatorname{Gal}(H / K)^{2}$. Note that the Galois group $G=\operatorname{Gal}(H / K)$ is isomorphic to the ideal class group $C(K)$ of K via Artin's reciprocity map. Then by Galois theory

[^0][^1]$$
\operatorname{Gal}(E / K) \simeq G / G^{2} \simeq C(K) / C(K)^{2}
$$

Let Δ be the unique multiplicative group such that $K^{* 2} \subset \Delta \subset K^{*}$ and

$$
\begin{equation*}
E=H \cap K\left(\sqrt{K^{*}}\right)=K(\sqrt{\Delta}) . \tag{1}
\end{equation*}
$$

Given K, a natural question to ask is how to explicitly construct the Hilbert genus field E of K, or equivalently, how to give a set of generators for the finite group $\Delta / K^{* 2}$.

Suppose δ and d are squarefree integers, and K is the biquadratic field $\mathbb{Q}(\sqrt{\delta}, \sqrt{d})$. Recently much work has been done on explicit construction of the Hilbert genus field E of K. Bae and Yue [1] worked out the case for real biquadratic fields $K=\mathbb{Q}(\sqrt{p}, \sqrt{d})$ with prime $p \equiv 1 \bmod 4$ or 2, following earlier work of Sime [6] and Yue [8]. Note that in their case, $\mathbb{Q}(\sqrt{p})$ has odd ideal class number. In [5], we worked out the case that K is biquadratic and $K_{0}=\mathbb{Q}(\sqrt{\delta})$ is imaginary with odd ideal class number, i.e., $\delta=-1,-2$ or $-p$ with $p \equiv 3 \bmod 4$.

In this paper, we shall work out the construction of the Hilbert genus field of $K=K_{0}(\sqrt{d})$ for $\delta=p, 2 p$ or $p_{1} p_{2}$ where p, p_{1}, p_{2} are primes $\equiv 3 \bmod 4$ and d a squarefree positive integer. Combining with the results of Bae and Yue [1], this completes the construction of the Hilbert genus field of real biquadratic fields $K=$ $K_{0}(\sqrt{d})$ such that K_{0} has odd class number.

Our strategy to explicitly construct E follows from [1,5,8]. From now on, we suppose
(1) $K=\mathbb{Q}(\sqrt{\delta}, \sqrt{d})$ where $\delta=p, 2 p$ or $p_{1} p_{2}$ with p, p_{1}, p_{2} primes $\equiv 3 \bmod 4$, and d a squarefree positive integer;
(2) $K_{0}=\mathbb{Q}(\sqrt{\delta})$ which has odd class number in our case (see [2, page. 134]);
(3) $E=K(\sqrt{\Delta})$ the Hilbert genus field of K where $K^{* 2} \subset \Delta \subset K^{*}$;
(4) s is the number of finite primes of K_{0} ramified in K.
(5) $t=r_{2}\left(U_{K_{0}} / U_{K_{0}} \cap N_{K / K_{0}} K\right)$ where $N_{K / K_{0}}$ is the norm map and for a finite abelian group $A, r_{2}(A)$ is the 2-rank of A.
(6) $D_{K}^{+}=\left\{x \in K^{*} \mid x\right.$ totally positive and $v_{\mathfrak{p}}(x) \equiv 0 \bmod 2$ for all finite primes \mathfrak{p} of $\left.K\right\}$.

We shall use the following facts from time to time.
Proposition 1.1 Assume K and K_{0} are given above.
(1) For any $x \in D_{K}^{+}$, all nondyadic primes of K are unramified in $K(\sqrt{x})$. Moreover, $\Delta \subset D_{K}^{+}$.
(2) We have

$$
\begin{equation*}
r_{2}(C(K))=r_{2}\left(\Delta / K^{* 2}\right)=s-1-t . \tag{2}
\end{equation*}
$$

Proof (1) The proof is similar to that of [8], Lemma 2.1.
(2) The second equality follows from (i) $r_{2}(C(K))=r_{2}\left(C(K) \operatorname{Gal}\left(K / K_{0}\right)\right)$, $C(K) \mathrm{Gal}\left(K / K_{0}\right)$ has no 4-torsion, since K_{0} has odd class number, and (iii) by the class number formula [3, Lemma 4.1, P.307] for cyclic extensions,

$$
\left|C(K)^{\mathrm{Gal}\left(K / K_{0}\right)}\right|=\left|C\left(K_{0}\right)\right| \cdot \frac{2^{s-1}}{\left[U_{K_{0}}: U_{K_{0}} \cap N K\right]} .
$$

By Proposition 1.1. we first study the group $U_{K_{0}} / U_{K_{0}} \cap N_{K / K_{0}} K$ to obtain the 2-ranks of $\Delta / K^{* 2}$. Then we find a set of representatives of $\Delta / K^{* 2}$. Our results are stated in Theorem 3.5 ($\delta=p$ case), Theorem 4.4 ($\delta=2 p$ case) and Theorems 5.4, 5.7, $5.9,5.12$, and 5.15 ($\delta=p_{1} p_{2}$ case $)$. To illustrate our results, we give three examples here.

Example 1.2 (Theorem 3.5) Let $K=\mathbb{Q}(\sqrt{3}, \sqrt{115115})$. It is clear that $115115=$ $5 \times 7 \times 11 \times 13 \times 23 \equiv 3 \bmod 4,\left(\frac{3}{5}\right)=\left(\frac{3}{7}\right)=-1$ and $\left(\frac{3}{11}\right)=\left(\frac{3}{13}\right)=\left(\frac{3}{23}\right)=1$. Then $n=5, m=3, Q_{+}=\{11,13,23\}$, and $r_{2}\left(Q_{+}\right)=2$. Let $q_{1}=11, q_{2}=13$. We see that $\sigma(23)=\sigma\left(q_{1}\right) \sigma\left(q_{2}\right)$, thus, $\widetilde{q}_{3}=11 \times 13 \times 23=3289$. By computation, $3289=709^{2}-3 \times 408^{2}$, let $\alpha_{3}=709+408 \sqrt{3}$, then

$$
E=\mathbb{Q}\left(\sqrt{3}, \sqrt{5}, \sqrt{7}, \sqrt{11}, \sqrt{13}, \sqrt{23}, \sqrt{\alpha_{3}}\right) .
$$

Example 1.3 (Theorem 4.4) Let $K=\mathbb{Q}(\sqrt{14}, \sqrt{1921})$. It is clear that $1921=17 \times$ $113 \equiv 1 \bmod 4,\left(\frac{14}{17}\right)=-1$, and $\left(\frac{14}{113}\right)=1$. Then $n=2, m=1, Q_{+}=\{113\}$, $r_{2}\left(Q_{+}\right)=0$, and $\widetilde{q}_{1}=113$. By computation, $113=307^{2}-14 \times 82^{2}$, let $\alpha_{1}=$ $307+82 \sqrt{14}$, then

$$
E=\mathbb{Q}\left(\sqrt{14}, \sqrt{17}, \sqrt{113}, \sqrt{\alpha_{1}}\right) .
$$

Example 1.4 (Theorem 5.4) Let $K=\mathbb{Q}(\sqrt{21}, \sqrt{12155})$. It is clear that $12155=$ $5 \times 11 \times 13 \times 17 \equiv 3 \bmod 4,\left(\frac{21}{11}\right)=\left(\frac{21}{13}\right)=-1$, and $\left(\frac{21}{5}\right)=\left(\frac{21}{17}\right)=1$. Then $n=4$, $m=2, Q_{+}=\{5,17\}, r_{2}\left(Q_{+}\right)=1, q_{1}=5$ and $\widetilde{q}_{2}=5 \times 17=85$. By computation, $85=1219^{2}-21 \times 266^{2}$, let $\alpha_{2}=1219+266 \sqrt{21}$, then

$$
E=\mathbb{Q}\left(\sqrt{3}, \sqrt{7}, \sqrt{5}, \sqrt{11}, \sqrt{13}, \sqrt{17}, \sqrt{\alpha_{2}}\right) .
$$

2 Preliminary results

We fix the following notations in this section:
For a number field or local field F, we let \mathcal{O}_{F} be the ring of integers of F and U_{F} the unit group of \mathcal{O}_{F}. If F is a number field and \mathfrak{p} a prime of F, we let $F_{\mathfrak{p}}$ be the completion of F at \mathfrak{p}. If F is a local field, let $U_{F}^{(n)}=1+\pi^{n} \mathcal{O}_{F}$ where π is a uniformizer of F. A (homogeneous) Diophantine equation is solvable if it has (non-zero) integer solutions. An integer solution of a Diophantine equation is called primitive if the greatest common divisor of the components is 1 .

2.1 Local computations

We first give several results about properties of extensions of the local field \mathbb{Q}_{2}. The proofs of these results are routine, which we omit here.

Lemma 2.1 ([1], Lemma 2.4) Suppose $F=\mathbb{Q}_{2}(\sqrt{-3})$ and $\omega=(-1+\sqrt{-3}) / 2 \in F$.
Then
(1) $U_{F} / U_{F}^{2}=(\overline{3}) \times(\overline{1+2 \omega}) \times(\overline{1+4 \omega})$.
(2) The extension $F(\sqrt{3}, \sqrt{1+2 \omega}) / F$ is totally ramified, and $F(\sqrt{1+4 \omega}) / F$ is unramified.
(3) For $a \in U_{F}$, if $a \equiv 1$ or $3 \bmod 4$, then $F(\sqrt{3}, \sqrt{a}) / F(\sqrt{3})$ is an unramified extension; if $a \equiv 1+2 \omega$ or $1+2 \omega^{2} \bmod 4$, then $F(\sqrt{3}, \sqrt{a}) / F(\sqrt{3})$ is a ramified extension.
(4) If $a \in U_{F}$ and $a \equiv x$ or $\omega \cdot x$ or $\omega^{2} \cdot x \bmod 4$ for some odd integer x, then $F(\sqrt{a}) / F$ is unramified if and only if $x \equiv 1 \bmod 4$.

Lemma 2.2 Suppose $F=\mathbb{Q}_{2}(\sqrt{-1})$. Then $\pi=-1+\sqrt{-1}$ is a uniformizer of F and
(1) $U_{F}^{(5)}=\left(U_{F}^{(3)}\right)^{2}$.
(2) $F(\sqrt{3})=F(\sqrt{-3})$ is unramified over F.

Lemma 2.3 Suppose $F=\mathbb{Q}_{2}(\sqrt{3})$. Then $-1+\sqrt{3}$ is a uniformizer of F and
(1) $U^{(5)}=\left(U^{(3)}\right)^{2}$.
(2) $F(\sqrt{-1})=F(\sqrt{-3})$ is unramified over F.

Lemma 2.4 Suppose $F=\mathbb{Q}_{2}(\sqrt{2 n})$ where n is an odd integer. Then $\pi=\sqrt{2 n}$ is a uniformizer of F and
(1) $U_{F}^{(5)}=\left(U_{F}^{(3)}\right)^{2}$ and $U_{F}^{2}=U_{F}^{(5)} \bigcup\left(1+\pi^{2}+\pi^{3}\right) U_{F}^{(5)}$.
(2) $F\left(\sqrt{1+\pi^{2}+\pi^{3}+\pi^{4}}\right)=F\left(\sqrt{1+\pi^{4}}\right)=F(\sqrt{5})$ is unramified over F.

Lemma 2.5 Suppose that $p \equiv 3 \bmod 4$ is a prime, then
(1) If $p \equiv 3 \bmod 8$, then in the field $\mathbb{Q}_{2}(\sqrt{3}), \sqrt{p} \equiv \sqrt{3} \bmod \pi^{4}$, where $\pi=-1+\sqrt{3}$.
(2) If $p \equiv 7 \bmod 8$, then in the field $\mathbb{Q}_{2}(\sqrt{-1}), \sqrt{p} \equiv \sqrt{-1} \bmod \pi^{4}$, where $\pi=$ $-1+\sqrt{-1}$.
2.2 Fundamental units of real quadratic fields

We need the following proposition about fundamental units of real quadratic fields, for the proof see [4, p. 91] and [9, Theorem 1.1].

