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Abstract The Hilbert genus field of the real biquadratic field K = Q(
√
δ,
√
d) is described by Yue (2010) and

Bae and Yue (2011) explicitly in the case δ = 2 or p with p ≡ 1 mod 4 a prime and d a squarefree positive integer.

In this article, we describe explicitly the Hilbert genus field of the imaginary biquadratic field K = Q(
√
δ,
√
d),

where δ = −1,−2 or −p with p ≡ 3 mod 4 a prime and d any squarefree integer. This completes the explicit

construction of the Hilbert genus field of any biquadratic field which contains an imaginary quadratic subfield

of odd class number.
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1 Introduction

Let K be a number field and H be the Hilbert class field of K. The Galois group G = Gal(H/K) is

isomorphic to the ideal class group C(K) of K via Artin’s reciprocity map (see [5]). The Hilbert genus

field of K is the invariant field E of G2. Then by Galois theory

Gal(E/K) ≃ G/G2 ≃ C(K)/C(K)2,

and by Kummer theory, there exists a unique multiplicative group ∆, K∗2 ⊂ ∆ ⊂ K∗ such that

E = H ∩K(
√
K∗) = K(

√
∆). (1.1)

Given K, a natural question is how to explicitly construct the Hilbert genus field E of K, or equivalently,

how to give a set of generators for the finite group ∆/K∗2.

For δ a squarefree integer, the field Q(
√
δ) has odd class number if and only if (i) δ = p for p a prime

or δ = 2p or p1p2 for p, p1 and p2 primes 3 mod 4, or (ii) δ = −1,−2 or −p with p ≡ 3 mod 4 (see [2]). In

the real case that δ = p with p = 2 or p ≡ 1 mod 4, there has been a long history of study on the Hilbert

genus field of K = Q(
√
p,
√
d) where d is a squarefree positive integer prime to p. When p ≡ 1 mod 8

and d ≡ 3 mod 4, Sime [6] used Herglotz’s results [3] to give the Hilbert genus field of K, under the

condition that 2-Sylow subgroups of the class groups of K0 = Q(
√
p), K1 = Q(

√
d) and K2 = Q(

√
pd)

are elementary. Later, Yue [8] improved Sime’s result to p ≡ 1 mod 4, d ≡ 3 mod 4, and without the
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condition on the class groups. Recently, Bae and Yue [1] worked out the case p ≡ 1 mod 4 or p = 2 and

d a squarefree positive integer.

In this paper, we shall work out the imaginary case (i.e., the second case). We give a complete explicit

construction of the Hilbert genus field of K = Q(
√
δ,
√
d) where δ = −1,−2 or −p with p ≡ 3 mod 4

and d a squarefree integer. Our results are stated in Theorem 3.4 (δ = −p), Theorem 4.2 (δ = −1) and

Theorem 5.2 (δ = −2).

Our strategy to explicitly construct E is based on the following theoretical results. For a number field

K, set

DK = {x ∈ K∗ | vp(x) ≡ 0 mod 2 for all finite primes p of K}. (1.2)

Then we have

Proposition 1.1. Let K be a number field. Suppose OK and UK are the ring of integers and the group

of units of K respectively.

(1) For any x ∈ DK , all nondyadic primes of K are unramified in K(
√
x). Moreover, ∆ ⊂ DK.

(2) The sequence

1 −→ UK/U2
K −→ DK/K∗2 φ−→ C(K)[2] −→ 1

is exact, where φ([x]) = [I] if xOK = I2. Hence we have

r2(∆/K∗2) = r2(C(K)) = r2(DK/K∗2)− r2(UK/U2
K), (1.3)

where for a finite Abelian group A, r2(A) is the 2-rank of A.

Proof. (1) The proof is similar to that of [8, Lemma 2.1].

(2) Since DK is the set {x ∈ K∗ | (x) = I2 for some fractional ideal I of K}, the sequence is exact.
From now on, we suppose

(1) K = Q(
√
δ,
√
d), where δ = −1,−2 or −p with p ≡ 3 mod 4 and d a squarefree integer;

(2) K0 = Q(
√
δ) has odd class number in our case;

(3) E = K(
√
∆) is the Hilbert genus field of K, where K∗2 ⊂ ∆ ⊂ K∗;

(4) NK is the image of K under the norm map NK/K0
;

(5) s is the number of finite primes of K0 ramified in K.

Then we have

Proposition 1.2. Assume K as above, then

r2(C(K)) = r2(∆/K∗2) = r2(DK/K∗2)− 2 = s− 1− r2(UK0
/UK0

∩NK). (1.4)

Proof. The second equality follows from Proposition 1.1. In this case, r2(UK/U2
K) = 2. It suffices to

show the third equality.

We show that the 2-Sylow subgroup C(K)Gal(K/K0)[2∞] of the group of ambiguous ideal classes

C(K)Gal(K/K0) is nothing but C(K)[2], the 2-torsion subgroup of C(K). As a consequence r2(C(K)) =

r2(C(K)Gal(K/K0)) and C(K)Gal(K/K0) has no 4-torsion. Indeed, suppose σ is the nontrivial element of

Gal(K/K0). For c an element of C(K)Gal(K/K0)[2∞], then c = σ(c). Suppose 2k is the order of c, then

(cσ(c))2
k−1

= 1. We regard cσ(c) as an ideal class of C(K0). Then (cσ(c))#C(K0) = 1. Since K0 has odd

ideal class number, we must have cσ(c) = 1. Thus σ(c) = c−1 and c2 = 1. Conversely, for c ∈ C(K)[2],

c2 = 1, we have c = c−1. Since (cσ(c))2 = (cσ(c))#C(K0) = 1 and #C(K0) is an odd integer, we deduce

that cσ(c) = 1. Hence σ(c) = c−1 = c and thus c ∈ C(K)Gal(K/K0).

Now the third equality follows from the class number formula [4, Lemma 4.1, p. 307] for cyclic exten-

sions,

|C(K)Gal(K/K0)| = |C(K0)| ·
2s−1

[UK0
: UK0

∩NK]
.

