SCIENCE CHINA
 Mathematics

Hilbert genus fields of biquadratic fields

OUYANG Yi \& ZHANG Zhe*
School of Mathematical Sciences, University of Science and Technology of China, Hefei 230026, China
Email: yiouyang@ustc.edu.cn,lmlz@mail.ustc.edu.cn

Received June 24, 2013; accepted October 15, 2013; published online July 16, 2014

Abstract

The Hilbert genus field of the real biquadratic field $K=\mathbb{Q}(\sqrt{\delta}, \sqrt{d})$ is described by Yue (2010) and Bae and Yue (2011) explicitly in the case $\delta=2$ or p with $p \equiv 1 \bmod 4$ a prime and d a squarefree positive integer. In this article, we describe explicitly the Hilbert genus field of the imaginary biquadratic field $K=\mathbb{Q}(\sqrt{\delta}, \sqrt{d})$, where $\delta=-1,-2$ or $-p$ with $p \equiv 3 \bmod 4$ a prime and d any squarefree integer. This completes the explicit construction of the Hilbert genus field of any biquadratic field which contains an imaginary quadratic subfield of odd class number.

Keywords class group, Hilbert symbol, Hilbert genus field
MSC(2010) 11R65, 11R37

Citation: Ouyang Y, Zhang Z. Hilbert genus fields of biquadratic fields. Sci China Math, 2014, 57: 2111-2122, doi: 10.1007/s11425-014-4867-2

1 Introduction

Let K be a number field and H be the Hilbert class field of K. The Galois group $G=\operatorname{Gal}(H / K)$ is isomorphic to the ideal class group $C(K)$ of K via Artin's reciprocity map (see [5]). The Hilbert genus field of K is the invariant field E of G^{2}. Then by Galois theory

$$
\operatorname{Gal}(E / K) \simeq G / G^{2} \simeq C(K) / C(K)^{2}
$$

and by Kummer theory, there exists a unique multiplicative group $\Delta, K^{* 2} \subset \Delta \subset K^{*}$ such that

$$
\begin{equation*}
E=H \cap K\left(\sqrt{K^{*}}\right)=K(\sqrt{\Delta}) \tag{1.1}
\end{equation*}
$$

Given K, a natural question is how to explicitly construct the Hilbert genus field E of K, or equivalently, how to give a set of generators for the finite group $\Delta / K^{* 2}$.

For δ a squarefree integer, the field $\mathbb{Q}(\sqrt{\delta})$ has odd class number if and only if (i) $\delta=p$ for p a prime or $\delta=2 p$ or $p_{1} p_{2}$ for p, p_{1} and p_{2} primes $3 \bmod 4$, or (ii) $\delta=-1,-2$ or $-p$ with $p \equiv 3 \bmod 4($ see $[2])$. In the real case that $\delta=p$ with $p=2$ or $p \equiv 1 \bmod 4$, there has been a long history of study on the Hilbert genus field of $K=\mathbb{Q}(\sqrt{p}, \sqrt{d})$ where d is a squarefree positive integer prime to p. When $p \equiv 1 \bmod 8$ and $d \equiv 3 \bmod 4$, Sime [6] used Herglotz's results [3] to give the Hilbert genus field of K, under the condition that 2-Sylow subgroups of the class groups of $K_{0}=\mathbb{Q}(\sqrt{p}), K_{1}=\mathbb{Q}(\sqrt{d})$ and $K_{2}=\mathbb{Q}(\sqrt{p d})$ are elementary. Later, Yue [8] improved Sime's result to $p \equiv 1 \bmod 4, d \equiv 3 \bmod 4$, and without the

[^0]condition on the class groups. Recently, Bae and Yue [1] worked out the case $p \equiv 1 \bmod 4$ or $p=2$ and d a squarefree positive integer.

In this paper, we shall work out the imaginary case (i.e., the second case). We give a complete explicit construction of the Hilbert genus field of $K=\mathbb{Q}(\sqrt{\delta}, \sqrt{d})$ where $\delta=-1,-2$ or $-p$ with $p \equiv 3 \bmod 4$ and d a squarefree integer. Our results are stated in Theorem $3.4(\delta=-p)$, Theorem $4.2(\delta=-1)$ and Theorem $5.2(\delta=-2)$.

Our strategy to explicitly construct E is based on the following theoretical results. For a number field K, set

$$
\begin{equation*}
D_{K}=\left\{x \in K^{*} \mid v_{\mathfrak{p}}(x) \equiv 0 \bmod 2 \text { for all finite primes } \mathfrak{p} \text { of } K\right\} \tag{1.2}
\end{equation*}
$$

Then we have
Proposition 1.1. Let K be a number field. Suppose \mathcal{O}_{K} and U_{K} are the ring of integers and the group of units of K respectively.
(1) For any $x \in D_{K}$, all nondyadic primes of K are unramified in $K(\sqrt{x})$. Moreover, $\Delta \subset D_{K}$.
(2) The sequence

$$
1 \longrightarrow U_{K} / U_{K}^{2} \longrightarrow D_{K} / K^{* 2} \xrightarrow{\phi} C(K)[2] \longrightarrow 1
$$

is exact, where $\phi([x])=[I]$ if $x \mathcal{O}_{K}=I^{2}$. Hence we have

$$
\begin{equation*}
r_{2}\left(\Delta / K^{* 2}\right)=r_{2}(C(K))=r_{2}\left(D_{K} / K^{* 2}\right)-r_{2}\left(U_{K} / U_{K}^{2}\right) \tag{1.3}
\end{equation*}
$$

where for a finite Abelian group $A, r_{2}(A)$ is the 2-rank of A.
Proof. (1) The proof is similar to that of [8, Lemma 2.1].
(2) Since D_{K} is the set $\left\{x \in K^{*} \mid(x)=I^{2}\right.$ for some fractional ideal I of $\left.K\right\}$, the sequence is exact.

From now on, we suppose
(1) $K=\mathbb{Q}(\sqrt{\delta}, \sqrt{d})$, where $\delta=-1,-2$ or $-p$ with $p \equiv 3 \bmod 4$ and d a squarefree integer;
(2) $K_{0}=\mathbb{Q}(\sqrt{\delta})$ has odd class number in our case;
(3) $E=K(\sqrt{\Delta})$ is the Hilbert genus field of K, where $K^{* 2} \subset \Delta \subset K^{*}$;
(4) $N K$ is the image of K under the norm map $N_{K / K_{0}}$;
(5) s is the number of finite primes of K_{0} ramified in K.

Then we have
Proposition 1.2. Assume K as above, then

$$
\begin{equation*}
r_{2}(C(K))=r_{2}\left(\Delta / K^{* 2}\right)=r_{2}\left(D_{K} / K^{* 2}\right)-2=s-1-r_{2}\left(U_{K_{0}} / U_{K_{0}} \cap N K\right) \tag{1.4}
\end{equation*}
$$

Proof. The second equality follows from Proposition 1.1. In this case, $r_{2}\left(U_{K} / U_{K}^{2}\right)=2$. It suffices to show the third equality.

We show that the 2-Sylow subgroup $C(K)^{\operatorname{Gal}\left(K / K_{0}\right)}\left[2^{\infty}\right]$ of the group of ambiguous ideal classes $C(K)^{\operatorname{Gal}\left(K / K_{0}\right)}$ is nothing but $C(K)[2]$, the 2-torsion subgroup of $C(K)$. As a consequence $r_{2}(C(K))=$ $r_{2}\left(C(K)^{\mathrm{Gal}\left(K / K_{0}\right)}\right)$ and $C(K)^{\mathrm{Gal}\left(K / K_{0}\right)}$ has no 4-torsion. Indeed, suppose σ is the nontrivial element of $\operatorname{Gal}\left(K / K_{0}\right)$. For \mathfrak{c} an element of $C(K)^{\operatorname{Gal}\left(K / K_{0}\right)}\left[2^{\infty}\right]$, then $\mathfrak{c}=\sigma(\mathfrak{c})$. Suppose 2^{k} is the order of \mathfrak{c}, then $(\mathfrak{c} \sigma(\mathfrak{c}))^{2^{k-1}}=1$. We regard $\mathfrak{c} \sigma(\mathfrak{c})$ as an ideal class of $C\left(K_{0}\right)$. Then $(\mathfrak{c} \sigma(\mathfrak{c}))^{\# C\left(K_{0}\right)}=1$. Since K_{0} has odd ideal class number, we must have $\mathfrak{c} \sigma(\mathfrak{c})=1$. Thus $\sigma(\mathfrak{c})=\mathfrak{c}^{-1}$ and $\mathfrak{c}^{2}=1$. Conversely, for $\mathfrak{c} \in C(K)[2]$, $\mathfrak{c}^{2}=1$, we have $\mathfrak{c}=\mathfrak{c}^{-1}$. Since $(\mathfrak{c} \sigma(\mathfrak{c}))^{2}=(\mathfrak{c} \sigma(\mathfrak{c}))^{\# C\left(K_{0}\right)}=1$ and $\# C\left(K_{0}\right)$ is an odd integer, we deduce that $\mathfrak{c} \sigma(\mathfrak{c})=1$. Hence $\sigma(\mathfrak{c})=\mathfrak{c}^{-1}=\mathfrak{c}$ and thus $\mathfrak{c} \in C(K)^{\operatorname{Gal}\left(K / K_{0}\right)}$.

Now the third equality follows from the class number formula [4, Lemma 4.1, p. 307] for cyclic extensions,

$$
\left|C(K)^{\operatorname{Gal}\left(K / K_{0}\right)}\right|=\left|C\left(K_{0}\right)\right| \cdot \frac{2^{s-1}}{\left[U_{K_{0}}: U_{K_{0}} \cap N K\right]}
$$

By Proposition 1.2 we first study the group $U_{K_{0}} / U_{K_{0}} \cap N K$ to obtain the 2-ranks of $\Delta / K^{* 2}$ and $D_{K} / K^{* 2}$. Then we find a set of representatives of $D_{K} / K^{* 2}$. From this set we get a set of representatives of $\Delta / K^{* 2}$ and hence our results follow.

2 Local and global computation

In this section, we compile several results for later usage. First we fix the following notation.
For a number field or local field F, we let \mathcal{O}_{F} be the ring of integers of F and U_{F} be the unit group of \mathcal{O}_{F}. If F is a number field and \mathfrak{p} is a prime of F, we let $F_{\mathfrak{p}}$ be the completion of F at \mathfrak{p}. If F is a local field, let $U_{F}^{(n)}=1+\pi^{n} \mathcal{O}_{F}$ where π is a uniformizer of F. An integer solution of a Diophantine equation is called primitive if the components are relatively prime to each other.

