Principles of Program Analysis:

Control Flow Analysis

Transparencies based on Chapter 3 of the book: Flemming Nielson,
Hanne Riis Nielson and Chris Hankin: Principles of Program Analysis.

Springer Verlag 2005. ©Flemming Nielson & Hanne Riis Nielson & Chris
Hankin.

The Dynamic Dispatch Problem

proc p(procval q, val x, res y) istn

: P
[call p(pl1,1,v)] S5
| L which procedure

oL
[call q =,y is called?

' 2
[call p(p2,2,vféé

endfw

These problems arise for:
e imperative languages with procedures as parameters
e Object oriented languages

e functional languages

Example:

let £ = fn x => x 1;
g =fn y => y+2;
h = fn z => z+3
in (£ g) + (£ h)

The aim of Control Flow Analysis:
For each function application, which functions may be applied?

Control Flow Analysis computes the interprocedural flow relation used
when formulating interprocedural Data Flow Analysis.

Syntax of the Fun Language

Syntactic categories:

e € Exp expressions (or terms)
t € Term terms (or expressions)
f,x € Var variables
¢ € Const constants
op € Op binary operators
¢ € Lab labels
Syntax:
e 1= ¢t
t = clx|fnxz =>eg|fun f x =>eg|e1 e

| if eg then eq else en | let x = e1 in es | e1 Op es

Examples:

e ((fn x => X1)2 fn y => y3)5

o (let f = (fn x => (x! 12)3)4,
in (let g = (fn y => y°)%;

in (let h = (fn z => z7)B
in ((f9 g10)11 + (f12 h13)14)15)17

e (let g = (fun f x => (£} (fn y => y2)3)4)°
in (g (fn z => z7)%)°

Abstract O-CFA Analysis

e Abstract domains
e Specification of the analysis

e \Well-definedness of the analysis

Towards defining the Abstract Domains

The result of a O-CFA analysis is a pair (C,ﬁ):

o C is the abstract cache associating abstract values with each labelled
program point

e p is the abstract environment associating abstract values with each
variable

Example:

((fn x => X1)2 fn y => y3)5

Three guesses of a O-CFA analysis result:

(Ce, pe) (C., pl (CZ,pe)
1 {fn y => y3} {fn y => y3} {fn x => Xl,fn y => y3}
2 {fn X => Xl} {fn X => Xl} {fn X => Xl,fn Yy => y3}
3 0 0 {fn x => x! fn y => y3}
4 | {tny =>y’} | {fny => y3} | {fan x = x},fn y = y7}
5 | {fny=>y’} | {fny = y3} | {fa x = x},fn y = y7}
x | {fn y => y3} 0 {fn x => x! fn y => y3}
y fj] {fn x => xl,fn y => y3}

Example:

let g = (fun £ x => (f! (fn y => y2)3)4)°
in (g® (fn z => 27)%)?

Abbreviations:

f = fun f x => (f!1 (fn y => y2)3)%
id. = fnz => z'

One guess of a O-CFA analysis result:

Cp() = {f} Cp(6) = {f} pn(f) = {f}
Cp(2) = 0 Cp(7) = 0 np(g) = {f}
Clp(3) — {'dy} Clp(8) — {le} ﬁ|p(X> — {id?J’idz}
€|p(4) — @ €|p(9) — Q) ﬁlp(Y) — Q)
Co(® = {f} Gy(10) = 0 pz) =0

Abstract Domains

Formally:
€ Val = 7P(Term) abstract values
p € Env — Var — Val abstract environments
C € Cache = Lab — Val abstract caches

An abstract value v is a set of terms of the forms

o fn = => ¢

o fun f x => eg

Control Flow Analysis versus Use-Definition chains

The aim: to trace how definition points reach use points

e Control Flow Analysis
— definition points: where function abstractions are created

— use points: where functions are applied

e Use-Definition chains
— definition points: where variables are assigned a value

— use points: where values of variables are accessed

Specification of the 0-CFA

When is a proposed guess (E,ﬁ) of an analysis results an accept-
able 0O-CFA analysis for the program??

Different approaches:
e abstract specification
e syntax-directed and constraint-based specifications

e algorithms for computing the best result

Specification of the Abstract O-CFA

(C,p) =e means that (C,p) is an acceptable Control Flow Analysis
of the expression e

The relation = has functionality:

= : (Cache x Env x Exp) — {true, false}

Clauses for Abstract O-CFA (1)

(C,p) = ! always

(C,p) =t iff pz) C C0)

(C,p) = (let = = tlil in téQ)e
it (Cp) =t A (Cp) =2 A
C(¢1) Cp(z) A C(L2) CCO)

)

Clauses for Abstract 0-CFA (2)

(C,75) = (if téo then tﬁl else tgz)e

ﬂ‘

(é?l/o\) ‘: t?O A R
(C7ﬁ) |: t]_l A (Caﬁ)

Ao
= t2A

C(e1) CC) A Ctr) CC)

~ 14 14
(C,p) = (1 op 7522)Z

ﬂ

~ R E ~ R
(C,,O) |: t]_l A (Cap)

o
=t

Clauses for Abstract 0-CFA (3)

(C,p) = (fn 2 => tQ) iff {fn & => {0} C C(£)

= b1 0
(C,p0) = (tll 7122)6 , R ,
iff (C,p) =t A (Cp) Ety A

o (ERESED < co) I

C(£2) Ca(z) A Clo) S C(H)

C

)

Clauses for Abstract 0-CFA (4)

(C,p) = (fun f = => eg)? iff {fun f z => eg} C C(¥)