By Proposition 1.2 we first study the group UK0
/UK0

∩ NK to obtain the 2-ranks of ∆/K∗2 and

DK/K∗2. Then we find a set of representatives of DK/K∗2. From this set we get a set of representatives

of ∆/K∗2 and hence our results follow.
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2 Local and global computation

In this section, we compile several results for later usage. First we fix the following notation.

For a number field or local field F , we let OF be the ring of integers of F and UF be the unit group of

OF . If F is a number field and p is a prime of F , we let Fp be the completion of F at p. If F is a local

field, let U
(n)
F = 1+ πnOF where π is a uniformizer of F . An integer solution of a Diophantine equation

is called primitive if the components are relatively prime to each other.

2.1 Ramification

Lemma 2.1 (See [1, Lemma 2.4]). Suppose F = Q2(
√
−3) and ω = (−1 +

√
−3)/2 ∈ F . Then

(1) UF /U
2
F = (3)× (1 + 2ω)× (1 + 4ω).

(2) The extension F (
√
3,
√
1 + 2ω)/F is totally ramified and F (

√
1 + 4ω)/F is unramified.

(3) For a ∈ UF , if a ≡ 1 or 3 mod 4, then F (
√
3,
√
a)/F (

√
3) is an unramified extension; if a ≡

1 + 2ω or 1 + 2ω2 mod 4, then F (
√
3,
√
a)/F (

√
3) is a ramified extension.

(4) If a ∈ UF and a ≡ x or ω · x or ω2 · x mod 4 for some odd integer x, then F (
√
a)/F is unramified

if and only if x ≡ 1 mod 4.

Lemma 2.2. Suppose F = Q2(
√
−1). Then π = −1 +

√
−1 is a uniformizer of F and

(1) U
(5)
F = (U

(2)
F )2, U2

F = U
(5)
F

⊔
(−1) · U (5)

F .

(2) F (
√
3) = F (

√
−3) is unramified over F .

Proof. (1) We can see that π is a uniformizer because it is a root of Eisenstein polynomial x2+2x+2. By

UF = U
(1)
F , [UF : U

(5)
F ] = 16. That U

(5)
F = (U

(2)
F )2 is easy. Now one just has to check −1 = (1+π)2 /∈ U

(5)
F .

(2) It is clear that F (
√
3) = F (

√
−3) is the unique unramified extension of degree two over F .

Lemma 2.3. Suppose F = Q2(
√
−2). Then π =

√
−2 is a uniformizer of F , and

(1) U
(5)
F = (U

(3)
F )2 and U2

F = U
(5)
F

⊔
(1 + π2 + π3)U

(5)
F .

(2) F (
√
1 + π2 + π3 + π4) = F (

√
1 + π4) is unramified over F .

Proof. The proof is similar to that of Lemma 2.2.

2.2 Decomposition and congruence

Lemma 2.4. Suppose p ≡ 3 mod 4 is a prime.

(1) If q is an odd prime such that (−p
q ) = 1, then the equation x2 + py2 = qz2 has a solution in Z.

(2) If furthermore p ≡ 7 mod 8, then there exists a primitive solution (x0, z0) of x2 + p = 2z2 such

that 4 | z0.
(3) Furthermore, if q ≡ 3 mod 4, then 2qz2 = x2 + py2 has a primitive solution (x, y, z) = (u0, v0, w0)

such that 4 | w0.

Proof. (1) It suffices to compute the Hilbert symbols associated to the equation, which is clear.

(2) Any integer solution is clearly primitive, and moreover, x0 is odd and z0 is even. Replace (x0, z0)

by (3x0 + 4z0, 2x0 + 3z0) if necessary, we can get z0 such that 4 | z0.
(3) Let (x0, z0) be as given in (2) and (x1, y1, z1) be a primitive solution of qz2 = x2 + py2 such

that (x1, y1) ≡ (1, 1) mod 4 if 2 | z1. Then (x, y, z) = (x0x1 − py1, x0y1 + x1, z0z1) is a solution of

2qz2 = x2 + py2. We will complete the proof by the following two cases:

If 2 ∤ z1, then (x1, y1) ≡ (0, 1) mod 2, thus x0x1 − py1 and x0y1 + x1 are odd integers. Since 4 | z0z1,
(x0x1 − py1, x0y1 + x1, z0z1) gives a primitive solution (u0, v0, w0) with 4 | w0.

If 2 | z1, we can choose x0 ≡ 1 mod 4, then

(x0x1 − py1, x0y1 + x1) ≡ (x1 + y1, x1 + y1) ≡ (2, 2) mod 4.

Since 8 | z0z1, (x0x1 − py1, x0y1 + x1, z0z1) gives a primitive solution (u0, v0, w0) with 4 | w0.
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Lemma 2.5. Assume that p ≡ 3 mod 4 is a prime and F = Q(
√−p), N ≡ 1 mod 4, N = q or

q1q2, where q, q1, q2 are primes satisfying Lemma 2.4(1). Let (x0, y0, z0) be a primitive solution of

Nz2 = x2 + py2. Take α = x0 +
√−py0 if 2 ∤ z0 and α = x0+

√
−py0

2 if 2 | z0. Let α be the conjugate of α

in F . Then

(1) The element α ∈ OF and the ideal αOF is relatively prime to αOF .

(2) If 2 ∤ z0, then α ≡ x0 + y0 mod 4OF .

(3) If −p ≡ 5 mod 8 and 2 | z0, then in the local field Q2(
√−p) = Q2(

√
−3), α ≡ ω(−x0) or

ω2(−x0) mod 4, where ω = −1+
√
−3

2 .

(4) If −p ≡ 1 mod 8 and 2 | z0, then D1 = (2, α) 6= D2 = (2, α) are the two dyadic primes of F , and

α ≡ x0 mod D2
2 and α/2e ≡ x0 mod D2

1OFD1
for an even integer e.

Proof. The proofs of (2)–(4) are similar to those of [1, Lemma 2.6], so we only need to prove (1). One

can check that αα and α+ α ∈ Z, so α ∈ OF . If p is a prime of OF which divides both αOF and αOF ,

then α+ α ∈ p. If p is an odd prime, we have x0 or 2x0 = α+ α ∈ p ∩ Z = (ℓ), then ℓ | x0. Since ℓ | z0,
we have ℓ | y0, which is absurd. If p is a dyadic prime, then 2 | z0 and x0 = α + α ∈ p ∩ Z = (2), i.e.,

2 | x0, hence 2 | y0, which is also impossible.