2.1 Ramification

Lemma 2.1 (See [1, Lemma 2.4]). Suppose $F=\mathbb{Q}_{2}(\sqrt{-3})$ and $\omega=(-1+\sqrt{-3}) / 2 \in F$. Then
(1) $U_{F} / U_{F}^{2}=(\overline{3}) \times(\overline{1+2 \omega}) \times(\overline{1+4 \omega})$.
(2) The extension $F(\sqrt{3}, \sqrt{1+2 \omega}) / F$ is totally ramified and $F(\sqrt{1+4 \omega}) / F$ is unramified.
(3) For $a \in U_{F}$, if $a \equiv 1$ or $3 \bmod 4$, then $F(\sqrt{3}, \sqrt{a}) / F(\sqrt{3})$ is an unramified extension; if $a \equiv$ $1+2 \omega$ or $1+2 \omega^{2} \bmod 4$, then $F(\sqrt{3}, \sqrt{a}) / F(\sqrt{3})$ is a ramified extension.
(4) If $a \in U_{F}$ and $a \equiv x$ or $\omega \cdot x$ or $\omega^{2} \cdot x \bmod 4$ for some odd integer x, then $F(\sqrt{a}) / F$ is unramified if and only if $x \equiv 1 \bmod 4$.
Lemma 2.2. Suppose $F=\mathbb{Q}_{2}(\sqrt{-1})$. Then $\pi=-1+\sqrt{-1}$ is a uniformizer of F and
(1) $U_{F}^{(5)}=\left(U_{F}^{(2)}\right)^{2}, U_{F}^{2}=U_{F}^{(5)} \bigsqcup(-1) \cdot U_{F}^{(5)}$.
(2) $F(\sqrt{3})=F(\sqrt{-3})$ is unramified over F.

Proof. (1) We can see that π is a uniformizer because it is a root of Eisenstein polynomial $x^{2}+2 x+2$. By $U_{F}=U_{F}^{(1)},\left[U_{F}: U_{F}^{(5)}\right]=16$. That $U_{F}^{(5)}=\left(U_{F}^{(2)}\right)^{2}$ is easy. Now one just has to check $-1=(1+\pi)^{2} \notin U_{F}^{(5)}$.
(2) It is clear that $F(\sqrt{3})=F(\sqrt{-3})$ is the unique unramified extension of degree two over F.

Lemma 2.3. Suppose $F=\mathbb{Q}_{2}(\sqrt{-2})$. Then $\pi=\sqrt{-2}$ is a uniformizer of F, and
(1) $U_{F}^{(5)}=\left(U_{F}^{(3)}\right)^{2}$ and $U_{F}^{2}=U_{F}^{(5)} \bigsqcup\left(1+\pi^{2}+\pi^{3}\right) U_{F}^{(5)}$.
(2) $F\left(\sqrt{1+\pi^{2}+\pi^{3}+\pi^{4}}\right)=F\left(\sqrt{1+\pi^{4}}\right)$ is unramified over F.

Proof. The proof is similar to that of Lemma 2.2.

2.2 Decomposition and congruence

Lemma 2.4. Suppose $p \equiv 3 \bmod 4$ is a prime.
(1) If q is an odd prime such that $\left(\frac{-p}{q}\right)=1$, then the equation $x^{2}+p y^{2}=q z^{2}$ has a solution in \mathbb{Z}.
(2) If furthermore $p \equiv 7 \bmod 8$, then there exists a primitive solution $\left(x_{0}, z_{0}\right)$ of $x^{2}+p=2 z^{2}$ such that $4 \mid z_{0}$.
(3) Furthermore, if $q \equiv 3 \bmod 4$, then $2 q z^{2}=x^{2}+p y^{2}$ has a primitive solution $(x, y, z)=\left(u_{0}, v_{0}, w_{0}\right)$ such that $4 \mid w_{0}$.

Proof. (1) It suffices to compute the Hilbert symbols associated to the equation, which is clear.
(2) Any integer solution is clearly primitive, and moreover, x_{0} is odd and z_{0} is even. Replace $\left(x_{0}, z_{0}\right)$ by $\left(3 x_{0}+4 z_{0}, 2 x_{0}+3 z_{0}\right)$ if necessary, we can get z_{0} such that $4 \mid z_{0}$.
(3) Let $\left(x_{0}, z_{0}\right)$ be as given in (2) and $\left(x_{1}, y_{1}, z_{1}\right)$ be a primitive solution of $q z^{2}=x^{2}+p y^{2}$ such that $\left(x_{1}, y_{1}\right) \equiv(1,1) \bmod 4$ if $2 \mid z_{1}$. Then $(x, y, z)=\left(x_{0} x_{1}-p y_{1}, x_{0} y_{1}+x_{1}, z_{0} z_{1}\right)$ is a solution of $2 q z^{2}=x^{2}+p y^{2}$. We will complete the proof by the following two cases:

If $2 \nmid z_{1}$, then $\left(x_{1}, y_{1}\right) \equiv(0,1) \bmod 2$, thus $x_{0} x_{1}-p y_{1}$ and $x_{0} y_{1}+x_{1}$ are odd integers. Since $4 \mid z_{0} z_{1}$, $\left(x_{0} x_{1}-p y_{1}, x_{0} y_{1}+x_{1}, z_{0} z_{1}\right)$ gives a primitive solution $\left(u_{0}, v_{0}, w_{0}\right)$ with $4 \mid w_{0}$.

If $2 \mid z_{1}$, we can choose $x_{0} \equiv 1 \bmod 4$, then

$$
\left(x_{0} x_{1}-p y_{1}, x_{0} y_{1}+x_{1}\right) \equiv\left(x_{1}+y_{1}, x_{1}+y_{1}\right) \equiv(2,2) \bmod 4 .
$$

Since $8 \mid z_{0} z_{1},\left(x_{0} x_{1}-p y_{1}, x_{0} y_{1}+x_{1}, z_{0} z_{1}\right)$ gives a primitive solution $\left(u_{0}, v_{0}, w_{0}\right)$ with $4 \mid w_{0}$.

Lemma 2.5. Assume that $p \equiv 3 \bmod 4$ is a prime and $F=\mathbb{Q}(\sqrt{-p}), N \equiv 1 \bmod 4, N=q$ or $q_{1} q_{2}$, where q, q_{1}, q_{2} are primes satisfying Lemma 2.4(1). Let $\left(x_{0}, y_{0}, z_{0}\right)$ be a primitive solution of $N z^{2}=x^{2}+p y^{2}$. Take $\alpha=x_{0}+\sqrt{-p} y_{0}$ if $2 \nmid z_{0}$ and $\alpha=\frac{x_{0}+\sqrt{-p} y_{0}}{2}$ if $2 \mid z_{0}$. Let $\bar{\alpha}$ be the conjugate of α in F. Then
(1) The element $\alpha \in \mathcal{O}_{F}$ and the ideal $\alpha \mathcal{O}_{F}$ is relatively prime to $\bar{\alpha} \mathcal{O}_{F}$.
(2) If $2 \nmid z_{0}$, then $\alpha \equiv x_{0}+y_{0} \bmod 4 \mathcal{O}_{F}$.
(3) If $-p \equiv 5 \bmod 8$ and $2 \mid z_{0}$, then in the local field $\mathbb{Q}_{2}(\sqrt{-p})=\mathbb{Q}_{2}(\sqrt{-3}), \alpha \equiv \omega\left(-x_{0}\right)$ or $\omega^{2}\left(-x_{0}\right) \bmod 4$, where $\omega=\frac{-1+\sqrt{-3}}{2}$.
(4) If $-p \equiv 1 \bmod 8$ and $2 \mid z_{0}$, then $D_{1}=(2, \alpha) \neq D_{2}=(2, \bar{\alpha})$ are the two dyadic primes of F, and $\alpha \equiv x_{0} \bmod D_{2}^{2}$ and $\alpha / 2^{e} \equiv x_{0} \bmod D_{1}^{2} \mathcal{O}_{F_{D_{1}}}$ for an even integer e.
Proof. The proofs of (2)-(4) are similar to those of [1, Lemma 2.6], so we only need to prove (1). One can check that $\alpha \bar{\alpha}$ and $\alpha+\bar{\alpha} \in \mathbb{Z}$, so $\alpha \in \mathcal{O}_{F}$. If \mathfrak{p} is a prime of \mathcal{O}_{F} which divides both $\alpha \mathcal{O}_{F}$ and $\bar{\alpha} \mathcal{O}_{F}$, then $\alpha+\bar{\alpha} \in \mathfrak{p}$. If \mathfrak{p} is an odd prime, we have x_{0} or $2 x_{0}=\alpha+\bar{\alpha} \in \mathfrak{p} \cap \mathbb{Z}=(\ell)$, then $\ell \mid x_{0}$. Since $\ell \mid z_{0}$, we have $\ell \mid y_{0}$, which is absurd. If \mathfrak{p} is a dyadic prime, then $2 \mid z_{0}$ and $x_{0}=\alpha+\bar{\alpha} \in \mathfrak{p} \cap \mathbb{Z}=(2)$, i.e., $2 \mid x_{0}$, hence $2 \mid y_{0}$, which is also impossible.
Lemma 2.6. Suppose p is a prime congruence to 7 modulo 8 , $F=\mathbb{Q}(\sqrt{-p})$.
(1) Suppose $\left(x_{0}, z_{0}\right)$ is a solution of $x^{2}+p=2 z^{2}$ as given in Lemma 2.4(2). Let $\alpha=\frac{x_{0}+\sqrt{-p}}{2}$ and $\bar{\alpha}=\frac{x_{0}-\sqrt{-p}}{2}$ be its conjugate in F. Then $D_{1}=(2, \alpha)$ and $D_{2}=(2, \bar{\alpha})$ are the two dyadic primes of F, $\alpha \equiv x_{0} \bmod D_{2}^{3}$ and $\alpha / 2^{e_{1}} \equiv x_{0} \bmod D_{1}^{3} \mathcal{O}_{F_{D_{1}}}$ for an odd integer e_{1}.
(2) Suppose $q \equiv 3$ mod 4 satisfies the assumption in Lemma 2.4(1) and let $\left(a_{0}, b_{0}, c_{0}\right)$ be a primitive solution of $q z^{2}=x^{2}+p y^{2}$. If $2 \mid c_{0}$ and $\left(a_{0}, b_{0}\right) \equiv\left(x_{0}, 1\right) \bmod 4$, let $\beta=\frac{a_{0}+b_{0} \sqrt{-p}}{2}, \bar{\beta}$ be the conjugate of β in F. Then $(2, \beta)=D_{1},(2, \bar{\beta})=D_{2}, \beta \equiv a_{0} \bmod D_{2}^{2}$ and $\beta / 2^{e_{2}} \equiv-a_{0} \bmod D_{1}^{2} \mathcal{O}_{F_{D_{1}}}$ for an even integer e_{2}.
(3) Suppose $q \equiv 3 \bmod 4$ satisfies the assumption in Lemma 2.4(3) and let $\left(u_{0}, v_{0}, w_{0}\right)$ be a primitive solution of $2 q z^{2}=x^{2}+p y^{2}$ such that $\left(u_{0}, v_{0}, w_{0}\right) \equiv\left(x_{0}, 1,0\right) \bmod 4$. Let $\gamma=\frac{u_{0}+v_{0} \sqrt{-p}}{2}$, $\bar{\gamma}$ be the conjugate of γ in F. Then $(2, \gamma)=D_{1},(2, \bar{\gamma})=D_{2}, \gamma \equiv u_{0} \bmod D_{2}^{3}$ and $\gamma / 2^{e_{3}} \equiv-u_{0}$ or $3 u_{0} \bmod D_{1}^{3} \mathcal{O}_{F_{D_{1}}}$ for an odd integer e_{3}.
Proof. (1) We have $\alpha \bar{\alpha}=\frac{2 z_{0}^{2}}{4} \equiv 0 \bmod 8$ and $\alpha+\bar{\alpha}=x_{0} \in \mathbb{Z}$, hence $\alpha \in \mathcal{O}_{F}$. By the same argument as Lemma 2.5(1), we can show that $\alpha \mathcal{O}_{F}$ is prime to $\bar{\alpha} \mathcal{O}_{F}$. Moreover, by the fact that $\alpha \bar{\alpha} \in 8 \mathbb{Z}$, we know $D_{1}=(2, \alpha)$ and $D_{2}=(2, \bar{\alpha})$ are the two dyadic primes of F, and $\alpha \in D_{1}^{3}$ and $\bar{\alpha} \in D_{2}^{3}$. Then $\alpha=x_{0}-\bar{\alpha} \equiv x_{0} \bmod D_{2}^{3}$ and $\bar{\alpha} \equiv x_{0} \bmod D_{1}^{3}$. If $2^{k} \| z_{0}, k \geqslant 2$, then by

