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Abstract The Hilbert genus field of the real biquadratic field K = Q(
√

δ,
√
d) is

described by Yue (Ramanujan J 21:17–25, 2010) and by Bae and Yue (Ramanujan
J 24:161–181, 2011) explicitly in the case δ = 2 or p with p ≡ 1mod 4 a prime
and d a squarefree positive integer. In this article, we describe explicitly the case that
δ = p, 2p or p1 p2 where p, p1, and p2 are primes congruent to 3 modulo 4, and d
is any squarefree positive integer, thus complete the construction of the Hilbert genus
field of real biquadratic field K = K0(

√
d) such that K0 = Q(

√
δ) has an odd class

number.
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1 Introduction

For a number field K , theHilbert genus field of K is the subfield E of the Hilbert class
field H invariant under Gal (H/K )2. Note that the Galois group G = Gal (H/K ) is
isomorphic to the ideal class group C(K ) of K via Artin’s reciprocity map. Then by
Galois theory
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Gal (E/K ) � G/G2 � C(K )/C(K )2.

Let � be the unique multiplicative group such that K ∗2 ⊂ � ⊂ K ∗ and

E = H ∩ K (
√
K ∗) = K (

√
�). (1)

Given K , a natural question to ask is how to explicitly construct the Hilbert genus
field E of K , or equivalently, how to give a set of generators for the finite group
�/K ∗2.

Suppose δ and d are squarefree integers, and K is the biquadratic fieldQ(
√

δ,
√
d).

Recentlymuchwork has been done on explicit construction of theHilbert genus field E
of K . Bae andYue [1] worked out the case for real biquadratic fields K = Q(

√
p,

√
d)

with prime p ≡ 1mod 4 or 2, following earlier work of Sime [6] and Yue [8]. Note
that in their case, Q(

√
p) has odd ideal class number. In [5], we worked out the case

that K is biquadratic and K0 = Q(
√

δ) is imaginary with odd ideal class number, i.e.,
δ = −1,−2 or −p with p ≡ 3mod 4.

In this paper, we shall work out the construction of the Hilbert genus field of
K = K0(

√
d) for δ = p, 2p or p1 p2 where p, p1, p2 are primes ≡ 3mod 4 and

d a squarefree positive integer. Combining with the results of Bae and Yue [1], this
completes the construction of the Hilbert genus field of real biquadratic fields K =
K0(

√
d) such that K0 has odd class number.

Our strategy to explicitly construct E follows from [1,5,8]. From now on, we
suppose

(1) K = Q(
√

δ,
√
d)where δ = p, 2p or p1 p2 with p, p1, p2 primes≡ 3mod 4, and

d a squarefree positive integer;
(2) K0 = Q(

√
δ) which has odd class number in our case (see [2, page. 134]);

(3) E = K (
√

�) the Hilbert genus field of K where K ∗2 ⊂ � ⊂ K ∗;
(4) s is the number of finite primes of K0 ramified in K .
(5) t = r2(UK0/UK0∩NK/K0K )where NK/K0 is the normmap and for a finite abelian

group A, r2(A) is the 2-rank of A.
(6) D+

K ={x ∈ K ∗ | x totally positive and vp(x) ≡ 0mod 2 for all finite primespof K }.
We shall use the following facts from time to time.

Proposition 1.1 Assume K and K0 are given above.

(1) For any x ∈ D+
K , all nondyadic primes of K are unramified in K (

√
x). Moreover,

� ⊂ D+
K .

(2) We have
r2(C(K )) = r2(�/K ∗2) = s − 1 − t. (2)

Proof (1) The proof is similar to that of [8], Lemma 2.1.

(2) The second equality follows from (i) r2(C(K )) = r2
(
C(K ) Gal (K/K0)

)
, (ii)

C(K ) Gal (K/K0) has no 4-torsion, since K0 has odd class number, and (iii) by the
class number formula [3, Lemma 4.1, P.307] for cyclic extensions,
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Hilbert genus fields 347

∣∣∣C(K ) Gal (K/K0)
∣∣∣ = |C(K0)| · 2s−1

[UK0 : UK0 ∩ NK ] .

	


By Proposition 1.1. we first study the group UK0/UK0 ∩ NK/K0K to obtain the
2-ranks of �/K ∗2. Then we find a set of representatives of �/K ∗2. Our results are
stated in Theorem3.5 (δ = p case), Theorem4.4 (δ = 2p case) and Theorems 5.4, 5.7,
5.9, 5.12, and 5.15 (δ = p1 p2 case). To illustrate our results, we give three examples
here.

Example 1.2 (Theorem 3.5) Let K = Q(
√
3,

√
115115). It is clear that 115115 =

5 × 7 × 11 × 13 × 23 ≡ 3mod 4,
( 3
5

) = ( 3
7

) = −1 and
( 3
11

) = ( 3
13

) = ( 3
23

) = 1.
Then n = 5, m = 3, Q+ = {11, 13, 23}, and r2(Q+) = 2. Let q1 = 11, q2 = 13.
We see that σ(23) = σ(q1)σ (q2), thus, q̃3 = 11× 13× 23 = 3289. By computation,
3289 = 7092 − 3 × 4082, let α3 = 709 + 408

√
3, then

E = Q(
√
3,

√
5,

√
7,

√
11,

√
13,

√
23,

√
α3).

Example 1.3 (Theorem 4.4) Let K = Q(
√
14,

√
1921). It is clear that 1921 = 17 ×

113 ≡ 1mod 4,
( 14
17

) = −1, and
( 14
113

) = 1. Then n = 2, m = 1, Q+ = {113},
r2(Q+) = 0, and q̃1 = 113. By computation, 113 = 3072 − 14 × 822, let α1 =
307 + 82

√
14, then

E = Q(
√
14,

√
17,

√
113,

√
α1).

Example 1.4 (Theorem 5.4) Let K = Q(
√
21,

√
12155). It is clear that 12155 =

5× 11× 13× 17 ≡ 3mod 4,
( 21
11

) = ( 21
13

) = −1, and
( 21
5

) = ( 21
17

) = 1. Then n = 4,
m = 2, Q+ = {5, 17}, r2(Q+) = 1, q1 = 5 and q̃2 = 5 × 17 = 85. By computation,
85 = 12192 − 21 × 2662, let α2 = 1219 + 266

√
21, then

E = Q(
√
3,

√
7,

√
5,

√
11,

√
13,

√
17,

√
α2).

2 Preliminary results

We fix the following notations in this section:
For a number field or local field F , we let OF be the ring of integers of F and

UF the unit group of OF . If F is a number field and p a prime of F , we let Fp
be the completion of F at p. If F is a local field, let U (n)

F = 1 + πnOF where π

is a uniformizer of F . A (homogeneous) Diophantine equation is solvable if it has
(non-zero) integer solutions. An integer solution of a Diophantine equation is called
primitive if the greatest common divisor of the components is 1.