= b1 L

(G, p0) = (tll tQQ)E

. ~ PR e ~ PR e

it (Cp) =t A (Cp) =2 A

o (ERENED < co IR

C(L2) C pz) A Cllg) C CO) A

o (ERRREED < o) IS

C(l) C p(x) A C(fg) C C(O) A
{fun f @ => 0} C 5(f))

Example:

Two guesses for ((fn x => x1)2 (fn y => y3)*)°

(Cer 7o) (¢, 4l
1| {fny => 3>} | {fny => y°}
2 | {fn x => x!'} | {fn x => x!}
3) 0
4 | {fny =>y3} | {fny => y3}
5 {fny =y} | {fny => y3}
x | {fny => y3} 0
y 0 0

Checking the guesses:

(Eea ﬁe) |=

(Ce, Pt

£~ ((fn x => x1)? (fn y => y3)2

((fn x => X1)2 fn y => y3)5

Well-definedness of the Abstract O-CFA

Difficulty: The clause for function application is not of a form that
allows us to define (C, p) = e by Structural Induction in the expression e

€, 7) = (1)
iff () B A ()R A
(VEn z => t2) € C(41) 1 (C,p) =2 A
C(L2) C p(x) A C(to) € C(0)

Solution: The relation = is defined by coinduction, that is, as the
greatest fixed point of a functional.

The functional O

The clauses for = define a function:

O : ((Cache x Env x Exp) — {true, false})
— ((Cache x Env x Exp) — {true, false})

Example:
(C,7p) = (let =z = t1 in t 214
ifft (G ER A G EE A) Cale) A Ce) C @)

becomes

2(Q)(C.7: (et vt))
(Capat]_) A Q (Capa 2) A C(gl) g ﬁ(w) A C(KQ) g C(E)

Properties of O

Q is a monotone function on the complete lattice
((CaT(:\he x Env x Exp) — {true, false}, C)
where the ordering L is defined by:

Q1 C Qa iff V(C, p,e): (Q1(C,p,e) = true) = (Q2(C,p,e) = true)

Hence Q has fixed points and we shall define = coinductively:

= is the greatest fixed point of Q

Tarski's Theorem:

A monotone function on a complete lattice has a complete lattice of
fixed points and in particular a least and a greatest fixed point.

Q : ((Cache x Env x Exp) — {true, false})
— ((Cache x Env x Exp) — {true, false})

Coinductive definition:

afp(Q) = | {P]|Q(P) 1 P}

Inductive definition:

{P| o) C P}
| |Q"(L)

Ifp(Q)

assuming that Q(P)(C,p,e) only depends
on finitely many values of P

Inductive Definition

P =Ifp(Q) =| |Q"(L) assuming ---

P can be expressed as to check P(C, p,e)
P(C, p,zb) iff p(z) C C(¥) simply unfold using the clauses:
P(C,ﬁ, (let z = t‘il in tgz)g) iff if it terminates

and vields true: then it holds
and yields false: then it does not
if it loops
because it repeats itself:
then it does not hold
but we cannot detect it ---

P(C,p,t1) A P(C o, t2)
C(£1) C p(z) A C(€2) C C(4)

simply because P = Q(P)

O is a number
n—-+1is a number iff n is a number

(Peano’'s Axioms) 2 = 0+1+41 is a number

because 041 is because O is

Inductive Definition
to prove: V(C,p,e) : P(C,p,e) = R(C,p,e)
show: R(C,p,z%) if p(z) C C(¥) axiom

=~ ¥ =~ ¥/
R(Capatll) R(Capa t22)
R(C,p, (let o = i1 in £2)0)
if C(¢1) C p(z) AC(k) C C(0)

inference rule

R(n)
R(n+1)

e mathematical induction: R(0),
e structural induction

e induction on the shape of inference tree

Coinductive Definition

P=gfp(Q)=| {R|RC Q(R)}

P can be expressed as

P(C, p,2%) iff p(z) C C(0)
P(C,p, (let z = tgl in th)E) iff
~ -/ ~ -/
f(CHO?tll) A P(/\Capa tQQ)A

C(€1) € p(xz) ANC(£2) C C(4)

simply because P = Q(P)

to check P(C,p,e)

find some R such that
R(C, p,e) can be shown to hold
that is prove:
R(C, p, =) if p(z) € C(0)
=~ 0 =~ 0
R(Capat]_l) R(C7p7 t22
R(C,p, (let z = tlil in téQ)g)

if C(¢1) C p(x) A C(2) C C(0)

and use P=|{R| RC Q(R)}

Coinductive Definition

to prove: V(C,p,e) : P(C,p,e) = R(C,p,e)

e try to prove it using P = Q(P)
i.e. by using the way P is expressed

e if it fails try to do induction (on the structure or size) of e

e if it fails --- you will nheed an extra insight

Example: loop

let g = (fun £ x => (f! (fn y => y2)3)4)°
in (g® (fn z => 27)%)?

Abbreviations:

f = fun f x => (f!1 (fn y => y2)3)%
id. = fnz => z'

One guess of a O-CFA analysis result:

Cp() = {f} Cp(6) = {f} pn(f) = {f}
Cp(2) = 0 Cp(7) = 0 np(g) = {f}
Clp(3) — {'dy} Clp(8) — {le} ﬁ|p(X> — {id?J’idz}
€|p(4) — @ €|p(9) — Q) ﬁlp(Y) — Q)
Co(® = {f} Gy(10) = 0 pz) =0

Naively checking the solution gives rise to circularity:

To show

(Clpaﬁlp) |: loop
we have (among others) to show

(Cips Aip) = (g® (fn z => 27)8)°

and to prove this we have (among others) to show

(Cips Bip) E (£ (fn y => y2)3)4

and to show this we have (among others) to show

(Cis p1p) = (£ (fn y => y2)3)4

because C;,(3) C fi,(x), Cp(4) C C,(4) and f € pi,(£).