$$
\alpha \cdot \bar{\alpha} \cdot 2^{-2(k-1)-1}=\frac{z_{0}^{2}}{2^{2 k}} \equiv 1 \bmod D_{1}^{3} \mathcal{O}_{F_{D_{1}}}
$$

(since the square of an odd integer $\equiv 1 \bmod 8$),

$$
\frac{\alpha}{2^{2(k-1)+1}} \equiv \bar{\alpha}^{-1} \equiv x_{0} \bmod D_{1}^{3} \mathcal{O}_{F_{D_{1}}}
$$

(2) Since $a_{0} \equiv x_{0} \bmod 4$ and $b_{0} \equiv 1 \bmod 4,(2, \beta)=(2, \alpha)=D_{1}$ and $(2, \bar{\beta})=(2, \bar{\alpha})=D_{2}$. The rest of (2) follows from the same argument in the proof of (1).
(3) Since $u_{0} \equiv x_{0} \bmod 4$ and $v_{0} \equiv 1 \bmod 4,(2, \gamma)=(2, \alpha)=D_{1}$ and $(2, \bar{\gamma})=(2, \bar{\alpha})=D_{2}$. The rest of (3) follows from the same argument in the proof of (1), just recall that $q \equiv-1$ or $3 \bmod 8$.

3 The case $K=\mathbb{Q}(\sqrt{-p}, \sqrt{d})$ with $p \equiv 3 \bmod 4$

In this section, $p \equiv 3 \bmod 4, K_{0}=\mathbb{Q}(\sqrt{-p})$ and $K=\mathbb{Q}(\sqrt{-p}, \sqrt{d})$. We always write

$$
\begin{equation*}
d= \pm \prod_{j=1}^{n} q_{j} \quad \text { or } \quad d= \pm 2 \prod_{j=1}^{n} q_{j} \tag{3.1}
\end{equation*}
$$

with p, q_{1}, \ldots, q_{n} distinct odd primes such that the Legendre symbol

$$
\left(\frac{-p}{q_{j}}\right)= \begin{cases}1, & \text { if } 1 \leqslant j \leqslant m \tag{3.2}\\ -1, & \text { if } m+1 \leqslant j \leqslant n\end{cases}
$$

and we assume that

$$
\begin{equation*}
q_{1} \equiv 3 \bmod 4 \text { if there exists } j \text { for } 1 \leqslant j \leqslant m \text { such that } q_{j} \equiv 3 \bmod 4 \tag{3.3}
\end{equation*}
$$

Note that (3.3) means

$$
\begin{equation*}
\text { If } m \geqslant 1, \text { then } q_{1} \equiv 1 \bmod 4 \text { if and only if } q_{j} \equiv 1 \bmod 4 \text { for all } 1 \leqslant j \leqslant m \tag{3.4}
\end{equation*}
$$

Suppose $m \geqslant 1$. We now choose the elements α_{j}, β_{j} and γ_{j} for $1 \leqslant j \leqslant m$ and α_{0}. By Lemma 2.4, for any $1 \leqslant j \leqslant m$, the equation $q_{j} z^{2}=x^{2}+p y^{2}$ has an integer solution, so do the equations $q_{1} q_{j} z^{2}=$ $x^{2}+p y^{2}$ for $2 \leqslant j \leqslant m$. For each j, choose a primitive solution $\left(x_{j}, y_{j}, z_{j}\right)$ of $q_{j} z^{2}=x^{2}+p y^{2}$ (resp. $\left.q_{1} q_{j} z^{2}=x^{2}+p y^{2}\right)$ if $q_{j} \equiv 1 \bmod 4\left(\right.$ resp. $j>1$ and $\left.q_{j} \equiv 3 \bmod 4\right)$ by the following rules:

- if there exists odd z_{j}, then choose x_{j} and y_{j} such that $x_{j}+y_{j} \equiv 1 \bmod 4$;
- if every primitive solution z_{j} is even, then choose $x_{j} \equiv 3 \bmod 4$ if $p \equiv 3 \bmod 8$ and $x_{j} \equiv 1 \bmod 4$ if $p \equiv 7 \bmod 8$ 。
Then set

$$
\begin{equation*}
\alpha_{j}=x_{j}+\sqrt{-p} y_{j}, \quad \text { if } 2 \nmid z_{j} \quad \text { and } \quad \alpha_{j}=\frac{x_{j}+\sqrt{-p} y_{j}}{2}, \quad \text { if } 2 \mid z_{j} \tag{3.5}
\end{equation*}
$$

Now we assume $p \equiv 7 \bmod 8$. Set

$$
\begin{equation*}
\alpha_{0}=\frac{x_{0}+\sqrt{-p}}{2}, \quad \text { with }\left(x_{0}, z_{0}\right) \equiv(1,0) \bmod 4 \text { a primitive solution of } x^{2}+p=2 z^{2} \tag{3.6}
\end{equation*}
$$

Let $\left(x_{j}, y_{j}, z_{j}\right)$ be any primitive solution of $q_{j} z^{2}=x^{2}+p y^{2}$, then set

$$
\begin{equation*}
\beta_{j}=x_{j}+\sqrt{-p} y_{j}, \quad \text { if } 2 \nmid z_{j} \quad \text { and } \quad \beta_{j}=\frac{x_{j}+\sqrt{-p} y_{j}}{2}, \quad \text { if } 2 \mid z_{j} \tag{3.7}
\end{equation*}
$$

If $q_{j} \equiv 3 \bmod 4$, let $\left(x_{j}, y_{j}, z_{j}\right)$ be a primitive solution of $2 q_{j} z^{2}=x^{2}+p y^{2}$ such that $4 \mid z_{j}$ and $x_{j} \equiv$ $1 \bmod 4$. Set

$$
\begin{equation*}
\gamma_{j}=\alpha_{j}, \quad \text { if } q_{j} \equiv 1 \bmod 4 \quad \text { and } \quad \gamma_{j}=\frac{x_{j}+\sqrt{-p} y_{j}}{2}, \quad \text { if } q_{j} \equiv 3 \bmod 4 \tag{3.8}
\end{equation*}
$$

Lemma 3.1. The elements $-1, \pm q_{i}(1 \leqslant i \leqslant n), \alpha_{j}, \beta_{j}$ and $\gamma_{j}(1 \leqslant j \leqslant m)$ defined above all belong to D_{K}. If $d \equiv 2$ or $3 \bmod 4, \pm 2 \in D_{K}$.

Proof. $\quad-1 \in D_{K}$ is trivial. Since q_{i} is ramified in K, we see that $\pm q_{i} \in D_{K}$ for $1 \leqslant i \leqslant n$.
For α_{j}, we know that $\alpha_{j} \bar{\alpha}_{j}=q_{j} z_{j}^{2}, \frac{q_{j} z_{j}^{2}}{4}, q_{1} q_{j} z_{j}^{2}$ or $\frac{q_{1} q_{j} z_{j}^{2}}{4}$ and that q_{1}, q_{j} are ramified in K. By Lemma 2.5, $\alpha_{j} \mathcal{O}_{K_{0}}$ is prime to $\bar{\alpha}_{j} \mathcal{O}_{K_{0}}$, hence $\alpha_{j} \mathcal{O}_{K}$ is prime to $\bar{\alpha}_{j} \mathcal{O}_{K}$ in \mathcal{O}_{K}. We see that in \mathcal{O}_{K}, $\alpha_{j} \bar{\alpha}_{j} \mathcal{O}_{K}$ is a square of an ideal, thus $\alpha_{j} \in D_{K}$. The proofs of β_{j} and γ_{j} are similar.

