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Abstract Analysis and verification of pointer programs are still difficult problems so far. This paper uses a shape graph
logic and a shape system to solve these problems in two stages. First, shape graphs at every program point are constructed
using an analysis tool. Then, they are used to support the verification of other properties (e.g., orderedness). Our prototype
supports automatic verification of programs manipulating complex data structures such as splay trees, treaps, AVL trees and
AA trees, etc. The proposed shape graph logic, as an extension to Hoare logic, uses shape graphs directly as assertions. It can
be used in the analysis and verification of programs manipulating mutable data structures. The benefit using shape graphs
as assertions is that it is convenient for acquiring the relations between pointers in the verification stage. The proposed
shape system requires programmers to provide lightweight shape declarations in recursive structure type declarations. It
can help rule out programs that construct shapes deviating from what programmers expect (reflected in shape declarations)
in the analysis stage. As a benefit, programmers need not provide specifications (e.g., pre-/post-conditions, loop invariants)
about pointers. Moreover, we present a method doing verification in the second stage using traditional Hoare logic rules
directly by eliminating aliasing with the aid of shape graphs. Thus, verification conditions could be discharged by general
theorem provers.
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1 Introduction

Formal verification is a major method to improve
the dependability of computer software. There are two
main approaches to doing formal verification on soft-
ware. The first one is model checking, which consists of
a systematically exhaustive exploration of the mathe-
matical model. This approach has been progressively
used in the industry. The second one is logical infe-
rence. It consists of using a formal version of mathe-
matical reasoning about software systems, usually us-
ing theorem proving software such as Isabelle/HOL[1]

or Coq①. Most research (such as Ynot[2], Spec#[3] and
ESC/Java[4]) using the second approach revolve around
the design of logic systems to reason about programs
and generate verification conditions (VC for short),
and then use certain theorem prover to prove them.
Researches such as Smallfoot[5] and jStar[6] use sym-
bolic execution and entailment proof to avoid genera-

ting large VCs. Although these tools have been develo-
ped in labs, there is no product that can be applied to
real-world software yet. The root of this problem lies
in the difficulty in automated theorem proving, since
many problems are influenced by the power of under-
lying automated theorem proving techniques. These
problems include aliasing analysis, loop invariant infe-
rence, the expressivity of assertion languages, the de-
sign of domain-specific logics, etc.

While trying to make breakthroughs in automated
theorem proving techniques, we should consider lower-
ing requirements on the capability of theorem provers.
For instance, we can design new mechanisms for pro-
gramming languages to raise the threshold of being
a legal program and reject certain programs in which
there exist errors logically. Moreover, program analysis
can be used in collecting program information to sup-
port program verification. All these approaches could
somewhat alleviate the burdens of automated theorem
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proving. This paper introduces our research result on
the automatic verification of pointer programs in two
stages: shape analysis and program verification.

First, we propose a method using shape graphs as
assertions of pointer equality and validity. Based on
this approach, we design a shape graph logic (SGL for
short) as an extension of Hoare logic. We mainly add
some inference rules for statements dealing with point-
ers (pointer statements for short). The resulting logic
can be used in the analysis and verification of pointer
programs manipulating mutable data structures.

Under restrictions on pointer arithmetic and uses of
the address-of operator (&), our shape graphs can pre-
cisely describe the equalities between pointers (includ-
ing statically declared pointer variables and pointer-
typed fields of dynamically allocated structure varia-
bles) and validity of pointers (valid pointers point to
program objects, i.e., structure variable allocated on
the heap) at program points. Given shape graphs,
we can acquire whether two access paths are aliases
or not at corresponding program point. Shape graphs
are bridges between shape analysis and program veri-
fication. In the shape analysis stage, we use inference
rules to construct shape graphs at each program point.
In the following stage, these shape graphs provide in-
formation of pointers and support the verification of
other properties (e.g., orderedness of binary trees). As
it were, certification about pointer-related properties is
peeled off from program verification and done in the
shape analysis stage. We use SGL in both stages in
favor of soundness proof of the logic.

Using shape graphs as assertions makes work in both
stages easy. In the analysis stage, it is simple to calcu-
late shape graphs of the post-condition for statement-
based on shape graphs of the pre-condition. In the veri-
fication stage, shape graphs provide needed informa-
tion about pointers. For example, we can easily know
whether more than one pointers point to a particular
node in the graph (to avoid memory leaks). In addi-
tion, we can judge whether two access paths are aliases
or not using shape graphs (when eliminating aliasing of
access paths).

Second, we propose a shape system. Roughly speak-
ing, it is similar to type systems. We design and im-
plement a shape system for the PointerC programming
language[7]. It contains shapes and their definitions,
rules for shape inference and shape checking. The shape
system requires programmers to provide shape declara-
tions in recursive structure type declarations. Compil-
ers or other tools can use shape inference rules to infer
shapes constructed by programs via dynamically allo-
cated structures, and then do shape checking to judge
whether shapes confirm to what the programmer has

declared, according to the rules of shape checking. In
addition, the shape system can help rule out programs
that construct (or operate on) shapes deviating from
what programmers expect in shape declarations in the
analysis phase. In this way, we report errors earlier
and decrease the cases needed to be considered in both
analysis and verification.

With a shape system, programmers need not to
provide shape graphs in the pre-/post-conditions of
functions and loop invariants for program verification.
Hence, it brings no trouble to programmers using shape
graphs as the graphical expression of assertions.

Third, we propose a method doing verification in the
second stage using traditional Hoare logic rules directly
by eliminating aliasing with the aid of shape graphs.
One important limitation using Hoare logic is that dif-
ferent names (including access paths) must represent
different program objects (i.e., no aliasing is allowed).
Hoare logic is sound when we apply rules to a program
where there is no aliasing in both statements and its
specification (assertions). Shape graphs provide simple
ways of judging and eliminating aliasing. We eliminate
aliasing problems in access paths via alias substitution
before applying corresponding Hoare logic rules.

Using this method, VCs could be discharged by gene-
ral theorem provers without the need of designing spe-
cialized provers (e.g., separation logic’s special prover
Smallfoot[5]).

Finally, we implement a prototype for automatic
verification of pointer programs. Our prototype sup-
ports programs manipulating complex data structures
such as sorted circular doubly-linked lists, binary search
trees, splay trees, treaps, AVL trees and AA trees.

The rest of the paper is organized as follows. Sec-
tion 2 introduces shape graphs as assertions. Section 3
presents our SGL. Section 4 presents the shape system.
Section 5 introduces our program verification prototype
for PointerC. Section 6 compares our work with related
work, and Section 7 concludes the paper.

2 Shape Graph as Assertion

Shape graphs are directed graphs. They can describe
point-to relations of statically declared pointer variables
(pointer for short) and pointer fields of dynamically
allocated structure variables (field pointer for short).
Shape graphs precisely express the equalities between
pointers. They can be used to judge whether two access
paths are aliases or not.

In this section, shape graphs are defined and the se-
mantic is given. We present our approach using shape
graphs as assertions on pointer relations. In Fig.1, some
quick examples of shape graph assertions and their co-



Zhao-Peng Li et al.: A Shape Graph Logic and A Shape System 3

unterparts in the separation logic are shown. Asser-
tions on the first line are describing a singly-linked list
of length n. Assertions on the second line are used
to describes doubly-linked lists. Assertion Fig.1(e) is
semantically the same as the assertion Fig.1(f). The
difference is that assertion Fig.1(f) uses quantifiers to
describe that the fields l and r are dangling pointers.

Fig.1. Quick example: shape graph and separation logic asser-

tions.

2.1 Syntax of Shape Graph

Vertices. There are six kinds of vertex (see Fig.2).
They are used to denote stack slots or heap blocks ma-
nipulated by programs. A vertex is also called a node.
The following are their names and syntax.

Fig.2. Six kinds of nodes in shape graphs.

1) Declaration node: it is a circle and represents a
stack slot (a declared pointer variable).

2) Structure node: it is a rectangle and represents a
heap block (a structure variable).

3) Null node: it is a dashed rectangle with a sym-
bol N inside. Pointers pointing to null nodes are null
pointers.

4) Dangling node: it is a dashed rectangle with a
symbol D inside. Pointers pointing to dangling nodes
are dangling pointers.