The Lesson

The co-inductive definition solves the circularity:

It allows us to assume that (E|p,ﬁ|p) = (£1 (fn y => y2)3)% holds

at the “inner level” and proving that it also holds at the “outer
level”

An inductive definition does not give us this possibility!

heoretical Properties:

e Structural operational semantics

e semantic correctness

e the existence of least solutions

Choice of Semantics

e Ooperational or denotational semantics?

— an operational semantics more easily models intensional properties

e small-step or big-step operational semantics?

— a small-step semantics allows us to reason about looping programs

e Ooperational semantics based on environments or substitutions?

— an environment based semantics preserves the identity of functions

Configurations and Transitions

Semantic categories:

v € Val values

p € Env environments
defined by:

v = c|closet in p closures

p = [1]plz— o]

Transitions have the form

prer — e

meaning that one step of computation of the expression e1 in the envi-
ronment p will transform it into e-.

Transitions

ot xt vt if z € dom(p) and v = p(x)

pb (fn = => ep)? (close (fn z => eg) in pg)*
where pg = p | FV(fn = => eg)

pb (fun f = => eg)? (close (fun f = => eg) in pg)*
where pg = p | FV(fun f = => eg)
static scope!

Intermediate Expressions and Terms

e € IExp intermediate expressions

it € ITerm intermediate terms

extending the syntax:
je = itt

it = c|lax|fnxz => ey |fun f x => eg |ie1 ieo
| if deg then e1 else ep | let x = ie1 in ep |ie1 Op iep

| close t in p | bind p in ie

The correct form of transitions

pFieq 1€9

ransitions

pFieq ie’l pFieo 'L'e’2
pt (ie1 ie2)t — (ie] ien)* p (vgl ieo)t (vil ieh)t
pt ((close (fn z => e1) in p1)@ véz)é (bind pq[z — vo] in e1)t
pF ((close (fun f = => e71) in pl)gl ,ng)e (bind ps[z — vo] in el)e

where p> = p1[f — close (fun f = => e1) in pq]

p1 ey ie’l

pF (bind pq in deq)? (bind p7 in ie’l)f

pt (bind pq in fulil)ﬁ vqt the outermost label remains the same

Example:

[1 F ((fnx=>x")% (fny => y7)*)°

. ((close (fn x => x') in [])? (fn y => y2)*)°

- ((close (fn x => x') in [])? (close (fn y => y°) in [])*)°®
- (bind [x — (close (fn y => y°) in [])] in x1)°

- (bind [x — (close (fn y => y°) in [])] in

(close (fn y => y3) in [D1)®

— (close (fn y => Y3) in [])5

Transitions

p - 1eg i66

p F (if iep then e else es)?

p b (if truefo then teil else téQ)e tti

p b (if falsefo then t“il else téz)g t

pFieq z'e’l
pF (let = = jeq in e5)? (let = = i€ in ep)t

pbF (let = = 0’1 in 62)6 (bind [z +— v] in 62)€

p ey ie’l pFieo

(if ie, then ej else es)t

’L€2

pF (ie1 op ien)t (ie] op iex)t ok (Uil op ies)t

p (vil op ’ng)e vt if v =01 OP vy

14 .
(vil op ieh)t

Example:

[] F (let g = (fun f x => (f1 (fn y => y2)3)4)°
in (g6 (fn z => z7)8)9)10
(let g = f° in (g6 (fn z => z7)8)9)10
(bind [g+— f] in (g° (fn z => 27)8)7)10
(bind [g — f] in (f® (fn z => z7)8)?)10
(bind [g+— f] in (£f© id®)9)10
(bind [g — f] in (bind [f — f][x — id;] in (f1 (fn y => y2)3)%)9)10
(bind [g+— f] in (bind [f — f][x — id;] in
(bind [f — f][x — idy] in (f1 (fn y => y2)3)%)4)?)10

Abbreviations:

f = close (fun £ x => (f! (fn y => y2)3)%) in []
idy = close (fn y => y2) in []
id, = close (fn z => z/) in []

Semantic Correctness

A subject reduction result: an acceptable result of the analysis remains
acceptable under evaluation

Analysis of intermediate expressions

= : Y 4
(C,p) = (bind p in ztOO)Z R R
iff (C,p) =ity A Cllg) CCU) N pRp

(C,p) = (close tp in p)¢
iff {to} CCU) N pRp

Correctness Relation

The global abstract environment, p models all the local environments
of the semantics

Correctness relation

R : (Env x E/rTv) — {true, false}

We demand that p R p for all local environments, p, occurring in the
intermediate expressions

Define

p R p iff Ve € dom(p) C dom(p) Yty Yoz :
(p(x) =close ty in pz) = ({Hz € p(x) A pz R p)

Example:

Suppose that:

p = [xrr+ close t1 in p1][y — close to in po]
p1 = []

p> = [x+ close t3 in p3]

p3 = |[]

Then p R p amounts to {t1,t3} C p(x) A {ta} C p(y).

Alternative definition of Correctness Relation

Split the definition of R into two components:

V: (Val x (Env x Val)) — {true, false}
R : (Env X FfrTv) — {true, false}
and define

vV (p, V) iff ViVp:(v=closetinp) = (t€v A p R p)
pRp iff Vzedom(p) C dom(p):p(z) V (p,p(z))

Correctness Result

)
~
®
)
—
~
&
)
—

Formal details of Correctness Result

T heorem:

If p R pand ptie — ie’ then (C,p)l=ie implies (C, p)=ie’.