If $d \equiv 2$ or $3 \bmod 4,2$ is ramified in K, thus $\pm 2 \in D_{K}$.
Lemma 3.2. Suppose that p is a prime $\equiv 7 \bmod 8$. Then
(1) $\alpha_{0} \in D_{K}$.
(2) If $d \equiv 3 \bmod 4$, both $K(\sqrt{2}) / K$ and $K\left(\sqrt{\alpha_{0}}\right) / K$ are ramified at some dyadic prime of K for every choice of α_{0}.
(3) If $d \equiv 2 \bmod 8$, then $K(\sqrt{2}) / K$ is unramified at the dyadic primes and so is $K\left(\sqrt{\alpha_{0}}\right) / K$. If $d \equiv 6 \bmod 8, K(\sqrt{-2}) / K$ is unramified at the dyadic primes and $K\left(\sqrt{\alpha_{0}}\right) / K$ is ramified at some dyadic prime of K.

Proof. (1) Since $\alpha_{0} \bar{\alpha}_{0}=\frac{z_{0}^{2}}{2}$ and $\left(\alpha_{0} \mathcal{O}_{K_{0}}, \bar{\alpha}_{0} \mathcal{O}_{K_{0}}\right)=1, \alpha_{0} \in D_{K}$.
In both (2) and (3), $d \equiv 2$ or $3 \bmod 4,2$ is ramified in $\mathbb{Q}(\sqrt{d}) / \mathbb{Q}$, so $2 \mathcal{O}_{K}=\mathcal{D}_{1}^{2} \mathcal{D}_{2}^{2}$, where

$$
D_{1}=\mathcal{D}_{1} \cap \mathcal{O}_{K_{0}}, \quad D_{2}=\mathcal{D}_{2} \cap \mathcal{O}_{K_{0}}
$$

are the dyadic primes of K_{0} as given in Lemma 2.6. For any dyadic prime \mathcal{D} of K, let $D=\mathcal{D} \cap \mathcal{O}_{K_{0}}$, then $K_{0, D}=\mathbb{Q}(\sqrt{-p})_{D} \simeq \mathbb{Q}_{2}$. Hence $K_{\mathcal{D}} \simeq \mathbb{Q}_{2}(\sqrt{d})$.

If $d \equiv 3 \bmod 4$, then $K_{\mathcal{D}} \simeq \mathbb{Q}_{2}(\sqrt{3})$ or $\mathbb{Q}_{2}(\sqrt{-1})$, hence $K(\sqrt{2}) / K$ is ramified at the dyadic primes of K. By Lemma 2.6(1), $K_{\mathcal{D}_{1}}\left(\sqrt{\alpha_{0}}\right)=K_{\mathcal{D}_{1}}\left(\sqrt{\frac{\alpha_{0}}{2^{\varepsilon_{1}-1}}}\right) \simeq \mathbb{Q}_{2}\left(\sqrt{d}, \sqrt{2 x_{0}}\right)$ is totally ramified over \mathbb{Q}_{2}, hence $K\left(\sqrt{\alpha_{0}}\right) / K$ is ramified at \mathcal{D}_{1}.

If $d \equiv 2 \bmod 8$, then $K_{\mathcal{D}_{1}} \simeq K_{\mathcal{D}_{2}} \simeq \mathbb{Q}_{2}(\sqrt{2})$ or $\mathbb{Q}_{2}(\sqrt{10})$. Thus $K(\sqrt{2}) / K$ is unramified at the dyadic primes of K. By Lemma $2.6(1), K_{\mathcal{D}_{1}}\left(\sqrt{\alpha_{0}}\right) \simeq \mathbb{Q}_{2}\left(\sqrt{2}, \sqrt{2 x_{0}}\right)$ or $\mathbb{Q}_{2}\left(\sqrt{10}, \sqrt{2 x_{0}}\right)$. Since $x_{0} \equiv 1 \bmod 4$, $K_{\mathcal{D}_{1}}\left(\sqrt{\alpha_{0}}\right) / K_{\mathcal{D}_{1}}$ is unramified. Similarly, $K_{\mathcal{D}_{2}}\left(\sqrt{\alpha_{0}}\right) / K_{\mathcal{D}_{2}}$ is also unramified. Therefore, $K\left(\sqrt{\alpha_{0}}\right) / K$ is unramified at the dyadic primes of K.

If $d \equiv 6 \bmod 8$, then $K_{\mathcal{D}_{1}} \simeq K_{\mathcal{D}_{2}} \simeq \mathbb{Q}_{2}(\sqrt{6})$ or $\mathbb{Q}_{2}(\sqrt{-2})$. Hence $K(\sqrt{-2}) / K$ is unramified at the dyadic primes of K and one of the extensions $K_{\mathcal{D}_{1}}\left(\sqrt{\alpha_{0}}\right) / K_{\mathcal{D}_{1}}$ and $K_{\mathcal{D}_{2}}\left(\sqrt{\alpha_{0}}\right) / K_{\mathcal{D}_{2}}$ must be ramified.

Lemma 3.3. Suppose conventions on d are as above. Then we have the following table:

p	d	q_{1}	s	$r_{2}\left(\Delta / K^{* 2}\right)$
$3 \bmod 4$	$1 \bmod 4$	$1 \bmod 4$	$m+n$	$m+n-1$
		$3 \bmod 4$	$m+n$	$m+n-2$
$3 \bmod 8$	$2,3 \bmod 4$	$1 \bmod 4$	$m+n+1$	$m+n$
		$3 \bmod 4$	$m+n+1$	$m+n-1$
$7 \bmod 8$	$3 \bmod 4,6 \bmod 8$		$m+n+2$	$m+n$
$7 \bmod 8$	$2 \bmod 8$	$1 \bmod 4$	$m+n+2$	$m+n+1$
		$3 \bmod 4$	$m+n+2$	$m+n$

Proof. For $d \equiv 1 \bmod 4$, there are $m+n$ finite primes ramified in K / K_{0}, and for $d \equiv 2,3 \bmod 4$, there are $m+n+1$ (resp. $m+n+2$) finite primes ramified in K / K_{0} if 2 is inert (resp. split) in K_{0}, i.e., $p \equiv 3 \bmod 8($ resp. $7 \bmod 8)$. We thus get the values of s in the table.

To know $r_{2}\left(\Delta / K^{* 2}\right)$, by Proposition 1.2, it suffices to know $U_{K_{0}} / U_{K_{0}} \cap N K$. If $p \neq 3$, then $U_{K_{0}}=\{ \pm 1\}$, thus we just have to check if $-1 \in N K$, equivalently, if $(-1, d)_{\mathfrak{p}}=1$ for every prime \mathfrak{p} of K_{0} which ramified in K. For $1 \leqslant j \leqslant m, q_{j}$ splits in K_{0}. For every prime \mathfrak{q}_{j} above q_{j}, we have

$$
(-1, d)_{\mathfrak{q}_{j}}=(-1)^{\frac{N \mathfrak{q}_{j}-1}{2}}=(-1)^{\frac{q_{j}-1}{2}}=\left(\frac{-1}{q_{j}}\right)
$$

For $m+1 \leqslant j \leqslant n, q_{j}$ is inert in K_{0}. Let \mathfrak{q}_{j} be the prime above q_{j}. By Lemma 3.3 of [7], we have

$$
(-1, d)_{\mathfrak{q}_{j}}=\left(N_{K_{0} / \mathbb{Q}}(-1), d\right)_{q_{j}}=(1, d)_{q_{j}}=1
$$

For $p \equiv 7 \bmod 8,2$ splits in K_{0}. Let D be a dyadic prime above 2. We have $(-1, d)_{D}=(-1)^{\frac{d-1}{2}}$ or $(-1)^{\frac{d / 2-1}{2}}$ depending on d being odd or even. For $p \equiv 3 \bmod 8,2$ is inert in K_{0}, the product formula gives $(-1, d)_{D}=1$. We thus get the values of $r_{2}\left(\Delta / K^{* 2}\right)$ in the table.

If $p=3$, then $K_{0}=\mathbb{Q}(\sqrt{-3})$ and $U_{K_{0}}=\left\{ \pm 1, \pm \omega, \pm \omega^{2}\right\}$, where ω is a primitive 3-rd root unity. Since $\omega=\left(\omega^{2}\right)^{2},\left\{1, \omega, \omega^{2}\right\} \subset N K$ and the same result holds.

We can now state and prove the main result of this section.
Theorem 3.4. Assume p and d as above, then the Hilbert genus field E of $K=\mathbb{Q}(\sqrt{-p}, \sqrt{d})$ is given by the following table:

