
BIRCH’S LEMMA OVER GLOBAL FUNCTION FIELDS

YI OUYANG AND SHENXING ZHANG

Abstract. We obtain a function field version of Birch’s Lemma, which reveals

non-torsion points in quadratic twists of an elliptic curve over a global function

field, where the quadratic twists have many prime factors. The proof is based
on Brown’s Euler system for Heegner points of function fields and Vigni’s

result.

1. Introduction and main results

In this note, we shall give a function field version of Coates-Li-Tian-Zhai’s gen-
eralization of Birch’s Lemma.

1.1. Birch’s lemma. Let E be an elliptic curve over Q of conductor N , and let f :
X0(N)→ E be a modular parametrization of E such that the cusp [∞] ∈ f−1(O).
Assume f([0]) /∈ 2E(Q). Assume l > 3 is a prime number such that l ≡ 3 mod 4
and every prime factor p of N splits in Q(

√
−l), i.e., the Heegner Hypothesis is

satisfied for (Q(
√
−l), N). Then Birch showed that E(−l)(Q) is of Mordell-Weil

rank 1, where E(−l) is the quadratic twist of E by −l.
Recently Birch’s Lemma was generalized by Coates, Li, Tian and Zhai in [CLTZ,

§2]. If there is a good supersingular prime q1 for E such that q1 ≡ 1 mod 4 and
N is a square module q1, they showed that for any fixed integer k ≥ 1, there are
infinitely many square free integers M with exactly k prime factors, such that the
Mordell-Weil rank of the quadratic twist E(M) is 1. In particular, E = X0(14) with
q1 = 5 and E = X0(49) with q1 = 5 are two examples satisfying the assumptions.

1.2. Heegner points in function field and Vigni’s result. Let C be a ge-
ometrically connected, smooth, projective algebraic curve over a finite field F of
characteristic p > 2. Denote F := F(C) the function field of C. Let ∞ be a fixed
closed point of C and denote OF the Dedekind domain of elements of F regular
outside ∞. Let F∞ be the completion of F at ∞ and let C be the completion of a
fixed algebraic closure of F∞.

Suppose E/F is a non-isotrivial (i.e., j(E) /∈ F) elliptic curve defined over F .
We assume that E has split multiplicative reduction at ∞. This assumption is not
essential since we can replace F by a suitable finite separable extension and ∞ by
another closed point. Then the conductor of E can be written as n∞ with n an
ideal of OF . As explained in [GR], there is a nonconstant morphism

f : X0(n)→ E (1)
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defined over F , where X0(n) is the compactified Drinfeld modular curve of level n.
We translate the modular parametrization f to ensure f−1(O) containing a fixed
cusp P0.

Let K = F (
√
l) (l ∈ OF ) be a quadratic extension of F , and OK be the integral

closure of OF in K. Write Gal(K/F ) = {1, τ}.

Assumption I. Assume ∞ is ramified in K and h := h(OK) is odd.

Note. Assumption I means that the class number of K and the degree of ∞ are
both odd, and the constant field of K is still F. By abuse of notation, we denote
by ∞ the only place of K above ∞ and identify Gal(K∞/F∞) = Gal(K/F ).

Assumption II. The pair (K, n) satisfies the Heegner Hypothesis, i.e., every
prime dividing n splits in K.

Note. By Assumption II, nOK = NNτ with N an ideal of OK .

Fix an nonzero ideal M of OF which is prime to n. Then we can construct a
Drinfeld-Heegner point as follows. Let OM = OF +MOK be the order of conductor
M in OK . The proper ideal NM = N ∩ OM of OM satisfies

OM/NM
∼= OK/N ∼= OF /n.