Intuitively:

If there is a possible evaluation of the program such that the
function at a call point evaluates to some abstraction, then this
abstraction has to be in the set of possible abstractions com-
puted by the analysis.

Observe: the theorem expresses that all acceptable analysis results re-
main acceptable under evaluation!

Thus we do not rely on the existence of a least or “best” solution.

Proof of Correctness Result

We assume that p R p and (E,ﬁ)|:ie and prove (E,ﬁ)|:ie’ by induction
on the structure of the inference tree for pt e ie’.

Most cases amount to inspecting the defining clause for (C,p) = ie.

This method of proof applies to all fixed points of a recursive definition
and in particular also to the (more familiar least and) greatest fixed
point(s).

Crucial fact: If (C,p) = i1 and C(¢1) C C(¢) then (C,p) = tt2.

Example:

[1F ((fn x => x1)2 (fn y => y3)%)5 (close (fn y => y°) in [])°

(Eea :/0\6)

OO

< ™

{fn y => y>}
{fn x => x1}
0
{fn y => y3}
{fn y => y3}
{fn y => y3}
0

(Ce, pe)=((n x => x1)2 (0 y => y3)*)®

[1R pe

(Ce, pe)=(close (fny => y3) in [])®

Existence of Solutions

e Does each expression e admit a Control Flow Analysis?

i.e. does there exist (C,5) such that (C,p) = e?

e Does each expression e have a ‘least” Control Flow Analysis?

i.e. does there exists (Cg, pp) such that (Cg, 7o) = e and
such that whenever (C,p) = e then (Cp, pg) is “less than” (C,p)7

Here “least” is with respect to the partial ordering

(C1,p1) C (Co,pp) iff (Ve Lab:Ci(£) C () A
(Vx € Var : p1(z) C po(z))

Existence of Solutions (cont.)

TwO answers:

e there exists algorithms for the efficient computation of least solutions
for all expressions

e all intermediate expressions enjoy a Moore family property

A subset Y of a complete lattice L = (L,C) is a Moore family if and
only if (| Y/) € Y for all subsets Y’ of L

Proposition: The set {(C,p) | (C,p) = ie} is a Moore family for all
intermediate expressions ie

Existence of Solutions (cont.)

All intermediate expressions admit a Control Flow Analysis

Let Y/ be the empty set; then | |Y’ is an element of {(C,p) | (C,p) k= ie}
showing that there exists at least one analysis of ze.

All intermediate expressions have a least Control Flow Analysis

Let Y/ be the set {(C,p) | (C,p) = ie}; then| |Y' is an element of {(C,p) |
(C,7p) = ie} so it will also be an analysis of ie. Clearly ly'C (C, p) for
all other analyses (C, p) of ie so it is the least analysis result.

Example:

(Ceype!) = ((Fn x => x1)? (fn y => y3)%)"
(C",pe") = ((£n x => x1)2 (fn y => y3)*)°
The Moore family result ensures that

(C/NC o Mp") = ((Fn x => x1)? (fny => y3)%)°

(Ce7 ﬁe) (Cela ﬁe,) (Ceﬂa ﬁe//)
1 | {fny =7y} | {fny => 3y} | {fn y => y°}
2 | {fn x => x1} | {fn x => x'} | {fn x => x1}
3 0 {fn x => Xl} {fn y => y3}
4 | {fny => y>} | {fny => y3} | {fny => y3}
5| {fny =7y} | {fny => y3} | {fny => y3}
x | {fny =>y3} | {fny = vy} | {fny => ¥}
y 0 {fn x => Xl} {fn y => y3}

Coinduction versus Induction

The abstract Control Flow Analysis is defined coinductively
= is the greatest fixed point of a function O

An alternative might be an inductive definition

=’ is the least fixed point of the function Q.

Proposition: There exists ex € Exp such that {(C,p) | (C,p) =’ ex}
IS not a Moore family.

Syntax Directed 0-CFA Analysis

Reformulate the abstract specification:
(i) Syntax directed specification
(ii) Constructing a finite set of constraints

(iii) Compute the least solution of the set of constraints

Common Phenomenon

A specification =4 is reformulated into a specification =g ensuring
that

(C,p) Eaex B (C,p) EBex
so that “l=pg" is a safe approximation to “=," and hence the best
(i.e. least) solution to “=pg e will also be a solution to “F=4 es”.

If additionally
(C,0) =aex B (C,D) =g es

then we can be assured that no solutions are lost and hence the best
(i.e. least) solution to “=pg es" will also be the best (i.e. least) solution

to “|:A Cx .

Syntax Directed Specification (1)

(C.o) s (fm = e0)
iff {fn x => eg} C C(¥) A

(Ea ﬁ) |=3 €0

(C.0) s (fun f z = e)f
iff {fun f = => eg} C C(¥) A

(C,0) Eseg A {fun f = => eg} C p(f)

(C,p) =5 (£ t22)¢
iff (C,p) Estit A (Cp) s t2 A
(V(fn & => £:0) € C(¢1) :
C(t2) C p(z) A C(tg) C C(&)) A
(V(fun [2 => 1) € C(&1)
C(t2) C p(z) A Clé) C Ce))

Syntax Directed Specification (2)

(C,p) [=s ¢! always

(C.p) Esal Iff p(a) CCO)

(E,ﬁ) —s (if téo then til else téQ)E
0

i (E,ﬁ) —s t? N\
(Cp) Fs ity A (CD) |=5At§2 A
C(£1) CC) A C(ea) C C(0)

A~

(C,p) s (letAa: = tlil i? t?)@ i e
ﬂ /(\C,;O\) — t]_l A (/\C”/O\) |:SAt22 A
C(¢1) Cp(z) A Cla) C C(0)

A~

(C,0) =s (t op £2) it (C,p) s 5 A (C,5) [=s 2

Example: loop

let g = (fun £ x => (f! (fn y => y2)3)4)°
in (g® (fn z => 27)%)?