Case	p	d	q_{1}	Hilbert genus field E
I	$3(\bmod 4)$	$1(\bmod 4)$	$1(\bmod 4)$	$\mathbb{Q}\left(\sqrt{-p}, \sqrt{q_{1}^{*}}, \ldots, \sqrt{q_{n}^{*}}, \sqrt{\alpha_{1}}, \ldots, \sqrt{\alpha_{m}}\right)$
			$3(\bmod 4)$	$\mathbb{Q}\left(\sqrt{-p}, \sqrt{q_{1}^{*}}, \ldots, \sqrt{q_{n}^{*}}, \sqrt{\alpha_{2}}, \ldots, \sqrt{\alpha_{m}}\right)$
II	$3(\bmod 8)$	$3(\bmod 4)$	$1(\bmod 4)$	$\mathbb{Q}\left(\sqrt{-p}, \sqrt{-1}, \sqrt{q_{1}}, \ldots, \sqrt{q_{n}}, \sqrt{\alpha_{1}}, \ldots, \sqrt{\alpha_{m}}\right)$
			$3(\bmod 4)$	$\mathbb{Q}\left(\sqrt{-p}, \sqrt{-1}, \sqrt{q_{1}}, \ldots, \sqrt{q_{n}}, \sqrt{\alpha_{2}}, \ldots, \sqrt{\alpha_{m}}\right)$
III	$3(\bmod 8)$	$2(\bmod 8)$	$1(\bmod 4)$	$\mathbb{Q}\left(\sqrt{-p}, \sqrt{2}, \sqrt{q_{1}^{*}}, \ldots, \sqrt{q_{n}^{*}}, \sqrt{\alpha_{1}}, \ldots, \sqrt{\alpha_{m}}\right)$
			$3(\bmod 4)$	$\mathbb{Q}\left(\sqrt{-p}, \sqrt{2}, \sqrt{q_{1}^{*}}, \ldots, \sqrt{q_{n}^{*}}, \sqrt{\alpha_{2}}, \ldots, \sqrt{\alpha_{m}}\right)$
IV	$3(\bmod 8)$	$6(\bmod 8)$	$1(\bmod 4)$	$\mathbb{Q}\left(\sqrt{-p}, \sqrt{-2}, \sqrt{q_{1}^{*}}, \ldots, \sqrt{q_{n}^{*}}, \sqrt{\alpha_{1}}, \ldots, \sqrt{\alpha_{m}}\right)$
			$3(\bmod 4)$	$\mathbb{Q}\left(\sqrt{-p}, \sqrt{-2}, \sqrt{q_{1}^{*}}, \ldots, \sqrt{q_{n}^{*}}, \sqrt{\alpha_{2}}, \ldots, \sqrt{\alpha_{m}}\right)$
V	$7(\bmod 8)$	$3(\bmod 4)$		$\mathbb{Q}\left(\sqrt{-p}, \sqrt{-1}, \sqrt{q_{1}}, \ldots, \sqrt{q_{n}}, \sqrt{\beta_{1}}, \ldots, \sqrt{\beta_{m}}\right)$
VI	$7(\bmod 8)$	$2(\bmod 8)$	$1(\bmod 4)$	$\mathbb{Q}\left(\sqrt{-p}, \sqrt{2}, \sqrt{q_{1}^{*}}, \ldots, \sqrt{q_{n}^{*}}, \sqrt{\alpha_{0}}, \sqrt{\alpha_{1}}, \ldots, \sqrt{\alpha_{m}}\right)$
			$3(\bmod 4)$	$\mathbb{Q}\left(\sqrt{-p}, \sqrt{2}, \sqrt{q_{1}^{*}}, \ldots, \sqrt{q_{n}^{*}}, \sqrt{\alpha_{0}}, \sqrt{\alpha_{2}}, \ldots, \sqrt{\alpha_{m}}\right)$
VII	$7(\bmod 8)$	$6(\bmod 8)$		$\mathbb{Q}\left(\sqrt{-p}, \sqrt{-2}, \sqrt{q_{1}^{*}}, \ldots, \sqrt{q_{n}^{*}}, \sqrt{\gamma_{1}}, \ldots, \sqrt{\gamma_{m}}\right)$

Here $q^{*}=(-1)^{\frac{q-1}{2}} q, \alpha_{j}, \alpha_{0}, \beta_{j}, \gamma_{j}$ are given by (3.5)-(3.8).
Example 3.5 (Case I and Case VII). Let $K=\mathbb{Q}(\sqrt{-3}, \sqrt{5005})$. It is clear that $5005=7 \times 13 \times 5 \times 11 \equiv$ $1 \bmod 4,\left(\frac{-3}{7}\right)=\left(\frac{-3}{13}\right)=1,\left(\frac{-3}{5}\right)=\left(\frac{-3}{11}\right)=-1$. Then $n=4, m=2$. Since $q_{1}=7 \equiv 3 \bmod 4$, $r_{2}\left(\Delta / K^{* 2}\right)=m+n-2=4$. Since $q_{2}=13 \equiv 1 \bmod 4$ and $13=1^{2}+3 \cdot 2^{2}$, we have $\alpha_{2}=-1+2 \sqrt{-3}$, and

$$
E=\mathbb{Q}\left(\sqrt{-3}, \sqrt{5}, \sqrt{-7}, \sqrt{-11}, \sqrt{13}, \sqrt{\alpha_{2}}\right)
$$

Let $K=\mathbb{Q}(\sqrt{-7}, \sqrt{110})$. It is clear that $110=2 \times 11 \times 5 \equiv 6 \bmod 8,\left(\frac{-7}{11}\right)=1,\left(\frac{-7}{5}\right)=-1$. Then $n=2, m=1, r_{2}\left(\Delta / K^{* 2}\right)=m+n=3$. Since $q_{1}=11 \equiv 3 \bmod 4$ and $2 \cdot 11 \cdot 4^{2}=3^{2}+7 \cdot 7^{2}$, we have $\gamma_{1}=\frac{-3+7 \sqrt{-7}}{2}$ and

$$
E=\mathbb{Q}\left(\sqrt{-7}, \sqrt{-2}, \sqrt{5}, \sqrt{-11}, \sqrt{\gamma_{1}}\right)
$$

We shall prove the theorem case by case. We note the fact that $K\left(\sqrt{q_{i}^{*}}\right) / K$ is always unramified.
Proof of Case I. (1) If $q_{1} \equiv 1 \bmod 4$, by Lemma 3.3, we have $r_{2}\left(\Delta / K^{* 2}\right)=m+n-1$ and $r_{2}\left(D_{K} / K^{* 2}\right)=$ $m+n+1$. We first show the set

$$
\begin{equation*}
\left\{-1, q_{1}^{*}, \ldots, q_{n-1}^{*}, \alpha_{1}, \ldots, \alpha_{m}, \eta\right\} \tag{3.9}
\end{equation*}
$$

where $\eta=x+y \sqrt{d} \in K, N_{K / K_{0}}(\eta)=-1$, is a set of representatives of $D_{K} / K^{* 2}$. It suffices to show that its elements are independent modulo $K^{* 2}$.

Consider $\xi=\eta^{a} \cdot \prod_{i} q_{i}^{* b_{i}} \prod_{j} \alpha_{j}^{c_{j}}$, where $a, b_{i}, c_{j} \in\{0,1\}, q_{i}^{*} \in\left\{-1, q_{1}^{*}, \ldots, q_{n-1}^{*}\right\}, \alpha_{j} \in\left\{\alpha_{1}, \ldots, \alpha_{m}\right\}$. Let $K_{2}=\mathbb{Q}(\sqrt{-p d})$, then

$$
N_{K / K_{2}}(\xi)=(-1)^{a} \cdot \prod_{i} q_{i}^{2 b_{i}} \prod_{j} q_{j}^{c_{j}} \cdot \lambda^{2}, \quad \lambda \in K_{2}
$$

Suppose $\xi \in K^{* 2}$, then $N_{K / K_{2}}(\xi) \in K_{2}^{* 2}$, thus $a=c_{j}=0$. Now $\xi=\prod_{i} q_{i}^{* b_{i}} \in K^{* 2}$, since K has only three quadratic subfields: $\mathbb{Q}(\sqrt{-p}), \mathbb{Q}(\sqrt{d}), \mathbb{Q}(\sqrt{-p d})$, we must have $b_{i}=0$. Therefore the set (3.9) is a representative set of $D_{K} / K^{* 2}$.

We now show $\Delta / K^{* 2}$ is generated by $\left\{q_{1}^{*}, \ldots, q_{n-1}^{*}, \alpha_{1}, \ldots, \alpha_{m}\right\}$. It suffices to show that $K\left(\sqrt{\alpha_{j}}\right) / K$, $1 \leqslant j \leqslant m$, are unramified extensions. By Proposition 1.1(1), we only need to show that they are unramified at the dyadic primes of K.

Let \mathcal{D} be a dyadic prime of K. If $p \equiv 3 \bmod 8, K_{\mathcal{D}} \simeq \mathbb{Q}_{2}(\sqrt{-3})$. For $1 \leqslant j \leqslant m$, if $2 \nmid z_{j}, \alpha_{j} \equiv$ $x_{j}+y_{j} \equiv 1 \bmod 4$. Hence $K_{\mathcal{D}}\left(\sqrt{\alpha_{j}}\right) / K_{\mathcal{D}}$ is unramified. If $2 \mid z_{j}$, then $\alpha_{j} \equiv \omega\left(-x_{j}\right)$ or $\equiv \omega^{2}\left(-x_{j}\right) \bmod 4$. Then by Lemma 2.1(4), $K_{\mathcal{D}}\left(\sqrt{\alpha_{j}}\right) / K_{\mathcal{D}}$ is also unramified.

If $p \equiv 7 \bmod 8$, we have $K_{\mathcal{D}} \simeq \mathbb{Q}_{2}$ if $d \equiv 1 \bmod 8$ and $K_{\mathcal{D}} \simeq \mathbb{Q}_{2}(\sqrt{-3})$ if $d \equiv 5 \bmod 8$. According to Lemma 2.5, if $2 \nmid z_{j}, \alpha_{j} \equiv x_{j}+y_{j} \equiv 1 \bmod 4$. Hence $K_{\mathcal{D}}\left(\sqrt{\alpha_{j}}\right) / K_{\mathcal{D}}$ is unramified. If $2 \mid z_{j}$, then by Lemma 2.5, $K_{\mathcal{D}}\left(\sqrt{\alpha_{j}}\right) \simeq K_{\mathcal{D}}\left(\sqrt{x_{j}}\right)$ or $K_{\mathcal{D}}\left(\sqrt{x_{j}+4}\right) \simeq K_{\mathcal{D}}$ or $K_{\mathcal{D}}(\sqrt{-3})$. Thus $K_{\mathcal{D}}\left(\sqrt{\alpha_{j}}\right) / K_{\mathcal{D}}$ is also unramified.
(2) If $q_{1} \equiv 3 \bmod 4$, then by Lemma 3.3, we have $r_{2}\left(\Delta / K^{* 2}\right)=m+n-2$. By the construction of $\alpha_{j}, 2 \leqslant j \leqslant m$ and similar to the proof of (1), we see that $\left\{q_{1}^{*}, \ldots, q_{n-1}^{*}, \alpha_{2}, \ldots, \alpha_{m}\right\}$ is a set of representatives of $\Delta / K^{* 2}$ and $E=K\left(\sqrt{q_{1}^{*}}, \ldots, \sqrt{q_{n-1}^{*}}, \sqrt{\alpha_{2}}, \ldots, \sqrt{\alpha_{m}}\right)$ is the Hilbert genus field of K. Note that if $q_{j} \equiv 3 \bmod 4$, we are using the solution of $q_{1} q_{j} z^{2}=x^{2}+p y^{2}$ instead of $q_{j} z^{2}=x^{2}+p y^{2}$, because the latter one produces a ramified extension.
Proof of Case II. (1) If $q_{1} \equiv 1 \bmod 4$, then by Lemma 3.3, $r_{2}\left(\Delta / K^{* 2}\right)=m+n$ and $r_{2}\left(D_{K} / K^{* 2}\right)=$ $m+n+2$. Let $\eta=x+y \sqrt{d} \in K$ such that $N_{K / K_{0}}(\eta)=-1$. Similar to the proof of Case I, we see that $\left\{-1,2, q_{1}, \ldots, q_{n-1}, \alpha_{1}, \ldots, \alpha_{m}, \eta\right\}$ is a set of representatives of $D_{K} / K^{* 2}$.