123



348 Y. Ouyang, Z. Zhang

2.1 Local computations

We first give several results about properties of extensions of the local field Q2. The
proofs of these results are routine, which we omit here.

Lemma 2.1 ([1], Lemma2.4) Suppose F = Q2(
√−3) andω = (−1+√−3)/2 ∈ F.

Then

(1) UF/U 2
F = (3) × (1 + 2ω) × (1 + 4ω).

(2) The extension F(
√
3,

√
1 + 2ω)/F is totally ramified, and F(

√
1 + 4ω)/F is

unramified.
(3) For a ∈ UF, if a ≡ 1 or 3 mod 4, then F(

√
3,

√
a)/F(

√
3) is an unramified

extension; if a ≡ 1 + 2ω or 1 + 2ω2 mod 4, then F(
√
3,

√
a)/F(

√
3) is a

ramified extension.
(4) If a ∈ UF and a ≡ x orω ·x orω2 ·x mod 4 for some odd integer x, then F(

√
a)/F

is unramified if and only if x ≡ 1mod 4.

Lemma 2.2 Suppose F = Q2(
√−1). Then π = −1 + √−1 is a uniformizer of F

and

(1) U (5)
F =

(
U (3)

F

)2
.

(2) F(
√
3) = F(

√−3) is unramified over F.

Lemma 2.3 Suppose F = Q2(
√
3). Then −1 + √

3 is a uniformizer of F and

(1) U (5) = (
U (3)

)2
.

(2) F(
√−1) = F(

√−3) is unramified over F.

Lemma 2.4 Suppose F = Q2(
√
2n) where n is an odd integer. Then π = √

2n is a
uniformizer of F and

(1) U (5)
F =

(
U (3)

F

)2
and U 2

F = U (5)
F

⋃
(1 + π2 + π3)U (5)

F .

(2) F(
√
1 + π2 + π3 + π4) = F(

√
1 + π4) = F(

√
5) is unramified over F.

Lemma 2.5 Suppose that p ≡ 3mod 4 is a prime, then

(1) If p ≡ 3mod 8, then in the fieldQ2(
√
3),

√
p ≡ √

3mod π4, whereπ = −1+√
3.

(2) If p ≡ 7mod 8, then in the field Q2(
√−1),

√
p ≡ √−1mod π4, where π =

−1 + √−1.

2.2 Fundamental units of real quadratic fields

We need the following proposition about fundamental units of real quadratic fields,
for the proof see [4, p. 91] and [9, Theorem 1.1].

Proposition 2.6 Suppose K = Q(
√
d) is a real quadratic field with odd class number.

Let εd = x + y
√
d > 1 be the fundamental integral unit of K . We have
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(1) If d = p with p ≡ 3mod 4, then εp = 2u2p with u p ∈ K, and x ≡ 0mod 2. More
precisely, if p ≡ 3mod 8, then x ≡ 2mod 4; if p ≡ 7mod 8, then x ≡ 0mod 4.

(2) If d = 2p with p ≡ 3mod 4, then ε2p = 2u22p with u2p ∈ K, y ≡ 0mod 2 and
x + y ≡ 3mod 4.

(3) If d = p1 p2 with p1 ≡ p2 ≡ 3mod 4, then εp1 p2 = p1u2p1 p2 with u p1 p2 ∈ K,
x ≡ 3mod 4 and y ≡ 0mod 4.

2.3 Solutions of quadratic Diophantine equations

Lemma 2.7 Suppose that p1 ≡ p2 ≡ 7 are odd primes, then there exists a primitive
positive integer solution (x0, y0, z0) of 2z2 = x2 − p1 p2y2 such that (x0, z0) ≡
(1, 0)mod 4.

Proof The solvability follows by checking the corresponding Hilbert symbols. Let
εp1 p2 = u + v

√
p1 p2 > 1 be the fundamental unit of Q(

√
p1 p2). Then according to

Proposition 2.6 (3), u ≡ 3mod 4, v ≡ 0mod 4. First, we show that −pi = x2 − 2z2

(i = 1, 2) has a primitive positive solution (xi , zi ) such that 4 | zi . Any integral
solution is clearly primitive, and moreover, xi is odd and zi even. Replacing (xi , zi )
by (3xi +4zi , 2xi +3zi ) if necessary, we can get zi such that 4 | zi . Then (x0, 1, z0) =
(x1x2 + 2z1z2, 1, x1z2 + x2z1) is a primitive solution of p1 p2y2 = x2 − 2z2 with
4 | z0. If x0 ≡ 1mod 4, there is nothing left to prove, if x0 ≡ 3mod 4, then (x0u +
p1 p2v, x0v +u, z0) is a primitive positive solution such that x0u+ p1 p2v ≡ 1mod 4.

	

Remark 2.8 In the above proof, we used twice the following trick: if F is a quadratic
field, and ε is a unit of norm 1, then NF/Q(η) = N implies that NF/Q(εη) = N . The
first time F = Q(

√
2), ε = 3+2

√
2, η = xi + zi

√
2; and the second F = Q(

√
p1 p2),

ε = εp1 p2 , andη = x0+y0
√
p1 p2.We shall employ the trick a few times inLemma2.9.

Lemma 2.9 Suppose p, p1, and p2 are primes ≡ 3mod 4, and N is a squarefree odd
integer.

(1) If gcd(N , p) = 1, and the equation Nz2 = x2 − py2 is solvable, then it has a
primitive positive integer solution (x0, y0, z0) with 2 | y0.

(2) If gcd(N , 2p) = 1 and Nz2 = x2 − 2py2 is solvable, then the equation has a
primitive positive integer solution (x0, y0, z0) with x0 + y0 ≡ 1mod 4.

(3) Suppose that gcd(N , p1 p2) = 1, and Nz2 = x2 − p1 p2y2 is solvable. Then it
has a primitive positive integer solution (x0, y0, z0) satisfying either (i) 2 � z0
and x0 + y0 ≡ 1mod 4 or (i i) (x0, z0) ≡ (1, 0)mod 4 if p1 p2 ≡ 1mod 8 and
(3, 2)mod 4 if p1 p2 ≡ 5mod 8.

(4) Suppose that p1 p2 ≡ 1mod 8 and gcd(N , p1 p2) = 1. If theDiophantine equation
2Nz2 = x2 − p1 p2y2 is solvable, then it has primitive positive integer solutions
(x0, y0, z0) and (x ′

0, y
′
0, z

′
0) with x0 ≡ 1mod 4 and x ′

0 ≡ 3mod 4.