5) Condensation node: it is a gray rectangle. There
is information below the node, including an expression
e and an assertion a constraining e. Expression e is a
linear integer expression using integer constants and de-
clared variables. Assertion a is logical conjunctions of
relations between such expressions. The gray rectangle

without expression e and assertion a is called an un-
constrained condensation node. Such node represents
arbitrarily positive number (including zero) of structure
nodes.

6) Predicate node: it is a rectangle with a symbol
P inside. There is also information below the node,
including the name of the predicate, an expression e,
and an assertion a. e and a have exactly the same con-
straints as these of a condensation node.

Directed Edges and Their Labels. Each directed edge
has an identifier as its label (labels are above the edges
in our figures). Directed edges and related nodes satisfy
the following syntactic constraints.

1) Declaration node: it has only one out-edge and
no in-edge.

2) Structure and condensation node: they have in-
/out-edges and the labels of their outgoing edges are
different from each other.

3) Null node, dangling node and predicate node:
they have no outgoing edges and there is no restriction
on their incoming edges.

Definition 1 (Shape Graph).
1) Shape graphs, whose nodes and edges satisfy afore-

mentioned syntactic constraints, are connected graphs if
directions of edges are ignored. The labels of edges from
declaration nodes in a shape graph should be different
from each other.

2) Suppose G1, G2 are shape graphs. If the label sets
of edges from declaration nodes in G1, G2 are disjoint,
G1∧G2 is also a shape graph (∧ is logical conjunction).

3) Suppose G1, G2 are shape graphs. If the label sets
of edges from declaration nodes in G1, G2 are equal to
each other, G1 ∨ G2 is also a shape graph (∨ is logical
disjunction).

In this paper, we use symbol G to denote shape
graphs without connective ∨. Shape graph G with-
out logical conjunction connectives is called shape sub-
graph. Obviously, shape sub-graphs in one shape graph
are not connected to each other. If G1 ∧G2 is a shape
graph, G1 and G2 assert on two different (separated)
parts of one program state; while G1, G2 in G1∨G2 de-
note two possible program states at one program point.

Shape graphs in this paper are subsets of shape
graphs defined in Definition 1 due to the constraints
of the type system. For instance, the type system will
guarantee that two structure nodes of different types
will not be adjacent to each other in shape graphs.

Fig.3 presents two shape graphs for singly-linked
lists. The loop invariant shape graph of the follow-
ing program fragment is shown as Fig.3(a) (suppose the
singly-linked list pointed by the variable hd has at least
one node). The condensation nodes pointed by hd and
ptr denote two list segments whose lengths are m and
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n respectively (m, n > 0). It is easier to understand
after we introduce the semantics of shape graphs.

ptr1=hd; ptr=hd->nxt;

while(ptr!=NULL){
ptr1=ptr; ptr=ptr->nxt;}

Fig.3. Two instances of shape graphs.

A condensation node represents several adjacent
nodes and the expression e below it represents the num-
ber of these adjacent nodes. Pointers pointing to null

nodes are null pointers. Fig.3(b) is the shape graph at
the program point before the first statement of the loop
body.

2.2 Shape Graph for Data Structure

Fig.4 shows shape graphs for (circular) singly-linked
lists, (circular) doubly-linked lists and binary trees.
The symbols, dlist(s, e, a), etc., on the left-hand side of
the definitions are shorthand of shape graphs for easy
citing below in this paper. Labels of edges in given
shape graphs are only placeholders. Proper names
should be used to instantiate them with respect to cor-
responding programs.

As can be seen, if we remove e and a in the
right-hand side shape graphs of the two definitions
of dlist(s, e, a) and connect them with ∨, we can ob-
tain the definition of dlist(s). Due to limited space,
we do not include the definitions of shape graphs for
list(s), c list(s), and c dlist(s) in Fig.4.

Fig.4. Part of the definitions of shape predicates.
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Definition 2 (Minimal Shape Graph for Data
Structure). Shape sub-graphs on the left-/right-hand
sides of definitions shown in Fig.4 (including definitions
not shown here due to limited space) are all called mini-
mal shape graphs for data structure.

2.3 Transformation Rules of Shape Graph

Before giving the rules, we define the concept of
a window, which describes the concerned part of one
shape sub-graph in terms of local reasoning.

Definition 3 (Window). A window is nodes and
edges in a shape sub-graph encircled by a frame in dot
and dash lines. The other part of the shape graph is
called the context of this window.

The followings should be satisfied.
1) Nodes of shape graphs are in a window or in the

context of the window (nodes cannot span the window

and the context).
2) Edges between nodes in a window are all in the

window. Edges across the frame, which are used to con-
nect nodes inside and outside the window, belong to the
window. There is a copy of these edges across the frame
in its context of this window.

We use W and X[] to denote a window and a con-
text. A window W and a matching context X[] can
form a shape graph X[W ]. Edges across the frame of
W and edges in X[] as a copy are checked whether they
are coincident. If coincident, the context is a matching
one for the window.

We use the following notations in rules using win-
dows. If there exists at least one edge (e.g., p1 in Fig.5)
pointing to certain node in the window, all the other
possible edges (may be zero) pointing to this node are
represented using one edge labeled pk.

Fig.5. Part of the equivalent transformation rules for (circular) singly-linked list.
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Next we introduce the equivalent transformation
rules of shape graphs. They are used to represent trans-
formations between shape graphs preserving semantic
equivalence. We give the proof after introducing se-
mantics of shape graphs.

2.3.1 Equivalent Transformation Rules for (Circular)
Singly-Linked List

Basic Rules.
• Rules based on predicate definitions of (circular)

singly-linked list. For example, rule in Fig.5(a) is a rule
based on definition of list(s, e, a) in Fig.4.
• Rules adding or removing a condensation node

whose expression e equals zero. Rules in Figs. 5(b), 5(c)
are this kind of rules. For rule in Fig.5(b), a similar rule
is not included in Fig.5, in which the condensation node
interchanges its position with the structure node in the
right-hand side window. Moreover, if we change the
structure node into predicate node, null node or dan-
gling node (remove its out-edge), the result is also a
basic rule of this kind.
• Rules folding and unfolding a condensation node

whose expression e is greater than zero. Rule in
Fig.5(d) is one of this kind of rules. Similarly, we can
give a rule by interchanging the positions of the struc-
ture node and the condensation node in the right-hand
side window.
• Rules folding and unfolding an unconstrained con-

densation node. Rule in Fig.5(e) is one of this kind of
rules. Rules similar to rule in Fig.5(e) can be given if
the nt edge sourced from the condensation node points
to other kinds of nodes.
• Rules folding and unfolding predicate nodes. Rules

in Figs. 5(f) and 5(g) are two of this kind of rules.
Derived Rules.
• One derived rule states an equivalent transforma-

tion between a condensation node with e1 + e2, a1 ∧ a2

below it and two adjacent condensation nodes (with
e1, a1 and e2, a2 below respectively). Similarly, it is
an equivalent transformation, from two adjacent un-
constrained condensation nodes to one unconstrained
condensation node.
• Another derived rule is for an equivalent transfor-

mation between one structure node and one condensa-
tion node with 1, true below it.
• Another kind of derived rule is related to an al-

ternative inductive definition of list(s, e, a). We can
use the disjunction of right-hand sides without edges
labeled with pk in rules in Figs. 5(f) and 5(g) as the
right-hand side of the definition. Similar rules can be
given for list(s).

2.3.2 Equivalent Transformation Rules for (Circular)
Doubly-Linked List

Basic Rules.
• Rules based on predicate definitions of (circular)

doubly-linked lists.
• Rules adding or removing a condensation node

whose expression e equals zero (e.g., rule in Fig.6(a)).
• Rules folding and unfolding a condensation node

whose expression e is greater than zero (e.g., rule in
Fig.6(b)). Due to the symmetric status of labels l and
r, rules in Figs. 6(a) and 6(b) can also be applied to
cases where the condensation node is pointed by edge
r from the structure node.
• Rules folding and unfolding a condensation node,

which is a marginal node (head node or tail node) in
a doubly-linked list. They are slightly different from
rules in Figs. 6(a) and 6(b).
• Rules folding and unfolding an unconstrained con-

densation node (e.g., rule in Fig.6(c)). Similar rules can
be given if edge r sourced from the condensation node
points to other kinds of nodes, or the condensation node
itself is a marginal node.