Proposition 2.6 Suppose $K=\mathbb{Q}(\sqrt{d})$ is a real quadratic field with odd class number. Let $\epsilon_{d}=x+y \sqrt{d}>1$ be the fundamental integral unit of K. We have
(1) If $d=p$ with $p \equiv 3 \bmod 4$, then $\epsilon_{p}=2 u_{p}^{2}$ with $u_{p} \in K$, and $x \equiv 0 \bmod 2$. More precisely, if $p \equiv 3 \bmod 8$, then $x \equiv 2 \bmod 4$; if $p \equiv 7 \bmod 8$, then $x \equiv 0 \bmod 4$.
(2) If $d=2 p$ with $p \equiv 3 \bmod 4$, then $\epsilon_{2 p}=2 u_{2 p}^{2}$ with $u_{2 p} \in K, y \equiv 0 \bmod 2$ and $x+y \equiv 3 \bmod 4$.
(3) If $d=p_{1} p_{2}$ with $p_{1} \equiv p_{2} \equiv 3 \bmod 4$, then $\epsilon_{p_{1} p_{2}}=p_{1} u_{p_{1} p_{2}}^{2}$ with $u_{p_{1} p_{2}} \in K$, $x \equiv 3 \bmod 4$ and $y \equiv 0 \bmod 4$.

2.3 Solutions of quadratic Diophantine equations

Lemma 2.7 Suppose that $p_{1} \equiv p_{2} \equiv 7$ are odd primes, then there exists a primitive positive integer solution $\left(x_{0}, y_{0}, z_{0}\right)$ of $2 z^{2}=x^{2}-p_{1} p_{2} y^{2}$ such that $\left(x_{0}, z_{0}\right) \equiv$ $(1,0) \bmod 4$.

Proof The solvability follows by checking the corresponding Hilbert symbols. Let $\epsilon_{p_{1} p_{2}}=u+v \sqrt{p_{1} p_{2}}>1$ be the fundamental unit of $\mathbb{Q}\left(\sqrt{p_{1} p_{2}}\right)$. Then according to Proposition 2.6 (3), $u \equiv 3 \bmod 4, v \equiv 0 \bmod 4$. First, we show that $-p_{i}=x^{2}-2 z^{2}$ $(i=1,2)$ has a primitive positive solution $\left(x_{i}, z_{i}\right)$ such that $4 \mid z_{i}$. Any integral solution is clearly primitive, and moreover, x_{i} is odd and z_{i} even. Replacing $\left(x_{i}, z_{i}\right)$ by $\left(3 x_{i}+4 z_{i}, 2 x_{i}+3 z_{i}\right)$ if necessary, we can get z_{i} such that $4 \mid z_{i}$. Then $\left(x_{0}, 1, z_{0}\right)=$ $\left(x_{1} x_{2}+2 z_{1} z_{2}, 1, x_{1} z_{2}+x_{2} z_{1}\right)$ is a primitive solution of $p_{1} p_{2} y^{2}=x^{2}-2 z^{2}$ with $4 \mid z_{0}$. If $x_{0} \equiv 1 \bmod 4$, there is nothing left to prove, if $x_{0} \equiv 3 \bmod 4$, then $\left(x_{0} u+\right.$ $\left.p_{1} p_{2} v, x_{0} v+u, z_{0}\right)$ is a primitive positive solution such that $x_{0} u+p_{1} p_{2} v \equiv 1 \bmod 4$.

Remark 2.8 In the above proof, we used twice the following trick: if F is a quadratic field, and ϵ is a unit of norm 1, then $N_{F / \mathbb{Q}}(\eta)=N$ implies that $N_{F / \mathbb{Q}}(\epsilon \eta)=N$. The first time $F=\mathbb{Q}(\sqrt{2}), \epsilon=3+2 \sqrt{2}, \eta=x_{i}+z_{i} \sqrt{2}$; and the second $F=\mathbb{Q}\left(\sqrt{p_{1} p_{2}}\right)$, $\epsilon=\epsilon_{p_{1} p_{2}}$, and $\eta=x_{0}+y_{0} \sqrt{p_{1} p_{2}}$. We shall employ the trick a few times in Lemma 2.9.

Lemma 2.9 Suppose p, p_{1}, and p_{2} are primes $\equiv 3 \bmod 4$, and N is a squarefree odd integer.
(1) If $\operatorname{gcd}(N, p)=1$, and the equation $N z^{2}=x^{2}-p y^{2}$ is solvable, then it has a primitive positive integer solution $\left(x_{0}, y_{0}, z_{0}\right)$ with $2 \mid y_{0}$.
(2) If $\operatorname{gcd}(N, 2 p)=1$ and $N z^{2}=x^{2}-2 p y^{2}$ is solvable, then the equation has a primitive positive integer solution $\left(x_{0}, y_{0}, z_{0}\right)$ with $x_{0}+y_{0} \equiv 1 \bmod 4$.
(3) Suppose that $\operatorname{gcd}\left(N, p_{1} p_{2}\right)=1$, and $N z^{2}=x^{2}-p_{1} p_{2} y^{2}$ is solvable. Then it has a primitive positive integer solution $\left(x_{0}, y_{0}, z_{0}\right)$ satisfying either $(i) 2 \nmid z_{0}$ and $x_{0}+y_{0} \equiv 1 \bmod 4$ or (ii) $\left(x_{0}, z_{0}\right) \equiv(1,0) \bmod 4$ if $p_{1} p_{2} \equiv 1 \bmod 8$ and $(3,2) \bmod 4$ if $p_{1} p_{2} \equiv 5 \bmod 8$.
(4) Suppose that $p_{1} p_{2} \equiv 1 \bmod 8$ and $\operatorname{gcd}\left(N, p_{1} p_{2}\right)=1$. If the Diophantine equation $2 N z^{2}=x^{2}-p_{1} p_{2} y^{2}$ is solvable, then it has primitive positive integer solutions $\left(x_{0}, y_{0}, z_{0}\right)$ and $\left(x_{0}^{\prime}, y_{0}^{\prime}, z_{0}^{\prime}\right)$ with $x_{0} \equiv 1 \bmod 4$ and $x_{0}^{\prime} \equiv 3 \bmod 4$.

Proof (1) Let $\epsilon_{p}=u+v \sqrt{p}>1$ be the fundamental unit of $F=\mathbb{Q}(\sqrt{p})$, then by Proposition 2.6 (1), $2 \mid u$. Let $\left(x_{1}, y_{1}, z_{1}\right)$ be a primitive solution of $N z^{2}=x^{2}-p y^{2}$. Obviously, $2 \nmid z_{1}$. Applying the above trick to $F, \epsilon=\epsilon_{p}$ and
$\eta=x_{1}+y_{1} \sqrt{p}$, we get a solution $\left(x_{0}, y_{0}, z_{0}=z_{1}\right)$ satisfying $2 \mid y_{0}$. Since $x_{0}+y_{0} \sqrt{p}=\left(x_{1}+y_{1} \sqrt{p}\right) \epsilon_{p}^{a}$ for $a=0$ or 1 , it is trivial to check that $\operatorname{gcd}\left(x_{0}, y_{0}\right)=1$, and the solution is primitive.
(2) Let $\epsilon_{2 p}=u+v \sqrt{2 p}>1$ be the fundamental unit of $\mathbb{Q}(\sqrt{2 p})$, then by Proposition 2.6 (2), $2 \mid v$ and $u+v \equiv 3 \bmod 4$. Let $\left(x_{1}, y_{1}, z_{1}\right)$ be a primitive positive solution of $N z^{2}=x^{2}-2 p y^{2}$. Now just apply the trick to $F=\mathbb{Q}(\sqrt{2 p}), \epsilon=\epsilon_{2 p}$, and $\eta=x_{1}+y_{1} \sqrt{2 p}$, we get the desired solution.
(3) Let $\epsilon_{p_{1} p_{2}}=u+v \sqrt{p_{1} p_{2}}>1$ be the fundamental integral unit of $\mathbb{Q}\left(\sqrt{p_{1} p_{2}}\right)$, then by Proposition 2.6 (3), $u \equiv 3 \bmod 4, v \equiv 0 \bmod 4$. Let $\left(x_{1}, y_{1}, z_{1}\right)$ be a primitive positive solution of $N z^{2}=x^{2}-p_{1} p_{2} y^{2}$. Now repeat the trick to the case $F=\mathbb{Q}\left(\sqrt{p_{1} p_{2}}\right), \epsilon=\epsilon_{p_{1} p_{2}}$, and $\eta=x_{1}+y_{1} \sqrt{p_{1} p_{2}}$.
(4) A primitive solution $\left(x_{0}, y_{0}, z_{0}\right)$ and its associated solution $\left(x_{1}, y_{1}, z_{0}\right)$ obtained by $x_{1}+y_{1} \sqrt{p_{1} p_{2}}=\left(x_{0}+y_{0} \sqrt{p_{1} p_{2}}\right) \epsilon_{p_{1} p_{2}}$ for $\epsilon_{p_{1} p_{2}}$ as given in (3) must satisfy the condition that one of x_{0} and $x_{1} \equiv 1 \bmod 4$ and the other $\equiv 3 \bmod 4$.

2.4 Decomposition and congruence

Lemma 2.10 Suppose p_{1} and p_{2} are distinct primes $\equiv 3 \bmod 4$. Let $F=\mathbb{Q}\left(\sqrt{p_{1} p_{2}}\right)$. Assume $N \equiv 1 \bmod 4$ is a squarefree integer such that $\operatorname{gcd}\left(N, p_{1} p_{2}\right)=1$, and the equation $N z^{2}=x^{2}-p_{1} p_{2} y^{2}$ has a primitive solution $\left(x_{0}, y_{0}, z_{0}\right)$. Take $\alpha=$ $x_{0}+\sqrt{p_{1} p_{2}} y_{0}$ if $2 \nmid z_{0}$ and $\alpha=\frac{x_{0}+\sqrt{p_{1} p_{2}} y_{0}}{2}$ if $2 \mid z_{0}$. Let $\bar{\alpha}$ be the conjugate of α in F. Then
(1) The element $\alpha \in \mathcal{O}_{F}$, and the ideal $\alpha \mathcal{O}_{F}$ is relatively prime to $\bar{\alpha} \mathcal{O}_{F}$.
(2) If $2 \nmid z_{0}$, then $\alpha \equiv x_{0}+y_{0} \bmod 4 \mathcal{O}_{F}$.
(3) If $p_{1} p_{2} \equiv 5 \bmod 8$ and $2 \mid z_{0}$, then in the local field $\mathbb{Q}_{2}\left(\sqrt{p_{1} p_{2}}\right)=\mathbb{Q}_{2}(\sqrt{-3})$, $\alpha \equiv \omega\left(-x_{0}\right)$ or $\omega^{2}\left(-x_{0}\right) \bmod 4$, where $\omega=\frac{-1+\sqrt{-3}}{2}$.
(4) If $p_{1} p_{2} \equiv 1 \bmod 8$ and $2 \mid z_{0}$, then $\mathfrak{d}_{1}=(2, \alpha) \neq \mathfrak{d}_{2}=(2, \bar{\alpha})$ are the two dyadic primes of F, and $\alpha \equiv x_{0} \bmod \mathfrak{D}_{2}^{2}$ and $\alpha / 2^{e} \equiv x_{0} \bmod \mathfrak{d}_{1}^{2} \mathcal{O}_{F_{\mathfrak{D}_{1}}}$ for an even integer e.