Proof (1) Let εp = u + v
√
p > 1 be the fundamental unit of F = Q(

√
p),

then by Proposition 2.6 (1), 2 | u. Let (x1, y1, z1) be a primitive solution of
Nz2 = x2 − py2. Obviously, 2 � z1. Applying the above trick to F , ε = εp and
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η = x1 + y1
√
p, we get a solution (x0, y0, z0 = z1) satisfying 2 | y0. Since

x0 + y0
√
p = (x1 + y1

√
p)εap for a = 0 or 1, it is trivial to check that

gcd(x0, y0) = 1, and the solution is primitive.
(2) Let ε2p = u+v

√
2p > 1 be the fundamental unit ofQ(

√
2p), then by Proposition

2.6 (2), 2 | v and u+v ≡ 3mod 4. Let (x1, y1, z1) be a primitive positive solution
of Nz2 = x2 − 2py2. Now just apply the trick to F = Q(

√
2p), ε = ε2p, and

η = x1 + y1
√
2p, we get the desired solution.

(3) Let εp1 p2 = u + v
√
p1 p2 > 1 be the fundamental integral unit of Q(

√
p1 p2),

then by Proposition 2.6 (3), u ≡ 3mod 4, v ≡ 0mod 4. Let (x1, y1, z1) be a
primitive positive solution of Nz2 = x2 − p1 p2y2. Now repeat the trick to the
case F = Q(

√
p1 p2), ε = εp1 p2 , and η = x1 + y1

√
p1 p2.

(4) A primitive solution (x0, y0, z0) and its associated solution (x1, y1, z0) obtained
by x1 + y1

√
p1 p2 = (x0 + y0

√
p1 p2)εp1 p2 for εp1 p2 as given in (3) must satisfy

the condition that one of x0 and x1 ≡ 1mod 4 and the other ≡ 3mod 4.
	


2.4 Decomposition and congruence

Lemma 2.10 Suppose p1 and p2 are distinct primes≡ 3mod 4. Let F = Q(
√
p1 p2).

Assume N ≡ 1mod 4 is a squarefree integer such that gcd(N , p1 p2) = 1, and
the equation Nz2 = x2 − p1 p2y2 has a primitive solution (x0, y0, z0). Take α =
x0 + √

p1 p2y0 if 2 � z0 and α = x0+√
p1 p2 y0
2 if 2 | z0. Let α be the conjugate of α in

F. Then

(1) The element α ∈ OF , and the ideal αOF is relatively prime to αOF .
(2) If 2 � z0, then α ≡ x0 + y0 mod 4OF .
(3) If p1 p2 ≡ 5mod 8 and 2 | z0, then in the local field Q2(

√
p1 p2) = Q2(

√−3),

α ≡ ω(−x0) or ω2(−x0)mod 4, where ω = −1+√−3
2 .

(4) If p1 p2 ≡ 1mod 8 and 2 | z0, then d1 = (2, α) �= d2 = (2, α) are the two dyadic
primes of F, and α ≡ x0 mod d22 and α/2e ≡ x0 mod d21OFd1

for an even integer e.

Proof The proof of (2)–(4) is similar to that of [1, Lemma 2.6]. Now we prove (1).
One can check that αα and α + α ∈ Z, so α ∈ OF . Assume p is a prime of OF such
that p divides both αOF and αOF , then α, α ∈ p, and α +α ∈ p. If p is an odd prime,
we have x0 or 2x0 = α + α ∈ p∩ Z = (
), then 
 | x0 and 
 | Nz20. If 
 | p1 p2, i.e., if

 = p1 or p2, then 
 | z0, because gcd(N , p1 p2) = 1, thus 
2 | x20 − Nz20 = p1 p2y20 ,
now 
 | y0, which contradicts that (x0, y0, z0) is primitive. If 
 | N , then 
 | y0, hence

2 | Nz20 = x20 − p1 p2y20 , therefore 
 | z0, which is also a contradiction. If 
 | z0, then

 | y0, which is impossible. αOF and N is squarefree, 
 | z0 and we must have 
 | y0,
which is impossible. If p is a dyadic prime, then 2 | z0 and x0 = α +α ∈ p∩Z = (2),
i.e., 2 | x0, hence 2 | y0, which is also impossible. 	

Lemma 2.11 Suppose p1 and p2 are distinct primes ≡ 3mod 4 satisfying p1 p2 ≡
1mod 8. Let F = Q(

√
p1 p2). Suppose N is a squarefree integer such that 2Nz2 =

x2 − p1 p2y2 has a primitive solution (x0, y0, z0). Let α = x0+y0
√
p1 p2

2 and α be its
conjugate. Then d1 = (2, α) and d2 = (2, α) are the two dyadic ideals of F.Moreover,
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(1) For N ≡ 1mod 4, if 2‖z0, then α ≡ x0+2mod d22 and α/2 ≡ x0+2mod d21OFd1
;

if 4 | z0, then α ≡ x0 mod d32 and α/2e ≡ x0 or 5x0 mod d31OFd1
for an odd integer

e.
(2) For N ≡ 3mod 4, if 2‖z0, then α ≡ x0 + 2mod d22 and α/2 ≡ −(x0 +

2)mod d21OFd1
; if 4 | z0, thenα ≡ x0 mod d32 andα/2e ≡ −x0 or 3x0 mod d31OFd1

for an odd integer e.

Proof We prove the case N ≡ 1mod 4, the other case is similar.

We have αα = 2Nz20
4

≡ 0mod 2 and α + α = x0 ∈ Z, hence α ∈ OF . By the

same technique of Lemma 2.10 (1), we can show that αOF is relatively prime to αOF .
Moreover, by the fact that αα ∈ 2Z, we know d1 = (2, α) and d2 = (2, α) are the two
dyadic ideals of F . If 2‖z0, then α ∈ d1 and α ∈ d2. Thus α = x0 −α ≡ x0 mod d2 ≡
x0 + 2mod d22 and α ≡ x0 + 2mod d21. Then α · α · 2−1 = Nz20

22
≡ 1mod d21OFd1

and
α

2
≡ α−1 ≡ x0 + 2mod d21OFd1

.

If 4 | z0, then αα ∈ 8Z, thus α ∈ d31, α ∈ d32. Then α = x0 − α ≡ x0 mod d32 and

α ≡ x0 mod d31. If 2
k‖z0, k ≥ 2, then byα·α·2−2(k−1)−1 = Nz20

22k
≡ 1or 5mod d31OFd1

(because N ≡ 1 or 5mod 8),

α

22(k−1)+1
≡ α−1 ≡ x0 or 5x0 mod d31OFd1

.

	

Lemma 2.12 Suppose p1 ≡ p2 ≡ 7mod 8 are distinct primes and F = Q(

√
p1 p2).

Suppose (x0, y0, z0) is a solution of 2z2 = x2 − p1 p2y2 as given in Lemma 2.7.

Let α = x0+√
p1 p2 y0
2 and α = x0−√

p1 p2 y0
2 be its conjugate in F. Then d1 = (2, α)

and d2 = (2, α) are the two dyadic primes of F and α ≡ x0 mod d32 and α/2e ≡
x0 mod d31OFd1

for an odd integer e.

Proof The proof is similar to that of Lemma 2.11. 	