Fig.6. Part of the equivalent transformation rules for (circular) doubly-linked list.
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Derived Rules.
Rules can be given in a way similar to derived rules

of (circular) singly-linked lists (except rules related to
alternative inductive definitions).

No other edges (except the two edges labeled with
l and r) point to the condensation node is an impor-
tant principle in given definitions and rules for (circu-
lar) doubly-linked lists. The reason is that if we allow
other edges to point to condensation nodes, we do not
know which nodes they should point to in the unfolded
shape graph.

2.3.3 Equivalent Transformation Rules for Binary
Tree

Besides the rules based on the predicate tree(s),
there are rules for condensation nodes similar to those
of singly-linked lists. The difference is that there is one
additional edge from each structure node or condensa-
tion node to a tree predicate node.

2.3.4 Equivalent Transformation Rules for
Substitutions in e and a of Condensation Node

Rules in Figs. 7(a) and 7(b) are rules for condensa-
tion nodes of (circular) singly-linked lists and (circular)
doubly-linked lists respectively. Similar rules can be
given for condensation nodes of binary trees or for con-
densation nodes as the marginal nodes in doubly-linked
lists.

Fig.7. Part of the equivalent transformation rules for substitu-

tions in condensation node.

We can do transformations on shape graphs using
these equivalent transformation rules. For example, for
a proper context X[] and rule W1 ⇔ W2, we can apply
this rule to shape graph X[W1] to get X[W2] and vice
versa. That is, X[W1] ⇔ X[W2]. Similarly, we can
get X[W ] ⇔ X[W1] ∨ X[W2] from corresponding rule
W ⇔ W1 ∨W2.

Next, implication transformation rules are intro-
duced. They are transformation rules for shape graphs
preserving implication in semantics. Corresponding
proof will be given in Subsection 2.4.

1) From equivalent transformation rules in the form
of W ⇔ W1 ∨W2, we can obtain two implication rules
W1 ⇒ W and W2 ⇒ W .

2) From equivalent transformation rules in the form
of W1 ⇔ W2 with side condition ((e1 == e2 ∧ a1) ⇒
a2)∧((e2 == e1∧a2) ⇒ a1), we can obtain two implica-
tion rules W1 ⇒ W2 and W2 ⇒ W1 with side condition
(e1 == e2∧a1) ⇒ a2 and (e2 == e1∧a2) ⇒ a1 respec-
tively.

3) There are implication transformation rules for
shape graphs changing condensation nodes with e, a
to unconstrained condensation nodes.
• For equivalent transformation rules in the form

of W1 ⇔ W2, if there are condensation nodes with
e1, a1 and e2, a2 in W1 and W2 respectively and e1

is less than e2 under constraint a1 ∧ a2, we can ob-
tain an implication rule W ′

1 ⇒ W ′
2. W ′

1(W
′
2) differs

from W1(W2) in that the former has only replaced the
condensation node with an unconstrained condensation
node and other nodes and edges are the same with the
latter.
• For equivalent transformation rules in the form of

W1 ⇔ W2, if there is a condensation node with e, a in
W2 and no condensation node in W1, we can obtain an
implication rule W1 ⇒ W ′

2. W ′
2 differs from W2 in the

above mentioned way.

2.4 Semantics of Shape Graph

For a programming language with dynamic mem-
ory allocation such as C, nodes denote stack slots or
heap blocks (except for the null and dangling node),
and edges represent values of corresponding pointers. A
shape graph without condensation nodes and predicate
nodes is a graphical representation of machine state.
A general shape graph is a graphical representation of
machine state set.

First, we define the semantics of nodes and edges.
In a machine with a stack and a heap, denotations (or
meanings) of nodes and edges in shape graphs are given
as follows.

1) A declaration node represents a declared pointer
whose name is the label of the out-edge of this declara-
tion node. Different declaration nodes denote distinct
stack slots.

2) A structure node represents a structure variable
created by calling malloc. The number of out-edges is
the same with the number of the field pointers in the
corresponding structure variable. Labels of these edges
are corresponding names of field pointers. A structure
node denotes a heap block whose cell number is its out-
degree and abstract addresses of cells are corresponding
labels.
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Cells of other types have little relationship with our
discussion on shapes, so they are not considered here.
Unconstrained condensation nodes are regarded as con-
densation nodes with expression n and assertion n > 0
in the following part of this subsection.

3) A condensation node with e, a below represents n
structure variables and denotes n separated heap blocks
(assume the value of e is n).

4) Null nodes and dangling nodes do not represent
any program object. So they do not denote anything
of the machine.

5) A predicate node represents several structure
variables allocated dynamically. It denotes a number
of separated heap blocks. Based on the rules of predi-
cate unfolding in Subsection 2.3, the relations among
these blocks are determined according to semantics of
edges.

Edges do not represent any program object. So they
do not denote any locations in the machine memory.
They are used to represent the values of corresponding
pointers.

1) An edge pointing to a structure node represents
the address of the heap block denoted by the node.

2) Edges pointing to null nodes are used to ex-
press that the values of corresponding pointers are
null. Edges pointing to dangling nodes are used to ex-
press that corresponding pointers are dangling point-
ers. Hence, it does not affect the meaning of the shape
graph, whether multiple edges point to one null (dan-
gling) node, or they point to different null (dangling)
nodes.

3) For an edge pointing to a condensation node with
e and a, it represents the address of the heap block
denoted by the first structure node (ordered by the di-
rection of edges) of the unfolded condensation node if
e > 0. Otherwise, if e = 0, it should be determined
after removing this node using corresponding transfor-
mation rules.

4) The denotation of edges pointing predicate nodes
can be determined after unfolding corresponding predi-
cate nodes using transformation rules.

Next we present the semantics of shape graphs fo-
cusing on pointers by omitting variables of other types
and their corresponding memory cells. For non-null
and non-dangling pointers, their values indicate the ab-
stract addresses of the heap blocks pointed by them.
The addresses of heap blocks dynamically allocated
are different abstract values. In our abstract machine,
stack slots and heap cells are accessed via names of
declared pointers and names of field pointers respec-
tively. Thus, the abstract state of the machine (the
machine state for short) can be represented by two
functions: sd : DecVar → AbsValue ∪ {N ,D} and

sf : AbsValue × FieldVar → AbsValue ∪ {N ,D}. The
domain of sd is the set of declared pointers. sd maps
declared pointers to their abstract values. sf maps the
abstract address of a heap block and a field pointer
name to the abstract value of the field pointer (N ,D
are two special abstract values for null and dangling
pointers). Next s or 〈sd, sf 〉 is used to represent the
machine state.

Under such a model, a shape graph without predi-
cate nodes and condensation nodes is a graphic repre-
sentation of the machine state based on the semantics of
the nodes and edges. A generic shape graph is a graphic
representation of a certain set of machine state.

Definition 4. The set of machine states SJGK rep-
resented by shape graph G can be defined using the fol-
lowing rules:

1) If there is no predicate node or condensation node
in G, then there is only one state in SJGK. G represents
this state directly where all labels of out-edges of decla-
ration nodes and the values of corresponding out-edges
form function sd and structure nodes plus the labels of
their out-edges form function sf .

2) If there is a condensation node with e and a below
it and e has k values (implied by a), under these k cases
the condensation node can be unfolded completely into
shape graphs G1, . . . , Gk. Then, SJGK = SJG1K ∪ · · · ∪
SJGkK. If a implies that e could equal 0, 1, . . ., and the
condensation node can be unfolded completely into the
shape graph Gn with n structure nodes (n > 0), then
SJGK = SJG0K ∪ SJG1K ∪ · · · ∪ SJGnK ∪ · · ·.

3) If there is a predicate node in G and its corre-
sponding definition body is G′ or G1 ∨ G2, then SJGK
= SJG′K or SJGK = SJG1K ∪ SJG2K.