Proof The proof of (2)-(4) is similar to that of [1, Lemma 2.6]. Now we prove (1). One can check that $\alpha \bar{\alpha}$ and $\alpha+\bar{\alpha} \in \mathbb{Z}$, so $\alpha \in \mathcal{O}_{F}$. Assume \mathfrak{p} is a prime of \mathcal{O}_{F} such that \mathfrak{p} divides both $\alpha \mathcal{O}_{F}$ and $\bar{\alpha} \mathcal{O}_{F}$, then $\alpha, \bar{\alpha} \in \mathfrak{p}$, and $\alpha+\bar{\alpha} \in \mathfrak{p}$. If \mathfrak{p} is an odd prime, we have x_{0} or $2 x_{0}=\alpha+\bar{\alpha} \in \mathfrak{p} \cap \mathbb{Z}=(\ell)$, then $\ell \mid x_{0}$ and $\ell \mid N z_{0}^{2}$. If $\ell \mid p_{1} p_{2}$, i.e., if $\ell=p_{1}$ or p_{2}, then $\ell \mid z_{0}$, because $\operatorname{gcd}\left(N, p_{1} p_{2}\right)=1$, thus $\ell^{2} \mid x_{0}^{2}-N z_{0}^{2}=p_{1} p_{2} y_{0}^{2}$, now $\ell \mid y_{0}$, which contradicts that $\left(x_{0}, y_{0}, z_{0}\right)$ is primitive. If $\ell \mid N$, then $\ell \mid y_{0}$, hence $\ell^{2} \mid N z_{0}^{2}=x_{0}^{2}-p_{1} p_{2} y_{0}^{2}$, therefore $\ell \mid z_{0}$, which is also a contradiction. If $\ell \mid z_{0}$, then $\ell \mid y_{0}$, which is impossible. $\bar{\alpha} \mathcal{O}_{F}$ and N is squarefree, $\ell \mid z_{0}$ and we must have $\ell \mid y_{0}$, which is impossible. If \mathfrak{p} is a dyadic prime, then $2 \mid z_{0}$ and $x_{0}=\alpha+\bar{\alpha} \in \mathfrak{p} \cap \mathbb{Z}=(2)$, i.e., $2 \mid x_{0}$, hence $2 \mid y_{0}$, which is also impossible.

Lemma 2.11 Suppose p_{1} and p_{2} are distinct primes $\equiv 3 \bmod 4$ satisfying $p_{1} p_{2} \equiv$ $1 \bmod 8$. Let $F=\mathbb{Q}\left(\sqrt{p_{1} p_{2}}\right)$. Suppose N is a squarefree integer such that $2 N z^{2}=$ $x^{2}-p_{1} p_{2} y^{2}$ has a primitive solution $\left(x_{0}, y_{0}, z_{0}\right)$. Let $\alpha=\frac{x_{0}+y_{0} \sqrt{p_{1} p_{2}}}{2}$ and $\bar{\alpha}$ be its conjugate. Then $\mathfrak{d}_{1}=(2, \alpha)$ and $\mathfrak{d}_{2}=(2, \bar{\alpha})$ are the two dyadic ideals of F. Moreover,
(1) For $N \equiv 1 \bmod 4$, if $2 \| z_{0}$, then $\alpha \equiv x_{0}+2 \bmod \mathfrak{d}_{2}^{2}$ and $\alpha / 2 \equiv x_{0}+2 \bmod \mathfrak{d}_{1}^{2} \mathcal{O}_{F_{\mathfrak{O}_{1}}}$; if $4 \mid z_{0}$, then $\alpha \equiv x_{0} \bmod \mathfrak{D}_{2}^{3}$ and $\alpha / 2^{e} \equiv x_{0}$ or $5 x_{0} \bmod \mathfrak{D}_{1}^{3} \mathcal{O}_{F_{\mathfrak{D}_{1}}}$ for an odd integer e.
(2) For $N \equiv 3 \bmod 4$, if $2 \| z_{0}$, then $\alpha \equiv x_{0}+2 \bmod \mathfrak{d}_{2}^{2}$ and $\alpha / 2 \equiv-\left(x_{0}+\right.$ 2) $\bmod \mathfrak{d}_{1}^{2} \mathcal{O}_{F_{\mathfrak{o}_{1}}} ;$ if $4 \mid z_{0}$, then $\alpha \equiv x_{0} \bmod \mathfrak{d}_{2}^{3}$ and $\alpha / 2^{e} \equiv-x_{0}$ or $3 x_{0} \bmod \mathfrak{d}_{1}^{3} \mathcal{O}_{F_{\mathfrak{o}_{1}}}$ for an odd integer e.

Proof We prove the case $N \equiv 1 \bmod 4$, the other case is similar.
We have $\alpha \bar{\alpha}=\frac{2 N z_{0}^{2}}{4} \equiv 0 \bmod 2$ and $\alpha+\bar{\alpha}=x_{0} \in \mathbb{Z}$, hence $\alpha \in \mathcal{O}_{F}$. By the same technique of Lemma $2.10(1)$, we can show that $\alpha \mathcal{O}_{F}$ is relatively prime to $\bar{\alpha} \mathcal{O}_{F}$. Moreover, by the fact that $\alpha \bar{\alpha} \in 2 \mathbb{Z}$, we know $\mathfrak{d}_{1}=(2, \alpha)$ and $\mathfrak{d}_{2}=(2, \bar{\alpha})$ are the two dyadic ideals of F. If $2 \| z_{0}$, then $\alpha \in \mathfrak{d}_{1}$ and $\bar{\alpha} \in \mathfrak{d}_{2}$. Thus $\alpha=x_{0}-\bar{\alpha} \equiv x_{0} \bmod \mathfrak{d}_{2} \equiv$ $x_{0}+2 \bmod \mathfrak{D}_{2}^{2}$ and $\bar{\alpha} \equiv x_{0}+2 \bmod \mathfrak{d}_{1}^{2}$. Then $\alpha \cdot \bar{\alpha} \cdot 2^{-1}=\frac{N z_{0}^{2}}{2^{2}} \equiv 1 \bmod \mathfrak{d}_{1}^{2} \mathcal{O}_{F_{\mathfrak{D}_{1}}}$ and $\frac{\alpha}{2} \equiv \bar{\alpha}^{-1} \equiv x_{0}+2 \bmod \mathfrak{d}_{1}^{2} \mathcal{O}_{F_{\mathfrak{D}_{1}}}$.

If $4 \mid z_{0}$, then $\alpha \bar{\alpha} \in 8 \mathbb{Z}$, thus $\alpha \in \mathfrak{d}_{1}^{3}, \bar{\alpha} \in \mathfrak{d}_{2}^{3}$. Then $\alpha=x_{0}-\bar{\alpha} \equiv x_{0} \bmod \mathfrak{d}_{2}^{3}$ and $\bar{\alpha} \equiv x_{0} \bmod \mathfrak{d}_{1}^{3}$. If $2^{k} \| z_{0}, k \geq 2$, then by $\alpha \cdot \bar{\alpha} \cdot 2^{-2(k-1)-1}=\frac{N z_{0}^{2}}{2^{2 k}} \equiv 1$ or $5 \bmod \mathfrak{d}_{1}^{3} \mathcal{O}_{F_{\mathfrak{D}_{1}}}$ (because $N \equiv 1$ or $5 \bmod 8$),

$$
\frac{\alpha}{2^{2(k-1)+1}} \equiv \bar{\alpha}^{-1} \equiv x_{0} \text { or } 5 x_{0} \bmod \mathfrak{d}_{1}^{3} \mathcal{O}_{F_{\mathfrak{o}_{1}}} .
$$

Lemma 2.12 Suppose $p_{1} \equiv p_{2} \equiv 7 \bmod 8$ are distinct primes and $F=\mathbb{Q}\left(\sqrt{p_{1} p_{2}}\right)$. Suppose $\left(x_{0}, y_{0}, z_{0}\right)$ is a solution of $2 z^{2}=x^{2}-p_{1} p_{2} y^{2}$ as given in Lemma 2.7. Let $\alpha=\frac{x_{0}+\sqrt{p_{1} p_{2}} y_{0}}{2}$ and $\bar{\alpha}=\frac{x_{0}-\sqrt{p_{1} p_{2}} y_{0}}{2}$ be its conjugate in F. Then $\mathfrak{d}_{1}=(2, \alpha)$ and $\mathfrak{d}_{2}=(2, \bar{\alpha})$ are the two dyadic primes of F and $\alpha \equiv x_{0} \bmod \mathfrak{D}_{2}^{3}$ and $\alpha / 2^{e} \equiv$ $x_{0} \bmod \mathfrak{d}_{1}^{3} \mathcal{O}_{F_{\mathfrak{O}_{1}}}$ for an odd integer e.

Proof The proof is similar to that of Lemma 2.11.

3 The case $\delta=p$ with prime $p \equiv 3 \bmod 4$

In this section, we assume prime $p \equiv 3 \bmod 4, K_{0}=\mathbb{Q}(\sqrt{p})$ and $K=\mathbb{Q}(\sqrt{p}, \sqrt{d})$ such that $\operatorname{gcd}(d, p)=1$. Let $\epsilon_{p}>1$ be the fundamental unit of K_{0}. Note that by Proposition 2.6, $\epsilon_{p}=2 u_{p}^{2}$ for $u_{p} \in K_{0}$. Let

$$
\begin{equation*}
Q=\left\{q_{1}, q_{2}, \cdots, q_{n}\right\}=\text { the set of odd prime divisors of } d, \tag{3}
\end{equation*}
$$

and inside Q, the subsets

$$
\begin{equation*}
Q_{+}=\left\{q_{1}, \cdots, q_{m} \mid q_{j} \text { satisfies }\left(\frac{p}{q_{j}}\right)=1\right\} \tag{4}
\end{equation*}
$$

$$
\begin{equation*}
Q_{-}=\left\{q_{m+1}, \cdots, q_{n} \mid q_{j} \text { satisfies }\left(\frac{p}{q_{j}}\right)=-1\right\} . \tag{5}
\end{equation*}
$$

We set

$$
r_{2}\left(Q_{+}\right)=\text {the 2-rank of the subgroup of } \mu_{2}^{2} \text { generated by } \sigma(q)=\left(\left(\frac{-1}{q}\right),\left(\frac{2}{q}\right)\right)
$$

$$
\begin{equation*}
\text { for } q \in Q_{+}, \tag{6}
\end{equation*}
$$

and if $Q_{+}=\emptyset$, we set $r_{2}\left(Q_{+}\right)=0$. We denote by the above subgroup \bar{Q}_{+}. If $r_{2}\left(Q_{+}\right)=1$, choose $q_{1} \in Q_{+}$such that $\sigma\left(q_{1}\right)$ is a generator of \bar{Q}_{+}. If $r_{2}\left(Q_{+}\right)=2$, choose $q_{1}, q_{2} \in Q_{+}$such that $\left\langle\sigma\left(q_{1}\right), \sigma\left(q_{2}\right)\right\rangle=\mu_{2}^{2}$.

Lemma 3.1 Suppose conventions on d as above. Then $s=m+n$ if $d \equiv 1$ or $3 \bmod 4$ and $m+n+1$ if $d \equiv 2 \bmod 4$, and $t=r_{2}\left(Q_{+}\right)$.

Remark 3.2 By Proposition 1.1, we hence know $r_{2}\left(\Delta / K^{* 2}\right)=s-1-r_{2}\left(Q_{+}\right)$.
Proof If $q \in Q_{+}$, then q splits in K_{0}, if $q \in Q_{-}$, then q is inert in K_{0}. All these primes are ramified in K / K_{0}. If $d \equiv 2 \bmod 4,2$ is ramified in K_{0}, and the dyadic prime in K_{0} is ramified in K. The above primes are the only primes ramified in K / K_{0}. We thus get the values of s.