Abbreviations:

f = fun f x => (f!1 (fn y => y2)3)%
id. = fnz => z'

One guess of a O-CFA analysis result:

Cp() = {f} Cp(6) = {f} pn(f) = {f}
Cp(2) = 0 Cp(7) = 0 np(g) = {f}
Clp(3) — {'dy} Clp(8) — {le} ﬁ|p(X> — {id?J’idz}
€|p(4) — @ €|p(9) — Q) ﬁlp(Y) — Q)
Co(® = {f} Gy(10) = 0 pz) =0

Example: Checking the solution

To show

(Clpalb\lp) —s loop
we have (among others) to show

(Cios A1) =5 (g% (Fn z => 27)8)°

and

(Cios Bip) =5 (£ (fn y => y2)3)*

and this is straightforward.

he Lesson

No need for co-induction because the definition is syntax-directed

Preservation of Solutions

Define (C/,5)) by:

~T . (Z) |f E % Lab*

) = { Term, if ¢ € Lab,

T _] 0 if x ¢ Var,

P () = { Term, if x € Var,
Then all the solutions to “=5 ei” that are “less than” (C*,p;r) are
solutions to “e4" as well:

Proposition: 1f (C,p) s ex and (C,p) C (CJ,5]) then (C,p) = ex.

A~

(C p) E (C* ,,0*) (G, p)

Proposition:
{(C,p) T (C],5])1(C,p) =5 ex} is a Moore family.

Corollaries:

e cach expression ex has a Control Flow Analysis that is “less than”
(C*ap—r) and

e cach expression ex has a ‘“least” Control Flow Analysis that is “less
than” (C[,5]).

Constraint Based O-CFA Analysis

Cx[[ex]] is a set of constraints of the form
lhs C rhs

{t} C rhs = Ihs C rhs

where

rhs = C(£) | r(x)

lhs = C(£) | r(z) | {t}

and all occurrences of t are of the form fn x => eg Or fun f x => eg

Constraint Based Control Flow Analysis (1)

Cil[(fn @ => €0)] = {{fn = => eg} CC(£) } U Culeol

Cxl[(fun f x => e0)’] = {{fun f x => eg} C C(£) } U Ci[eo]
U {{fun f z => o} Cr(f)}

Ce[(t5 t2)1] = Cot51] U Co[t2]

U {_ |t = (fn z => tL) € Term,}
U (PSS = @) EC@)] |t = (tn z => t0) € Term,}
U { {t} CC(41) = C(Lp) C r(z) [t = (fun f z => tL) € Term,}
U (S C@ = Cl)EC@)] |t = (fun f x => £0) € Term,}

(Eager rather than lazy unfolding — easy but costly.)

Constraint Based Control Flow Analysis (2)

Ci[[cf] = 0
Cil[+*] = {r(z) C C(V) }

Cxl[(if téo then tlil else téQ)e]] — C*[[téo]] U C*[[tlil]] g C*[[tgz]]
U {C(1) CC)}
U {C(42) CC(O)}

Cill(let = = £51 in 2)!] = CL[£1] U CL[t2]
U {C(¢) Cr(z) }U{C(l) C C(4) }

Ce[(t5 op t2)1] = Cu[ti1] U Cu[t2]

Example:

C+[((fn x => x1)2 (fn y => y3)4)°] =

{ {fn x => x1} C C(2),
r(x) C C(1),
{fn y => y3} C C(4),
r(y) C C(3),
{fn x => x1} CC(2) = C(4) C r(x),
{fn x => x1} C C(2) = C(1) C C(5),
{tn y => y3} C C(2) = C(4) C r(y),
{fn y => y3} CC(2) = C(3) CC(5) }

Preservation of Solutions

Translating syntactic entities to sets of terms:

(C,ICO] = (B
Colr(@)] = p(=)
(Gt = {t}

Satisfaction relation for constraints: (C,5) =. (Ihs C rhs)
(C,7p) = (/hs C rhs)
iff (C,p)[/hs] € (C, p)[rhs]

(C,p) = ({t} C rhs’ = Ihs C rhs)
iff ({t} € (G, p)[rhs'IN(C, p)Iihs] € (C, p)Irhs])
v ({2 (G, IrhsT)

Proposition: (C,p) =s ex if and only if (C,5) = Cllex].