It is easy to verify that $K(\sqrt{-1}) / K$ is unramified at the dyadic primes. For $1 \leqslant j \leqslant m$, by Lemma 2.5, we have $\alpha_{j} \equiv 1 \bmod 4$ if $2 \nmid z_{j}$ and $\alpha_{j} \equiv \omega\left(-x_{j}\right)$ or $\omega^{2}\left(-x_{j}\right) \bmod 4$ if $2 \mid z_{j}$. Then by Lemma 2.1(4), $K\left(\sqrt{\alpha_{j}}\right) / K$ is unramified at the dyadic primes of K. Thus $\left\{-1, q_{1}, \ldots, q_{n-1}, \alpha_{1}, \ldots, \alpha_{m}\right\}$ is a set of representatives of $\Delta / K^{* 2}$.
(2) Similarly, if $q_{1} \equiv 3 \bmod 4$, we know that $r_{2}\left(\Delta / K^{* 2}\right)=m+n-1$. By the construction, $\alpha_{j} \equiv 1$, $\omega\left(-x_{j}\right)$ or $\omega^{2}\left(-x_{j}\right) \bmod 4$, then by Lemma 2.1(4), $K\left(\sqrt{\alpha_{j}}\right) / K$ is unramified and

$$
\left\{-1, q_{1}, \ldots, q_{n-1}, \alpha_{2}, \ldots, \alpha_{m}\right\}
$$

is a set of representatives of $\Delta / K^{* 2}$.
Proof of Case III. If $q_{1} \equiv 1 \bmod 4$, then by Lemma 3.3, $r_{2}\left(\Delta / K^{* 2}\right)=m+n$. By Proposition 1.1(1) and Lemma 3.2, $K(\sqrt{2}) / K$ is unramified. Similar to Case I, $K\left(\sqrt{\alpha_{j}}\right) / K$ is unramified and the set

$$
\left\{2, q_{1}^{*}, \ldots, q_{n-1}^{*}, \alpha_{1}, \ldots, \alpha_{m}\right\}
$$

is independent modulo $K^{* 2}$, so it is a set of representatives of $\Delta / K^{* 2}$.
If $q_{1} \equiv 3 \bmod 4, r_{2}\left(\Delta / K^{* 2}\right)=m+n-1$. By construction, for $2 \leqslant j \leqslant m, K\left(\sqrt{\alpha_{j}}\right) / K$ is unramified and $\left\{2, q_{1}^{*}, \ldots, q_{n-1}^{*}, \alpha_{2}, \ldots, \alpha_{m}\right\}$ is a set of representatives of $\Delta / K^{* 2}$.

Proof of Case IV. If $q_{1} \equiv 1 \bmod 4$, we know that $r_{2}\left(\Delta / K^{* 2}\right)=m+n$. By Proposition 1.1(1) and Lemma 3.2, $K(\sqrt{-2}) / K$ is an unramified extension. Similar to Case I, $K\left(\sqrt{\alpha_{j}}\right) / K$ is unramified and $\left\{-2, q_{1}^{*}, \ldots, q_{n-1}^{*}, \alpha_{1}, \ldots, \alpha_{m}\right\}$ is a set of representatives of $\Delta / K^{* 2}$.

If $q_{1} \equiv 3 \bmod 4, r_{2}\left(\Delta / K^{* 2}\right)=m+n-1$. By the same method, $\left\{-2, q_{1}^{*}, \ldots, q_{n-1}^{*}, \alpha_{2}, \ldots, \alpha_{m}\right\}$ is a set of representatives of $\Delta / K^{* 2}$.

Proof of Case V. By Lemma 3.3, $r_{2}\left(\Delta / K^{* 2}\right)=m+n$ and thus $r_{2}\left(D_{K} / K^{* 2}\right)=m+n+2$. By similar process to that in Case I, we know that $\left\{-1,2, q_{1}, \ldots, q_{n-1}, \alpha_{0}, \beta_{1}, \ldots, \beta_{m}\right\}$ is a set of representatives of $D_{K} / K^{* 2}$. We claim that $\left\{-1, q_{1}, \ldots, q_{n-1}, \beta_{1}, \ldots, \beta_{m}\right\}$ is a set of representatives of $\Delta / K^{* 2}$. It suffices to show that $K\left(\sqrt{\beta_{j}}\right) / K$ is unramified at the dyadic primes.

Let $\mathcal{D}_{1}, \mathcal{D}_{2}$ be the two dyadic primes of K and $\mathcal{D}_{1} \cap \mathcal{O}_{K_{0}}=D_{1}, \mathcal{D}_{2} \cap \mathcal{O}_{K_{0}}=D_{2}$. Then $K_{0, D_{1}} \simeq K_{0, D_{2}} \simeq$ \mathbb{Q}_{2} and $K_{\mathcal{D}_{1}} \simeq K_{\mathcal{D}_{2}} \simeq \mathbb{Q}_{2}(\sqrt{d})$. If $2 \nmid z_{j}$, then β_{j} is a unit in \mathbb{Z}_{2}, since $d \equiv 3 \bmod 4, K_{\mathcal{D}_{i}}\left(\sqrt{\beta_{j}}\right) / K_{\mathcal{D}_{i}}$ $(i=1,2)$ is unramified. If $2 \mid z_{j}$, then by Lemmas 2.5(4) and 2.6(2),

$$
\frac{\beta_{j}}{2^{e}} \equiv x_{j} \text { or }-x_{j} \bmod D_{1}^{2} \mathcal{O}_{F_{D_{1}}} \text { according to } q_{j} \equiv 1 \text { or }-1 \bmod 4 \quad \text { and } \quad \beta_{j} \equiv x_{j} \bmod D_{2}^{2}
$$

where e is an even integer. Hence there exist odd integers u_{j}, v_{j} such that $K_{\mathcal{D}_{1}}\left(\sqrt{\beta_{j}}\right) \simeq \mathbb{Q}_{2}\left(\sqrt{u_{j}}, \sqrt{d}\right)$ and $K_{\mathcal{D}_{2}}\left(\sqrt{\beta_{j}}\right) \simeq \mathbb{Q}_{2}\left(\sqrt{v_{j}}, \sqrt{d}\right)$. Since $d \equiv 3 \bmod 4$, both $K_{\mathcal{D}_{1}}\left(\sqrt{\beta_{j}}\right) / K_{\mathcal{D}_{1}}$ and $K_{\mathcal{D}_{2}}\left(\sqrt{\beta_{j}}\right) / K_{\mathcal{D}_{2}}$ are unramified. Therefore, $K\left(\sqrt{\beta_{j}}\right) / K$ is an unramified extension.
Proof of Case VI. If $q_{1} \equiv 1 \bmod 4$, then by Lemma 3.3, $r_{2}\left(\Delta / K^{* 2}\right)=m+n+1$ and $r_{2}\left(D_{K} / K^{* 2}\right)=$ $m+n+3$. Let $\eta=x+y \sqrt{d}$ such that $N_{K / K_{0}}(\eta)=-1$. It is easy to verify that

$$
\left\{-1,2, q_{1}^{*}, \ldots, q_{n-1}^{*}, \alpha_{0}, \alpha_{1}, \ldots, \alpha_{m}, \eta\right\}
$$

is a set of representatives of $D_{K} / K^{* 2}$.

We now find a set of representatives of $\Delta / K^{* 2}$. We know by Lemma 3.2 that both $K(\sqrt{2}) / K$ and $K\left(\sqrt{\alpha_{0}}\right) / K$ are unramified at the dyadic primes. By the construction of α_{j}, we know that $K\left(\sqrt{\alpha_{j}}\right) / K$ is also unramified at the dyadic primes. Hence $\left\{2, q_{1}^{*}, \ldots, q_{n-1}^{*}, \alpha_{0}, \alpha_{1}, \ldots, \alpha_{m}\right\}$ is a set of representatives of $\Delta / K^{* 2}$.

If $q_{1} \equiv 3 \bmod 4$, then $r_{2}\left(\Delta / K^{* 2}\right)=m+n$. By the construction of $\alpha_{j}(2 \leqslant j \leqslant m)$, we see that

$$
\left\{2, q_{1}^{*}, \ldots, q_{n-1}^{*}, \alpha_{0}, \alpha_{2}, \ldots, \alpha_{m}\right\}
$$

is a set of representatives of $\Delta / K^{* 2}$. So E is the Hilbert genus field of K.
Proof of Case VII. From Lemma 3.3, we know that $r_{2}\left(\Delta / K^{* 2}\right)=m+n$ and $r_{2}\left(D_{K} / K^{* 2}\right)=m+n+2$. We see that $\left\{-1,2, q_{1}^{*}, \ldots, q_{n-1}^{*}, \alpha_{0}, \gamma_{1}, \ldots, \gamma_{m}\right\}$ is a set of representatives of $D_{K} / K^{* 2}$.

For $1 \leqslant j \leqslant m$, if $q_{j} \equiv 1 \bmod 4, \gamma_{j}=\alpha_{j}$ and hence $K\left(\sqrt{\gamma_{j}}\right) / K$ is unramified. If $q_{j} \equiv 3 \bmod 4$, then by Lemma 2.6(3), we have $\frac{\gamma_{j}}{2^{e}} \equiv-x_{j}$ or $3 x_{j} \bmod D_{1}^{3} \mathcal{O}_{F_{D_{1}}}$ and $\gamma_{j} \equiv x_{j} \bmod D_{2}^{3}$, where e is an odd integer and D_{1}, D_{2} are the dyadic primes of K_{0}. Let $\mathcal{D}_{1}, \mathcal{D}_{2}$ be the two dyadic primes of K above D_{1} and D_{2} respectively. Then $K_{\mathcal{D}_{1}} \simeq K_{\mathcal{D}_{2}} \simeq \mathbb{Q}_{2}(\sqrt{d})$ and $K_{\mathcal{D}_{1}}\left(\sqrt{\gamma_{j}}\right) \simeq \mathbb{Q}_{2}\left(\sqrt{d}, \sqrt{-2 x_{j}}\right)$ or $\mathbb{Q}_{2}\left(\sqrt{d}, \sqrt{6 x_{j}}\right), K_{\mathcal{D}_{2}}\left(\sqrt{\gamma_{j}}\right) \simeq$ $\mathbb{Q}_{2}\left(\sqrt{d}, \sqrt{x_{j}}\right)$. Since $x_{j} \equiv 1 \bmod 4$ and $d \equiv 6 \bmod 8, \mathbb{Q}_{2}\left(\sqrt{d}, \sqrt{-2 x_{j}}\right) / \mathbb{Q}_{2}(\sqrt{d}), \mathbb{Q}_{2}\left(\sqrt{d}, \sqrt{6 x_{j}}\right) / \mathbb{Q}_{2}(\sqrt{d})$ and $\mathbb{Q}_{2}\left(\sqrt{d}, \sqrt{x_{j}}\right) / \mathbb{Q}_{2}(\sqrt{d})$ are all unramified. Hence $K\left(\sqrt{\gamma_{j}}\right) / K$ is unramified. Therefore, $\left\{-2, q_{1}^{*}, \ldots\right.$, $\left.q_{n-1}^{*}, \gamma_{1}, \ldots, \gamma_{m}\right\}$ is a set of representatives of $\Delta / K^{* 2}$.