We know that $U_{K_{0}}=\{ \pm 1\} \times \epsilon_{p}^{\mathbb{Z}}$. Thus

- $t=0$ if and only if $-1, \pm \epsilon_{p} \in N K$;
- $t=1$ if and only if $U_{K_{0}} \cap N K=\langle 1,-1\rangle$ or $\left\langle 1, \epsilon_{p}\right\rangle$ or $\left\langle 1,-\epsilon_{p}\right\rangle$;
- $t=2$ if and only if $-1, \pm \epsilon_{p} \notin N K$.

To check -1 or $\pm \epsilon_{p} \in N_{K / K_{0}} K$, one just needs to check if $(-1, d)_{\mathfrak{p}}=1$ or $\left(\pm \epsilon_{p}, d\right)_{\mathfrak{p}}=1$ for every prime \mathfrak{p} of K_{0} ramified in K.

For every prime \mathfrak{q} above $q \in Q_{+}$, we have

$$
(-1, d)_{\mathfrak{q}}=(-1)^{\frac{N \mathfrak{q}-1}{2}}=(-1)^{\frac{q-1}{2}}=\left(\frac{-1}{q}\right) .
$$

For $q \in Q_{-}$, let \mathfrak{q} be the prime above q. By Lemma 3.3 of [7], we have

$$
(-1, d)_{\mathfrak{q}}=\left(N_{K_{0} / \mathbb{Q}}(-1), d\right)_{q}=(1, d)_{q}=1
$$

By $\epsilon_{p}=2 u_{p}^{2}$, for every prime \mathfrak{q} above $q \in Q_{+}$, we have

$$
\left(\epsilon_{p}, d\right)_{\mathfrak{q}}=(2, d)_{\mathfrak{q}}=\left(\frac{2}{q}\right) \quad \text { and } \quad\left(-\epsilon_{p}, d\right)_{\mathfrak{q}}=(-2, d)_{\mathfrak{q}}=\left(\frac{-2}{q}\right)
$$

For the prime \mathfrak{q} above $q \in Q_{-}$, we have

$$
\left(\pm \epsilon_{p}, d\right)_{\mathfrak{q}}=\left(N_{K_{0} / \mathbb{Q}}(\pm 2), d\right)_{q}=\left(2^{2}, d\right)_{q}=1
$$

Let \mathfrak{d} be the dyadic prime of K_{0} above 2 , the product formula gives

$$
(-1, d)_{\mathfrak{d}}=\left(\epsilon_{p}, d\right)_{\mathfrak{d}}=\left(-\epsilon_{p}, d\right)_{\mathfrak{d}}=1
$$

Hence

- $t=0$ if and only if $q \equiv 1 \bmod 8$ for all $q \in Q_{+}$, i.e., $r_{2}\left(Q_{+}\right)=0$.
- $t=1$ if and only if $Q_{+}=\langle(-1,1)\rangle$ or $\langle(1,-1)\rangle$ or $\langle(-1,-1)\rangle$, i.e., $r_{2}\left(Q_{+}\right)=1$.
- $t=2$ if and only if $\bar{Q}_{+}=\{ \pm 1\} \times\{ \pm 1\}$, i.e., $r_{2}\left(Q_{+}\right)=2$.

Suppose $Q_{+} \neq \emptyset$. For any j such that $r_{2}\left(Q_{+}\right)+1 \leq j \leq m, \widetilde{q}_{j}$ is chosen as follows:

- If $r_{2}\left(Q_{+}\right)=0$, then for all $1 \leq j \leq m$, let $\widetilde{q}_{j}=q_{j}$.
- If $r_{2}\left(Q_{+}\right)=1$, then $\sigma\left(q_{j}\right)=\sigma\left(q_{1}\right)^{a}$ for $a \in\{0,1\}$. Let $\tilde{q}_{j}=q_{1}^{a} q_{j}$ for $2 \leq j \leq m$.
- If $r_{2}\left(Q_{+}\right)=2$, then $\sigma\left(q_{j}\right)=\sigma\left(q_{1}\right)^{a} \sigma\left(q_{2}\right)^{b}$ with $a, b \in\{0,1\}$. Let $\widetilde{q}_{j}=q_{1}^{a} q_{2}^{b} q_{j}$ for $3 \leq j \leq m$.

By construction, $\widetilde{q_{j}}$ is uniquely determined by the condition that the Jacobi symbols

$$
\left(\frac{-1}{\widetilde{q}_{j}}\right)=\left(\frac{2}{\widetilde{q}_{j}}\right)=1, \text { i.e., } \widetilde{q_{j}} \equiv 1 \bmod 8
$$

Lemma 3.3 The equation $\tilde{q}_{j} z^{2}=x^{2}-p y^{2}$ is solvable in \mathbb{Z} and has a primitive positive integer solution $\left(x_{j}, y_{j}, z_{j}\right)$ such that $2 \mid y_{j}$.

Proof The solvability follows by checking the corresponding Hilbert symbols. Then by Lemma 2.9 (1), it has a primitive positive integer solution $\left(x_{j}, y_{j}, z_{j}\right)$ such that $2 \mid y_{j}$.

Let $\left(x_{j}, y_{j}, z_{j}\right)$ be such a solution given in the above Lemma. Then set

$$
\begin{equation*}
\alpha_{j}=x_{j}+\sqrt{p} y_{j} . \tag{7}
\end{equation*}
$$

Lemma 3.4 The elements $q_{j} \in Q$ (i.e., $\left.1 \leq j \leq n\right)$ and $\alpha_{j}\left(r_{2}\left(Q_{+}\right)+1 \leq j \leq m\right)$ defined above all belong to D_{K}^{+}. If $d \equiv 2 \bmod 4,2 \in D_{K}^{+}$.

Proof Since q_{j} is ramified in K, we see that $q_{j} \in D_{K}^{+}$for $1 \leq j \leq n$.
For α_{j}, we know that $\alpha_{j} \bar{\alpha}_{j}=q_{j} z_{j}^{2}, q_{1} q_{j} z_{j}^{2}, q_{2} q_{j} z_{j}^{2}$, or $q_{1} q_{2} q_{j} z_{j}^{2}$; thus, α_{j} is totally positive. Since $\left(x_{j}, y_{j}, z_{j}\right)$ is a primitive solution, $\alpha_{j} \mathcal{O}_{K_{0}}$ is prime to $\bar{\alpha}_{j} \mathcal{O}_{K_{0}}$, hence $\alpha_{j} \mathcal{O}_{K}$ is relatively prime to $\bar{\alpha}_{j} \mathcal{O}_{K}$. Since q_{1}, q_{2}, and q_{j} are ramified in K, we see that $\alpha_{j} \bar{\alpha}_{j} \mathcal{O}_{K}$ is a square of an ideal in \mathcal{O}_{K}, thus $\alpha \in D_{K}^{+}$. If $d \equiv 2 \bmod 4,2$ is ramified in K, thus $2 \in D_{K}^{+}$.

We can now state and prove the main result of this section.

Theorem 3.5 Assume p and d as above. Then the Hilbert genus field E of $K=$ $\mathbb{Q}(\sqrt{p}, \sqrt{d})$ is $\mathbb{Q}\left(\sqrt{p}, \sqrt{q_{1}}, \ldots, \sqrt{q_{n}}, \sqrt{\alpha_{r+1}}, \ldots, \sqrt{\alpha_{m}}\right)$ if $d \equiv 1$ or $3 \bmod 4$ and $\mathbb{Q}\left(\sqrt{2}, \sqrt{p}, \sqrt{q_{1}}, \ldots, \sqrt{q_{n}}, \sqrt{\alpha_{r+1}}, \cdots, \sqrt{\alpha_{m}}\right)$ if $d \equiv 2 \bmod 4$, where $r=r_{2}\left(Q_{+}\right)$ is given by (6), α_{j} is given by (7), and there is no $\sqrt{\alpha_{j}}$-term in E if $m=r$.

Proof We note the fact that $K\left(\sqrt{q_{i}}\right) / K$ is always unramified.
We first show the case $r_{2}\left(Q_{+}\right)=0$ and $d \equiv 1,3 \bmod 4$ in detail. By Lemma 3.1, we have $r_{2}\left(\Delta / K^{* 2}\right)=m+n-1$. We now show that $\Delta / K^{* 2}$ is generated by $\left\{q_{1}, \ldots, q_{n-1}, \alpha_{1}, \ldots, \alpha_{m}\right\}$. Firstly, we show the set

$$
\begin{equation*}
\left\{q_{1}, \ldots, q_{n-1}, \alpha_{1}, \ldots, \alpha_{m}\right\} \tag{8}
\end{equation*}
$$

is independent modulo $K^{* 2}$.
Consider $\xi=\prod_{i} q_{i}^{a_{i}} \prod_{j} \alpha_{j}^{b_{j}}$, where $a_{i}, b_{j} \in\{0,1\}, q_{i} \in\left\{q_{1}, \ldots, q_{n-1}\right\}, \alpha_{j} \in$ $\left\{\alpha_{1}, \ldots, \alpha_{m}\right\}$. Let $K_{2}=\mathbb{Q}(\sqrt{p d})$, then

$$
N_{K / K_{2}}(\xi)=\prod_{i} q_{i}^{2 a_{i}} \prod_{j} q_{j}^{b_{j}} \cdot \lambda^{2}, \quad \lambda \in K_{2}
$$

Suppose $\xi \in K^{* 2}$, then $N_{K / K_{2}}(\xi) \in K_{2}^{* 2}$, thus $b_{j}=0$. Now $\xi=\prod_{i} q_{i}^{a_{i}} \in K^{* 2}$, since K has only three quadratic subfields: $\mathbb{Q}(\sqrt{p}), \mathbb{Q}(\sqrt{d}), \mathbb{Q}(\sqrt{p d})$, we must have $a_{i}=0$. Therefore, the set (8) is independent modulo $K^{* 2}$.

Second, we show that $K\left(\sqrt{\alpha_{j}}\right) / K, 1 \leq j \leq m$, are unramified extensions. By Proposition 1.1 (1), we only need to show they are unramified at the dyadic primes of K.

Let \mathfrak{D} be a dyadic prime of K and let $\mathfrak{d}=\mathfrak{D} \cap \mathcal{O}_{K_{0}}$. If $p \equiv 3 \bmod 8$, then $K_{0, \mathfrak{d}} \simeq \mathbb{Q}_{2}(\sqrt{3})$. Since $\widetilde{q}_{j} \equiv 1 \bmod 8, y_{j} \equiv 0 \bmod 4$. By the Lemma 2.5 (1), we have
$\alpha_{j}=x_{j}+y_{j} \sqrt{p}=x_{j}+y_{j}+(-1+\sqrt{p}) y_{j} \equiv x_{j}+y_{j}+(-1+\sqrt{3}) y_{j} \bmod \pi^{5}$,
where $\pi=-1+\sqrt{3}$ is a uniformizer of $\mathbb{Q}_{2}(\sqrt{3})$. Since $4 \mid y_{j}, \alpha_{j} \equiv x_{j}+$ $y_{j} \bmod \pi^{5}$. According to Lemma 2.3 (1), $K_{0, \mathfrak{d}}\left(\sqrt{\alpha_{j}}\right)=K_{0, \mathfrak{d}}\left(\sqrt{x_{j}+y_{j}}\right)$. Because $x_{j}+y_{j} \equiv \pm 1, \pm 3 \bmod 8$, due to Lemma 2.3 (2), $K_{0, \mathfrak{d}}\left(\sqrt{\alpha_{j}}\right) / K_{0, \mathfrak{d}}$ is unramified, thus $K_{\mathfrak{D}}\left(\sqrt{\alpha_{j}}\right) / K_{\mathfrak{D}}$ is also unramified.