Lemma 2.6. Suppose p is a prime congruence to 7 modulo 8, F = Q(
√−p).

(1) Suppose (x0, z0) is a solution of x2 + p = 2z2 as given in Lemma 2.4(2). Let α = x0+
√
−p

2 and

α = x0−
√
−p

2 be its conjugate in F . Then D1 = (2, α) and D2 = (2, α) are the two dyadic primes of F ,

α ≡ x0 mod D3
2 and α/2e1 ≡ x0 mod D3

1OFD1
for an odd integer e1.

(2) Suppose q ≡ 3 mod 4 satisfies the assumption in Lemma 2.4(1) and let (a0, b0, c0) be a primitive

solution of qz2 = x2 + py2. If 2 | c0 and (a0, b0) ≡ (x0, 1) mod 4, let β = a0+b0
√
−p

2 , β be the conjugate

of β in F . Then (2, β) = D1, (2, β) = D2, β ≡ a0 mod D2
2 and β/2e2 ≡ −a0 mod D2

1OFD1
for an even

integer e2.

(3) Suppose q ≡ 3 mod 4 satisfies the assumption in Lemma 2.4(3) and let (u0, v0, w0) be a primitive

solution of 2qz2 = x2+py2 such that (u0, v0, w0) ≡ (x0, 1, 0) mod 4. Let γ = u0+v0
√
−p

2 , γ be the conjugate

of γ in F . Then (2, γ) = D1, (2, γ) = D2, γ ≡ u0 mod D3
2 and γ/2e3 ≡ −u0 or 3u0 mod D3

1OFD1
for an

odd integer e3.

Proof. (1) We have αα =
2z2

0

4 ≡ 0 mod 8 and α + α = x0 ∈ Z, hence α ∈ OF . By the same argument

as Lemma 2.5(1), we can show that αOF is prime to αOF . Moreover, by the fact that αα ∈ 8Z, we

know D1 = (2, α) and D2 = (2, α) are the two dyadic primes of F , and α ∈ D3
1 and α ∈ D3

2. Then

α = x0 − α ≡ x0 mod D3
2 and α ≡ x0 mod D3

1. If 2
k‖z0, k > 2, then by

α · α · 2−2(k−1)−1 =
z20
22k

≡ 1 mod D3
1OFD1

(since the square of an odd integer ≡ 1 mod 8),

α

22(k−1)+1
≡ α−1 ≡ x0 mod D3

1OFD1
.

(2) Since a0 ≡ x0 mod 4 and b0 ≡ 1 mod 4, (2, β) = (2, α) = D1 and (2, β) = (2, α) = D2. The rest of

(2) follows from the same argument in the proof of (1).

(3) Since u0 ≡ x0 mod 4 and v0 ≡ 1 mod 4, (2, γ) = (2, α) = D1 and (2, γ) = (2, α) = D2. The rest of

(3) follows from the same argument in the proof of (1), just recall that q ≡ −1 or 3 mod 8.

3 The case K = Q(
√

−p,
√

d) with p ≡ 3 mod 4

In this section, p ≡ 3 mod 4, K0 = Q(
√−p) and K = Q(

√−p,
√
d). We always write

d = ±
n∏

j=1

qj or d = ±2

n∏

j=1

qj (3.1)
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with p, q1, . . . , qn distinct odd primes such that the Legendre symbol

(−p

qj

)
=

{
1, if 1 6 j 6 m,

−1, if m+ 1 6 j 6 n,
(3.2)

and we assume that

q1 ≡ 3 mod 4 if there exists j for 1 6 j 6 m such that qj ≡ 3 mod 4. (3.3)

Note that (3.3) means

If m > 1, then q1 ≡ 1 mod 4 if and only if qj ≡ 1 mod 4 for all 1 6 j 6 m. (3.4)

Suppose m > 1. We now choose the elements αj , βj and γj for 1 6 j 6 m and α0. By Lemma 2.4,

for any 1 6 j 6 m, the equation qjz
2 = x2 + py2 has an integer solution, so do the equations q1qjz

2 =

x2 + py2 for 2 6 j 6 m. For each j, choose a primitive solution (xj , yj, zj) of qjz
2 = x2 + py2 (resp.

q1qjz
2 = x2 + py2) if qj ≡ 1 mod 4 (resp. j > 1 and qj ≡ 3 mod 4) by the following rules:

• if there exists odd zj , then choose xj and yj such that xj + yj ≡ 1 mod 4;

• if every primitive solution zj is even, then choose xj ≡ 3 mod 4 if p ≡ 3 mod 8 and xj ≡ 1 mod 4 if

p ≡ 7 mod 8.

Then set

αj = xj +
√−pyj , if 2 ∤ zj and αj =

xj +
√−pyj
2

, if 2 | zj. (3.5)

Now we assume p ≡ 7 mod 8. Set

α0 =
x0 +

√−p

2
, with (x0, z0) ≡ (1, 0) mod 4 a primitive solution of x2 + p = 2z2. (3.6)

Let (xj , yj , zj) be any primitive solution of qjz
2 = x2 + py2, then set

βj = xj +
√−pyj , if 2 ∤ zj and βj =

xj +
√−pyj
2

, if 2 | zj. (3.7)

If qj ≡ 3 mod 4, let (xj , yj , zj) be a primitive solution of 2qjz
2 = x2 + py2 such that 4 | zj and xj ≡

1 mod 4. Set

γj = αj , if qj ≡ 1 mod 4 and γj =
xj +

√−pyj
2

, if qj ≡ 3 mod 4. (3.8)

Lemma 3.1. The elements −1, ±qi (1 6 i 6 n), αj, βj and γj (1 6 j 6 m) defined above all belong

to DK. If d ≡ 2 or 3 mod 4, ±2 ∈ DK.

Proof. −1 ∈ DK is trivial. Since qi is ramified in K, we see that ±qi ∈ DK for 1 6 i 6 n.