4 The case $K=\mathbb{Q}(\sqrt{-1}, \sqrt{d})$

In this section $K=\mathbb{Q}(\sqrt{-1}, \sqrt{d}), K_{0}=\mathbb{Q}(\sqrt{-1})$. We write

$$
\begin{equation*}
d= \pm \prod_{j=1}^{n} q_{j} \quad \text { or } \quad d= \pm 2 \prod_{j=1}^{n} q_{j} \tag{4.1}
\end{equation*}
$$

with q_{1}, \ldots, q_{n} being distinct odd primes such that $q_{j} \equiv 1 \bmod 4$ if $1 \leqslant j \leqslant m$ (i.e., $\left(\frac{-1}{q_{j}}\right)=1$) and $q_{j} \equiv 3 \bmod 4$ if $m+1 \leqslant j \leqslant n$. We assume $q_{1} \equiv 5 \bmod 8$ if there exists $j(1 \leqslant j \leqslant m)$ such that $q_{j} \equiv 5 \bmod 8$. Therefore $q_{1} \equiv 1 \bmod 8$ if and only if $q_{j} \equiv 1 \bmod 8$ for all $1 \leqslant j \leqslant m$. For $1 \leqslant j \leqslant m$, choose $\left(x_{j}, y_{j}\right) \equiv(1,0) \bmod 2$ to be a primitive solution of $q_{j}=x^{2}+y^{2}\left(\right.$ resp. $\left.q_{1} q_{j}=x^{2}+y^{2}\right)$ if $q_{j} \equiv 1 \bmod 8\left(\right.$ resp. $j>1$ and $\left.q_{j} \equiv 5 \bmod 8\right)$. Then in both cases, $y_{j} \equiv 0 \bmod 4$. Set

$$
\begin{equation*}
\alpha_{j}=x_{j}+y_{j} \sqrt{-1} \tag{4.2}
\end{equation*}
$$

Lemma 4.1. Assume notation as above, then we have the following table:

d	q_{1}	s	$r_{2}\left(\Delta / K^{* 2}\right)$
$\pm 1 \bmod 4$	$1 \bmod 8$	$m+n$	$m+n-1$
	$5 \bmod 8$	$m+n$	$m+n-2$
$2 \bmod 4$	$1 \bmod 8$	$m+n+1$	$m+n$
	$5 \bmod 8$	$m+n+1$	$m+n-1$

Proof. For $d \equiv \pm 1 \bmod 4$, there are $m+n$ finite primes ramified in K / K_{0}, and for $d \equiv 2 \bmod 4$, there are $m+n+1$ finite primes ramified in K / K_{0}. We thus get the values of s in the table.

To know $r_{2}\left(\Delta / K^{* 2}\right)$, by Proposition 1.2, it suffices to know $U_{K_{0}} / U_{K_{0}} \cap N K$. Since $U_{K_{0}}=\{ \pm 1, \pm \sqrt{-1}\}$ and $-1=N_{K / K_{0}}(\sqrt{-1}) \in N K$, we just have to check if $\sqrt{-1} \in N K$ or not, equivalently, if $(\sqrt{-1}, d)_{\mathfrak{p}}=1$ for every prime \mathfrak{p} of K_{0} which ramified in K. For $1 \leqslant j \leqslant m, q_{j}$ splits in K_{0}. For every prime \mathfrak{q}_{j} above q_{j}, we have

$$
(\sqrt{-1}, d)_{\mathfrak{q}_{j}}=(\sqrt{-1})^{\frac{q_{j}-1}{2}}=\left\{\begin{array}{cl}
1, & \text { if } q_{j} \equiv 1 \bmod 8 \\
-1, & \text { if } q_{j} \equiv 5 \bmod 8
\end{array}\right.
$$

For $m+1 \leqslant j \leqslant n, q_{j}$ is inert in K_{0}. Let \mathfrak{q}_{j} be the prime above q_{j}. By Lemma 3.3 of [7], we have

$$
(\sqrt{-1}, d)_{\mathfrak{q}_{j}}=\left(N_{K_{0} / \mathbb{Q}}(\sqrt{-1}), d\right)_{q_{j}}=(1, d)_{q_{j}}=1
$$

We know that 2 is ramified in K_{0}. Let \mathfrak{p} be the prime above 2 in K_{0}, then the product formula gives $(\sqrt{-1}, d)_{\mathfrak{p}}=1$. We thus get the values of $r_{2}\left(\Delta / K^{* 2}\right)$ in the table.
Theorem 4.2. Assume d as above, then the Hilbert genus field of $K=\mathbb{Q}(\sqrt{-1}, \sqrt{d})$ is given by the following table:

Case	d	q_{1}	Hilbert genus field E
I	$\pm 1 \bmod 4$	$1 \bmod 8$	$\mathbb{Q}\left(\sqrt{-1}, \sqrt{q_{1}}, \ldots, \sqrt{q_{n}}, \sqrt{\alpha_{1}}, \ldots, \sqrt{\alpha_{m}}\right)$
		$5 \bmod 8$	$\mathbb{Q}\left(\sqrt{-1}, \sqrt{q_{1}}, \ldots, \sqrt{q_{n}}, \sqrt{\alpha_{2}}, \ldots, \sqrt{\alpha_{m}}\right)$
II	$2 \bmod 4$	$1 \bmod 8$	$\mathbb{Q}\left(\sqrt{-1}, \sqrt{2}, \sqrt{q_{1}}, \ldots, \sqrt{q_{n}}, \sqrt{\alpha_{1}}, \ldots, \sqrt{\alpha_{m}}\right)$
		$5 \bmod 8$	$\mathbb{Q}\left(\sqrt{-1}, \sqrt{2}, \sqrt{q_{1}}, \ldots, \sqrt{q_{n}}, \sqrt{\alpha_{2}}, \ldots, \sqrt{\alpha_{m}}\right)$

Proof of Case I. (1) If $q_{1} \equiv 1 \bmod 8$, then by Lemma 4.1, $r_{2}\left(\Delta / K^{* 2}\right)=m+n-1$, and so $r_{2}\left(D_{K} / K^{* 2}\right)=$ $m+n+1$. Similar to the proof of Theorem 3.4, Case I, we see that

$$
\begin{equation*}
\left\{2, q_{1}, \ldots, q_{n-1}, \alpha_{1}, \ldots, \alpha_{m}, \eta\right\} \tag{4.3}
\end{equation*}
$$

is a set of representatives of $D_{K} / K^{* 2}$, where $\eta=x+y \sqrt{d} \in K$ with $N_{K / K_{0}}(\eta)=-1$.
We now show $\Delta / K^{* 2}$ is generated by $\left\{q_{1}, \ldots, q_{n-1}, \alpha_{1}, \ldots, \alpha_{m}\right\}$. It suffices to show that $K\left(\sqrt{\alpha_{j}}\right) / K$, $1 \leqslant j \leqslant m$, are unramified extensions. By Proposition $1.1(1)$, we only need to show that they are unramified at the dyadic prime of K.

Let \mathcal{D} be a dyadic prime of K and $\mathcal{D} \cap \mathcal{O}_{K_{0}}=D$. Since $q_{j} \equiv 1 \bmod 8,4 \mid y_{j}$, in the local field $K_{0, D}=\mathbb{Q}_{2}(\sqrt{-1}), \alpha_{j}=x_{j}+y_{j} \sqrt{-1}=x_{j}+y_{j}+(-1+\sqrt{-1}) y_{j} \equiv x_{j}+y_{j} \bmod \pi^{5}$, where $\pi=-1+\sqrt{-1}$ is a uniformizer of $\mathbb{Q}_{2}(\sqrt{-1})$. Since $x_{j}+y_{j} \equiv \pm 1, \pm 3 \bmod \pi^{5}$, by Lemma $2.2, K_{0, D}\left(\sqrt{\alpha_{j}}\right) / K_{0, D}$ is unramified. Thus $K_{\mathcal{D}}\left(\sqrt{\alpha_{j}}\right) / K_{\mathcal{D}}$ is also unramified.
(2) If $q_{1} \equiv 5 \bmod 8$, similarly, we see that $\left\{q_{1}, \ldots, q_{n-1}, \alpha_{2}, \ldots, \alpha_{m}\right\}$ is a set of representatives of $\Delta / K^{* 2}$.
Proof of Case II. (1) If $q_{1} \equiv 1 \bmod 8$, then by Lemma 4.1, $r_{2}\left(\Delta / K^{* 2}\right)=m+n$. Since $K(\sqrt{2}) / K$ is unramified at the dyadic primes, we see that $\left\{2, q_{1}, \ldots, q_{n-1}, \alpha_{1}, \ldots, \alpha_{m}\right\}$ is a set of representatives of $\Delta / K^{* 2}$.
(2) If $q_{1} \equiv 5 \bmod 8$, then $r_{2}\left(\Delta / K^{* 2}\right)=m+n-2$. It is clear that $\left\{2, q_{1}, \ldots, q_{n-1}, \alpha_{2}, \ldots, \alpha_{m}\right\}$ is a set of representatives of $\Delta / K^{* 2}$.