Thus the two lattices OM and N−1M of C give a pair (ΦM,Φ
′
M) of Drinfeld modules

of rank 2 with a cyclic n-isogeny, hence define a point PM on X0(n). Furthermore,
PM is defined over the ring class field HM of conductor M of K. As described in
[B2, Chapter 2], this field is an abelian extension of K which is unramified outside
primes dividing M and splits completely at ∞. Thus we can embed HM ⊂ K∞,
and we regard HM as a subfield of K∞ from now on.

Denote

xM = f(PM).

For a complex character χ of G = Gal(HM/K), let

E(HM)χC := {x ∈ E(HM)⊗ C : xσ = χ(σ)x for all σ ∈ G}
be the χ-eigenspace of E(HM)⊗ C. Denote

χ−1 -TrHM/K =
∑
σ∈G

χ−1(σ)σ.

Vigni in [V] shows that

χ−1 -TrHM/K(xM) 6= 0 in E(HM)χC =⇒ dimCE(HM)χC = 1. (2)

For a quadratic extension K(
√
M) of K in HM with M ∈ OF , let χM be the

associated quadratic character. Under certain assumptions, we will show that
χM -Tr(xM) is non-torsion for some M .

1.3. Main results. For a finite prime q of OF , denote

aq = #κ(q) + 1− Ẽ(κ(q)),

where Ẽ is the reduced curve of E and κ(q) is the residue field of OF at q. Let
dq be the order of q. Let q∗ ∈ OF be a generator of qdq such that q∗ is a square
in K∞. This is possible since ∞ is ramified in K/F , any generator of qdq is of
even valuation at ∞ in K∞. Adjust it by a suitable root of unity we can make it a
square in K∞. Let q = q∗ or lq∗ such that τ(

√
q) =

√
q.
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Definition. A finite prime q is called sensitive for E if it satisfies (i) aq = 0, (ii)
#κ(q) ≡ 1 mod 4, and (iii) the Artin symbol [n, F (

√
q∗)/F ] = 1.

Assumption III. Assume E possesses a sensitive prime q1, which is inert in K.

Let
dn := the order of n in Pic(OF ) (3)

and n∗ be a generator of ndn such that n∗ is a square in K∞. Then by Hasse’s
reciprocity law and the condition that the Hilbert symbol (q∗,−n∗)∞ = 1,

[q1, F (
√
−n∗)/F ] = [n, F (

√
q∗1)/F ] = 1.

Definition. For each integer k ≥ 2, Σk is the set of finite primes q 6= q1 of OF
satisfying (i) #κ(q) ≡ 1 mod 4, (ii) aq ≡ 0 mod 2k, (iii) q is inert in K, (iv)
[q, F (

√
−n∗)/F ] = 1.

Note. We will see in Lemma 2.5 that Σk is infinite if Assumption III is satisfied.

Let us recall the Atkin-Lehner operator wn acts on a pair (D,Z) ∈ X0(n) of
Drinfeld modules as follows:

wn =
∏
p|n

wp, wp(D,Z) = (D/Zpk , (Dpk + Z)/Zpk), (4)

where pk‖n and Dpk(resp. Zpk) is the subgroup scheme of D(resp. Z) annihilated

by pk. Let
w := wdnn . (5)

If we compose f with multiplication by a suitable odd integer, we may assume
f(Pw0 ) is of order a power of 2.

Assumption IV. f(Pw0 ) /∈ 2E(F ).

Theorem A. Assume Assumptions I-IV are satisfied. For each integer k ≥ 0, let
q2, . . . , qk be distinct primes in the set Σk and M = q1 · · · qk. Then E(F (

√
lM))−,

the τ = −1 part of E(F (
√
lM)), is infinite. Moreover, E(lM)(F ) has Mordell-Weil

rank one and the BSD conjecture holds for E(lM)/F .

Theorem B. Under Assumptions I-IV, if the degree of q1 is even, then for each
integer k ≥ 1, there are infinitely many square-free M having exactly k prime
factors, such that E(lM)(F ) has Mordell-Weil rank one and the BSD conjecture
holds for E(lM)/F .