For αj , we know that αjαj = qjz
2
j ,

qjz
2

j

4 , q1qjz
2
j or

q1qjz
2

j

4 and that q1, qj are ramified in K. By

Lemma 2.5, αjOK0
is prime to αjOK0

, hence αjOK is prime to αjOK in OK . We see that in OK ,

αjαjOK is a square of an ideal, thus αj ∈ DK . The proofs of βj and γj are similar.

If d ≡ 2 or 3 mod 4, 2 is ramified in K, thus ±2 ∈ DK .

Lemma 3.2. Suppose that p is a prime ≡ 7 mod 8. Then

(1) α0 ∈ DK .

(2) If d ≡ 3 mod 4, both K(
√
2)/K and K(

√
α0)/K are ramified at some dyadic prime of K for every

choice of α0.

(3) If d ≡ 2 mod 8, then K(
√
2)/K is unramified at the dyadic primes and so is K(

√
α0)/K. If

d ≡ 6 mod 8, K(
√
−2)/K is unramified at the dyadic primes and K(

√
α0)/K is ramified at some dyadic

prime of K.
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Proof. (1) Since α0ᾱ0 =
z2

0

2 and (α0OK0
, α0OK0

) = 1, α0 ∈ DK .

In both (2) and (3), d ≡ 2 or 3 mod 4, 2 is ramified in Q(
√
d)/Q, so 2OK = D2

1D2
2 , where

D1 = D1 ∩OK0
, D2 = D2 ∩ OK0

are the dyadic primes of K0 as given in Lemma 2.6. For any dyadic prime D of K, let D = D ∩ OK0
,

then K0,D = Q(
√−p)D ≃ Q2. Hence KD ≃ Q2(

√
d).

If d ≡ 3 mod 4, then KD ≃ Q2(
√
3) or Q2(

√
−1), hence K(

√
2)/K is ramified at the dyadic primes

of K. By Lemma 2.6(1), KD1
(
√
α0) = KD1

(
√

α0

2e1−1 ) ≃ Q2(
√
d,
√
2x0) is totally ramified over Q2, hence

K(
√
α0)/K is ramified at D1.

If d ≡ 2 mod 8, then KD1
≃ KD2

≃ Q2(
√
2) or Q2(

√
10). Thus K(

√
2)/K is unramified at the dyadic

primes of K. By Lemma 2.6(1), KD1
(
√
α0) ≃ Q2(

√
2,
√
2x0) or Q2(

√
10,

√
2x0). Since x0 ≡ 1 mod 4,

KD1
(
√
α0)/KD1

is unramified. Similarly, KD2
(
√
α0)/KD2

is also unramified. Therefore, K(
√
α0)/K is

unramified at the dyadic primes of K.

If d ≡ 6 mod 8, then KD1
≃ KD2

≃ Q2(
√
6) or Q2(

√
−2). Hence K(

√
−2)/K is unramified at the

dyadic primes of K and one of the extensions KD1
(
√
α0)/KD1

and KD2
(
√
α0)/KD2

must be ramified.

Lemma 3.3. Suppose conventions on d are as above. Then we have the following table:

p d q1 s r2(∆/K∗2)

3 mod 4 1 mod 4 1 mod 4 m+ n m+ n− 1

3 mod 4 m+ n m+ n− 2

3 mod 8 2, 3 mod 4 1 mod 4 m+ n+ 1 m+ n

3 mod 4 m+ n+ 1 m+ n− 1

7 mod 8 3 mod 4, 6 mod 8 m+ n+ 2 m+ n

7 mod 8 2 mod 8 1 mod 4 m+ n+ 2 m+ n+ 1

3 mod 4 m+ n+ 2 m+ n

Proof. For d ≡ 1 mod 4, there are m+n finite primes ramified in K/K0, and for d ≡ 2, 3 mod 4, there

are m + n + 1 (resp. m + n + 2) finite primes ramified in K/K0 if 2 is inert (resp. split) in K0, i.e.,

p ≡ 3 mod 8 (resp. 7 mod 8). We thus get the values of s in the table.

To know r2(∆/K∗2), by Proposition 1.2, it suffices to know UK0
/UK0

∩NK. If p 6= 3, then UK0
= {±1},

thus we just have to check if −1 ∈ NK, equivalently, if (−1, d)p = 1 for every prime p ofK0 which ramified

in K. For 1 6 j 6 m, qj splits in K0. For every prime qj above qj , we have

(−1, d)qj
= (−1)

Nqj−1

2 = (−1)
qj−1

2 =

(−1

qj

)
.

For m+ 1 6 j 6 n, qj is inert in K0. Let qj be the prime above qj . By Lemma 3.3 of [7], we have

(−1, d)qj
= (NK0/Q(−1), d)qj = (1, d)qj = 1.

For p ≡ 7 mod 8, 2 splits in K0. Let D be a dyadic prime above 2. We have (−1, d)D = (−1)
d−1

2 or

(−1)
d/2−1

2 depending on d being odd or even. For p ≡ 3 mod 8, 2 is inert in K0, the product formula

gives (−1, d)D = 1. We thus get the values of r2(∆/K∗2) in the table.

If p = 3, then K0 = Q(
√
−3) and UK0

= {±1,±ω,±ω2}, where ω is a primitive 3-rd root unity. Since

ω = (ω2)2, {1, ω, ω2} ⊂ NK and the same result holds.

We can now state and prove the main result of this section.