Solving the Constraints (1)

Input: a set of constraints Cx[ex]
Output: the least solution (C,) to the constraints

Data structures: a graph with one node for each C(¥) and r(x)

and zero, one or two edges for each constraint
in C*IIe*]]

e \W: the worklist of the nodes whose outgoing edges should be tra-
versed

e D: an array that for each node gives an element of \//'51*

e E: an array that for each node gives a list of constraints influenced
(and outgoing edges)

Auxiliary procedure:

procedure add(q,d) is if = (d C DJ[gq]) then D]Jq] := DJ[q] U d;
W = cons(q,W):

Solving the Constraints (2)

Step 1
W = nil;
for ¢ in Nodes do D[q] := 0; E[q] := nil;
Step 2
for cc in Cyllex] do
case cc of {t} C p: add(p,{t});
p1 C p2: Elp1] := cons(cc,E[p1]);
{t} Cp=p1 Cpa: Elp1] := cons(ec,E[p1]);
E[p] := cons(cc,E[p]);
Step 3
while W == nil do
g := head(W); W = tail(W);
for cc in E[q] do
case cc of py1 C po: add(pz, Dlp1]);
{t} Cp=p1 Cpo iftec Dlp] then add(p>, Dlp1]);
Step 4

for £ in Laby do C(¢) := D[C(8)]; for z in Var, do j(z) := D[r(x)];

Example:

Initialisation of data structures

p | Dlpl E[p]

C(1)| 0 |lidz € C(2)=C(1) € C(5)]

C(2) | idy |[idy € C(2) = C(3) € C(5), idy € C(2) = C(4) C r(y),
ide € C(2) = C(1) € C(5), idz C C(2) = C(4) C r(x)]

C(3)| 0 |lidy € C(2)=C(3) € C(5)]

C(4) | idy |[idy € C(2) = C(4) Cr(y), idz C C(2) = C(4) C r(x)]

ey, 0 |l

r(x) 0 | [r(x) € C(1)]

r(y) 0 | Ir(y) € C(3)]

Example:

Iteration steps

W | [C(4),C(2)] | [r(x),C(2)] | [C(1),C(2)] | [C(B).C2)] | [C] |]

p Dlp] Dlp] D[p] D(p] Dlp] | D[p]
C(1) 0 0 id,, id,, id, | idy
C(2) id,, id,, id,, id, id, | idy
C(3) 0 0) 0 0 0
C(4) id,, id,, id,, id,, id, | idy
C(5) 0 1] 0 idy, id, | id,
r(x) 1] id,, id,, id,, id, | idy
r(y) 0 0 0 0 0 0

Correctness:

Given input Cyi[lex] the worklist algorithm terminates and the result (C, p)
produced by the algorithm satisfies

@)= @)@ 7) e Cullead

and hence it is the least solution to Ci[ex].
Complexity:

The algorithm takes at most O(n3) steps if the original expression ey
has size n.

Adding Data Flow Analysis

Idea: extend the set Val to contain other abstract values than just
abstractions

e powerset (possibly finite)

e complete lattice (possibly satisfying Ascending Chain Condition)

Abstract Values as Powersets

Let be a set of abstract data values (i.e. abstract properties of
booleans and integers)

€ \//‘gld = P(Term U) abstract values

For each constant ¢ € Const we need an element -

For each operator op € Op we need a total function
. Valy x Val; — Valy
typically
= | H{dop(d1,d2) | d1 € 11 N do € 15N }

for some dy : X — P()

Example: Detection of Signs Analysis
= {tt, ff, -, 0, +}

= tt

is defined from

dy |tt ff - 0 +
tt |0 0) 0 0
ff |0 0 0) 0
- [0 0 {7 o+
o0 0 {-} {o} {+}
+ 10 0 {- 0 +} {+} {+}

Abstract Values as Powersets (1)

(C,0) =g (fn = => eg)® iff {fn z => eg} C C(¥)

(C,p) =g (fun f x => eg)® iff {fun f o => g} C C(¥)

(C,p) =g (t1 1)
i (Cp)=aty A (Cp) =ats A
(V(fn = => too) e C(4y) :
(C p) Fa to A
C(£2) C (@) A C(lo) CCO)) A
(V(fun f =z => too) € C(fl)
(C,5) Eatd A
C(Lz) C () A Cllg) CC) A
{fun f = => tL} C (/)

Abstract Values as Powersets (2)

) gt iff {de} € C(0)

p) =axt iff () € C(0)

p) E=q (if téo then til else téQ)g
ﬂ- (Cvﬁ) |:d tOO A
(derue € C(L0) = ((C,0) =qtil| A C(e1) CCO))) A

(dearse € C(L0) = ((C,0) =qt2| A C(g2) C C(D))
(C,p) =4 (Qet x = tlil in téQ)e
iff (C,p) l=qtit A (Cp) =gt A Cf1) Ca(z) A Clea) C C(L)

(C,7) =q (1 op t2)!
, = 4 = 2 . = =
it (Cp) Eaty A (Gp) gt A Ct) op C2) € C(O)

Example:

(let £ = (fn x => (if (x! > 02)3 then (fn y => y*)°
else (fn z => 259)7)8)9
in ((f1o 311)12 013)14)15

A pure 0-CFA analysis will not be able to discover that the else-branch
of the conditional will never be executed.

When we combine the analysis with a Detection of Signs Analysis then
the analysis can determine that only fn y => y4 IS @ possible abstraction
at label 12.

Example:

(G, p) (G, p)
1) {+}
2] {0}
3 0 {tt}
4) {o}
5 {fn y => y*} {fn y => y*}
6 0 0
7 {fn z => 25°} 0
8 | {fny => y*, fn z => 25° } {fn y => y*}
9 {fn x => (---)8} {fn x => (---)8}
10 {fn x => (---)8} {fn x => (---)8}
11 f) {+}
12 | { fn y => y*, fn z => 25° } {fn y => y*}
13] {o}
14 0 {o}
15 0 {o}
f {fn X => (.)8} {fn X => (.)8}
X) {+}
y) {o}
z 0 0

Abstract Values as Complete Lattices

A monotone structure consists of:
e a2 complete lattice L, and

e a set F of monotone functions of L x L — L.

An instance of a monotone structure consists of the structure (L,F)
and

e a2 mapping ¢. from the constants ¢ € Const to values in L, and

e a mapping f. from the binary operators op € Op to functions of F.