If $p \equiv 7 \bmod 8$, then $K_{0, \mathfrak{d}} \simeq \mathbb{Q}_{2}(\sqrt{-1})$. Since $\widetilde{q}_{j} \equiv 1 \bmod 8, y_{j} \equiv 0 \bmod 4$. By the Lemma 2.5 (2), we have
$\alpha_{j}=x_{j}+y_{j} \sqrt{p}=x_{j}+y_{j}+(-1+\sqrt{p}) y_{j} \equiv x_{j}+y_{j}+(-1+\sqrt{-1}) y_{j} \bmod \pi^{5}$,
where $\pi=-1+\sqrt{-1}$ is a uniformizer of $\mathbb{Q}_{2}(\sqrt{-1})$. Since $4 \mid y_{j}, \alpha_{j} \equiv$ $x_{j}+y_{j} \bmod \pi^{5}$. Since $x_{j}+y_{j} \equiv \pm 1, \pm 3 \bmod 8$, by Lemma 2.2, $K_{0, \mathfrak{d}}\left(\sqrt{\alpha_{j}}\right) / K_{0, \mathfrak{d}}$ is unramified, thus $K_{\mathfrak{D}}\left(\sqrt{\alpha_{j}}\right) / K_{\mathfrak{D}}$ is also unramified.

For $d \equiv 1,3 \bmod 4$ and $r=1$ or 2 , the proof is similar to the above situation. We first show that $\left\{q_{1}, \cdots, q_{n-1}, \alpha_{r_{2}\left(Q_{+}\right)+1}, \cdots, \alpha_{m}\right\}$ is a $\mathbb{Z} / 2 \mathbb{Z}$-basis of $\Delta / K^{* 2}$,
then use the fact that the construction of $\alpha_{j}\left(j>r_{2}\left(Q_{+}\right)\right)$implies that $K\left(\sqrt{\alpha_{j}}\right) / K$ is unramified.

For $d \equiv 2 \bmod 4$, the proof also follows from the same strategy. We note in this case $K(\sqrt{2}) / K$ is an unramified extension.

4 The case $\delta=2 p$ with prime $p \equiv 3 \bmod 4$

In this section, we assume $p \equiv 3 \bmod 4$ a prime, $d>0$ squarefree and $\operatorname{gcd}(d, p)=1$, $K_{0}=\mathbb{Q}(\sqrt{2 p})$, and $K=\mathbb{Q}(\sqrt{2 p}, \sqrt{d})$. Let $\epsilon_{2 p}>1$ be the fundamental unit of K_{0}. Then $\epsilon_{2 p}=2 u_{2 p}^{2}$ where $u_{2 p} \in K_{0}$ by Proposition 2.6. Similar to Sect. 3, set

$$
\begin{equation*}
Q=\left\{q_{1}, q_{2}, \cdots, q_{n}\right\}=\text { the set of odd prime divisors of } d, \tag{9}
\end{equation*}
$$

and inside Q, the subsets

$$
\begin{gather*}
Q_{+}=\left\{q_{1}, \cdots, q_{m} \mid q_{j} \text { satisfies }\left(\frac{2 p}{q_{j}}\right)=1\right\}, \tag{10}\\
Q_{-}=\left\{q_{m+1}, \cdots, q_{n} \mid q_{j} \text { satisfies }\left(\frac{2 p}{q_{j}}\right)=-1\right\} . \tag{11}
\end{gather*}
$$

We denote by \bar{Q}_{+}the subgroup of μ_{2}^{2} generated by $\sigma(q)=\left(\left(\frac{-1}{q}\right),\left(\frac{2}{q}\right)\right)$ for $q \in Q_{+}$and set

$$
\begin{equation*}
r_{2}\left(Q_{+}\right)=\text {the } 2 \text {-rank of } \bar{Q}_{+}, \tag{12}
\end{equation*}
$$

and if $Q_{+}=\emptyset$, we set $r_{2}\left(Q_{+}\right)=0$. If $r_{2}\left(Q_{+}\right)=1$, choose $q_{1} \in Q_{+}$such that $\sigma\left(q_{1}\right)$ is a generator of \bar{Q}_{+}. If $r_{2}\left(Q_{+}\right)=2$, choose $q_{1}, q_{2} \in Q_{+}$such that $\left\langle\sigma\left(q_{1}\right), \sigma\left(q_{2}\right)\right\rangle=\mu_{2}^{2}$.
Lemma 4.1 Suppose conventions on d as above. Then $s=m+n$ if $d \equiv 1 \bmod 4$ or $6 \bmod 8$ and $m+n+1$ if $d \equiv 3 \bmod 4$ or $2 \bmod 8$, and $t=r_{2}\left(Q_{+}\right)$.

Proof The proof is similar to that of Lemma 3.1.
Suppose $Q_{+} \neq \emptyset$. For any j such that $r_{2}\left(Q_{+}\right)+1 \leq j \leq m$, we again get a unique $\widetilde{q}_{j}=q_{1}^{a} q_{2}^{b} q_{j}$ for $a, b \in\{0,1\}$ satisfying

$$
\left(\frac{-1}{\widetilde{q}_{j}}\right)=\left(\frac{2}{\widetilde{q}_{j}}\right)=1 \text {, i.e., } \widetilde{q_{j}} \equiv 1 \bmod 8 . .
$$

By checking the Hilbert symbol and then Lemma 2.9 (2), we have
Lemma 4.2 The equation $\widetilde{q}_{j} z^{2}=x^{2}-2 p y^{2}$ is solvable in \mathbb{Z} and has a primitive positive integer solution $\left(x_{j}, y_{j}, z_{j}\right)$ such that $x_{j}+y_{j} \equiv 1 \bmod 4$.

Let $\left(x_{j}, y_{j}, z_{j}\right)$ be such a solution of $\widetilde{q}_{j} z^{2}=x^{2}-2 p y^{2}$. Set

$$
\begin{equation*}
\alpha_{j}=x_{j}+\sqrt{2 p} y_{j} . \tag{13}
\end{equation*}
$$

Lemma 4.3 The elements $q_{j}(1 \leq j \leq n)$ and $\alpha_{j}\left(r_{2}\left(Q_{+}\right)+1 \leq j \leq m\right)$ defined above all belong to D_{K}^{+}. And if $d \equiv 2 \bmod 4,2 \in D_{K}^{+}$.

Proof The proof is similar to that of Lemma 3.4.
We can now state and prove the main result of this section.
Theorem 4.4 Assume p and d as above, then the Hilbert genus field E of $K=$ $\mathbb{Q}(\sqrt{2 p}, \sqrt{d})$ is $\mathbb{Q}\left(\sqrt{2 p}, \sqrt{\widehat{q}_{1}}, \ldots, \sqrt{\widehat{q}_{n}}, \sqrt{\alpha_{r+1}}, \ldots, \sqrt{\alpha_{m}}\right)$ if $d \equiv 1 \bmod 4$ or $6 \bmod 8$, and $\mathbb{Q}\left(\sqrt{2}, \sqrt{p}, \sqrt{q_{1}}, \cdots, \sqrt{q_{n}}, \sqrt{\alpha_{r+1}}, \ldots, \sqrt{\alpha_{m}}\right)$ if $d \equiv 3 \bmod 4$ or $2 \bmod 8$, where $r=r_{2}\left(Q_{+}\right)$is given by (12), α_{j} is given by (13), $\widehat{q}_{j}=q_{j}$ if $q_{j} \equiv 1 \bmod 4$ and $\widehat{q}_{j}=2 q_{j}$ if $q_{j} \equiv 3 \bmod 4$. If $m=r_{2}\left(Q_{+}\right)$, there is no $\sqrt{\alpha_{j}}{ }^{-}$ term in E.

Proof We note the fact that if $d \equiv 1 \bmod 4 \operatorname{or} 6 \bmod 8, K\left(\sqrt{\widehat{q}_{i}}\right) / K$ is always unramified and if $d \equiv 3 \bmod 4 \operatorname{or} 2 \bmod 8, K\left(\sqrt{q_{i}}\right) / K$ is always unramified.

We first show the case $d \equiv 1 \bmod 4$ or $6 \bmod 8$ and $r=0$ in detail. By Lemma 4.1, we have $r_{2}\left(\Delta / K^{* 2}\right)=m+n-1$. By the same technique of the proof of Theorem 3.5 , we can show that $\Delta / K^{* 2}$ is generated by $\left\{q_{1}, \ldots, q_{n-1}, \alpha_{1}, \ldots, \alpha_{m}\right\}$.

Second, we show that $K\left(\sqrt{\alpha_{j}}\right) / K, 1 \leq j \leq m$, are unramified extensions. By Proposition 1.1 (1), we only need to show they are unramified at the dyadic primes of K.

Let \mathfrak{D} be a dyadic prime of K and let $\mathfrak{d}=\mathfrak{D} \cap \mathcal{O}_{K_{0}}$. Then $K_{0, \mathfrak{d}} \simeq \mathbb{Q}_{2}(\sqrt{2 p})$. Let $\pi=\sqrt{2 p}$ be a uniformizer of $K_{0, \mathfrak{d}}$. Since $\left(x_{j}, y_{j}, z_{j}\right)$ is a primitive positive solution of $\widetilde{q}_{j} z^{2}=x^{2}-2 p y^{2}$ and $\widetilde{q}_{j} \equiv 1 \bmod 8$, we must have x_{j}, z_{j} odd and $2 \mid y_{j}$. Recall that we choose x_{j}, y_{j} such that $x_{j}+y_{j} \equiv 1 \bmod 4$.

If $x_{j} \equiv 1 \bmod 4, y_{j} \equiv 0 \bmod 4$, we have

$$
\alpha_{j}=x_{j}+y_{j} \sqrt{2 p} \equiv 1,5 \bmod \pi^{5}
$$

If $x_{j} \equiv 3 \bmod 4, y_{j} \equiv 2 \bmod 4$, we have

$$
\alpha_{j}=x_{j}+y_{j} \sqrt{2 p} \equiv 1+\pi^{2}+\pi^{3} \text { or } 1+\pi^{2}+\pi^{3}+\pi^{4} \bmod \pi^{5} .
$$

By Lemma 2.4, in both cases, $K_{0, \mathfrak{d}}\left(\sqrt{\alpha_{j}}\right) / K_{0, \mathfrak{d}}$ is unramified. Therefore, $K_{\mathfrak{D}}\left(\sqrt{\alpha_{j}}\right)$ $/ K_{\mathfrak{D}}$ is also unramified.

The other cases follow the same strategy as above. If $d \equiv 3 \bmod 4$ or $2 \bmod 8$, we need the fact that $K(\sqrt{2}) / K$ is an unramified extension.