Similarly, we can define the semantics of G1 ∨G2.
The syntax for the access path in shape graphs is the

same as that in PointerC in favor of discussing the rela-
tions between them. Clearly, only access paths from a
declaration node to the other node are considered. We
will introduce in the following two cases.
• Full representation of access paths. In this case,

the access path does not cross any condensation node,
and the labels of the edges on the path should be listed
in turn to represent such an access path. For example,
if the labels are p, left, right in turn, the access path is
written as p->left->right.
• Condensed representation of access paths. In this

case, the access path crosses one or more condensation
nodes. For instance, if the path includes an out-edge
labeled left of a condensation node which stands for n
number of nodes, then (->left)n should appear in the
access path, such as hd(->nxt)m and hd(->nxt)m->nxt
in Fig.3(b).
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A path in shape graphs represents a pointer related
to the last edge, which is identical to the access path for
this pointer in programs. They are collectively called
access paths later.

Shape graphs are graphic representation of equalities
and validity of pointers at given program points.

Definition 5. The set of assertions AJGK repre-
sented by shape graph G includes the following asser-
tions about pointers: 1) Pointers pointing to structure
nodes are valid; pointers pointing to the null/dangling
nodes are not valid. 2) Pointers pointing to the same
structure or predicate node are equal; pointers pointing
to the same structure node of an unfolded condensation
node are equal. 3) The value of pointers pointing to the
null node is NULL; pointers pointing to dangling nodes
are dangling pointers. 4) Pointers pointing to predicate
nodes make corresponding predicates hold.

For instance, ptr == hd(->nxt)m->nxt appears in
the assertion set represented by the shape graph of
Fig.3(b). One can infer from the set of assertions that
whether two access paths of pointer types are equal or
not and whether two access paths are aliases or not.

Theorem 1. For any shape graph G, any state in
SJGK satisfies all assertions in AJGK. That is, ∀s :
SJGK. s ² AJGK. And for any s′ /∈ SJGK, if dom(s′d) =
dom(sd) (s ∈SJGK) and the size of AbsValue and Field-
Var in s′f : AbsValue ×FieldVar → AbsValue ∪{N ,D}
is the same as those in sf , then s′ 2AJGK.

Proof. AccessPath is used to represent the set of ac-
cess paths of shape graph G. State is used to stand for
SJGK. Then GetAbsValue:AccessPath× State→Abs-
Value ∪{N ,D}, which maps access paths to their ab-
stract values, can be defined as follows.

GetAbsValueJuK〈sd, sf 〉 =




sd(u), if u is a declared variable;

sf (GetAbsValueJvK〈sd, sf 〉,next),

if u is in the form of v-> next .

Obviously, the abstract value of an access path u
(u ∈ AccessPath) pointing to a node is the address of
the heap block represented by the node or in the set
{N ,D}. If access paths u and v (u, v ∈ AccessPath)
point to the same node in a shape graph, they have the
same abstract value. Hence, if there is neither conden-
sation node nor predicate node in G, Theorem 1 holds.
Theorem 1 can be generalized to generic G which can
be proved by induction using similar steps as shown in
Definition 4.

Theorem 2. Using any transform rule of shape
graphs, G ⇔ G′ or G ⇔ G1 ∨ G2 can be inferred,
SJGK=SJG′K or SJGK=SJG1K ∪ SJG2K holds. With re-
spect to G ⇔ G′, for any state s: SJGK, s²AJGK if and

only if s ² AJG′K. With respect to G ⇔ G1 ∨ G2, for
any state s: SJGK, s ² AJGK if and only if s ² AJG1K or
s ² AJG2K. For rules of implication, this theorem still
holds if the equality between state sets is changed into ⊆
and if and only if is changed to the logical implication.

For each transform rule, Theorem 2 can be proved
based on the construction rules of state sets in Defini-
tion 4. For instance, from the rule in Fig.5(e) we can
get G ⇔ G1 ∨ G2. Hence using rule 3 in Definition 4,
SJGK is SJG1K ∪ SJG2K, where the states in SJG1K and
SJG2K satisfy AJG1K and AJG2K respectively.

From Theorem 2, if shape graphs are regarded as
assertion sets, the transform rules of shape graphs are
equivalence or implication rules of the assertion calcu-
lus. These rules are valid with respect to our machine
model.

Shape graphs, as assertions about pointers in data
structures, are part of program assertions. We use
G1∨G2∨· · ·∨Gk in disjunction normal form (DNF) to
express different cases of data structure at a program
point. Symbols such as ⇔ and ⇒ can be regarded as
logical equivalence and implication connectives respec-
tively.

2.5 Relations Between Shape Graph and
Symbolic Assertion

As assertion, a shape graph can be calculated with
symbolic assertions. When using rules extended from
Hoare logic, Boolean expressions, such as u==NULL,
u!=NULL, u==v and u!=v (where u and v are access
paths of pointer types), will be used in conjunctions
with shape graphs. So special rules are needed to deal
with this kind of conjunctions. Such symbolic assertion
will be removed if it does not conflict with the shape
graph and otherwise the whole assertion implies false.
Fig.8(a) is one of this kind of rules.

Fig.8. Part of the rules for conjunctions of shape graphs and

symbolic assertions.

If an assertion a′ appears in the symbolic assertion
and it affects e, a′ should be added to corresponding
node constraint. One of this kind of rules is shown in
Fig.8(b). If a ∧ a′ is false, the whole assertion is also
false.

Note that names u, uk under the arrows represent
access paths of corresponding edges (names above the
edges are labels) in Fig.8(a). In the following the pa-
per confirms to these conventions. Different require-
ments should be satisfied when applying rules with ac-
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cess paths below edges other than with labels above
edges. We name the window W in this rule. If we want
to apply this rule to X[W ], there must exist an access
path u in X[W ] to the node of W .

These rules can be easily proven to be valid with
respect to our machine model.

2.6 Relations Between Shape Graphs and
Access Path Sets

Prior to the design of shape graph logic, we have de-
signed a pointer logic[8] using access path set (e.g., {p,
s-> r-> l} in which p and s->r->l are access paths in
a C-like program language) as assertions. Pointer logic
can be regarded as a symbolic version of shape graph
logic. So in this subsection, we compare shape graphs
with access path sets in the pointer logic.

We show the differences and relations using a quick
example (see Fig.9). This example is a code fragment

from a function inserting a node into a circular doubly-
linked list. The type of the nodes is typedef struct
node{Node* l; Node* r; } Node. In Fig.9, p points to
a node of the circular doubly-linked list, and s points
to the node which should be inserted into the left side of
the node pointed by q. Shape graphs and corresponding
access path sets are given as assertions at some program
points. In the assertions, n (n > 0) is used to denote
the length of the list. And i (0 < i < n) is the num-
ber of nodes from the node pointed by p to the node
pointed by q following the r link (the node pointed by
q is not included).

Relations between shape graphs (nodes and directed
edges) with access path sets include the following as-
pects:

1) Every structure node nd corresponds to exact one
access path set st. Directed edges pointing to the struc-
ture node nd have one-to-one correspondences with

Fig.9. Code fragment with assertions for function inserting a node into a circular doubly-linked list.
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access paths in the corresponding set st. In Fig.9, ac-
cess paths with superscript are only used in assertions.
For example, p(-> r)2->l denotes p->r->r->l.

2) A condensation node corresponds to several access
path sets (decided by e and a below the condensation
node). These access paths sets can be universal quanti-
fied. But when the condensation node in a singly-linked
list is pointed by multiple edges (pointers), access path
set of this condensation node cannot be quantified any-
more.

3) All null nodes correspond to one access path set
with the subscript N . All dangling nodes correspond to
one access path set with the subscript D. All directed
edges pointing to null (dangling) nodes have one-to-one
correspondences with access paths in the access path set
with the subscript N (D, respectively).

4) Predicate nodes correspond to no access path set,
but shape predicates correspond to predicates defined
using access path sets. For example, the binary tree in
Fig.4 is corresponding to the following inductive defini-
tion using access path sets:

tree(s) , {s}N ∨ ({s} ∧ tree(s-> l) ∧ tree(s-> r)).

5) Declaration nodes correspond to no access path
set, since there is no pointer pointing to declaration
nodes.

Obviously, pointers represented by directed edges
pointing to the same node (excluding dangling node)
correspond to pointers represented by access paths in
one access path set (excluding set with subscript D).
Access path sets are sets of pointers equal to each other.
When one pointer can be represented by multiple ac-
cess paths, we only choose one of them as an element
in some set in our pointer logic assertion. Thus, ac-
cess path sets can be regarded as assertions on pointer
equality. So access paths can be connected using logical
conjunction and disjunction, such as we connect shape
graphs using these two logical connectives.