Example:

A monotone structure corresponding to the previous development will
have L to be P() and F to be the monotone functions of P() X
P() — P().

An instance of the monotone structure is then obtained by taking

te = {dc}
for all constants ¢ (and with d. € as above) and
fop(l1,12) = | H{dop(d1,dp) | d1 € 11,dp € 15}
for all binary operators op (and where doy : X — P() is

as above).

Example: A monotone structure for Constant Propagation Analysis

will have L to be ZI x P({tt,ff}) and F to be the monotone functions
of Lx L — L.

An instance of the monotone structure is obtained by taking e.g. 7 =
(7,0) and wttrue = (L, {tt}). For a binary operator as + we can take:

((z1+227®) if llZ(Z]_,"'),lQ:(ZQ,"'),
and z1,z> € Z

f+(l1,l0) = ¢ (L,0) it 11 = (21,-°),lo = (22,),
and zqy = 1L or zo = L

- (T,0) otherwise

Abstract Domains

For the Control Flow Analysis:

€ Val = 7P(Term) abstract values
p € Env = Var — Val abstract environments
C € Cache = Lab — Val abstract caches

For the Data Flow Analysis:

c Data = L abstract data values
€ DEnv Var — Data abstract data environments
€ DCache = Lab — Data abstract data caches

O oy

Abstract Values as Complete Lattices (1)

(C,D,5,8) =p (fn @ => e)! Iff {tna => eg} C C(¥)

67) |_
ir

p (fun f x => eg)t iff {fun f x => eg} C C(¥)

(t t2)!

(C,D,5,0) |_D 't A (C,D,5,8) =p t2 A
(V(fn z =>) € C(¢1) : (E D, 5,8) =p t2 A
C(£2) C p(z) A D) Co(x) A
C(tg) € C(&) A D(£o) T D)) A
(V(fun f z => t0) € C(¢1) : (C,D,5,8) =p t2 A
C(£2) Cp(z) A D) Eé(z) A
C(¢p) CC(®) A D(lg) CD(O) A

{fun f 2 => t2} C 5(F))

Abstract Values as Complete Lattices (2)

(C,D,5,0) Ep et iff 1o ED®)

(C,D,5,6) =p af iff p(x) CCU) A 6(x) E D)

(C,D, 5,6) |:ADA(if tAgo thengti1 else téQ)g
iff (C,D,p,0) E=ptg A
SRP ‘

C(£1) CC() A D(£1) ED(®)) A

(RSB (C.0.7.9) Fp 1 A

C(£2) € C(¢) A D(¢2) ED(¥))

Abstract Values as Complete Lattices (3)

(C,D,5,8) =p (let © = t3 Elnt 2)¢
I 1

ﬂ (Ea 671/0\7 /5\) ‘:D t% A
(67 67ﬁ7 8\) |:D t22 A
C(¢1) C p(z) A D(£1) E8(z) A C(fy) C CW) A D(&s) C DY)

(C,D,5,8) =p (11 op)"
iff (C,D,5,9) |_D 't A (C,D,5,8) =p t2 A
fop(D(£1),D(£2)) C D(¥)

Example:

(C,p) (C,p) (C,p) (D,9)
1 0 {+} 0 {+}
2 0 {o} 0 {o}
3 0 {tt} 0 {tt}
4 0 {o}) {o}
5 {fn y => y7} {fn y => y*} {fn y => y7} 0
6 0 0 0 0
7 {fn z => 25°}] 0 0
8 | {fny => y*, fn z => 25° } {fn y => y*} {fn y => y*} 0
9 {fn x => (---)8} {fn x => (--)8} | {fn x => (---)8} 0
10 {fn x => (---)8} {fn x => (--)8} | {fn x = (--)8} 1]
11 0 {+} 0 {+}
12 | { fn y => y*, fn z => 25° } {fn y => y*} {fn y => y*} 0
13 0 {o} 0 {o}
14 0 {o} 0 {o}
15 0 {o} 0 {o}
f {fn x => (---)%} {fn x => (--)°} | {fn x => (---)%} 0
X) {"‘} 0 {"'}
y 0 {o} 0 {o}
z 0 0 0 0

Staging the specification

Alternative clause for the conditional where the data flow component
cannot influence the control flow component:

(C,D, p,9) =p (if téo then ti else t2 2)¢
iff (C,D,p,9) =p t? A
(C,D,5,6) =p oA C(£1) € C(&) AD(£1) £ D(&) A
(C,D,5,0) Epts? A C(£2) C C(£) AD(¢2) C D(¥)

)

)
)

)
)

?

Adding Context Information

Mono-variant analysis: does not distinguish the various instances of
variables and program points from one another. (Compare with context-
insensitive interprocedural analysis.) 0-CFA is a typical example.

Poly-variant analysis: distinguishes between the various instances of vari-
ables and program points. (Compare with context-sensitive interproce-
dural analysis.)

Example:

(let £ = (fn x => x1)2 in ((£3 £%)° (fn y =>

The least O-CFA analysis:

Ca(1) = {fnx=x!, fny=>y° Cy(2 = {fn
Cg(3) = {fn x => x'} Cq(4) = {fn
Cg(8) = {fnx => x!, fn y => y°} (Cy(6) = {fn
Cy(7) = {fny => y°} Cg(8) = {fn
Ciq(9) {fn x => xI, fn y => y©}

pid(£) {fn x => x'} pa(x) = {fn
pd(y) = {fny = y°}

Ko< MM

X,fny=>y6}

x1, fn y => y©}

T he analysis says that the expression may evaluate to

fn x => x! or fn y => y°.