2. Proof

2.1. Quadratic subfields.

Lemma 2.1. Let q be a finite prime of OF unramified in K.
i) The order of q in the ideal class group of OF divides h.
ii) If the size of its residue field κ(q) is ≡ 1 mod 4, then Hq contains a unique

quadratic extension of K, which is K(
√
q).

Proof. i) Let a be a generator of qd where d is the order of q in Pic(OF ). We claim
that d is odd. If not, qd/2OK is principal since h is odd by Assumption I. Let b
be a generator of qd/2OK , then b2 = aε for some ε ∈ F×, and K = F (

√
aε). Since

the degree of ∞ is odd, this implies that the valuation of aε at ∞ in OF is even,
contradicts to the fact that ∞ is ramified in K.
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The order of qOK in Pic(OK) divides the greatest common divisor (d, h), the
ideal (qOK)(d,h) is principal and generated by some c ∈ OK . If d - h, let α =
d/(d, h), then c ∈ a1/αF×. But α > 2, this is impossible! Hence d | h.

ii) By class field theory, the Galois group

Gal(Hq/HK) =
(OK/qOK)×

(OF /q)×

has cardinality #κ(q) + 1 (see [B2, (2.3.8)]). By Assumption I, [Hq : K] ≡ 2 mod 4
and there exists a unique quadratic sub-extension in Hq/K, which is denoted by

K(
√
a′).

We see that q is the only prime ramified in K(
√
a)/K and K(

√
a′)/K. Then

a′/a has even valuations at every finite places, (a′/a)OK = I2 for a fractional ideal

I of OK . Since h is odd, I must be principal, K(
√
a′) = K(

√
εa) with ε ∈ F×.

Hence we may assume a′ = εa.
Notice that ∞ is ramified, K∞ and F∞ have the same residue fields. Since a′ is

a square in K∞, it follows that K(
√
a′) = K(

√
q). �

2.2. Heegner points and the Atkin-Lehner operator. Let Λ,Λ′ be two OF -
lattices of rank 2 in C with Λ′/Λ ∼= OF /n. They define a pair of Drinfeld modules
with an n-isogeny, thus a point on X0(n), which we denote by P (Λ,Λ′).

For a nonzero ideal a of OM, the Galois group acts on the set of Heegner points
by

P (a, aN−1M )[α,HM/K] = P (aα−1, aα−1N−1M ), (6)

where α is a nonzero fractional ideal prime to lM and [−, HM/K] is the Artin
symbol, see [B2, §4.5]. The Atkin-Lehner operator wn acts on the Heegner points
by

wnP (a, aN−1M ) = P (aN−1M , aN−1). (7)

Let
PM := P (OM,N

−1
M ),

then (see [B2, 4.6.17])

τP
[Nτ ,HM/K]
M = wn(PM). (8)

Let H0 = K(
√
q1, . . . ,

√
qk). This is a subfield of HM and [HM : H0] is odd.

Lemma 2.2. Let S be the orbit of PM under Gal(HM/H0)-action, then wnS = τS
set-theoretically.

Proof. This is because that the restriction of [Nτ , HM/K] on F (
√
qi) is

[n, F (
√
qi)/F ] = [n, F (

√
q∗i )/F ] = 1. �

Lemma 2.3. w has a fixed point on X0(n).

Proof. Since the degree of ∞ in F is odd, we may choose c ∈ C − F∞ such that
c2 generates ndn . Note that dn is odd by Lemma 2.1, write dn = 2t + 1. Let
Λ = n + n−tc−1 and Λ′ = OF + n−tc−1 be two lattices in C, then Λ′/Λ ∼= OF /n
and

wP (Λ,Λ′) = P (n−tΛ′, n−t−1Λ)

= P (n−t + n−2tc−1, n−t +OF c)
= P (n−tc−1 + n−2tc−2, n−tc−1 +OF )

= P (Λ,Λ′) ∈ X0(n).
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That is to say, P (Λ,Λ′) is a fixed point of w. �

Lemma 2.4. The morphism f + f ◦ w : X0(n)→ E is constant.