Transformation rules for shape graphs in Subsection
2.3 correspond to a set of assertion calculation rules in
the pointer logic. In the pointer logic, the rule corre-
sponding to the rule in Fig.8(a) is S1∧· · ·∧Sn−1∧Su∧
N ∧D∧(u == NULL) ⇒ false, where Si (1 6 i 6 n−1)
and Su are access path sets corresponding to structure
nodes, N and D are sets of NULL pointers and dangling
pointers respectively. Su is an access path set includ-
ing pointer u, which behaves similarly to the window
(context) in the rule of Fig.8(a).

3 Shape Graph Logic

Assertions at each program point include shape
graphs and possible symbolic assertions (Q). The as-

sertion at each program point preserves the DNF (G1∧
Q1) ∨ (G2 ∧ Q2) ∨ · · · ∨ (Gn ∧ Qn) in the verification
stage. We only need to discuss one case G∧Q (G and Q
both are conjunctions). The general form of program
specifications is {G ∧Q} C {G′ ∧Q′}.

For pointer statements (e.g., assignment statements
of pointers, allocation statements, deallocation state-
ments), G′ is different from G. And Q′ may be differ-
ent from Q slightly caused by alias substitutions. For
non-pointer statements, G′ differs from G at most in
expression e and assertion a below nodes.

With respect to the specification in form of
{G}C{G′}, Subsection 3.1 will only give the rules repre-
senting changes of shape graphs for pointer statements.
These rules are used in the shape analysis stage. Com-
plete rules concerning both shape graphs and symbolic
assertions will be introduced in Subsection 3.2.

3.1 Inference Rules Focusing on Changes of
Shape Graphs

When using the following rules, symbolic asser-
tions of non-/equation between pointers, such as
u ==NULL, have already been removed using assertion
calculus rules; access paths in statement C must appear
in G at the program point before C, and they can reach
condensation nodes and will not cross them. Otherwise,
corresponding condensation nodes should be unfolded,
or errors will be reported if unfolding operation cannot
be done).

Pointer Assignment Statement u = v.
1) Pointer u points to a null/dangling node, and

pointer v points to a structure/predicate node, or a
condensation node of a (circular) singly-linked list.

In the new shape graph at the program point af-
ter the assignment, pointer u will point to the node
originally pointed by pointer v. Fig.10 shows one of
the rules. There are windows (i.e., local nodes and
edges which we focus on currently), not full shape
graphs, in braces of the rule. This rule means that if
we name the four sub-graphs as W11, W12, W21 and
W22, respectively, for any proper shape context X[]
(i.e., X[W11,W12] is a shape graph), we can get

{X[W11,W12]}u = v{X[W21,W22]},

where windows W11, W12 are not overlapped with each
other.

Fig.10. One case of the rules for assignment statement.
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So strictly speaking, the rule in Fig.10 is a rule for
windows. We also use inference rules to name this kind
of rules for simplicity.

2) Pointer v points to a null/dangling node (v can be
the constant NULL), and pointer u points to a struc-
ture/predicate node, or a condensation node of a (cir-
cular) singly-linked list.

One rule is shown in Fig.11. If only u points to the
structure node, memory leak will be reported in the
analysis stage. Similar rules can be given if the struc-
ture node has two out-edges. We use a simple example
to explain the necessity of the side condition in this rule.
G is a shape graph formed by an edge q connecting a
declaration node with a one-node circular singly-linked
list. Applying this rule to statement q =NULL with
respect to G, memory leak should be reported. How-
ever, it cannot report memory leak without this side
condition.

Fig.11. Another case of the rules for assignment statement.

We use Fig.12 to explain the side condition for the
rule in Fig.11. Suppose we use this rule to reason the
assignment statement p =NULL whose precondition is
the shape graph in Fig.12. If there is no such a side
condition, we can apply the rule, but memory leak will
be caused although there are two pointers (edges, in ac-
cess paths p and p->nxt->nxt) point to the same node
pointed by edge p. The side condition forbids the ap-
plication of this rule under such circumstance, because
access path p->nxt->nxt has p as its prefix.

Fig.12. Example shape graph of circular singly-linked list.

3) Pointers u and v point to different structure,
condensation or predicate nodes. In such a case, this
statement will be reasoned as a sequence dummy=v ;
u =NULL; u = dummy ; dummy=NULL where
dummy is a virtual pointer for every function (differ-
ent from any other local variables). Using this method,
we avoid designing one complex rule for this case of as-
signment. For example, with respect to the shape graph
in Fig.12 as the precondition, assignment statement p
= p->nxt will not cause memory leak. If we design a
specific rule reporting all memory leaks in the analysis
stage without false positives, the resulting rule will be
very complex.

Allocation Statement u = malloc(t).
1) Pointer u points to a null/dangling node. The

shape graph for the post-condition will be given by:
adding a new structure node; making u point to this
node; adding edges (with labels) pointing to a dangling
node for each field pointer of the structure node ac-
cording to type t. Fig.13 shows one case of such rules,
supposing the type t has one field pointer f.

Fig.13. One rule for allocation statement.

2) Pointer u points to a structure, condensation or
predicate node. This statement will be treated as a se-
quence u =NULL; u = malloc(t). Corresponding rules
will be used to get the resulting shape graph.

Statement free(u). According to the type of the
node pointed by pointer u, we can know all the ac-
cess paths for the field pointers such as u->r1, . . . , u-
>rn. Then, this statement can be treated as a se-
quence u->r1 =NULL; . . .; u-> rn =NULL; free(u)
instead. Corresponding rules will be used to get the
resulting shape graph. The last statement free(u) will
delete the node pointed by u, including its out-edges
and the nodes pointed by these out-edges, and make all
the in-edges of this node point to a dangling node.

Statements Related to the Function Construction.
Due to limited space, next rules for functions with one
pointer parameter (namely arg) and return value of
pointer types will be given. Other rules can be fig-
ured out similarly. Suppose that these functions have
two virtual pointers res (representing the return value)
and dummy (mentioned above).

1) Declaration statements of local pointers. First,
one shape sub-graph is the constructed where a dec-
laration node connects a dangling node by an edge
with one of the following names as the label: q1, . . . , qk

(representing local pointers), res and dummy. The re-
sulting shape graph is the conjunctions of these shape
sub-graphs and the shape graph of the function’s pre-
condition.

2) Statement return exp. This statement will
be treated as a sequence res=exp; q1 =NULL; . . .,
qk =NULL; arg=NULL; return. Corresponding rules
will be used to get the resulting shape graph. The last
return statement will delete all of the shape sub-graphs
which q1, . . . , qk, dummy, and arg belong to. Note that,
if local variables or parameters appear in e, a of conden-
sation nodes, corresponding condensation node should
be replaced with an unconstrained condensation node.
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3) Function call statement ret = f(act). Only one
case will be considered, where ret equals NULL and ret
is not the same pointer as act (shown in Fig.14, S is the
body of function f ). Note that a declaration node arg ′,
which points to the same node pointed by the actual
argument, is added to the shape graph of the function
pre-condition. It points to the same node as the decla-
ration node arg. If the node pointed by the actual ar-
gument is modified in the function, it will be fed back
to the shape graph of the caller. If we constrain the
syntax of function call statement as act=f(act), there is
no need to add such a declaration node arg ′.

Fig.14. One of the rules for function call statement.

The squares in bold solid line (black box) represent
that only the edges cross an edge of the square and
nodes outside the squares are concerned (graphs inside
the squares are not changed), in contrast with the rect-
angles in dot and dash lines. In this rule, the effect of
the function f is reflected in modifying Gcaller using the
shape graph Gcallee of the post-condition of the function
f to get the shape graphs after the function call state-
ment. That is, the predicate node and null node are
replaced using graphs in the black box of Gcallee. Then
we use act, uk to replace arg′ across the black box and
use ret to replace res. The resulting shape graph is the
shape graph after the function call statement.

Rules for Integer Assignment Statements. If modi-
fied variables by such assignment statements appear in
expression e and assertion a of condensation nodes, e
and a in corresponding G′ should be changed with re-
spect to assignment axiom.

Rules for Composition/Conditional/Loop State-
ments. Composition rule, conditional rule, loop rule
and consequence rule are identical to corresponding
rules in Hoare logic.