Theorem 3.4. Assume p and d as above, then the Hilbert genus field E of K = Q(
√−p,

√
d) is given

by the following table:
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Case p d q1 Hilbert genus field E

I 3 (mod 4) 1 (mod 4) 1 (mod 4) Q(
√
−p,

√

q∗
1
, . . . ,

√
q∗n,

√
α1, . . . ,

√
αm)

3 (mod 4) Q(
√
−p,

√

q∗
1
, . . . ,

√
q∗n,

√
α2, . . . ,

√
αm)

II 3 (mod 8) 3 (mod 4) 1 (mod 4) Q(
√
−p,

√
−1,

√
q1, . . . ,

√
qn,

√
α1, . . . ,

√
αm)

3 (mod 4) Q(
√
−p,

√
−1,

√
q1, . . . ,

√
qn,

√
α2, . . . ,

√
αm)

III 3 (mod 8) 2 (mod 8) 1 (mod 4) Q(
√
−p,

√
2,

√

q∗
1
, . . . ,

√
q∗n,

√
α1, . . . ,

√
αm)

3 (mod 4) Q(
√
−p,

√
2,

√

q∗
1
, . . . ,

√
q∗n,

√
α2, . . . ,

√
αm)

IV 3 (mod 8) 6 (mod 8) 1 (mod 4) Q(
√
−p,

√
−2,

√

q∗
1
, . . . ,

√
q∗n,

√
α1, . . . ,

√
αm)

3 (mod 4) Q(
√
−p,

√
−2,

√

q∗
1
, . . . ,

√
q∗n,

√
α2, . . . ,

√
αm)

V 7 (mod 8) 3 (mod 4) Q(
√
−p,

√
−1,

√
q1, . . . ,

√
qn,

√
β1, . . . ,

√
βm)

VI 7 (mod 8) 2 (mod 8) 1 (mod 4) Q(
√
−p,

√
2,

√

q∗
1
, . . . ,

√
q∗n,

√
α0,

√
α1, . . . ,

√
αm)

3 (mod 4) Q(
√
−p,

√
2,

√

q∗
1
, . . . ,

√
q∗n,

√
α0,

√
α2, . . . ,

√
αm)

VII 7 (mod 8) 6 (mod 8) Q(
√
−p,

√
−2,

√

q∗
1
, . . . ,

√
q∗n,

√
γ1, . . . ,

√
γm)

Here q∗ = (−1)
q−1

2 q, αj , α0, βj , γj are given by (3.5)–(3.8).

Example 3.5 (Case I and Case VII). Let K = Q(
√
−3,

√
5005). It is clear that 5005 = 7×13×5×11≡

1 mod 4,
(
−3
7

)
=

(
−3
13

)
= 1,

(
−3
5

)
=

(
−3
11

)
= −1. Then n = 4, m = 2. Since q1 = 7 ≡ 3 mod 4,

r2(∆/K∗2) = m + n − 2 = 4. Since q2 = 13 ≡ 1 mod 4 and 13 = 12 + 3 · 22, we have α2 = −1 + 2
√
−3,

and

E = Q(
√
−3,

√
5,
√
−7,

√
−11,

√
13,

√
α2).

Let K = Q(
√
−7,

√
110). It is clear that 110 = 2 × 11 × 5 ≡ 6 mod 8,

(
−7
11

)
= 1,

(
−7
5

)
= −1. Then

n = 2, m = 1, r2(∆/K∗2) = m + n = 3. Since q1 = 11 ≡ 3 mod 4 and 2 · 11 · 42 = 32 + 7 · 72, we have

γ1 = −3+7
√
−7

2 and

E = Q(
√
−7,

√
−2,

√
5,
√
−11,

√
γ1).

We shall prove the theorem case by case. We note the fact that K(
√
q∗i )/K is always unramified.

Proof of Case I. (1) If q1 ≡ 1 mod 4, by Lemma 3.3, we have r2(∆/K∗2) = m+n−1 and r2(DK/K∗2) =

m+ n+ 1. We first show the set

{−1, q∗1, . . . , q
∗
n−1, α1, . . . , αm, η}, (3.9)

where η = x+ y
√
d ∈ K, NK/K0

(η) = −1, is a set of representatives of DK/K∗2. It suffices to show that

its elements are independent modulo K∗2.

Consider ξ = ηa ·∏i q
∗bi
i

∏
j α

cj
j , where a, bi, cj ∈ {0, 1}, q∗i ∈ {−1, q∗1, . . . , q

∗
n−1}, αj ∈ {α1, . . . , αm}.

Let K2 = Q(
√
−pd), then

NK/K2
(ξ) = (−1)a ·

∏

i

q2bii

∏

j

q
cj
j · λ2, λ ∈ K2.

Suppose ξ ∈ K∗2, then NK/K2
(ξ) ∈ K∗2

2 , thus a = cj = 0. Now ξ =
∏

i q
∗bi
i ∈ K∗2, since K has only

three quadratic subfields: Q(
√−p), Q(

√
d), Q(

√
−pd), we must have bi = 0. Therefore the set (3.9) is a

representative set of DK/K∗2.

We now show ∆/K∗2 is generated by {q∗1 , . . . , q∗n−1, α1, . . . , αm}. It suffices to show that K(
√
αj)/K,

1 6 j 6 m, are unramified extensions. By Proposition 1.1(1), we only need to show that they are

unramified at the dyadic primes of K.

Let D be a dyadic prime of K. If p ≡ 3 mod 8, KD ≃ Q2(
√
−3). For 1 6 j 6 m, if 2 ∤ zj, αj ≡

xj + yj ≡ 1 mod 4. Hence KD(
√
αj)/KD is unramified. If 2 | zj, then αj ≡ ω(−xj) or ≡ ω2(−xj) mod 4.

Then by Lemma 2.1(4), KD(
√
αj)/KD is also unramified.

If p ≡ 7 mod 8, we have KD ≃ Q2 if d ≡ 1 mod 8 and KD ≃ Q2(
√
−3) if d ≡ 5 mod 8. According to

Lemma 2.5, if 2 ∤ zj , αj ≡ xj + yj ≡ 1 mod 4. Hence KD(
√
αj)/KD is unramified. If 2 | zj, then by

Lemma 2.5, KD(
√
αj) ≃ KD(

√
xj) or KD(

√
xj + 4) ≃ KD or KD(

√
−3). Thus KD(

√
αj)/KD is also

unramified.
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(2) If q1 ≡ 3 mod 4, then by Lemma 3.3, we have r2(∆/K∗2) = m + n − 2. By the construction

of αj , 2 6 j 6 m and similar to the proof of (1), we see that {q∗1 , . . . , q∗n−1, α2, . . . , αm} is a set of

representatives of ∆/K∗2 and E = K(
√
q∗1 , . . . ,

√
q∗n−1,

√
α2, . . . ,

√
αm) is the Hilbert genus field of K.