Proof. We can write f as the composite of

X0(n)→ J0(n) = Jac(X0(n))
g→ A = J0(n)/(Tp − ap; p - n)

h→ E.

Here Tp is the p-th Hecke operator, h is an isogeny. Let fA : P 7→ g([P ]− [P0]) be
the composite of the first two maps.

By definition, w is a linear involution on J0(n) as

w([P ]− [P0]) = [Pw]− [Pw0 ].

It induces a linear involution w = ±1 on A since w ◦ Tn = Tn ◦ w.
If w = +1, then

(fA − fA ◦ w)(P ) = w(fA − fA ◦ w)(P )

=w ◦ g(([P ]− [P0])− ([Pw]− [P0])) = w ◦ g([P ]− [Pw])

=g([Pw]− [P ]) = (fA ◦ w − fA)(P ).

The image of fA−fA ◦w lies in A[2], which is finite. Thus fA−fA ◦w is a constant.
Let Q be a fixed point of w, then

fA(Pw0 ) = fA(Pw0 )− fA(P0) = fA(Qw)− fA(Q) = O

and f(Pw0 ) = O, which contradicts to Assumption IV. Hence w = −1.
On one hand,

2g([P ] + [Pw]− [P0]− [Pw0 ]) = fA(P ) + fA(Pw) + wfA(P ) + wfA(Pw) = 0.

On the other hand,

g([P ] + [Pw]− [P0]− [Pw0 ])

=(fA + fA ◦ w)(P )− g([Pw0 ]− [P0])

=(fA + fA ◦ w)(P )− fA(Pw0 ).

The image of fA + fA ◦ w lies in fA(Pw0 ) +A[2], which is finite. Thus fA + fA ◦ w
is constant, so is f + f ◦ w = f(Pw0 ). �

Lemma 2.5. Assume E possesses a sensitive prime q1, which is inert in K. Then
for each integer k ≥ 2, Σk is infinite of positive density in the set of primes.

Proof. Set J = F (
√
−n∗, E[2k]), then K ∩ J = F and q1 is unramified in J . There

is a unique element σ in ∆ = Gal(JK/F ), whose restriction to K is τ and whose
restriction to J is the Frobenius automorphism of some prime of J above q1.

Assume q is a finite prime not dividing lq1n, whose Frobenius automorphisms in
∆ lie in the conjugate class of σ. The characteristic polynomials of the Frobenius
automorphisms of q1 and q acting on the 2-adic Tate module T2(E) are X2+#κ(q1)
and X2 + aqX + #κ(q), respectively. Since E[2k] = T2(E)/2kT2(E), we have
aq ≡ 0 mod 2k and #κ(q) ≡ #κ(q1) mod 2k. Also q is inert in K since q1 is inert
in K, and q splits in F (

√
−n∗) since q1 splits in this field. Hence Σk contains all

such primes and it follows that Σk is infinite of positive density in the set of all
primes by the Chebotarev density theorem. �

Lemma 2.6. We have E(H0)[2∞] = E(F )[2].
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Proof. Since in every subfield of H0 which is strictly larger than F , at least one
prime dividing lq1 · · · qk ramifies, but only the primes dividing 2n∞ may ramify in
the field F (E[2∞]), we have

E(H0)[2∞] = E(F )[2∞] = E(F )[2]. (9)

Note that q1 is a sensitive prime for E, reduction modulo q1 is injective on
E(F )[2∞], and there are #κ(q1)+1 points with coordinates in κ(q1) on the reduced

curve Ẽ. It follows that E(F )[2∞] has order at most 2. �

2.3. Euler system. For a factor d of M, let d =
∏
qi|d

qi. We have a Euler system

as follows (see [B2, (4.6.8), (4.8.3)]):

Proposition 2.7. For q | Md , we have TrHqd/Hd
xqd = aqxd.