3 The case δ = p with prime p ≡ 3mod 4

In this section, we assume prime p ≡ 3mod 4, K0 = Q(
√
p) and K = Q(

√
p,

√
d)

such that gcd(d, p) = 1. Let εp > 1 be the fundamental unit of K0. Note that by
Proposition 2.6, εp = 2u2p for u p ∈ K0. Let

Q = {q1, q2, · · · , qn} = the set of odd prime divisors of d, (3)

and inside Q, the subsets

Q+ =
{
q1, · · · , qm | q j satisfies

(
p

q j

)
= 1

}
(4)
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Q− =
{
qm+1, · · · , qn | q j satisfies

(
p

q j

)
= −1

}
. (5)

We set

r2(Q+) = the 2-rank of the subgroup of μ2
2 generated by σ(q)=

((−1

q

)
,

(
2

q

))

for q ∈ Q+, (6)

and if Q+ = ∅, we set r2(Q+) = 0. We denote by the above subgroup Q+. If
r2(Q+) = 1, choose q1 ∈ Q+ such that σ(q1) is a generator of Q+. If r2(Q+) = 2,
choose q1, q2 ∈ Q+ such that 〈σ(q1), σ (q2)〉 = μ2

2.

Lemma 3.1 Suppose conventions on d as above. Then s = m+n if d ≡ 1 or 3mod 4
and m + n + 1 if d ≡ 2mod 4, and t = r2(Q+).

Remark 3.2 By Proposition 1.1, we hence know r2(�/K ∗2) = s − 1 − r2(Q+).

Proof If q ∈ Q+, then q splits in K0, if q ∈ Q−, then q is inert in K0. All these primes
are ramified in K/K0. If d ≡ 2mod 4, 2 is ramified in K0, and the dyadic prime in K0
is ramified in K . The above primes are the only primes ramified in K/K0. We thus
get the values of s.

We know that UK0 = {±1} × εZp . Thus

• t = 0 if and only if −1,±εp ∈ NK ;
• t = 1 if and only if UK0 ∩ NK = 〈1,−1〉 or 〈1, εp〉 or 〈1,−εp〉;
• t = 2 if and only if −1,±εp /∈ NK .

To check −1 or ±εp ∈ NK/K0K , one just needs to check if (−1, d)p = 1 or
(±εp, d)p = 1 for every prime p of K0 ramified in K .

For every prime q above q ∈ Q+, we have

(−1, d)q = (−1)
Nq−1

2 = (−1)
q−1
2 =

(−1

q

)
.

For q ∈ Q−, let q be the prime above q. By Lemma 3.3 of [7], we have

(−1, d)q = (NK0/Q(−1), d)q = (1, d)q = 1.

By εp = 2u2p, for every prime q above q ∈ Q+, we have

(εp, d)q = (2, d)q =
(
2

q

)
and (−εp, d)q = (−2, d)q =

(−2

q

)
.

For the prime q above q ∈ Q−, we have

(±εp, d)q = (NK0/Q(±2), d)q = (22, d)q = 1.
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Let d be the dyadic prime of K0 above 2, the product formula gives

(−1, d)d = (εp, d)d = (−εp, d)d = 1.

Hence

• t = 0 if and only if q ≡ 1mod 8 for all q ∈ Q+, i.e., r2(Q+) = 0.
• t = 1 if and only if Q+ = 〈(−1, 1)〉 or 〈(1,−1)〉 or 〈(−1,−1)〉, i.e., r2(Q+) = 1.
• t = 2 if and only if Q+ = {±1} × {±1}, i.e., r2(Q+) = 2.

	

Suppose Q+ �= ∅. For any j such that r2(Q+) + 1 ≤ j ≤ m, q̃ j is chosen as

follows:

• If r2(Q+) = 0, then for all 1 ≤ j ≤ m, let q̃ j = q j .
• If r2(Q+) = 1, then σ(q j ) = σ(q1)a for a ∈ {0, 1}. Let q̃ j = qa1q j for 2 ≤ j ≤ m.
• If r2(Q+) = 2, then σ(q j ) = σ(q1)aσ(q2)b with a, b ∈ {0, 1}. Let q̃ j = qa1q

b
2q j

for 3 ≤ j ≤ m.

By construction, q̃ j is uniquely determined by the condition that the Jacobi symbols

(−1

q̃ j

)
=

(
2

q̃ j

)
= 1, i.e., q̃ j ≡ 1mod 8.

Lemma 3.3 The equation q̃ j z2 = x2 − py2 is solvable in Z and has a primitive
positive integer solution (x j , y j , z j ) such that 2 | y j .
Proof The solvability follows by checking the corresponding Hilbert symbols. Then
by Lemma 2.9 (1), it has a primitive positive integer solution (x j , y j , z j ) such that
2 | y j . 	


Let (x j , y j , z j ) be such a solution given in the above Lemma. Then set

α j = x j + √
py j . (7)

Lemma 3.4 The elements q j ∈ Q (i.e., 1 ≤ j ≤ n) and α j (r2(Q+) + 1 ≤ j ≤ m)

defined above all belong to D+
K . If d ≡ 2mod 4, 2 ∈ D+

K .

Proof Since q j is ramified in K , we see that q j ∈ D+
K for 1 ≤ j ≤ n.

For α j , we know that α jα j = q j z2j , q1q j z2j , q2q j z2j , or q1q2q j z2j ; thus, α j is totally
positive. Since (x j , y j , z j ) is a primitive solution, α jOK0 is prime to α jOK0 , hence
α jOK is relatively prime to α jOK . Since q1, q2, and q j are ramified in K , we see that
α jα jOK is a square of an ideal inOK , thus α ∈ D+

K . If d ≡ 2mod 4, 2 is ramified in
K , thus 2 ∈ D+

K . 	

We can now state and prove the main result of this section.
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Theorem 3.5 Assume p and d as above. Then the Hilbert genus field E of K =
Q(

√
p,

√
d) is Q(

√
p,

√
q1, . . . ,

√
qn,

√
αr+1, . . . ,

√
αm) if d ≡ 1 or 3mod 4 and

Q(
√
2,

√
p,

√
q1, . . . ,

√
qn,

√
αr+1, · · · ,

√
αm) if d ≡ 2mod 4, where r = r2(Q+)

is given by (6), α j is given by (7), and there is no
√

α j -term in E if m = r .

Proof We note the fact that K (
√
qi )/K is always unramified.

We first show the case r2(Q+) = 0 and d ≡ 1, 3mod 4 in detail. By Lemma
3.1, we have r2(�/K ∗2) = m + n − 1. We now show that �/K ∗2 is generated by
{q1, . . . , qn−1, α1, . . . , αm}. Firstly, we show the set

{q1, . . . , qn−1, α1, . . . , αm} (8)

is independent modulo K ∗2.
Consider ξ = ∏

i q
ai
i

∏
j α

b j
j , where ai , b j ∈ {0, 1}, qi ∈ {q1, . . . , qn−1}, α j ∈

{α1, . . . , αm}. Let K2 = Q(
√
pd), then

NK/K2(ξ) =
∏
i

q2aii

∏
j

q
b j
j · λ2, λ ∈ K2.