Note that if qj ≡ 3 mod 4, we are using the solution of q1qjz
2 = x2 + py2 instead of qjz

2 = x2 + py2,

because the latter one produces a ramified extension.

Proof of Case II. (1) If q1 ≡ 1 mod 4, then by Lemma 3.3, r2(∆/K∗2) = m + n and r2(DK/K∗2) =

m+ n+ 2. Let η = x+ y
√
d ∈ K such that NK/K0

(η) = −1. Similar to the proof of Case I, we see that

{−1, 2, q1, . . . , qn−1, α1, . . . , αm, η} is a set of representatives of DK/K∗2.

It is easy to verify that K(
√
−1)/K is unramified at the dyadic primes. For 1 6 j 6 m, by Lemma 2.5,

we have αj ≡ 1 mod 4 if 2 ∤ zj and αj ≡ ω(−xj) or ω2(−xj) mod 4 if 2 | zj. Then by Lemma 2.1(4),

K(
√
αj)/K is unramified at the dyadic primes of K. Thus {−1, q1, . . . , qn−1, α1, . . . , αm} is a set of

representatives of ∆/K∗2.

(2) Similarly, if q1 ≡ 3 mod 4, we know that r2(∆/K∗2) = m + n − 1. By the construction, αj ≡ 1,

ω(−xj) or ω
2(−xj) mod 4, then by Lemma 2.1(4), K(

√
αj)/K is unramified and

{−1, q1, . . . , qn−1, α2, . . . , αm}

is a set of representatives of ∆/K∗2.

Proof of Case III. If q1 ≡ 1 mod 4, then by Lemma 3.3, r2(∆/K∗2) = m + n. By Proposition 1.1(1)

and Lemma 3.2, K(
√
2)/K is unramified. Similar to Case I, K(

√
αj)/K is unramified and the set

{2, q∗1 , . . . , q∗n−1, α1, . . . , αm}

is independent modulo K∗2, so it is a set of representatives of ∆/K∗2.

If q1 ≡ 3 mod 4, r2(∆/K∗2) = m + n − 1. By construction, for 2 6 j 6 m, K(
√
αj)/K is unramified

and {2, q∗1 , . . . , q∗n−1, α2, . . . , αm} is a set of representatives of ∆/K∗2.

Proof of Case IV. If q1 ≡ 1 mod 4, we know that r2(∆/K∗2) = m + n. By Proposition 1.1(1) and

Lemma 3.2, K(
√
−2)/K is an unramified extension. Similar to Case I, K(

√
αj)/K is unramified and

{−2, q∗1 , . . . , q
∗
n−1, α1, . . . , αm} is a set of representatives of ∆/K∗2.

If q1 ≡ 3 mod 4, r2(∆/K∗2) = m+ n− 1. By the same method, {−2, q∗1 , . . . , q
∗
n−1, α2, . . . , αm} is a set

of representatives of ∆/K∗2.

Proof of Case V. By Lemma 3.3, r2(∆/K∗2) = m+ n and thus r2(DK/K∗2) = m+ n+ 2. By similar

process to that in Case I, we know that {−1, 2, q1, . . . , qn−1, α0, β1, . . . , βm} is a set of representatives of

DK/K∗2. We claim that {−1, q1, . . . , qn−1, β1, . . . , βm} is a set of representatives of ∆/K∗2. It suffices

to show that K(
√
βj)/K is unramified at the dyadic primes.

Let D1,D2 be the two dyadic primes ofK and D1∩OK0
= D1,D2∩OK0

= D2. Then K0,D1
≃ K0,D2

≃
Q2 and KD1

≃ KD2
≃ Q2(

√
d). If 2 ∤ zj, then βj is a unit in Z2, since d ≡ 3 mod 4, KDi

(
√
βj)/KDi

(i = 1, 2) is unramified. If 2 | zj , then by Lemmas 2.5(4) and 2.6(2),

βj

2e
≡ xj or − xj mod D2

1OFD1
according to qj ≡ 1 or − 1 mod 4 and βj ≡ xj mod D2

2,

where e is an even integer. Hence there exist odd integers uj , vj such that KD1
(
√

βj) ≃ Q2(
√
uj ,

√
d)

and KD2
(
√

βj) ≃ Q2(
√
vj ,

√
d). Since d ≡ 3 mod 4, both KD1

(
√
βj)/KD1

and KD2
(
√
βj)/KD2

are

unramified. Therefore, K(
√
βj)/K is an unramified extension.

Proof of Case VI. If q1 ≡ 1 mod 4, then by Lemma 3.3, r2(∆/K∗2) = m + n+ 1 and r2(DK/K∗2) =

m+ n+ 3. Let η = x+ y
√
d such that NK/K0

(η) = −1. It is easy to verify that

{−1, 2, q∗1 , . . . , q
∗
n−1, α0, α1, . . . , αm, η}

is a set of representatives of DK/K∗2.
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We now find a set of representatives of ∆/K∗2. We know by Lemma 3.2 that both K(
√
2)/K and

K(
√
α0)/K are unramified at the dyadic primes. By the construction of αj , we know that K(

√
αj)/K is

also unramified at the dyadic primes. Hence {2, q∗1 , . . . , q∗n−1, α0, α1, . . . , αm} is a set of representatives

of ∆/K∗2.

If q1 ≡ 3 mod 4, then r2(∆/K∗2) = m+ n. By the construction of αj (2 6 j 6 m), we see that

{2, q∗1 , . . . , q∗n−1, α0, α2, . . . , αm}

is a set of representatives of ∆/K∗2. So E is the Hilbert genus field of K.

Proof of Case VII. From Lemma 3.3, we know that r2(∆/K∗2) = m+n and r2(DK/K∗2) = m+n+2.

We see that {−1, 2, q∗1, . . . , q
∗
n−1, α0, γ1, . . . , γm} is a set of representatives of DK/K∗2.