5 The case $\delta=p_{1} p_{2}$ with distinct primes $p_{1} \equiv p_{2} \equiv 3 \bmod 4$

In this section, we assume p_{1} and p_{2} are distinct primes $\equiv 3 \bmod 4, d>0$ squarefree and prime to $p_{1} p_{2}, K_{0}=\mathbb{Q}\left(\sqrt{p_{1} p_{2}}\right)$ and $K=K_{0}(\sqrt{d})=\mathbb{Q}\left(\sqrt{p_{1} p_{2}}, \sqrt{d}\right)$ or $K_{0}\left(\sqrt{p_{1} d}\right)=\mathbb{Q}\left(\sqrt{p_{1} p_{2}}, \sqrt{p_{1} d}\right)$. Let $\epsilon_{p_{1} p_{2}}>1$ be the fundamental integral unit of K_{0}. Then $\epsilon_{p_{1} p_{2}}=p_{1} u_{p_{1} p_{2}}^{2}$ where $u_{p_{1} p_{2}} \in K_{0}$ by Proposition 2.6. Let

$$
\begin{equation*}
Q=\left\{q_{1}, q_{2}, \cdots, q_{n}\right\}=\text { the set of odd prime divisors of } d \tag{14}
\end{equation*}
$$

and inside Q, the subsets

$$
\begin{align*}
& Q_{+}=\left\{q_{1}, \cdots, q_{m} \mid q_{j} \text { satisfies }\left(\frac{p_{1} p_{2}}{q_{j}}\right)=1\right\} \tag{15}\\
& Q_{-}=\left\{q_{m+1}, \cdots, q_{n} \mid q_{j} \text { satisfies }\left(\frac{p_{1} p_{2}}{q_{j}}\right)=-1\right\} \tag{16}
\end{align*}
$$

Proposition 5.1 Suppose that p_{1}, p_{2}, d, and K_{0} as above.
(1) If $K=K_{0}(\sqrt{d})$, then prime $q \in Q_{+}$splits in K_{0} and every prime \mathfrak{q} of K_{0} above q is ramified in K and

$$
(-1, d)_{\mathfrak{q}}=\left(\frac{-1}{q}\right), \quad\left(\epsilon_{p_{1} p_{2}}, d\right)_{\mathfrak{q}}=\left(\frac{p_{1}}{q}\right)
$$

Prime $q \in Q_{-}$is inert in K_{0}, and the prime \mathfrak{q} above q in K_{0} is ramified in K and

$$
(-1, d)_{\mathfrak{q}}=\left(\epsilon_{p_{1} p_{2}}, d\right)_{\mathfrak{q}}=1
$$

If $p_{1} p_{2} \equiv 1 \bmod 8$, then 2 splits in K_{0} and for \mathfrak{d} a dyadic prime of K_{0}, we have

$$
(-1, d)_{\mathfrak{d}}=\left\{\begin{array}{ll}
(-1)^{\frac{d-1}{2}} & \text { if } 2 \nmid d \\
(-1)^{\frac{d / 2-1}{2}} & \text { if } 2 \mid d,
\end{array} \text { and } \quad\left(\epsilon_{p_{1} p_{2}}, d\right)_{\mathfrak{d}}= \begin{cases}(-1)^{\frac{d-1}{2}} & \text { if } 2 \nmid d \\
(-1)^{\frac{p_{1}^{2}-1}{8}+\frac{d / 2-1}{2}} & \text { if } 2 \mid d\end{cases}\right.
$$

If $p_{1} p_{2} \equiv 5 \bmod 8$, then 2 is inert in K_{0}, the dyadic prime \mathfrak{d} of K_{0} is ramified in K if and only if $d \equiv 2$ or $3 \bmod 4$, and

$$
(-1, d)_{\mathfrak{d}}=\left(\epsilon_{p_{1} p_{2}}, d\right)_{\mathfrak{d}}=1
$$

(2) If $K=K_{0}\left(\sqrt{p_{1} d}\right)$, then all the assertions in (1) hold if replacing d by $p_{1} d$.

Proof Similar to the calculation in Lemma 3.1.
5.1 The case $p_{1} p_{2} \equiv 5 \bmod 8$

This situation is similar to the previous two sections. For $q \in Q_{+}$, let $\sigma(q)=$ $\left(\left(\frac{-1}{q}\right),\left(\frac{p_{1}}{q}\right)\right) \in \mu_{2}^{2}$ and let $\bar{Q}_{+}=\left\langle\sigma(q) \mid q \in Q_{+}\right\rangle$be the subgroup of μ_{2}^{2} generated by $\left\{\sigma(q) \mid q \in Q_{+}\right\}$. We set

$$
\begin{equation*}
r_{2}\left(Q_{+}\right)=r_{2}\left(\bar{Q}_{+}\right)=\text {the } 2 \text {-rank of } \bar{Q}_{+} \tag{17}
\end{equation*}
$$

and $r_{2}\left(Q_{+}\right)=0$ if $Q_{+}=\emptyset$. If $r_{2}\left(Q_{+}\right)=1$, choose $q_{1} \in Q_{+}$such that $\sigma\left(q_{1}\right)$ is a generator of \bar{Q}_{+}. If $r_{2}\left(Q_{+}\right)=2$, choose $q_{1}, q_{2} \in Q_{+}$such that $\left\langle\sigma\left(q_{1}\right), \sigma\left(q_{2}\right)\right\rangle=\mu_{2}^{2}$.

Proposition 5.1 tells us that

Lemma 5.2 If $K=K_{0}(\sqrt{d})$, then $s=m+n$ if $d \equiv 1 \bmod 4$ and $m+n+1$ if $d \equiv 2$ or $3 \bmod 4$, and $t=r_{2}\left(Q_{+}\right)$. If $K=K_{0}\left(\sqrt{p_{1} d}\right)$, then $s=m+n$ if $p_{1} d \equiv 1 \bmod 4$ and $m+n+1$ if $p_{1} d \equiv 2$ or $3 \bmod 4$, and $t=r_{2}\left(Q_{+}\right)$.

Similar to the previous two sections again, if $Q_{+} \neq \emptyset$, for any j such that $r_{2}\left(Q_{+}\right)+$ $1 \leq j \leq m$, we associate to q_{j} a unique $\widetilde{q}_{j}=q_{1}^{a} q_{2}^{b} q_{j}$ for $a, b \in\{0,1\}$ such that the Jacobi symbols

$$
\left(\frac{-1}{\widetilde{q}_{j}}\right)=\left(\frac{p_{1}}{\widetilde{q}_{j}}\right)=1 .
$$

By checking the corresponding Hilbert symbols and then by Lemma 2.9 (3), we have

Lemma 5.3 The equation $\widetilde{q}_{j} z^{2}=x^{2}-p_{1} p_{2} y^{2}$ is solvable in \mathbb{Z} and has a primitive positive integer solution $\left(x_{j}, y_{j}, z_{j}\right)$ satisfying either (i) $2 \nmid z_{j}$ and $x_{j}+y_{j} \equiv 1 \bmod 4$ or $(i i)\left(x_{j}, z_{j}\right) \equiv(3,2) \bmod 4$.

For such a solution, we set

$$
\begin{equation*}
\alpha_{j}=x_{j}+\sqrt{p_{1} p_{2}} y_{j}, \text { if } 2 \nmid z_{j} \text { and } \alpha_{j}=\frac{x_{j}+\sqrt{p_{1} p_{2}} y_{j}}{2}, \text { if } 2 \mid z_{j} \tag{18}
\end{equation*}
$$

By the same method of Lemma 3.4, we can show that $\alpha_{j} \in D_{K}^{+}$for $K=K_{0}(\sqrt{d})$ or $K_{0}\left(\sqrt{p_{1} d}\right)$.

Then we have the following theorem.
Theorem 5.4 Assume $p_{1} p_{2} \equiv 5 \bmod 8$ and d as above.
(1) The Hilbert genus field E of $K=\mathbb{Q}\left(\sqrt{p_{1} p_{2}}, \sqrt{d}\right)$ is given by the following table.

d	Hilbert genus field E
$1 \bmod 4$	$\mathbb{Q}\left(\sqrt{p_{1} p_{2}}, \sqrt{q_{1}}, \ldots, \sqrt{q_{n}}, \sqrt{\alpha_{r+1}}, \ldots, \sqrt{\alpha_{m}}\right)$
$2 \bmod 8$	$\mathbb{Q}\left(\sqrt{p_{1} p_{2}}, \sqrt{2}, \sqrt{q_{1}}, \ldots, \sqrt{q_{n}}, \sqrt{\alpha_{r+1}}, \ldots, \sqrt{\alpha_{m}}\right)$
$6 \bmod 8$	$\mathbb{Q}\left(\sqrt{p_{1} p_{2}}, \sqrt{2 p_{1}}, \sqrt{q_{1}}, \ldots, \sqrt{q_{n}}, \sqrt{\alpha_{r+1}}, \ldots, \sqrt{\alpha_{m}}\right)$
$3 \bmod 4$	$\mathbb{Q}\left(\sqrt{p_{1}}, \sqrt{p_{2}}, \sqrt{q_{1}}, \ldots, \sqrt{q_{n}}, \sqrt{\alpha_{r+1}}, \ldots, \sqrt{\alpha_{m}}\right)$

where

- $r=r_{2}\left(Q_{+}\right)$and if $m=r$, there is no $\sqrt{\alpha_{j}}$-term in E;
- the number $\widehat{q}_{j}=q_{j}$ if $q_{j} \equiv 1 \bmod 4, \widehat{q}_{j}=p_{1} q_{j}$ if $q_{j} \equiv 3 \bmod 4$ and $d \equiv 1 \bmod 4$ or $2 \bmod 8$, and $\widehat{q}_{j}=2 q_{j}$ if $q_{j} \equiv 3 \bmod 4$ and $d \equiv 6 \bmod 8$.
(2) The Hilbert genus field E of $K=\mathbb{Q}\left(\sqrt{p_{1} p_{2}}, \sqrt{p_{1} d}\right)$ is obtained by replacing d by $p_{1} d$ in (1).

Proof We prove the case that $K=\mathbb{Q}\left(\sqrt{p_{1} p_{2}}, \sqrt{d}\right)$, the proof of the case $K=$ $\mathbb{Q}\left(\sqrt{p_{1} p_{2}}, \sqrt{p_{1} d}\right)$ is similar.

We just need to show that the extension $K\left(\sqrt{\alpha_{j}}\right) / K$ is unramified.
By Proposition 1.1, it suffices to show that $K\left(\sqrt{\alpha_{j}}\right) / K$ is unramified at every dyadic prime \mathfrak{D} of K. Let $\mathfrak{d}=\mathfrak{D} \cap \mathcal{O}_{K_{0}}$. Then $K_{0, \mathfrak{d}} \simeq \mathbb{Q}_{2}(\sqrt{-3})$.

If $2 \nmid z_{j}$, then by Lemma $2.10(2), \alpha_{j} \equiv x_{j}+y_{j} \equiv 1 \bmod 4$ in $K_{0, \mathfrak{p}}$. Thus, by Lemma 2.1 (4), $K_{0, \mathfrak{d}}\left(\sqrt{\alpha_{j}}\right) / K_{0, \mathfrak{d}}$ is unramified. Hence $K_{\mathfrak{D}}\left(\sqrt{\alpha_{j}}\right) / K_{\mathfrak{D}}$ is also unramified.

If $2 \mid z_{j}$, then by Lemma $2.10(3), \alpha_{j} \equiv \omega\left(-x_{j}\right)$ or $\omega^{2}\left(-x_{j}\right) \bmod 4$. Since now $x_{j} \equiv$ $3 \bmod 4$, by Lemma $2.1(4), K_{0, \mathfrak{d}}\left(\sqrt{\alpha_{j}}\right) / K_{0, \mathfrak{d}}$ is unramified. Thus, $K_{\mathfrak{D}}\left(\sqrt{\alpha_{j}}\right) / K_{\mathfrak{D}}$ is also unramified.

5.2 The case $p_{1} p_{2} \equiv 1 \bmod 8$

This is the most complicated situation. We divide this into four cases:
5.2.1 The cases $d \equiv 1 \bmod 4$ and $\left(d, p_{1}\right) \equiv(2,7) \bmod 8$ for $K_{0}(\sqrt{d})$ and
$p_{1} d \equiv 1 \bmod 4$ and $\left(p_{1} d, p_{1}\right) \equiv(2,7) \bmod 8$ for $K_{0}\left(\sqrt{p_{1} d}\right)$

We note that $p_{1} d \equiv 1 \bmod 4$ is nothing but $d \equiv 3 \bmod 4$. The form we adopt here is to illustrate the symmetry between d and $p_{1} d$.