Suppose ξ ∈ K ∗2, then NK/K2(ξ) ∈ K ∗2
2 , thus b j = 0. Now ξ = ∏

i q
ai
i ∈ K ∗2,

since K has only three quadratic subfields: Q(
√
p), Q(

√
d), Q(

√
pd), we must have

ai = 0. Therefore, the set (8) is independent modulo K ∗2.
Second, we show that K (

√
α j )/K , 1 ≤ j ≤ m, are unramified extensions. By

Proposition 1.1 (1), we only need to show they are unramified at the dyadic primes of
K .

Let D be a dyadic prime of K and let d = D ∩ OK0 . If p ≡ 3mod 8, then
K0,d � Q2(

√
3). Since q̃ j ≡ 1mod 8, y j ≡ 0mod 4. By the Lemma 2.5 (1), we have

α j = x j + y j
√
p = x j + y j + (−1 + √

p)y j ≡ x j + y j + (−1 + √
3)y j mod π5,

where π = −1 + √
3 is a uniformizer of Q2(

√
3). Since 4 | y j , α j ≡ x j +

y j mod π5. According to Lemma 2.3 (1), K0,d(
√

α j ) = K0,d(
√
x j + y j ). Because

x j + y j ≡ ±1,±3mod 8, due to Lemma 2.3 (2), K0,d(
√

α j )/K0,d is unramified, thus
KD(

√
α j )/KD is also unramified.

If p ≡ 7mod 8, then K0,d � Q2(
√−1). Since q̃ j ≡ 1mod 8, y j ≡ 0mod 4. By

the Lemma 2.5 (2), we have

α j = x j + y j
√
p = x j + y j + (−1 + √

p)y j ≡ x j + y j + (−1 + √−1)y j mod π5,

where π = −1 + √−1 is a uniformizer of Q2(
√−1). Since 4 | y j , α j ≡

x j + y j mod π5. Since x j + y j ≡ ±1,±3mod 8, by Lemma 2.2, K0,d(
√

α j )/K0,d is
unramified, thus KD(

√
α j )/KD is also unramified.

For d ≡ 1, 3mod 4 and r = 1 or 2, the proof is similar to the above situation.
We first show that

{
q1, · · · , qn−1, αr2(Q+)+1, · · · , αm

}
is a Z/2Z-basis of �/K ∗2,
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then use the fact that the construction of α j ( j > r2(Q+)) implies that K (
√

α j )/K is
unramified.

For d ≡ 2mod 4, the proof also follows from the same strategy. We note in this
case K (

√
2)/K is an unramified extension. 	


4 The case δ = 2 p with prime p ≡ 3mod 4

In this section, we assume p ≡ 3mod 4 a prime, d > 0 squarefree and gcd(d, p) = 1,
K0 = Q(

√
2p), and K = Q(

√
2p,

√
d). Let ε2p > 1 be the fundamental unit of K0.

Then ε2p = 2u22p where u2p ∈ K0 by Proposition 2.6. Similar to Sect. 3, set

Q = {q1, q2, · · · , qn} = the set of odd prime divisors of d, (9)

and inside Q, the subsets

Q+ =
{
q1, · · · , qm | q j satisfies

(
2p

q j

)
= 1

}
, (10)

Q− =
{
qm+1, · · · , qn | q j satisfies

(
2p

q j

)
= −1

}
. (11)

We denote by Q+ the subgroup of μ2
2 generated by σ(q) =

((−1
q

)
,
(
2
q

))
for

q ∈ Q+ and set
r2(Q+) = the 2-rank of Q+, (12)

and if Q+ = ∅, we set r2(Q+) = 0. If r2(Q+) = 1, choose q1 ∈ Q+ such that σ(q1) is
a generator of Q+. If r2(Q+) = 2, chooseq1, q2 ∈ Q+ such that 〈σ(q1), σ (q2)〉 = μ2

2.

Lemma 4.1 Suppose conventions on d as above. Then s = m + n if d ≡ 1mod 4 or
6mod 8 and m + n + 1 if d ≡ 3mod 4 or 2mod 8, and t = r2(Q+).

Proof The proof is similar to that of Lemma 3.1. 	

Suppose Q+ �= ∅. For any j such that r2(Q+)+1 ≤ j ≤ m, we again get a unique

q̃ j = qa1q
b
2q j for a, b ∈ {0, 1} satisfying

(−1

q̃ j

)
=

(
2

q̃ j

)
= 1, i.e., q̃ j ≡ 1mod 8..

By checking the Hilbert symbol and then Lemma 2.9 (2), we have

Lemma 4.2 The equation q̃ j z2 = x2 − 2py2 is solvable in Z and has a primitive
positive integer solution (x j , y j , z j ) such that x j + y j ≡ 1mod 4.

Let (x j , y j , z j ) be such a solution of q̃ j z2 = x2 − 2py2. Set

α j = x j + √
2py j . (13)
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Lemma 4.3 The elements q j (1 ≤ j ≤ n) and α j (r2(Q+) + 1 ≤ j ≤ m) defined
above all belong to D+

K . And if d ≡ 2mod 4, 2 ∈ D+
K .

Proof The proof is similar to that of Lemma 3.4. 	

We can now state and prove the main result of this section.

Theorem 4.4 Assume p and d as above, then the Hilbert genus field E of K =
Q(

√
2p,

√
d) is Q(

√
2p,

√
q̂1 , . . . ,

√
q̂n ,

√
αr+1, . . . ,

√
αm) if d ≡ 1mod 4 or

6mod 8, and Q(
√
2,

√
p,

√
q1, · · · ,

√
qn,

√
αr+1, . . . ,

√
αm) if d ≡ 3mod 4 or

2mod 8, where r = r2(Q+) is given by (12), α j is given by (13), q̂ j = q j if
q j ≡ 1mod 4 and q̂ j = 2q j if q j ≡ 3mod 4. If m = r2(Q+), there is no

√
α j -

term in E.

Proof We note the fact that if d ≡ 1mod 4 or 6mod 8, K (
√
q̂i )/K is always unram-

ified and if d ≡ 3mod 4 or 2mod 8, K (
√
qi )/K is always unramified.

We first show the case d ≡ 1mod 4 or 6mod 8 and r = 0 in detail. By Lemma 4.1,
we have r2(�/K ∗2) = m + n − 1. By the same technique of the proof of Theorem
3.5, we can show that �/K ∗2 is generated by {q1, . . . , qn−1, α1, . . . , αm}.

Second, we show that K (
√

α j )/K , 1 ≤ j ≤ m, are unramified extensions. By
Proposition 1.1 (1), we only need to show they are unramified at the dyadic primes
of K .

Let D be a dyadic prime of K and let d = D ∩ OK0 . Then K0,d � Q2(
√
2p). Let

π = √
2p be a uniformizer of K0,d. Since (x j , y j , z j ) is a primitive positive solution

of q̃ j z2 = x2 − 2py2 and q̃ j ≡ 1mod 8, we must have x j , z j odd and 2 | y j . Recall
that we choose x j , y j such that x j + y j ≡ 1mod 4.