5 The case $K=\mathbb{Q}(\sqrt{-2}, \sqrt{d})$

In this section, $K_{0}=\mathbb{Q}(\sqrt{-2}), K=\mathbb{Q}(\sqrt{-2}, \sqrt{d})$. Since $\mathbb{Q}(\sqrt{-2}, \sqrt{d})=\mathbb{Q}(\sqrt{-2}, \sqrt{-2 d})$, without loss of generality, we can assume $d \equiv 1$ or $3 \bmod 4$. We write

$$
\begin{equation*}
d= \pm \prod_{j=1}^{n} q_{j} \tag{5.1}
\end{equation*}
$$

with q_{1}, \ldots, q_{n} being distinct odd primes such that $q_{j} \equiv 1,3 \bmod 8$ if $1 \leqslant j \leqslant m$ (i.e., $\left(\frac{-2}{q_{j}}\right)=1$) and $q_{j} \equiv 5,7 \bmod 8$ if $m+1 \leqslant j \leqslant n$. We assume $q_{1} \equiv 3 \bmod 8$ if there exists $j(1 \leqslant j \leqslant m)$ such that $q_{j} \equiv 3 \bmod 8$. Therefore $q_{1} \equiv 1 \bmod 8$ if and only if $q_{j} \equiv 1 \bmod 8$ for all $1 \leqslant j \leqslant m$. For $1 \leqslant j \leqslant m$, choose $\left(x_{j}, y_{j}\right)$ to be a primitive solution of $q_{j}=x^{2}+2 y^{2}\left(\right.$ resp. $\left.q_{1} q_{j}=x^{2}+2 y^{2}\right)$ such that $x_{j}+y_{j} \equiv 1 \bmod 4$ if $q_{j} \equiv 1 \bmod 8\left(\right.$ resp. $j>1$ and $\left.q_{j} \equiv 3 \bmod 8\right)$. Set

$$
\begin{equation*}
\alpha_{j}=x_{j}+y_{j} \sqrt{-2} \tag{5.2}
\end{equation*}
$$

Lemma 5.1. Assume notation as above, then we have the following table:

d	q_{1}	s	$r_{2}\left(\Delta / K^{* 2}\right)$
$1 \bmod 4$	$1 \bmod 8$	$m+n$	$m+n-1$
	$3 \bmod 8$	$m+n$	$m+n-2$
$3 \bmod 4$	$1 \bmod 8$	$m+n+1$	$m+n$
	$3 \bmod 8$	$m+n+1$	$m+n-1$

Proof. For $d \equiv 1 \bmod 4$, there are $m+n$ finite primes ramified in K / K_{0}, and for $d \equiv 3 \bmod 4$, there are $m+n+1$ finite primes ramified in K / K_{0}. We thus get the values of s in the table.

To know $r_{2}\left(\Delta / K^{* 2}\right)$, by Proposition 1.2, it suffices to know $U_{K_{0}} / U_{K_{0}} \cap N K$. Since $U_{K_{0}}=\{ \pm 1\}$, we just have to check if $-1 \in N K$, equivalently, if $(-1, d)_{\mathfrak{p}}=1$ for every prime \mathfrak{p} of K_{0} which ramified in K.

For $1 \leqslant j \leqslant m, q_{j}$ splits in K_{0}. For every prime \mathfrak{q}_{j} above q_{j}, we have

$$
(\sqrt{-1}, d)_{\mathfrak{q}_{j}}=(\sqrt{-1})^{\frac{q_{j}-1}{2}}=\left\{\begin{aligned}
1, & \text { if } q_{j} \equiv 1 \bmod 8 \\
-1, & \text { if } q_{j} \equiv 3 \bmod 8
\end{aligned}\right.
$$

For $m+1 \leqslant j \leqslant n, q_{j}$ is inert in K_{0}. Let \mathfrak{q}_{j} be the prime above q_{j}. By Lemma 3.3 of [7], we have

$$
(-1, d)_{\mathfrak{q}_{j}}=\left(N_{K_{0} / \mathbb{Q}}(-1), d\right)_{q_{j}}=(1, d)_{q_{j}}=1
$$

We know that 2 is ramified in K_{0}. Let \mathfrak{p} be the prime above 2 in K_{0}, then the product formula gives

$$
(\sqrt{-1}, d)_{\mathfrak{p}}=1
$$

We thus get the values of $r_{2}\left(\Delta / K^{* 2}\right)$ in the table.
Theorem 5.2. Assume d as above, then the Hilbert genus field of $K=\mathbb{Q}(\sqrt{-2}, \sqrt{d})$ is given by the following table:

Case	d	q_{1}	Hilbert genus field E
I	$1 \bmod 4$	$1 \bmod 8$	$\mathbb{Q}\left(\sqrt{-2}, \sqrt{q_{1}^{*}}, \ldots, \sqrt{q_{n}^{*}}, \sqrt{\alpha_{1}}, \ldots, \sqrt{\alpha_{m}}\right)$
		$3 \bmod 8$	$\mathbb{Q}\left(\sqrt{-2}, \sqrt{q_{1}^{*}}, \ldots, \sqrt{q_{n}^{*}}, \sqrt{\alpha_{2}}, \ldots, \sqrt{\alpha_{m}}\right)$
II	$3 \bmod 4$	$1 \bmod 8$	$\mathbb{Q}\left(\sqrt{-1}, \sqrt{-2}, \sqrt{q_{1}}, \ldots, \sqrt{q_{n}}, \sqrt{\alpha_{1}}, \ldots, \sqrt{\alpha_{m}}\right)$
		$3 \bmod 8$	$\mathbb{Q}\left(\sqrt{-1}, \sqrt{-2}, \sqrt{q_{1}}, \ldots, \sqrt{q_{n}}, \sqrt{\alpha_{2}}, \ldots, \sqrt{\alpha_{m}}\right)$

Proof of Case I. (1) If $q_{1} \equiv 1 \bmod 8$, then by Lemma 5.1, $r_{2}\left(\Delta / K^{* 2}\right)=m+n-1$, and so $r_{2}\left(D_{K} / K^{* 2}\right)=$ $m+n+1$. Similar to the proof of Case I of Theorem 3.4, we see that

$$
\begin{equation*}
\left\{-1, q_{1}^{*}, \ldots, q_{n-1}^{*}, \alpha_{1}, \ldots, \alpha_{m}, \eta\right\} \tag{5.3}
\end{equation*}
$$

is a set of representatives of $D_{K} / K^{* 2}$, where $\eta=x+y \sqrt{d} \in K$ with $N_{K / K_{0}}(\eta)=-1$.
We now show $\Delta / K^{* 2}$ is generated by $\left\{q_{1}^{*}, \ldots, q_{n-1}^{*}, \alpha_{1}, \ldots, \alpha_{m}\right\}$. It suffices to show that $K\left(\sqrt{\alpha_{j}}\right) / K$, $1 \leqslant j \leqslant m$, are unramified extensions. By Proposition 1.1(1), we only need to show that they are unramified at the dyadic prime of K.

Let \mathcal{D} be a dyadic prime of K and $\mathcal{D} \cap \mathcal{O}_{K_{0}}=D$. Let $\pi=\sqrt{-2}$ be a uniformizer of the local field $K_{0, D}=\mathbb{Q}_{2}(\sqrt{-2})$. Since $q_{j} \equiv 1 \bmod 8, x_{j} \equiv 1 \bmod 2, y_{j} \equiv 0 \bmod 2$ and recall that we choose x_{j}, y_{j} such that $x_{j}+y_{j} \equiv 1 \bmod 4$.

If $x_{j} \equiv 1 \bmod 4, y_{j} \equiv 0 \bmod 4$, then $\alpha_{j}=x_{j}+y_{j} \sqrt{-2} \equiv 1,5 \bmod \pi^{5}$. Thus $K_{0, D}\left(\sqrt{\alpha_{j}}\right) / K_{0, D}$ is unramified.

If $x_{j} \equiv 3 \bmod 4, y_{j} \equiv 2 \bmod 4$, then $\alpha_{j}=x_{j}+y_{j} \sqrt{-2} \equiv 1+\pi^{2}+\pi^{3}$ or $1+\pi^{2}+\pi^{3}+\pi^{4} \bmod \pi^{5}$. By Lemma 2.3, if $\alpha_{j} \equiv 1+\pi^{2}+\pi^{3} \bmod \pi^{5}$, then $K_{0, D}\left(\sqrt{1+\pi^{2}+\pi^{3}}\right)=K_{0, D}$. If $\alpha_{j} \equiv 1+\pi^{2}+\pi^{3}+\pi^{4} \bmod \pi^{5}$, then $K_{0, D}\left(\sqrt{1+\pi^{2}+\pi^{3}+\pi^{4}}\right) / K_{0, D}$ is also unramified. Hence $K_{\mathcal{D}}\left(\sqrt{\alpha_{j}}\right) / K_{\mathcal{D}}$ is unramified.
(2) If $q_{1} \equiv 3 \bmod 8$, then $r_{2}\left(\Delta / K^{* 2}\right)=m+n-2$. Similar to the proof of (1), we see that

$$
\left\{q_{1}, \ldots, q_{n-1}, \alpha_{2}, \ldots, \alpha_{m}\right\}
$$

is a representative set of $\Delta / K^{* 2}$. So E is the Hilbert genus field of K.

Proof of Case II. The proof of Case II is similar to that of Case I, just recall that $K(\sqrt{-1}) / K$ is an unramified extension.

Acknowledgements This work was supported by National Key Basic Research Program of China (Grant No. 2013CB834202) and National Natural Science Foundation of China (Grant No. 11171317). The authors thank Prof. Qin Yue for suggesting this problem to the second author and for his many helpful comments. The authors are grateful to the anonymous referees for useful comments and suggestions.

References

1 Bae S, Yue Q. Hilbert genus fields of real biquadratic fields. Ramanujan J, 2011, 24: 161-181
Conner P E, Hurrelbrink J. Class Number Parity, Ser Pure Math 8. Singapore: World Scientific, 1988
3 Herglotz G. Über einen Dirichletschen Satz. Math Z, 1922, 12: 225-261
4 Lang S. Cyclotomic Fields I and II. GTM 121. New York: Springer-Verlag, 1990
Neukirch J. Class Field Theory. Berlin-Heidelberg-New York-Tokyo: Springer-Verlag, 1986
6 Sime P. Hilbert class fields of real biquadratic fields. J Number Theory, 1995, 50: 154-166
7 Yue Q. The generalized Rédei matrix. Math Z, 2009, 261: 23-37
8 Yue Q. Genus fields of real biquadratic fields. Ramanujan J, 2010, 21: 17-25

[^0]: *Corresponding author