As in the previous cases, we can again define \bar{Q}_{+}, the 2-rank $r_{2}\left(Q_{+}\right)$of Q_{+}, and choose q_{1} and q_{2} according to the value of $r_{2}\left(Q_{+}\right)$. Proposition 5.1 gives the following lemma:

Lemma 5.5 If $d \equiv 1 \bmod 4\left(\right.$ resp. $\left.p_{1} d \equiv 1 \bmod 4\right)$ for $K=K_{0}(\sqrt{d})($ resp. $K=$ $\left.K_{0}\left(\sqrt{p_{1} d}\right)\right)$, then $s=m+n$ and $t=r_{2}\left(Q_{+}\right)$. If $\left(d, p_{1}\right) \equiv(2,7) \bmod 8($ resp. $\left.\left(p_{1} d, p_{1}\right) \equiv(2,7) \bmod 8\right)$ for $K=K_{0}(\sqrt{d})\left(\right.$ resp. $\left.K=K_{0}\left(\sqrt{p_{1} d}\right)\right)$, then $s=$ $m+n+2$ and $t=r_{2}\left(Q_{+}\right)$.

Suppose $Q_{+} \neq \emptyset$. For any j such that $r_{2}(Q)+1 \leq j \leq m$, we associate to q_{j} the unique integer $\widetilde{q}_{j}=q_{1}^{a} q_{2}^{b} q_{j}$ for $a, b \in\{0,1\}$ such that the Jacobi symbols

$$
\left(\frac{-1}{\widetilde{q}_{j}}\right)=\left(\frac{p_{1}}{\widetilde{q}_{j}}\right)=1 .
$$

By Lemma 2.9 (3),
Lemma 5.6 The equation $\widetilde{q}_{j} z^{2}=x^{2}-p_{1} p_{2} y^{2}$ is solvable in \mathbb{Z} and has a primitive positive integer solution $\left(x_{j}, y_{j}, z_{j}\right)$ satisfying either (i) $2 \nmid z_{j}$ and $x_{j}+y_{j} \equiv 1 \bmod 4$ or $(i i)\left(x_{j}, z_{j}\right) \equiv(1,0) \bmod 4$.

For such a solution, we set

$$
\begin{equation*}
\alpha_{j}=x_{j}+\sqrt{p_{1} p_{2}} y_{j}, \text { if } 2 \nmid z_{j} \text { and } \alpha_{j}=\frac{x_{j}+\sqrt{p_{1} p_{2}} y_{j}}{2} \text {, if } 2 \mid z_{j} \tag{19}
\end{equation*}
$$

For $\left(d, p_{1}\right) \equiv(2,7) \bmod 8\left(\right.$ resp. $\left.\left(p_{1} d, p_{1}\right) \equiv(2,7) \bmod 8\right)$, set

$$
\begin{equation*}
\alpha_{0}=\frac{x_{0}+\sqrt{p_{1} p_{2}} y_{0}}{2} \text { with }\left(x_{0}, z_{0}\right) \equiv(1,0) \bmod 4 \text { as given in Lemma 2.7. } \tag{20}
\end{equation*}
$$

By the same method of Lemma 3.4, we can show that $\alpha_{j} \in D_{K}^{+}$for $K=K_{0}(\sqrt{d})$ or $K_{0}\left(\sqrt{p_{1} d}\right)$.

Theorem 5.7 (1) The Hilbert genus field E of $K=K_{0}(\sqrt{d})$ is $\mathbb{Q}\left(\sqrt{p_{1} p_{2}}, \sqrt{\widehat{q}_{1}}, \ldots\right.$, $\left.\sqrt{\widehat{q}_{n}}, \sqrt{\alpha_{r+1}}, \ldots, \sqrt{\alpha_{m}}\right)$ ifd $\equiv 1 \bmod 4$, and $\mathbb{Q}\left(\sqrt{p_{1} p_{2}}, \sqrt{2}, \sqrt{\widehat{q}_{1}}, \ldots, \sqrt{\widehat{q}_{n}}, \sqrt{\alpha_{0}}\right.$, $\left.\sqrt{\alpha_{r+1}}, \ldots, \sqrt{\alpha_{m}}\right)$ if $\left(d, p_{1}\right) \equiv(2,7) \bmod 8$, where $r=r_{2}\left(Q_{+}\right)$is defined as above, α_{j} is given by (19), $\widehat{q}_{j}=q_{j}$ if $q_{j} \equiv 1 \bmod 4$ and $p_{1} q_{j}$ if $q_{j} \equiv 3 \bmod 4$. If $m=r$, the terms $\sqrt{\alpha_{j}}(j>0)$ are not appearing in E.
(2) The Hilbert genus fields E of $K=K_{0}\left(\sqrt{p_{1} d}\right)$ for the cases $p_{1} d \equiv 1 \bmod 4$ and $\left(p_{1} d, p_{1}\right) \equiv(2,7) \bmod 8$ are obtained by replacing d by $p_{1} d$ in (1).

Proof We only show the case that $K=K_{0}(\sqrt{d})$. The case $K=K_{0}\left(\sqrt{p_{1} d}\right)$ is similar.
In this case, for $d \equiv 1 \bmod 4$ or $\left(d, p_{1}\right) \equiv(2,7) \bmod 8$, we show that $K\left(\sqrt{\alpha_{j}}\right) / K$ $\left(r_{2}\left(Q_{+}\right)+1 \leq j \leq m\right)$ is unramified. By Proposition 1.1, it suffices to show that they are unramified at every dyadic prime \mathfrak{D} of K. Let $\mathfrak{D} \cap \mathcal{O}_{K_{0}}=\mathfrak{d}$.

If $2 \nmid z_{j}$, then by Lemma $2.10(2), \alpha_{j} \equiv x_{j}+y_{j} \equiv 1 \bmod 4$ in $K_{0, \mathfrak{d}}=\mathbb{Q}_{2}$. Thus, $K_{0, \mathfrak{d}}\left(\sqrt{\alpha_{j}}\right) / K_{0, \mathfrak{d}}$ is unramified, and therefore, $K_{\mathfrak{D}}\left(\sqrt{\alpha_{j}}\right) / K_{\mathfrak{D}}$ is unramified.

If $2 \mid z_{j}$, then by Lemma 2.10 (4), $K_{0, \mathfrak{d}}\left(\sqrt{\alpha_{j}}\right) \simeq \mathbb{Q}_{2}\left(\sqrt{x_{j}}\right)$ or $\mathbb{Q}_{2}\left(\sqrt{x_{j}+4}\right)$. Since $x_{j} \equiv 1 \bmod 4, K_{0, \mathfrak{d}}\left(\sqrt{\alpha_{j}}\right) / K_{0, \mathfrak{d}}$ is unramified; thus, $K_{\mathfrak{D}}\left(\sqrt{\alpha_{j}}\right) / K_{\mathfrak{D}}$ is also unramified.

For $\left(d, p_{1}\right) \equiv(2,7) \bmod 8$, we show that $K\left(\sqrt{\alpha_{0}}\right) / K$ is unramified at every dyadic prime of K. Since $p_{1} p_{2} \equiv 1 \bmod 8$, we see that $K_{\mathfrak{D}} \simeq \mathbb{Q}_{2}(\sqrt{d})$. By Lemma 2.12,

$$
\frac{\alpha_{0}}{2^{e}} \equiv x_{0} \bmod \mathfrak{d}_{1}^{3} \mathcal{O}_{K_{0, \mathfrak{d}_{1}}} \quad \text { and } \quad \alpha_{0} \equiv x_{0} \bmod \mathfrak{d}_{2}^{3}
$$

where e is an odd integer. Thus, $K_{\mathfrak{D}_{1}}\left(\sqrt{\alpha_{0}}\right) \simeq \mathbb{Q}_{2}\left(\sqrt{d}, \sqrt{2 x_{0}}\right)$ and $K_{\mathfrak{D}_{2}}\left(\sqrt{\alpha_{0}}\right) \simeq$ $\mathbb{Q}_{2}\left(\sqrt{d}, \sqrt{x_{0}}\right)$. Since $x_{0} \equiv 1 \bmod 4$ and $d \equiv 2 \bmod 8, K_{\mathfrak{D}_{i}}\left(\sqrt{\alpha_{0}}\right) / K_{\mathfrak{D}_{i}}(i=1,2)$ is unramified.
5.2.2 The cases $d \equiv 3 \bmod 4$ for $K_{0}(\sqrt{d})$ and $p_{1} d \equiv 3 \bmod 4$ for $K_{0}\left(\sqrt{p_{1} d}\right)$

By Proposition 5.1
Lemma 5.8 If $d \equiv 3 \bmod 4$ for $K=K_{0}(\sqrt{d})$ and $p_{1} d \equiv 3 \bmod 4$ for $K=$ $K_{0}\left(\sqrt{p_{1} d}\right)$, then $s=m+n+2$ and

$$
t= \begin{cases}1, & \text { if for all } q \in Q_{+}, \quad\left(\frac{-p_{1}}{q}\right)=1 \tag{21}\\ 2, & \text { if there exists } q \in Q_{+},\left(\frac{-p_{1}}{q}\right)=-1\end{cases}
$$

If $t=2$, choose $q_{1} \in Q_{+}$such that $\left(\frac{-p_{1}}{q_{1}}\right)=-1$. Suppose $Q_{+} \neq \emptyset$. For any j such that $t \leq j \leq m$, we let $\tilde{q}_{j}=q_{1}^{a} q_{j}$ for $a=0$ or 1 uniquely determined by $\left(\frac{-p_{1}}{\tilde{q}_{j}}\right)=1$. By computing the Hilbert symbols associated to the equation $\widetilde{q}_{j} z^{2}=x^{2}-p_{1} p_{2} y^{2}$, we see that the equation is solvable in \mathbb{Z}. Let $\left(x_{j}, y_{j}, z_{j}\right)$ be a relatively prime positive integer solution of $\widetilde{q}_{j} z^{2}=x^{2}-p_{1} p_{2} y^{2}$ and set

$$
\begin{equation*}
\alpha_{j}=x_{j}+\sqrt{p_{1} p_{2}} y_{j}, \text { if } 2 \nmid z_{j} \text { and } \alpha_{j}=\frac{x_{j}+\sqrt{p_{1} p_{2}} y_{j}}{2}, \text { if } 2 \mid z_{j} \tag{22}
\end{equation*}
$$

By the same method of Lemma 3.4, we can show that $\alpha_{j} \in D_{K}^{+}$.
Theorem 5.9 (1) Assume $p_{1} p_{2} \equiv 1 \bmod 8$ and $d \equiv 3 \bmod 4$ as above, then Hilbert genus field E of $K=K_{0}(\sqrt{d})$ is $\mathbb{Q}\left(\sqrt{p_{1}}, \sqrt{p_{2}}, \sqrt{q_{1}}, \ldots, \sqrt{q_{n}}, \sqrt{\alpha_{t}}, \ldots, \sqrt{\alpha_{m}}\right)$ where t is given by (21). If $m<t$, there are no $\sqrt{\alpha_{j}}$-terms in E.
(2) Assume $p_{1} p_{2} \equiv 1 \bmod 8$ and $p_{1} d \equiv 3 \bmod 4$ as above, then Hilbert genus field E of $K=K_{0}\left(\sqrt{p_{1} d}\right)$ is $\mathbb{Q}\left(\sqrt{p_{1}}, \sqrt{p_{2}}, \sqrt{q_{1}}, \ldots, \sqrt{q_{n}}, \sqrt{\alpha_{t}}, \ldots, \sqrt{\alpha_{m}}\right)$ where t is given by (21). If $m<t$, there are no $\sqrt{\alpha_{j}}$-terms in E.

Proof (1) It suffices to show that $K\left(\sqrt{\alpha_{j}}\right) / K$ is unramified at every dyadic prime \mathfrak{D} of K.