If x j ≡ 1mod 4, y j ≡ 0mod 4, we have

α j = x j + y j
√
2p ≡ 1, 5mod π5.

If x j ≡ 3mod 4, y j ≡ 2mod 4, we have

α j = x j + y j
√
2p ≡ 1 + π2 + π3 or 1 + π2 + π3 + π4 mod π5.

ByLemma 2.4, in both cases, K0,d(
√

α j )/K0,d is unramified. Therefore, KD(
√

α j )

/KD is also unramified.
The other cases follow the same strategy as above. If d ≡ 3mod 4 or 2mod 8, we

need the fact that K (
√
2)/K is an unramified extension. 	


5 The case δ = p1 p2 with distinct primes p1 ≡ p2 ≡ 3mod 4

In this section, we assume p1 and p2 are distinct primes ≡ 3mod 4, d > 0 squarefree
and prime to p1 p2, K0 = Q(

√
p1 p2) and K = K0(

√
d) = Q(

√
p1 p2,

√
d) or

K0(
√
p1d) = Q(

√
p1 p2,

√
p1d). Let εp1 p2 > 1 be the fundamental integral unit of

K0. Then εp1 p2 = p1u2p1 p2 where u p1 p2 ∈ K0 by Proposition 2.6. Let

Q = {q1, q2, · · · , qn} = the set of odd prime divisors of d, (14)
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and inside Q, the subsets

Q+ =
{
q1, · · · , qm | q j satisfies

(
p1 p2
q j

)
= 1

}
, (15)

Q− =
{
qm+1, · · · , qn | q j satisfies

(
p1 p2
q j

)
= −1

}
. (16)

Proposition 5.1 Suppose that p1, p2, d, and K0 as above.
(1) If K = K0(

√
d), then prime q ∈ Q+ splits in K0 and every prime q of K0

above q is ramified in K and

(−1, d)q =
(−1

q

)
, (εp1 p2 , d)q =

(
p1
q

)
.

Prime q ∈ Q− is inert in K0, and the prime q above q in K0 is ramified in K and

(−1, d)q = (εp1 p2 , d)q = 1.

If p1 p2 ≡ 1mod 8, then 2 splits in K0 and for d a dyadic prime of K0, we have

(−1, d)d =
{

(−1)
d−1
2 if 2 � d

(−1)
d/2−1

2 if 2 | d, and (εp1 p2 , d)d =
⎧
⎨
⎩

(−1)
d−1
2 if 2 � d

(−1)
p21−1
8 + d/2−1

2 if 2 | d.

If p1 p2 ≡ 5mod 8, then 2 is inert in K0, the dyadic prime d of K0 is ramified in K
if and only if d ≡ 2 or 3mod 4, and

(−1, d)d = (εp1 p2 , d)d = 1.

(2) If K = K0(
√
p1d), then all the assertions in (1) hold if replacing d by p1d.

Proof Similar to the calculation in Lemma 3.1. 	


5.1 The case p1 p2 ≡ 5mod 8

This situation is similar to the previous two sections. For q ∈ Q+, let σ(q) =
(
(−1

q

)
,
(
p1
q

)
) ∈ μ2

2 and let Q+ = 〈σ(q) | q ∈ Q+〉 be the subgroup of μ2
2 generated

by {σ(q) | q ∈ Q+}. We set

r2(Q+) = r2(Q+) = the 2-rank of Q+ (17)

and r2(Q+) = 0 if Q+ = ∅. If r2(Q+) = 1, choose q1 ∈ Q+ such that σ(q1) is a
generator of Q+. If r2(Q+) = 2, choose q1, q2 ∈ Q+ such that 〈σ(q1), σ (q2)〉 = μ2

2.
Proposition 5.1 tells us that
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Lemma 5.2 If K = K0(
√
d), then s = m + n if d ≡ 1mod 4 and m + n + 1 if d ≡ 2

or 3mod 4, and t = r2(Q+). If K = K0(
√
p1d), then s = m + n if p1d ≡ 1mod 4

and m + n + 1 if p1d ≡ 2 or 3mod 4, and t = r2(Q+).

Similar to the previous two sections again, if Q+ �= ∅, for any j such that r2(Q+)+
1 ≤ j ≤ m, we associate to q j a unique q̃ j = qa1q

b
2q j for a, b ∈ {0, 1} such that the

Jacobi symbols

(−1

q̃ j

)
=

(
p1
q̃ j

)
= 1.

By checking the corresponding Hilbert symbols and then by Lemma 2.9 (3), we
have

Lemma 5.3 The equation q̃ j z2 = x2 − p1 p2y2 is solvable in Z and has a primitive
positive integer solution (x j , y j , z j ) satisfying either (i) 2 � z j and x j + y j ≡ 1mod 4
or (i i) (x j , z j ) ≡ (3, 2)mod 4.

For such a solution, we set

α j = x j + √
p1 p2y j , if 2 � z j and α j = x j + √

p1 p2y j
2

, if 2 | z j . (18)

By the same method of Lemma 3.4, we can show that α j ∈ D+
K for K = K0(

√
d)

or K0(
√
p1d).

Then we have the following theorem.

Theorem 5.4 Assume p1 p2 ≡ 5mod 8 and d as above.
(1) The Hilbert genus field E of K = Q(

√
p1 p2,

√
d) is given by the following

table.

d Hilbert genus field E

1mod 4 Q(
√
p1 p2,

√
q̂1, . . . ,

√
q̂n ,

√
αr+1, . . . ,

√
αm)

2mod 8 Q(
√
p1 p2,

√
2,

√
q̂1, . . . ,

√
q̂n ,

√
αr+1, . . . ,

√
αm )

6mod 8 Q(
√
p1 p2,

√
2p1,

√
q̂1, . . . ,

√
q̂n ,

√
αr+1, . . . ,

√
αm )

3mod 4 Q(
√
p1,

√
p2,

√
q1, . . . ,

√
qn ,

√
αr+1, . . . ,

√
αm )

where

• r = r2(Q+) and if m = r , there is no
√

α j -term in E;
• the number q̂ j = q j if q j ≡ 1mod 4, q̂ j = p1q j if q j ≡ 3mod 4 and d ≡ 1mod 4
or 2mod 8, and q̂ j = 2q j if q j ≡ 3mod 4 and d ≡ 6mod 8.

(2) The Hilbert genus field E of K = Q(
√
p1 p2,

√
p1d) is obtained by replacing

d by p1d in (1).
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Proof We prove the case that K = Q(
√
p1 p2,

√
d), the proof of the case K =

Q(
√
p1 p2,

√
p1d) is similar.

We just need to show that the extension K (
√

α j )/K is unramified.
By Proposition 1.1, it suffices to show that K (

√
α j )/K is unramified at every dyadic

prime D of K . Let d = D ∩ OK0 . Then K0,d � Q2(
√−3).