For 1 6 j 6 m, if qj ≡ 1 mod 4, γj = αj and hence K(
√
γj)/K is unramified. If qj ≡ 3 mod 4, then by

Lemma 2.6(3), we have
γj

2e ≡ −xj or 3xj mod D3
1OFD1

and γj ≡ xj mod D3
2, where e is an odd integer and

D1, D2 are the dyadic primes of K0. Let D1,D2 be the two dyadic primes of K above D1 and D2 respec-

tively. Then KD1
≃ KD2

≃ Q2(
√
d) and KD1

(
√
γj) ≃ Q2(

√
d,
√
−2xj) or Q2(

√
d,
√
6xj), KD2

(
√
γj) ≃

Q2(
√
d,
√
xj). Since xj ≡ 1 mod 4 and d ≡ 6 mod 8, Q2(

√
d,
√
−2xj)/Q2(

√
d), Q2(

√
d,
√
6xj)/Q2(

√
d)

and Q2(
√
d,
√
xj)/Q2(

√
d) are all unramified. Hence K(

√
γj)/K is unramified. Therefore, {−2, q∗1 , . . . ,

q∗n−1, γ1, . . . , γm} is a set of representatives of ∆/K∗2.

4 The case K = Q(
√

−1,
√

d)

In this section K = Q(
√
−1,

√
d), K0 = Q(

√
−1). We write

d = ±
n∏

j=1

qj or d = ±2
n∏

j=1

qj (4.1)

with q1, . . . , qn being distinct odd primes such that qj ≡ 1 mod 4 if 1 6 j 6 m (i.e., (−1
qj
) = 1) and

qj ≡ 3 mod 4 if m + 1 6 j 6 n. We assume q1 ≡ 5 mod 8 if there exists j (1 6 j 6 m) such that

qj ≡ 5 mod 8. Therefore q1 ≡ 1 mod 8 if and only if qj ≡ 1 mod 8 for all 1 6 j 6 m. For 1 6 j 6 m,

choose (xj , yj) ≡ (1, 0) mod 2 to be a primitive solution of qj = x2 + y2 (resp. q1qj = x2 + y2) if

qj ≡ 1 mod 8 (resp. j > 1 and qj ≡ 5 mod 8). Then in both cases, yj ≡ 0 mod 4. Set

αj = xj + yj
√
−1. (4.2)

Lemma 4.1. Assume notation as above, then we have the following table:

d q1 s r2(∆/K∗2)

±1 mod 4 1 mod 8 m + n m+ n− 1

5 mod 8 m + n m+ n− 2

2 mod 4 1 mod 8 m+ n+ 1 m+ n

5 mod 8 m+ n+ 1 m+ n− 1

Proof. For d ≡ ±1 mod 4, there are m+ n finite primes ramified in K/K0, and for d ≡ 2 mod 4, there

are m+ n+ 1 finite primes ramified in K/K0. We thus get the values of s in the table.

To know r2(∆/K∗2), by Proposition 1.2, it suffices to know UK0
/UK0

∩NK. Since UK0
= {±1,±

√
−1}

and −1 = NK/K0
(
√
−1) ∈ NK, we just have to check if

√
−1 ∈ NK or not, equivalently, if (

√
−1, d)p = 1

for every prime p of K0 which ramified in K. For 1 6 j 6 m, qj splits in K0. For every prime qj above

qj , we have

(
√
−1, d)qj

= (
√
−1)

qj−1

2 =

{
1, if qj ≡ 1 mod 8,

−1, if qj ≡ 5 mod 8.
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For m+ 1 6 j 6 n, qj is inert in K0. Let qj be the prime above qj . By Lemma 3.3 of [7], we have

(
√
−1, d)qj

= (NK0/Q(
√
−1), d)qj = (1, d)qj = 1.

We know that 2 is ramified in K0. Let p be the prime above 2 in K0, then the product formula gives

(
√
−1, d)p = 1. We thus get the values of r2(∆/K∗2) in the table.

Theorem 4.2. Assume d as above, then the Hilbert genus field of K = Q(
√
−1,

√
d) is given by the

following table:

Case d q1 Hilbert genus field E

I ±1 mod 4 1 mod 8 Q(
√
−1,

√
q1, . . . ,

√
qn,

√
α1, . . . ,

√
αm)

5 mod 8 Q(
√
−1,

√
q1, . . . ,

√
qn,

√
α2, . . . ,

√
αm)

II 2 mod 4 1 mod 8 Q(
√
−1,

√
2,

√
q1, . . . ,

√
qn,

√
α1, . . . ,

√
αm)

5 mod 8 Q(
√
−1,

√
2,

√
q1, . . . ,

√
qn,

√
α2, . . . ,

√
αm)

Proof of Case I. (1) If q1 ≡ 1 mod 8, then by Lemma 4.1, r2(∆/K∗2) = m+n−1, and so r2(DK/K∗2) =

m+ n+ 1. Similar to the proof of Theorem 3.4, Case I, we see that

{2, q1, . . . , qn−1, α1, . . . , αm, η} (4.3)

is a set of representatives of DK/K∗2, where η = x+ y
√
d ∈ K with NK/K0

(η) = −1.

We now show ∆/K∗2 is generated by {q1, . . . , qn−1, α1, . . . , αm}. It suffices to show that K(
√
αj)/K,

1 6 j 6 m, are unramified extensions. By Proposition 1.1(1), we only need to show that they are

unramified at the dyadic prime of K.

Let D be a dyadic prime of K and D ∩ OK0
= D. Since qj ≡ 1 mod 8, 4 | yj, in the local field

K0,D = Q2(
√
−1), αj = xj + yj

√
−1 = xj + yj + (−1+

√
−1)yj ≡ xj + yj mod π5, where π = −1+

√
−1

is a uniformizer of Q2(
√
−1). Since xj + yj ≡ ±1,±3 mod π5, by Lemma 2.2, K0,D(

√
αj)/K0,D is

unramified. Thus KD(
√
αj)/KD is also unramified.

(2) If q1 ≡ 5 mod 8, similarly, we see that {q1, . . . , qn−1, α2, . . . , αm} is a set of representatives of

∆/K∗2.

Proof of Case II. (1) If q1 ≡ 1 mod 8, then by Lemma 4.1, r2(∆/K∗2) = m + n. Since K(
√
2)/K is

unramified at the dyadic primes, we see that {2, q1, . . . , qn−1, α1, . . . , αm} is a set of representatives of

∆/K∗2.