Case Analysis Rule. If the pre-condition of C is
G1 ∨ G2, then its post-condition can be obtained by
applying the following rule.

{G1}C{G′1 ∨ · · · ∨G′m} {G2}C{G′′1 ∨ · · · ∨G′′n}
{G1 ∨G2}C{G′1 ∨ · · · ∨G′m ∨G′′1 ∨ · · · ∨G′′n}

m,n > 1.

Frame Rule. We use local reasoning ideas in afore-
mentioned rules. That is, when pointer statement C

changes the program state, the changes are reflected by
changing shape graphs (point-to relations of edges and
nodes) in the window W , not the context X[]). The
following rule is one of our frame rules for contexts and
windows.

{W1}C{W2}
{X[W1]}C{X[W2]} .

3.2 Inference Rules Dealing with Shape
Graphs and Symbolic Assertions

In this subsection, we give rules for non-pointer
statements (statements not dealing with pointers) and
complete the rules for pointer statements to include
symbolic assertions based on the rules presented in Sub-
section 3.1. These rules are used in the verification
stage. When we reason statement C under the pre-
condition G∧Q using the corresponding rule to get the
post-condition G′∧Q′, the following should be guaran-
teed:
• The legality of access paths in Q and C (with re-

spect to G), and no aliasing in Q and C.
• There is no assertion in Q duplicated or contradict

with G, such as p==NULL, p==q.
•More guarantee should be fulfilled if predicates and

quantifiers appear in Q (See Subsection 5.1).
If any alias exists, we can eliminate aliasing us-

ing information provided by the shape graph G (us-
ing one access path to replace its aliases), then the fol-
lowing rules can be used. We define a function elim-
inate aliases(G,C, Q) which returns (C ′, Q′) by elimi-
nating the aliases in C and Q with respect to G.

For example, suppose G is as shown in Fig.15, C
is p->data=10 and Q is p->data==5 ∧ q->data==5.
From G we can easily infer that p->data and q->data
are aliases to each other. If we apply the assignment
axiom for non-pointer statements in Subsection 3.2,
we can get a wrong post-condition for statement C :
x==5 ∧ q->data==5 ∧ p->data==10 where x is fresh
variable. So we must do alias substitution before we ap-
ply corresponding Hoare rules. In this example, elim-
inate aliases(G,C, Q) returns C ′ (same as C ) and Q′.
Q′ is p->data==5 ∧ p->data==5 by replacing q by p
in Q since p are equal to q.

Fig.15. Example for eliminating aliases.

All of our inference rules must be used when there
is no aliasing in both assertions and statements. So the
following rule (eliminating alias rule) is added in order
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to reason about programs containing aliases of access
paths.

{G ∧Q′′}C ′{G′ ∧Q′}
{G ∧Q}C{G′ ∧Q′} (C ′, Q′′)

= eliminate aliases(G,C, Q).

Non-Pointer Statements. For assignment state-
ments for non-pointers, the assignment axiom of Hoare
logic can be used if x does not appear in expressions or
assertions below nodes in G.

x′ is fresh
{G ∧Q}x = e{G ∧Q[x′/x] ∧ x == E[x′/x]} .

Other rules of Hoare logic for other non-pointer
statements (e.g., function call statement which does not
modify any pointer) can be used directly.

Pointer Statements. For pointer statements, com-
plete rules are given to adjust Q based on the rules of
Subsection 3.1.

1) Pointer assignment statement u=v. The rule is

{G}u = v{G′}
{G ∧Q}u = v{G′ ∧Q[u′/u]}
(u′ is equal but not alias to u),

where the premise can be acquired in the analysis stage
using the corresponding rule of Subsection 3.1.

2) Other statements assigning values to pointers.
Symbolic assertion Q in an allocation statement u =
malloc(t) and function call statement ret = f(act) is
dealt with in the way similarly as in pointer assignment
statements.

3) Free statement free(u). After the heap block
pointed by u is released, the assertions in Q about
pointer u or its alias should not exist anymore. So the
rule is:

{G}free(u){G′}
{G ∧Q}free(u){G′ ∧Q} (u does not appear in Q).

3.3 Soundness of SGL

The inference rules in Subsection 3.1 can be regarded
as graphic representations of the operational semantics
for corresponding statements. Changes in shape graphs
before and after the executions of statements are re-
flected in the inference rules. And shape graphs are the
graphic representation of the program states. So natu-
rally, changes of the shape graphs are in accord with
changes of the program states caused by executions of
the statements.

Theorem 3. For any {G} C {G′} inferred using
rules in Subsection 3.1, if s1 ∈SJGK and the opera-

tional semantic of the statement C is 〈C, s1〉 → s2, then
s2 ∈SJG′K.

This theorem can be proved by induction on the
structure of statement C. We take pointer assignment
statement u = v for example to show how to prove
it. The operational semantics are: if u is a declared
pointer,

〈u = v, 〈sd, sf 〉〉 → 〈sd[u 7→ GetAbsValueJvK〈sd, sf 〉], sf 〉;

and if u is in the form of w->next, and
GetAbsValueJwK〈sd, sf 〉 = x,

〈u = v, 〈sd, sf 〉〉 →
〈sd, sf [〈x,next〉 7→ GetAbsValueJvK〈sd, sf 〉]〉.

From the semantics, we know that the execution of
this statement depends on u to modify a stack slot or
a heap cell of the state s1 with other parts unchanged.
Only one edge is modified in shape sub-graphs shown
in the rules in Fig.10 and Fig.11. It is consistent with
the operational semantics.

The changes of shape graphs in other rules are
also consistent with the operational semantics of cor-
responding statements.

Theorem 4. The inference rules in Subsection 3.1
are sound with respect to the operational semantics.

For any inference rule in the form of {W1}C{W2},
we need to prove that for any shape context X[] (if all
declared pointers can be covered exactly by both X[W1]
and X[W2]), if s1 ²AJX[W1]K and 〈C, s1〉 → s2, then
s2 ²AJX[W2]K.

Using the rule {W1}C{W2}, we can get
{X[W1]}C{X[W2]}. From Theorem 1, we can infer
that if s1 ²AJX[W1]K, then s1 ∈SJX[W1]K. Then we
can get s2 ∈SJX[W2]K using Theorem 3. Hence we can
get s2 ²AJX[W2]K from Theorem 1.

For inference rules with premises, the soundness with
respect to semantics is not difficult to prove.

Based on the soundness of Hoare logic, the sound-
ness proof of SGL needs to be supplemented in proving
the following aspects (detailed proof omitted):

1) For PointerC, the assignment axiom of Hoare logic
is sound when used with no aliasing in assertions and
statements.

2) C ′ has the same semantics as C, and Q′ is equiva-
lent to Q in semantics where (C ′, Q′) = eliminate aliases
(G,C, Q).

3) The rule for eliminating aliasing is sound.

3.4 Relations Between Rules of SGL and
Pointer Logic

There are correspondences between rules of SGL and
the pointer logic. For example, with respect to the rule
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in Fig.13, corresponding rule in the pointer logic is:
{S1 ∧ · · · ∧ Sn ∧N p ∧ D}p = malloc(t){S1 ∧ · · · ∧ Sn ∧
{p} ∧ (N p − p) ∧ (D + p- > f)}.

Another example, corresponding rule for the rule
in Fig.11 is: {S1 ∧ · · · ∧ Sn−1 ∧ Su ∧ N v ∧ D} u =
v{S1/u∧· · ·∧Sn−1/u∧(Su/u−u)∧(N v/u+u)∧D/u)}
(¬leak(Su, u)).
S/p is prefix substitution which is strictly defined in

[8]: for every access path q in access path set S which
has access path p or alias of p as its prefix (e.g., q is
in the form of p->nxt->nxt), q is substituted by its
alias which has no prefix like p or alias of p; other ac-
cess paths will not change. Prefix substitution is a very
complex operation. Similarly, the predicate leak(Su, u)
which is used to judge whether memory leak will appear
when we try to assign a new value to pointer u. So, the
rules in pointer logic are very complex due to such ope-
rations (e.g., prefix substitution for access paths, alias
judgement, memory leak judgement) on access paths.
Since we do not use access paths in the shape graph
logic, such problems will not exist. For example, the
first two assignment statements in Fig.9 will break the
circular doubly-linked list pointed by pointer p. Access
paths for some pointers will change from using p as pre-
fix to using q as prefix. So it is more convenient using
shape graphs as assertions (in this case, we only unfold
the condensation node and adjust the targets of some
edges).