If 2 � z j , then byLemma2.10 (2),α j ≡ x j+y j ≡ 1mod 4 in K0,d. Thus, byLemma
2.1 (4), K0,d(

√
α j )/K0,d is unramified. Hence KD(

√
α j )/KD is also unramified.

If 2 | z j , then byLemma2.10 (3),α j ≡ ω(−x j )orω2(−x j )mod 4. Since now x j ≡
3mod 4, by Lemma 2.1 (4), K0,d(

√
α j )/K0,d is unramified. Thus, KD(

√
α j )/KD is

also unramified. 	


5.2 The case p1 p2 ≡ 1mod 8

This is the most complicated situation. We divide this into four cases:

5.2.1 The cases d ≡ 1mod 4 and (d, p1) ≡ (2, 7)mod 8 for K0(
√
d) and

p1d ≡ 1mod 4 and (p1d, p1) ≡ (2, 7)mod 8 for K0(
√
p1d)

We note that p1d ≡ 1mod 4 is nothing but d ≡ 3mod 4. The form we adopt here is
to illustrate the symmetry between d and p1d.

As in the previous cases, we can again define Q+, the 2-rank r2(Q+) of Q+, and
choose q1 and q2 according to the value of r2(Q+). Proposition 5.1 gives the following
lemma:

Lemma 5.5 If d ≡ 1mod 4 (resp. p1d ≡ 1mod 4 ) for K = K0(
√
d) (resp. K =

K0(
√
p1d) ), then s = m + n and t = r2(Q+). If (d, p1) ≡ (2, 7)mod 8 (resp.

(p1d, p1) ≡ (2, 7)mod 8 ) for K = K0(
√
d) (resp. K = K0(

√
p1d) ), then s =

m + n + 2 and t = r2(Q+).

Suppose Q+ �= ∅. For any j such that r2(Q) + 1 ≤ j ≤ m, we associate to q j the
unique integer q̃ j = qa1q

b
2q j for a, b ∈ {0, 1} such that the Jacobi symbols

(−1

q̃ j

)
=

(
p1
q̃ j

)
= 1.

By Lemma 2.9 (3),

Lemma 5.6 The equation q̃ j z2 = x2 − p1 p2y2 is solvable in Z and has a primitive
positive integer solution (x j , y j , z j ) satisfying either (i) 2 � z j and x j + y j ≡ 1mod 4
or (i i) (x j , z j ) ≡ (1, 0)mod 4.

For such a solution, we set

α j = x j + √
p1 p2y j , if 2 � z j and α j = x j + √

p1 p2y j
2

, if 2 | z j . (19)
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For (d, p1) ≡ (2, 7)mod 8 (resp. (p1d, p1) ≡ (2, 7)mod 8 ), set

α0 = x0 + √
p1 p2y0
2

with (x0, z0) ≡ (1, 0)mod 4 as given in Lemma 2.7. (20)

By the same method of Lemma 3.4, we can show that α j ∈ D+
K for K = K0(

√
d)

or K0(
√
p1d).

Theorem 5.7 (1) TheHilbert genus field E of K = K0(
√
d) isQ(

√
p1 p2,

√
q̂1 , . . . ,√

q̂n ,
√

αr+1, . . . ,
√

αm) if d ≡ 1mod 4, andQ(
√
p1 p2,

√
2,

√
q̂1 , . . . ,

√
q̂n ,

√
α0,√

αr+1, . . . ,
√

αm) if (d, p1) ≡ (2, 7)mod 8, where r = r2(Q+) is defined as above,
α j is given by (19), q̂ j = q j if q j ≡ 1mod 4 and p1q j if q j ≡ 3mod 4. If m = r , the
terms

√
α j ( j > 0) are not appearing in E.

(2) The Hilbert genus fields E of K = K0(
√
p1d) for the cases p1d ≡ 1mod 4

and (p1d, p1) ≡ (2, 7)mod 8 are obtained by replacing d by p1d in (1).

Proof We only show the case that K = K0(
√
d). The case K = K0(

√
p1d) is similar.

In this case, for d ≡ 1mod 4 or (d, p1) ≡ (2, 7)mod 8, we show that K (
√

α j )/K
(r2(Q+)+ 1 ≤ j ≤ m) is unramified. By Proposition 1.1, it suffices to show that they
are unramified at every dyadic prime D of K . Let D ∩ OK0 = d.

If 2 � z j , then by Lemma 2.10 (2), α j ≡ x j + y j ≡ 1mod 4 in K0,d = Q2. Thus,
K0,d(

√
α j )/K0,d is unramified, and therefore, KD(

√
α j )/KD is unramified.

If 2 | z j , then by Lemma 2.10 (4), K0,d(
√

α j ) � Q2(
√
x j ) or Q2(

√
x j + 4).

Since x j ≡ 1mod 4, K0,d(
√

α j )/K0,d is unramified; thus, KD(
√

α j )/KD is also
unramified.

For (d, p1) ≡ (2, 7)mod 8, we show that K (
√

α0)/K is unramified at every dyadic
prime of K . Since p1 p2 ≡ 1mod 8, we see that KD � Q2(

√
d). By Lemma 2.12,

α0

2e
≡ x0 mod d31OK0,d1

and α0 ≡ x0 mod d32,

where e is an odd integer. Thus, KD1(
√

α0) � Q2(
√
d,

√
2x0) and KD2(

√
α0) �

Q2(
√
d,

√
x0). Since x0 ≡ 1mod 4 and d ≡ 2mod 8, KDi (

√
α0)/KDi (i = 1, 2) is

unramified. 	


5.2.2 The cases d ≡ 3mod 4 for K0(
√
d) and p1d ≡ 3mod 4 for K0(

√
p1d)

By Proposition 5.1

Lemma 5.8 If d ≡ 3mod 4 for K = K0(
√
d) and p1d ≡ 3mod 4 for K =

K0(
√
p1d), then s = m + n + 2 and

t =
⎧⎨
⎩
1, if for all q ∈ Q+,

(−p1
q

)
= 1,

2, if there exists q ∈ Q+,
(−p1

q

)
= −1.

(21)
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If t = 2, choose q1 ∈ Q+ such that
(−p1

q1

)
= −1. Suppose Q+ �= ∅. For any j such

that t ≤ j ≤ m, we let q̃ j = qa1q j for a = 0 or 1 uniquely determined by
(−p1

q̃ j

)
= 1.

By computing the Hilbert symbols associated to the equation q̃ j z2 = x2 − p1 p2y2,
we see that the equation is solvable in Z. Let (x j , y j , z j ) be a relatively prime positive
integer solution of q̃ j z2 = x2 − p1 p2y2 and set

α j = x j + √
p1 p2y j , if 2 � z j and α j = x j + √

p1 p2y j
2

, if 2 | z j . (22)

By the same method of Lemma 3.4, we can show that α j ∈ D+
K .