Since $p_{1} p_{2} \equiv 1 \bmod 8, K_{0, \mathfrak{d}} \simeq \mathbb{Q}_{2}$ and $K_{\mathfrak{D}} \simeq \mathbb{Q}_{2}(\sqrt{d})$. If $2 \nmid z_{j}$, then α_{j} is a 2 -adic unit in \mathbb{Q}_{2}. Since $d \equiv 3 \bmod 4, K_{\mathfrak{D}}\left(\sqrt{\alpha_{j}}\right)$ is unramified over $K_{\mathfrak{D}}$.

If $2 \mid z_{j}$, then by the same method of Lemma 2.11, one can show that there exist odd integers u_{j}, v_{j} such that $K_{\mathfrak{D}_{1}}\left(\sqrt{\alpha_{j}}\right) \simeq \mathbb{Q}_{2}\left(\sqrt{d}, \sqrt{u_{j}}\right)$ and $K_{\mathfrak{D}_{2}}\left(\sqrt{\alpha_{j}}\right) \simeq$ $\mathbb{Q}_{2}\left(\sqrt{d}, \sqrt{v_{j}}\right)$. Since $d \equiv 3 \bmod 4, K_{\mathfrak{D}_{i}}\left(\sqrt{\alpha_{j}}\right) / K_{\mathfrak{D}_{i}}(i=1,2)$ is unramified.

The proof of (2) is similar to that of (1).
5.2.3 The cases $\left(d, p_{1}\right) \equiv(2,3) \bmod 8$ for $K_{0}(\sqrt{d})$ and $\left(p_{1} d, p_{1}\right) \equiv(2,3) \bmod 8$ for $K_{0}\left(\sqrt{p_{1} d}\right)$

By Proposition 5.1

Lemma 5.10 In these cases $s=m+n+2$ and

$$
t= \begin{cases}1, & \text { if for all } q \in Q_{+}, q \equiv 1 \bmod 4 \tag{23}\\ 2, & \text { if there exists } q \in Q_{+}, q \equiv 3 \bmod 4\end{cases}
$$

If $t=2$, choose $q_{1} \in Q_{+}$such that $q_{1} \equiv 3 \bmod 4$. For $t \leq j \leq m$, let $\widetilde{q}_{j}=2^{a} q_{1}^{b} q_{j}$ ($a, b \in\{0,1\}$) uniquely determined by the following rules: (i) if $q_{j} \equiv 1 \bmod 4$, then $b=0$; if $q_{j} \equiv 3 \bmod 4$, then $b=1$; (iii) the equation $\widetilde{q}_{j} z^{2}=x^{2}-p_{1} p_{2} y^{2}$ is solvable. By Lemma 2.9 (3) and (4), we have
Lemma 5.11 There exists a primitive positive solution $\left(x_{j}, y_{j}, z_{j}\right)$ for $\widetilde{q}_{j} z^{2}=x^{2}-$ $p_{1} p_{2} z^{2}$ satisfying
(1) If \tilde{q}_{j} is odd, then either z_{j} odd and $x_{j}+y_{j} \equiv 1 \bmod 4$, or z_{j} even and $x_{j} \equiv$ $1 \bmod 4$.
(2) If \widetilde{q}_{j} is even, then either $2 \| z_{j}$ and $x_{j} \equiv 3 \bmod 4$, or $4 \mid z_{j}$ and $x_{j} \equiv 1 \bmod 4$. For such a solution, we set

$$
\begin{equation*}
\alpha_{j}=x_{j}+\sqrt{p_{1} p_{2}} y_{j}, \text { if } 2 \nmid z_{j} \text { and } \alpha_{j}=\frac{x_{j}+\sqrt{p_{1} p_{2}} y_{j}}{2}, \text { if } 2 \mid z_{j} \tag{24}
\end{equation*}
$$

By the same method of Lemma 3.4, we can show that $\alpha_{j} \in D_{K}^{+}$.
Theorem 5.12 (1) Assume $p_{1} p_{2} \equiv 1 \bmod 8$ and $\left(d, p_{1}\right) \equiv(2,3) \bmod 8$ as above, then the Hilbert genus field E of $K=K_{0}(\sqrt{d})$ is given by
(i) If for all $q \in Q_{+}, q \equiv 1 \bmod 4$, then $E=\mathbb{Q}\left(\sqrt{p_{1} p_{2}}, \sqrt{2}, \sqrt{\widehat{q}_{1}}, \ldots, \sqrt{\widehat{q}_{n}}\right.$, $\left.\sqrt{\alpha_{1}}, \ldots, \sqrt{\alpha_{m}}\right)$,
(ii) If there exists $q \in Q_{+}, q \equiv 3 \bmod 4$, then $E=\mathbb{Q}\left(\sqrt{p_{1} p_{2}}, \sqrt{2}, \sqrt{\widehat{q}_{1}}, \ldots, \sqrt{\widehat{q}_{n}}\right.$, $\sqrt{\alpha_{2}}, \ldots, \sqrt{\alpha_{m}}$),
where $\widehat{q}_{j}=q_{j}$ if $q_{j} \equiv 1 \bmod 4$ and $\widehat{q}_{j}=p_{1} q_{j}$ if $q_{j} \equiv 3 \bmod 4$. If $m<1($ resp. 2) in (1)(resp. (2)), then there are no $\sqrt{\alpha_{j}}$-terms.
(2) Assume $p_{1} p_{2} \equiv 1 \bmod 8$ and $\left(p_{1} d, p_{1}\right) \equiv(2,3) \bmod 8$ as above, then the Hilbert genus field E of $K=K_{0}\left(\sqrt{p_{1} d}\right)$ has the same description as (1).

Proof In all cases, it suffices to show that $K\left(\sqrt{\alpha_{j}}\right) / K$ is unramified at every dyadic prime \mathfrak{D} of K. The proof is similar to that of Theorem 5.7. For the case \tilde{q}_{j} even, one needs Lemma 2.11 (1).
5.2.4 The cases $d \equiv 6 \bmod 8$ for $K_{0}(\sqrt{d})$ and $p_{1} d \equiv 6 \bmod 8$ for $K_{0}\left(\sqrt{p_{1} d}\right)$

In these cases, for $q \in Q_{+}$, we let $\widehat{q}=q$ if $q \equiv 1 \bmod 4$ and $2 q$ if $q \equiv 3 \bmod 4$. By Proposition 5.1

Lemma 5.13 In these cases we have $s=m+n+2$ and

$$
t= \begin{cases}1, & \text { if for all } q \in Q,\left(\frac{\widehat{q}}{p_{1}}\right)=1 \tag{25}\\ 2, & \text { if there exists } q \in Q,\left(\frac{\widehat{q}}{p_{1}}\right)=-1\end{cases}
$$

If $t=2$, choose q_{1} such that $\left(\frac{\widehat{q_{1}}}{p_{1}}\right)=-1$. For any j such that $t \leq j \leq m$, we let $\widetilde{q}_{j}=2^{a} q_{1}^{b} q_{j}$ with $a, b \in\{0,1\}$ uniquely determined by the following rules: (i) $\widetilde{q}_{j} \equiv 1 \bmod 4$ or $6 \bmod 8$, (ii) the equation $\widetilde{q}_{j} z^{2}=x^{2}-q_{1} q_{2} y^{2}$ is solvable. By Lemma 2.9 (3) and (4), we have

Lemma 5.14 There exists a primitive positive solution $\left(x_{j}, y_{j}, z_{j}\right)$ for $\tilde{q}_{j} z^{2}=x^{2}-$ $p_{1} p_{2} z^{2}$ satisfying
(1) If \tilde{q}_{j} is odd, then either z_{j} odd and $x_{j}+y_{j} \equiv 1 \bmod 4$, or z_{j} even and $x_{j} \equiv 1$ $\bmod 4$.
(2) If \widetilde{q}_{j} is even, then either $2 \| z_{j}$ and $x_{j} \equiv 3 \bmod 4$, or $4 \mid z_{j}$ and $x_{j} \equiv 1 \bmod 4$.

For such a solution, we set

$$
\begin{equation*}
\alpha_{j}=x_{j}+\sqrt{p_{1} p_{2}} y_{j}, \text { if } 2 \nmid z_{j} \text { and } \alpha_{j}=\frac{x_{j}+\sqrt{p_{1} p_{2}} y_{j}}{2} \text {, if } 2 \mid z_{j} \tag{26}
\end{equation*}
$$

By the same method of Lemma 3.4, we can show that $\alpha_{j} \in D_{K}^{+}$.
Theorem 5.15 (1) Assume $p_{1} p_{2} \equiv 1 \bmod 8$ and $d \equiv 6 \bmod 8$ as above, then the Hilbert genus field E of $K=\mathbb{Q}\left(\sqrt{p_{1} p_{2}}, \sqrt{d}\right)$ is $\mathbb{Q}\left(\sqrt{p_{1} p_{2}}, \sqrt{2 p_{1}}, \sqrt{\widehat{q}_{1}}, \ldots, \sqrt{\hat{q}_{n}}\right.$, $\left.\sqrt{\alpha_{t}}, \ldots, \sqrt{\alpha_{m}}\right)$ with t given by (25). If $m<t$, there are no $\sqrt{\alpha_{j}}$-terms.
(2) Assume $p_{1} p_{2} \equiv 1 \bmod 8$ and $p_{1} d \equiv 6 \bmod 8$ as above, then the Hilbert genus field E of $K=\mathbb{Q}\left(\sqrt{p_{1} p_{2}}, \sqrt{p_{1} d}\right)$ is $\mathbb{Q}\left(\sqrt{p_{1} p_{2}}, \sqrt{2 p_{1}}, \sqrt{\widehat{q_{1}}}, \ldots, \sqrt{\widehat{q_{n}}}, \sqrt{\alpha_{t}}, \ldots\right.$, $\sqrt{\alpha_{m}}$) with t given by (25). If $m<t$, there are no $\sqrt{\alpha_{j}}$-terms.

Proof In all cases, it suffices to show that $K\left(\sqrt{\alpha_{j}}\right) / K$ is unramified at every dyadic prime \mathfrak{D} of K. The proof is similar to that of Theorem 5.7. For the case \widetilde{q}_{j} even, one needs Lemma 2.11 (2).

Acknowledgments The authors would like to thank Prof. Qin Yue for many helpful discussions.

References

1. Bae, S., Yue, Q.: Hilbert genus fields of real biquadratic fields. Ramanujan J. 24, 161-181 (2011)
2. Conner, P.E., Hurrelbrink, J.: Class Number Parity, Ser. Pure Math., vol. 8. World Scientific, Singapore (1988)
3. Lang, S.: Cyclotomic Fields I and II. GTM 121. Springer-Verlag, New York (1990)
4. McCall, T.M., Parry, C.J., Ranalli, R.R.: On imaginary bicyclic biquadratic fields with cyclic 2-class group. J. Number Theory 53, 88-99 (1995)
5. Ouyang, Y., Zhang, Z.: Hilbert genus fields of biquadratic fields. Sci. China Math., to appear
6. Sime, P.: Hilbert class fields of real biquadratic fields. J. Number Theory 50, 154-166 (1995)
7. Yue, Q.: The generalized Rédei matrix. Math. Z. 261, 23-37 (2009)
8. Yue, Q.: Genus fields of real biquadratic fields. Ramanujan J. 21, 17-25 (2010)
9. Zhang, Z., Yue, Q.: Fundamental units of real quadratic fields of odd class number. J. Number Theory 137, 122-129 (2014)

[^0]: This work was partially supported by the National Key Basic Research Program of China (Grant 2013CB834202) and the National Natural Science Foundation of China (Grant 11171317).

[^1]: Y. Ouyang • Z. Zhang (\boxtimes)

 Wu Wen-Tsun Key Laboratory of Mathematics, School of Mathematical Sciences, University of Science and Technology of China, Hefei 230026,
 Anhui, People's Republic of China
 e-mail: lmlz@mail.ustc.edu.cn
 Y. Ouyang
 e-mail: yiouyang@ustc.edu.cn