With respect to the shape graphs and access path
sets of line 1 in Fig.9, we can judge more easily from
the shape graphs whether pointer p points to a cir-
cular doubly-linked list. In the implementation of the
pointer logic, under many circumstances, we have al-
ready transformed the access path sets into some kind
of graphs in order to reason properties or do operations
much easier.

It is hard to design structural rules for our pointer
logic using full access paths to represent pointers.

In the view of these reasons, we design SGL after
the pointer logic.

4 Shape System

We have designed a shape system besides SGL in
order to raise the threshold of being a legal program.
The shape system is used to exclude programs that do
not construct or operate on shapes expected by pro-
grammers. In this way, we can knock down difficulties
of shape analysis and program verification.

4.1 Design of Shape System

The shape system includes: shapes allowed to be de-
clared and their definitions, shape inference rules and
shape checking rules. The design and implementa-
tion of our shape system are based on SGL. Currently,
shapes allowed are those defined in Fig.4 (including
definitions not shown).

Shape inference is to judge the shape of the shape
sub-graph including a given declared pointer p. We
could do shape inference as the followings.

1) get the shape sub-graph G1 containing p from
given shape graphs;

2) make only one declared pointer (maybe not p) left
in G1 using the inference rule for statement q =NULL;
let the resulting shape graph be G2.

3) get a shape graph G3 which cannot be folded any-
more using transformation rules of shape graphs on G2.

4) if G3 is a minimal shape sub-graph for data struc-
tures, and the shape is identical to the declared shape
in the structure definition related to p, then G1 is a
shape graph for the corresponding declared shape.

For example, shape graph in Fig.16(a) is the origi-
nal shape graphs. Suppose we need to infer the shape
of the shape sub-graph including a declared pointer hd.
After step 1, we can get shape graph in Fig.16(b). Af-
ter step 2, we get shape graph in Fig.16(c). And after
step 3 we can get shape graph in Fig.16(d). So we can
infer from shape graph in Fig.16(d) that the shape is
the singly-linked list.

If only pointers (not p) pointing to the same node as
p can be deleted in step 2, the inference is called strict

Fig.16. Example for shape inference.
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shape inference. Otherwise, it is called relaxed shape
inference. That is, strict shape inference does not allow
other declared pointers to point to other nodes (exclud-
ing the node pointed by p) in the shape sub-graph.

Shape checking judges, whether the result of shape
inference on the shape sub-graph containing a declared
pointer p is identical to the corresponding declared
shape (the shape of the data structure pointed by p).
So shape inference could be done only at the program
points where shape checking is needed.

At which program points to do shape checking on
which pointers using relaxed or strict shape checking
is decided by shape checking rules. It is not easy to
make such a strategic decision since shapes may be de-
structed temporarily when inserting or deleting certain
nodes. So it is allowed that pointers point to shapes not
identical to the corresponding declared ones at some
program points. Currently, checking points include the
following three cases.
• At the Function Call and Return Sites. The shape

of the actual pointer argument (by strict shape infe-
rence) must be identical to its declared shape. Under
this constraint, we avoid difficulties in shape analysis of
functions if other pointers are allowed to point to the
inner nodes of shape graphs of the pre-condition.

At a return site, we do shape checking on two kinds
of pointers, namely return value and actual arguments
of pointer types. If they have the same type and point
to a same shape sub-graph, they could possibly point to
different nodes in it. So we do relaxed shape checking at
return sites. If necessary, programmers can add a com-
mand requesting the shape system to do a strict shape
checking just following the function call statement in
the caller. Note that there is one special case, the shape
system will not report shape errors if the node pointed
by an actual argument is freed in a function (this actual
argument turns into a dangling pointer).
• At the Entry Points of Loops. Each declared

pointer variable should point to its declared shape at
the entry point of a loop using relaxed shape inference,
if it is modified in the loop body, but does not point to
null/dangling nodes at the end of the loop body. We use
relaxed shape inference here since there may be multi-
ple declared pointers pointing to different nodes of a
data structure when this data structure is manipulated
in a loop (e.g., loop invariant shape graph in Fig.3(a)).
• At the End Points of Loops. In most cases shape

checking can be performed at the end of the loop body
so that checks will be done after each iteration. How-
ever, not all algorithms ensure that shapes are pre-
served in each iteration. A typical example is a program
for doubly-linked list reversal (details see Example 1 in
Section 5). In this example, a loop is used to reverse

the two pointers on each node by iteration. At the end
point of the loop body, both the traversed part and the
untouched part look like doubly-linked lists. Even so,
they do not form a doubly-linked list in a whole until
pointers of all nodes are reversed (i.e., after the loop).

Shape checking at the end of loop bodies contributes
earlier reports on errors of programs that construct
shapes deviating from what the programmers expect.
It also benefits the termination of inferences of loop in-
variant shape graphs. In essence, shape checking con-
strains the behaviors of loop bodies in manipulating
data structures. For example, a data structure with
two field pointers l and r is a doubly-linked list at a
loop entry by relaxed shape inference. This list is tra-
versed along the field pointer r and the field pointer l
of each node is made to point to null (dangling) nodes.
This program will be rejected if we set a shape check-
ing point at the end of the loop body since it is not a
doubly-linked list any more. Otherwise, the inference
process of loop invariant shape graphs cannot terminate
since there is no folding rule to be used.

Due to these considerations, we do more relaxed
checks at the end of loop bodies. That is, the shape
system reports no errors if folding operations can be
done on the traversed nodes in the loops.

Although both shape system and type system ana-
lyze programs statically, they are different essentially.
Firstly, common type systems make contextual con-
straints on program syntax, and they do not relate to
language semantics; our shape system limits the shapes
constructed by programs dynamically, which depends
on language semantics. Secondly, the typing rules are
structured. That is, the type of each construction of the
language depends on the type of sub-construction(s).
But our shape inference and checking judge what shape
is constructed and whether the shape is legal or not
based on the point-to relations between various nodes.

Our shape system differs from shape types[9] al-
though the goal is the same. In shape types, shapes
are defined in terms of context-free graph grammars.
We directly use graphs rather than symbolic representa-
tions of graphs to define shapes. Moreover, they use ab-
stract graph transformers to describe operations (e.g.,
insertion and deletion) on data structure and present an
algorithm for the static shape checking of graph trans-
formers. We do shape checking directly on PointerC
programs manipulating data structures.

4.2 Benefits of Shape System for Verification

There are three following benefits using the shape
system.

1) Programmers need not provide shape graphs in
pre-/post-conditions. Shape constraints at function call
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sites make the interface of functions simple and make
the inference of shape graphs in the post-condition pos-
sible. For recursive functions dealing with pointers,
inference of shape graphs in the post-condition, please
refer to [7].

2) Programmers need not provide loop invariant
shape graphs. We make the inference of loop invari-
ant shape graphs (details please refer to [7]) simple and
automatic by excluding programs which cannot pass
our shape checking.

3) Shape system helps programmers find errors ear-
lier. Besides the shape checking points mentioned
above, we allow programmers to insert checks at de-
sired program points. These inserted checks are done
statically, so they do not affect executions at runtime.

5 Implementation and Prototype

Based on SGL, we have implemented a program
verifier② for PointerC. It can verify programs dealing
with shapes defined in Fig.4 (including some shapes
not listed). We can also verify properties of data on
the nodes. Programmers need not to provide shape
related assertions in the pre-/post-conditions for func-
tions and loop invariants. So graphical assertions bring
no trouble to programmers.

5.1 Overview

Our prototype does analysis and verification in the
following steps.

Preprocessing. The tool generates abstract syntax
tree (AST) and does traditional static checks (e.g., type
checking).

Shape Analysis Stage. Traversing the AST, shape
graphs at each program point will be produced based
on SGL. Shape inference and shape checking will be
done at necessary program points. When a loop state-
ment is encountered, the loop body will be traversed
several times in order to infer corresponding loop in-
variant shape graphs. The process is similar to the
inference of shape graphs in post-conditions of recur-
sive functions.