Theorem 5.9 (1) Assume p1 p2 ≡ 1mod 8 and d ≡ 3mod 4 as above, then Hilbert
genus field E of K = K0(

√
d) is Q(

√
p1,

√
p2,

√
q1, . . . ,

√
qn,

√
αt , . . . ,

√
αm)

where t is given by (21). If m < t , there are no
√

α j -terms in E.
(2) Assume p1 p2 ≡ 1mod 8 and p1d ≡ 3mod 4 as above, then Hilbert genus field

E of K = K0(
√
p1d) is Q(

√
p1,

√
p2,

√
q1, . . . ,

√
qn,

√
αt , . . . ,

√
αm) where t is

given by (21). If m < t , there are no
√

α j -terms in E.

Proof (1) It suffices to show that K (
√

α j )/K is unramified at every dyadic prime D
of K .

Since p1 p2 ≡ 1mod 8, K0,d � Q2 and KD � Q2(
√
d). If 2 � z j , then α j is a

2-adic unit in Q2. Since d ≡ 3mod 4, KD(
√

α j ) is unramified over KD.
If 2 | z j , then by the same method of Lemma 2.11, one can show that there

exist odd integers u j , v j such that KD1(
√

α j ) � Q2(
√
d,

√
u j ) and KD2(

√
α j ) �

Q2(
√
d,

√
v j ). Since d ≡ 3mod 4, KDi (

√
α j )/KDi (i = 1, 2) is unramified.

The proof of (2) is similar to that of (1). 	


5.2.3 The cases (d, p1) ≡ (2, 3)mod 8 for K0(
√
d) and (p1d, p1) ≡ (2, 3)mod 8

for K0(
√
p1d)

By Proposition 5.1

Lemma 5.10 In these cases s = m + n + 2 and

t =
{
1, if for all q ∈ Q+, q ≡ 1mod 4,

2, if there exists q ∈ Q+, q ≡ 3mod 4.
(23)

If t = 2, choose q1 ∈ Q+ such that q1 ≡ 3mod 4. For t ≤ j ≤ m, let q̃ j = 2aqb1q j

(a, b ∈ {0, 1}) uniquely determined by the following rules: (i) if q j ≡ 1mod 4, then
b = 0; if q j ≡ 3mod 4, then b = 1; (iii) the equation q̃ j z2 = x2− p1 p2y2 is solvable.
By Lemma 2.9 (3) and (4), we have

Lemma 5.11 There exists a primitive positive solution (x j , y j , z j ) for q̃ j z2 = x2 −
p1 p2z2 satisfying

(1) If q̃ j is odd, then either z j odd and x j + y j ≡ 1mod 4, or z j even and x j ≡
1mod 4.
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(2) If q̃ j is even, then either 2‖z j and x j ≡ 3mod 4, or 4 | z j and x j ≡ 1mod 4.

For such a solution, we set

α j = x j + √
p1 p2y j , if 2 � z j and α j = x j + √

p1 p2y j
2

, if 2 | z j . (24)

By the same method of Lemma 3.4, we can show that α j ∈ D+
K .

Theorem 5.12 (1) Assume p1 p2 ≡ 1mod 8 and (d, p1) ≡ (2, 3)mod 8 as above,
then the Hilbert genus field E of K = K0(

√
d) is given by

(i) If for all q ∈ Q+, q ≡ 1mod 4, then E = Q(
√
p1 p2,

√
2,

√
q̂1 , . . . ,

√
q̂n ,√

α1, . . . ,
√

αm),

(ii) If there exists q ∈ Q+, q ≡ 3mod 4, then E = Q(
√
p1 p2,

√
2,

√
q̂1 , . . . ,

√
q̂n ,√

α2, . . . ,
√

αm),
where q̂ j = q j if q j ≡ 1mod 4 and q̂ j = p1q j if q j ≡ 3mod 4. If m < 1(resp. 2)
in (1)(resp. (2)), then there are no

√
α j -terms.

(2) Assume p1 p2 ≡ 1mod 8 and (p1d, p1) ≡ (2, 3)mod 8 as above, then the Hilbert
genus field E of K = K0(

√
p1d) has the same description as (1).

Proof In all cases, it suffices to show that K (
√

α j )/K is unramified at every dyadic
prime D of K . The proof is similar to that of Theorem 5.7. For the case q̃ j even, one
needs Lemma 2.11 (1). 	


5.2.4 The cases d ≡ 6mod 8 for K0(
√
d) and p1d ≡ 6mod 8 for K0(

√
p1d)

In these cases, for q ∈ Q+, we let q̂ = q if q ≡ 1mod 4 and 2q if q ≡ 3mod 4. By
Proposition 5.1

Lemma 5.13 In these cases we have s = m + n + 2 and

t =
⎧⎨
⎩
1, if for all q ∈ Q,

(
q̂
p1

)
= 1,

2, if there exists q ∈ Q,
(

q̂
p1

)
= −1.

(25)

If t = 2, choose q1 such that
(
q̂1
p1

)
= −1. For any j such that t ≤ j ≤ m, we

let q̃ j = 2aqb1q j with a, b ∈ {0, 1} uniquely determined by the following rules: (i)
q̃ j ≡ 1mod 4 or 6mod 8, (ii) the equation q̃ j z2 = x2−q1q2y2 is solvable. By Lemma
2.9 (3) and (4), we have

Lemma 5.14 There exists a primitive positive solution (x j , y j , z j ) for q̃ j z2 = x2 −
p1 p2z2 satisfying

(1) If q̃ j is odd, then either z j odd and x j + y j ≡ 1mod 4, or z j even and x j ≡ 1
mod 4.

(2) If q̃ j is even, then either 2‖z j and x j ≡ 3mod 4, or 4 | z j and x j ≡ 1mod 4.
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For such a solution, we set

α j = x j + √
p1 p2y j , if 2 � z j and α j = x j + √

p1 p2y j
2

, if 2 | z j . (26)

By the same method of Lemma 3.4, we can show that α j ∈ D+
K .

Theorem 5.15 (1) Assume p1 p2 ≡ 1mod 8 and d ≡ 6mod 8 as above, then the
Hilbert genus field E of K = Q(

√
p1 p2,

√
d) is Q(

√
p1 p2,

√
2p1,

√
q̂1, . . . ,

√
q̂n,√

αt , . . . ,
√

αm) with t given by (25). If m < t , there are no
√

α j -terms.
(2) Assume p1 p2 ≡ 1mod 8 and p1d ≡ 6mod 8 as above, then the Hilbert genus

field E of K = Q(
√
p1 p2,

√
p1d) is Q(

√
p1 p2,

√
2p1,

√
q̂1, . . . ,

√
q̂n,

√
αt , . . . ,√

αm) with t given by (25). If m < t , there are no
√

α j -terms.

Proof In all cases, it suffices to show that K (
√

α j )/K is unramified at every dyadic
prime D of K . The proof is similar to that of Theorem 5.7. For the case q̃ j even, one
needs Lemma 2.11 (2). 	
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