Let ψM = TrHM/H0
(xM). Define K(

√
d)-points yd, zd of E by

zd := χd -TrHM/K(xM) = χd -TrH0/K(ψM ), (10)

yd := χd -TrHd/K(xd). (11)

Then zM = yM and zd = bdyd where bd =
∏
q|Md

aq = 2ked for d 6= M.

2.4. Finish of the proof.

Proof of Theorem A. If k = 0, y1 = TrHK/K(x1), y1 + τ(y1) = h(OK)f(Pw0 ) =
f(Pw0 ). If y1 is torsion, then there is an odd numberm such thatmy1 ∈ E(K)[2∞] =
E(F )[2]. It follows that f(Pw0 ) = m(y1 + τ(y1)) = 2my1, which contradicts to
Assumption IV. Hence y1 is non-torsion, so is 2y1 ∈ E(K)−.

Now assume k ≥ 1. Let σ ∈ Gal(H0/K) which maps
√
q1 to −√q1 and fixes all

other
√
qi for i > 1. Then

σ(ψM ) + ψM = TrHM/K(
√
qi,i>1)(xM) = aq1

TrHM
q1

/K(
√
qi,i>1)(xM

q1

) = 0.

Since aq1
= 1,

σ(vM ) + vM = TrHM/K(xM) = aq1
TrHM

q1

/K(xM
q1

) = 0,

where

vM = TrHM/K(
√
M)(xM) = TrH0/K(

√
M)(ψM).

Then yM = vM − σ(vM ) = 2vM , σ(yM ) + yM = 0.
By Lemma 2.2 and Lemma 2.4, we have

ψM + τ(ψM ) = [HM : H0]f(Pw0 ) = f(Pw0 ).

Thus yM + τ(yM ) = 2(vM + τ(vM )) = 0. Hence yM ∈ E(F (
√
lM))−. Similarly, we

have yd + τ(yd) = 0 if q1 | d.
By the definition of yd, we have

yM +
∑

d|M,d 6=M

zd = 2kψM .

Let

uM = ψM −
∑

d|M,d6=M

edyd,
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then yM = 2kuM . Since ed = 0 if q1 - d, it follows that uM + τ(uM ) = f(Pw0 ).
If uM is torsion, then there is an odd number m such that muM ∈ E(H0)[2∞] =
E(F )[2]. It follows that f(Pw0 ) = m(uM + τ(uM )) = 2muM , which contradicts to
Assumption IV. Hence uM is non-torsion, so is yM .

The rest of the proof is similar to [V, Theorem 7.1]. By [V, Theorem 6.1], we
can take a suitable rational prime t such that the Ft-vector space Selt(E/HM)χM

is one-dimensional and E[t](HM) = 0. Since the Selmer groups can be controlled
as

Selt(E/F (
√
lM))χM ↪→ Selt(E/K(

√
M))χM ↪→ Selt(E/HM)χM ,

they must be all one-dimensional Ft-vector spaces.
We know that E(lM)(F ) ∼= E(F (

√
lM))−. By injectivity of the restriction map,

dimFt Selt(E
(lM)/F ) = 1 and X(E(lM)/F )[t] = 0. By the result of Tate, Milne,

Kato and Trihan ([V, Theorem 7.2]), the conjecture of BSD holds for E(lM)/F . �

Proof of Theorem B. If the degree of q1 is even, the 2-valuation of #κ(q1) is r ≥ 2,
then the 2-valuation of #F − 1 is less than r. Take q2, . . . , qk in Σk+r, we have
#κ(q) ≡ #κ(q1) mod 2r as in Lemma 2.5. Thus the degree of qi is even and then
qi = q∗i . Therefore, M has exactly k prime factors and the result follows from
Lemma 2.5. �
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