However, only fn y => y°© is a possible result.

A purely syntactic solution:
Expand
(let £ =(fn x =>x) in ((f £) (fn y => y)))

into

let f1 = (fn x1 => x1)
in let £2 = (fn x2 => x2) in (f1 £2) (fn y => y)

and analyse the expanded expression.

The O-CFA analysis is now able to deduce that the overall expression
will evaluate to fn y => y only.

A purely semantic solution: Uniform k-CFA
Idea: extend the set Val to include context information
In a (uniform) k-CFA a context § records the last k dynamic call points;

hence contexts will be sequences of labels of length at most £ and they
will be updated whenever a function application is analysed.

Abstract Domains

5 e I

ce

) <)

(@Y,

(Uniform

S

S

CEnv
Val

e~

Env

Cache

P(Term x CEnv)
(Var x &) — Val

(Lab x J&) — Val

context information

context environments

abstract values

abstract environments

abstract caches

because A used both for Env and Cgc\he.)

Acceptability Relation

(C,0) 5" e
where

e ce IS the current context environment — will be changed when new
bindings are made

e 0 is the current context — will be changed when functions are called

Idea: The formula expresses that (E,ﬁ) IS an acceptable analysis of e in
the context specified by ce and 4.

Control Flow Analysis with Context (1)

(C,p) =§° (fn = => eg)’ iff {(fn z => eq, ce)} € C(4,4)

(C,p) =5 (fun f z => eg)! iff {(fun f 2 => eg, ce)} C C(4,6)
o)

(C,p) =5 (¢ ¢2)"

ir (C,7p) —° tll A (C,7) |:C€t A
(V(fn = => to L ceg) € C(0q,90) :

(C,p) =090 A C(ls,6) C Az, 00) A Cllo,00) C C(L,6)
where (5 /] and = [z — 0p]) A

(V(fun f x => 2, ceg) € C(£1,6) :
(C,p) =, 0 0 A C(bs,6) C px,00) A ClLo,00) C C(L,8) A

{(fun f & => t, ceq)} C p(f,00)
where 6p = [4,¢]; and = ceg[f — 0, — o))

Control Flow Analysis with Context (2)

(C,p) =5 ¢ always
(C,p) =§eat iff p(x, ce(z)) C C(4,0)

(C,5) =5° (if too then tl else t2 2)¢
iff (o) =5t A (Cp) =5t A (Cp) =5 62 A
C(€1,5) C C(€ 5) A C(€2,5) C C(f J)

(C,) =5 (let = = t in t 2)¢
if (G, p) —Ce (e p) Fs £ A
C(fl,(S) C o(x,6) A C(ﬁg,(g) C C(¢,6)
where = ce[x — 0]

(C,p) =g (5 op)t iff (C.p) =gt A (Cp) =5 5

Example:
(let £ = (fn x => x1)2 in ((£3 £%)° (fn y => y©)7)%)°

Contexts of interest for uniform 1-CFA:

A\: the initial context
5: the context when the application point labelled 5 has been passed
8: the context when the application point labelled 8 has been passed

Context environments of interest for uniform 1-CFA:

[] the initial (empty) context environment
ceg[f — A] the context environment for the analysis of the body of

the let-construct
cep = ceg[x — 5] the context environment used for the analysis of the body

of £ initiated at the application point 5
ce3 = ceg[x — 8] the context environment used for the analysis of the body

of £ initiated at the application point 8.

CED
ceq

Example: Let us take C.j/ and g4 to be:

Ci (1,5) = {(fn x => xlcep)} ¢’ (1,8) ={(fn y => y®,ce)}

)

Cig'(2,A) ={(fn x => xlceg)} Gy (3,A) = {(#n x => x!,ceg)}
Eid/(4,/\) = {(fn x => x1 ceo) t Eid/(S,/\) = {(fn x => Xl,ceo)}
Cd'(7,A) ={(#n y => yO,ce0)} Gy (8,A) = {(fn y => yO,ceq)}
Cid'(9,A) = {(fn y => 6 ceo)}

pid (£,A) = {(fn x => x! ceg)}
//O\id/ (X75) — {(fn X => Xl,CeO)} ﬁid/ (X7 8) — {(fn y => y6,ceo)}

This is an acceptable analysis result:

(G, i) ER° (et £ = (0 x => x1)? in ((£3 £4)° (fn y => y©)7)%)9

Complexity
Uniform k-CFA has exponential worst case complexity even when k=1

Assume that the expression has size n and that it has p different vari-
ables. Then A has O(n) elements and hence there will be O(p - n)
different pairs (z,8) and O(n2) different pairs (¥, 5) This means that
(C,5) can be seen as an O(n2) tuple of values from Val. Since Val itself
is a powerset of pairs of the form (¢,ce) and there are O(n - nP) such
pairs it follows that Val has height O(n-nP). Since O(p) = O(n) we have
the exponential worst case complexity.

0-CFA analysis has polynomial worst case complexity
It corresponds to letting [be a singleton. Repeating the above cal-

culations we can see (C,) as an O(p+n) tuple of values from Val, and
Val will be a lattice of height O(n).

Variations (based on call-strings)

Uniform k-CFA

ce € CEnv = Var — [A context environments

v € Val = P(Term x CEnv) abstract values

p € Env = (Var x J&) — Val abstract environments

C € Cache = (Lab x &) — Val abstract caches
k-CFA

AN

C € Cache = (LabeEnv)—>\/f§1 abstract caches

Polynomial k-CFA

o € Val = P(Term x &) abstract values