(2) If q1 ≡ 5 mod 8, then r2(∆/K∗2) = m+ n− 2. It is clear that {2, q1, . . . , qn−1, α2, . . . , αm} is a set

of representatives of ∆/K∗2.

5 The case K = Q(
√

−2,
√

d)

In this section, K0 = Q(
√
−2), K = Q(

√
−2,

√
d). Since Q(

√
−2,

√
d) = Q(

√
−2,

√
−2d), without loss of

generality, we can assume d ≡ 1 or 3 mod 4. We write

d = ±
n∏

j=1

qj (5.1)

with q1, . . . , qn being distinct odd primes such that qj ≡ 1, 3 mod 8 if 1 6 j 6 m (i.e., (−2
qj

) = 1)

and qj ≡ 5, 7 mod 8 if m + 1 6 j 6 n. We assume q1 ≡ 3 mod 8 if there exists j (1 6 j 6 m)

such that qj ≡ 3 mod 8. Therefore q1 ≡ 1 mod 8 if and only if qj ≡ 1 mod 8 for all 1 6 j 6 m. For

1 6 j 6 m, choose (xj , yj) to be a primitive solution of qj = x2 + 2y2 (resp. q1qj = x2 + 2y2) such that

xj + yj ≡ 1 mod 4 if qj ≡ 1 mod 8 (resp. j > 1 and qj ≡ 3 mod 8). Set

αj = xj + yj
√
−2. (5.2)

Lemma 5.1. Assume notation as above, then we have the following table:
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d q1 s r2(∆/K∗2)

1 mod 4 1 mod 8 m+ n m+ n− 1

3 mod 8 m+ n m+ n− 2

3 mod 4 1 mod 8 m+ n+ 1 m+ n

3 mod 8 m+ n+ 1 m+ n− 1

Proof. For d ≡ 1 mod 4, there are m + n finite primes ramified in K/K0, and for d ≡ 3 mod 4, there

are m+ n+ 1 finite primes ramified in K/K0. We thus get the values of s in the table.

To know r2(∆/K∗2), by Proposition 1.2, it suffices to know UK0
/UK0

∩ NK. Since UK0
= {±1}, we

just have to check if −1 ∈ NK, equivalently, if (−1, d)p = 1 for every prime p of K0 which ramified in K.

For 1 6 j 6 m, qj splits in K0. For every prime qj above qj , we have

(
√
−1, d)qj

= (
√
−1)

qj−1

2 =

{
1, if qj ≡ 1 mod 8,

−1, if qj ≡ 3 mod 8.

For m+ 1 6 j 6 n, qj is inert in K0. Let qj be the prime above qj . By Lemma 3.3 of [7], we have

(−1, d)qj
= (NK0/Q(−1), d)qj = (1, d)qj = 1.

We know that 2 is ramified in K0. Let p be the prime above 2 in K0, then the product formula gives

(
√
−1, d)p = 1.

We thus get the values of r2(∆/K∗2) in the table.

Theorem 5.2. Assume d as above, then the Hilbert genus field of K = Q(
√
−2,

√
d) is given by the

following table:

Case d q1 Hilbert genus field E

I 1 mod 4 1 mod 8 Q(
√
−2,

√

q∗
1
, . . . ,

√
q∗n,

√
α1, . . . ,

√
αm)

3 mod 8 Q(
√
−2,

√

q∗
1
, . . . ,

√
q∗n,

√
α2, . . . ,

√
αm)

II 3 mod 4 1 mod 8 Q(
√
−1,

√
−2,

√
q1, . . . ,

√
qn,

√
α1, . . . ,

√
αm)

3 mod 8 Q(
√
−1,

√
−2,

√
q1, . . . ,

√
qn,

√
α2, . . . ,

√
αm)

Proof of Case I. (1) If q1 ≡ 1 mod 8, then by Lemma 5.1, r2(∆/K∗2) = m+n−1, and so r2(DK/K∗2) =

m+ n+ 1. Similar to the proof of Case I of Theorem 3.4, we see that

{−1, q∗1 , . . . , q
∗
n−1, α1, . . . , αm, η} (5.3)

is a set of representatives of DK/K∗2, where η = x+ y
√
d ∈ K with NK/K0

(η) = −1.

We now show ∆/K∗2 is generated by {q∗1 , . . . , q∗n−1, α1, . . . , αm}. It suffices to show that K(
√
αj)/K,

1 6 j 6 m, are unramified extensions. By Proposition 1.1(1), we only need to show that they are

unramified at the dyadic prime of K.

Let D be a dyadic prime of K and D ∩ OK0
= D. Let π =

√
−2 be a uniformizer of the local field

K0,D = Q2(
√
−2). Since qj ≡ 1 mod 8, xj ≡ 1 mod 2, yj ≡ 0 mod 2 and recall that we choose xj , yj such

that xj + yj ≡ 1 mod 4.

If xj ≡ 1 mod 4, yj ≡ 0 mod 4, then αj = xj + yj
√
−2 ≡ 1, 5 mod π5. Thus K0,D(

√
αj)/K0,D is

unramified.

If xj ≡ 3 mod 4, yj ≡ 2 mod 4, then αj = xj + yj
√
−2 ≡ 1 + π2 + π3 or 1 + π2 + π3 + π4 mod π5. By

Lemma 2.3, if αj ≡ 1+π2+π3 mod π5, thenK0,D(
√
1 + π2 + π3) = K0,D. If αj ≡ 1+π2+π3+π4 mod π5,

then K0,D(
√
1 + π2 + π3 + π4)/K0,D is also unramified. Hence KD(

√
αj)/KD is unramified.

(2) If q1 ≡ 3 mod 8, then r2(∆/K∗2) = m+ n− 2. Similar to the proof of (1), we see that

{q1, . . . , qn−1, α2, . . . , αm}

is a representative set of ∆/K∗2. So E is the Hilbert genus field of K.
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Proof of Case II. The proof of Case II is similar to that of Case I, just recall that K(
√
−1)/K is an

unramified extension.
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