Program Verification Stage. This stage can be di-
vided into two sub-stages: VC generation and auto-
matic theorem proving.

According to non-pointer pre-/post-conditions for
functions and loop invariants provided by programmers,
VCs will be generated using strongest post-condition
calculation based on SGL. The basic form of VCs is
G B Q ⇒ Q′, where G is the shape graph at the pro-
gram point where this VC is generated. So G is the

context for the proof Q ⇒ Q′.
Our assertion language supports predicates, quanti-

fiers and common features in first-order logic. Access
paths could be used in symbolic assertions. Examples
of assertions, please refer to Subsection 5.2. We add
the following restrictions on assertions.
• Pointer access paths in Q must be a legal path in

G.
• Any node asserted (touched) by a predicate should

not be pointed by foreign pointers except that they are
equal to any argument of the predicate. We use foreign
pointers to name pointers, which will not appear in the
graph by unfolding the predicate.
• Any node asserted (touched) by a quantifier should

confirm to the above restriction of predicates.
Besides checking the legality of assertions provided

by programmers in the VC generation stage, the pro-
totype preserves the legality of assertions by unfolding
predicates or quantifiers.

Before submit VCs to provers, some needed informa-
tion (e.g., equalities between pointers) in shape graph
G should be converted into symbolic assertion P. There
should be no aliasing in P, Q and Q′. P may include
other assertions. For example, if there is a conden-
sation node in G, assertion a below this node which
constrains the expression e should be included in P.
If built-in functions (e.g., length) appear in Q′, as-
sertions on length of the corresponding list (acquiring
from G) should be included in P. We directly submit
¬ (P ∧Q ⇒ Q′) to the SMT (satisfiability modulo the-
ories) solver Z3[10]. If it is not satisfied, then P∧Q ⇒ Q′

is valid.
A shape graph is a shared data structure between

analysis and verification. It can be regarded as graphi-
cal presentation of assertions on equalities of pointers.
Using shape graphs as assertions makes work in both
stages easy.

We have verified some complex programs manipulat-
ing mutable data structures using our prototype auto-
matically. Table 1 shows the statistical data about test
cases running on a Windows 7 PC with an Intelr Core
i5-2400 3.1GHz CPU and 4 G memory. Note that in
test cases of insert and delete functions for binary trees
(AA, AVL, BST, splay and treap), listed data actually
includes all auxiliary functions (e.g., function balance
and function splay) which are called during these two
operations. During the analysis and verification of pro-
grams dealing with splay trees, protrudent memory and
time are used because the loop invariant shape graphs
are disjunctions of prominently more shape graphs than
those of other programs.

②The verifier prototype system of PointerC (based on the shape graph logic and the shape system), http://kyhcs.ustcsz.edu.cn/
SGL, Oct. 2013.



18 J. Comput. Sci. & Technol., Nov. 2013, Vol.28, No.6

Table 1. Statistical Data About Some Test Cases

Data Structure Function Time to Build Memory for Iterations/Time (ms) to No. No. No.

SGs (ms) SGs (KB) Infer Loop Invariants Predicate Lemma VC

Sorted singly-linked list Merge 263 81.6 4/85.5 3 3 5

Sorted doubly-linked list Reverse 213 50.0 4.5/23.5 0 0 0

Sorted circular doubly-linked list Insert 92 30.4 3/16 0 0 0

AVL tree Insert, delete 2 708 1 118.7 No Loop/- 5 4 32

AA tree Insert 153 116.6 No Loop/- 6 13 8

Binary search tree (BST) Insert, delete 137 40.4 3/15 7 10 6

Treap Insert, delete 276 95.3 No Loop/- 5 6 18

Splay tree Insert 43 927 2 687.9 9/40 388 5 8 9

Note: SG is shorthand for shape graph.

5.2 Examples

Programmers need to provide pre-/post-conditions
for functions and loop invariants about data when pro-
gramming. Moreover, they could define some induc-
tive predicates to describe properties of inductive data
structures in favor of easy expression of specifications.
Besides defining predicates, lemmas about inductive
properties between predicates must be given as hints
to automatic theorem provers, which are not so power-
ful to discharge these kinds of VC.

In this subsection, two examples are introduced to
help understand this paper.

Example 1. Function invert shown in Fig.17 in-
verts an input sorted doubly-linked list and returns a
pointer to the resulting list. As stated in the given post-
condition, the resulting list is sorted, which is expressed
using universal quantifiers. Variables used in assertions
but not appearing in programs are logical variables,
such as n in the pre-condition. Assertion length(hd,
nxt)==n is equivalent to ∃ n:Z.length(hd, nxt)==n.

For loops dealing with doubly-linked lists, the loop
invariant shape graphs are more complex than those of
loops dealing with singly-linked lists (the invariant for
the first loop shown in Fig.18). hd ′ is an node (corre-
sponding to the node for actual arguments) added by
our prototype according to the function call rule.

typedef struct listnode { int d;

ListNode *:DLIST nxt; ListNode *:DLIST pre;

} ListNode;

ListNode* invert(ListNode *hd) {

assertion length(hd,nxt)==n ∧
∀i:1..n− 1.hd(->nxt)i−1->d6hd(->nxt)i->d;

ListNode *tl; ListNode *ptr;

ListNode *tmp; int k;

tl=hd; k=0;

if(tl!=NULL){
while(tl->nxt!=NULL)

loop invariant ∀i:1..k.hd(->nxt)i−1->d6hd(->nxt)i->d

∧∀i:k + 1..n− 1.tl(->nxt)i−1->d6tl(->nxt)i->d;

{ tl=tl->nxt; k=k+1; }
ptr=tl; k=0; tmp=NULL;

while(ptr!=NULL)

loop invariant ∀i:1..n− k − 1.hd(->nxt)i−1->d

6hd(->nxt)i->d∧∀i:1..k.tl(->nxt) i−1->d6tl(->nxt)i->d;

{ tmp=ptr->nxt; ptr->nxt=ptr->pre;

ptr->pre=tmp; ptr=ptr->nxt; k=k+1;

}
}
return tl;

assertion length(tl, nxt) == n ∧
∀i:1..n− 1.tl(->nxt)i−1->d>tl(->nxt)i->d;

}
Fig.17. Example 1: inverting a sorted doubly-linked list.

Fig.18. Loop invariant shape graph of the first loop in Example 1.



Zhao-Peng Li et al.: A Shape Graph Logic and A Shape System 19

The doubly-linked list is temporarily not in shape in
iterations of the second loop. Furthermore, pointers hd
and tl point to two different nodes (the head node and
tail node). These make the loop invariant shape graphs
complicated (eight cases not listed here due to limited
space).

In various program verifiers[11-15], specifications
must be provided in order to verify shape and data
properties of programs manipulating multiple complex
data structures.

Example 2. In this example, we show a function in-
serting a node into a binary search tree and returning
a pointer to the resulting sorted tree. Code and as-
sertions, please refer to Fig.19. User-defined predicates
and lemmas in Fig.20 are used to describe specifications
on orderedness where p is a pointer variable and x, y
are integer variables.

typedef struct node

{int data; Node *:TREE l; Node *:TREE r;} Node;

Node* insert(Node *p, int data) {

assertion order(p)∧y>data∧gt(y, p)∧
z <data∧lt(z, p);

if(p==NULL) {
p=malloc(Node);

p->l=NULL;p->r=NULL; p->data=data;

} else if(p->data>data) {
p->l=insert(p->l, data);

} else if(p->data<data){
p->r=insert(p->r, data);

}
return p;

assertion order(p)∧gt(y, p)∧lt(z, p); }

Fig.19. Inserting a node into a sorted binary search tree.

order(p) , p==NULL∨order(p-> l) ∧order(p-> r)
∧gt(p->data, p-> l) ∧lt(p->data, p-> r)

gt(x, p), p==NULL∨ x>p->data∧gt(x, p-> l) ∧
gt(x, p-> r)
lt(x, p),p==NULL∨ x<p->data∧lt(x, p-> l)∧
lt(x, p-> r)
x < y∧lt(y, p) ⇔lt(x, p)
x > y∧gt(y, p) ⇔gt(x, p)

Fig.20. User-defined predicates and lemmas for Example 2.

This is a recursive function. We can obtain the
shape graph, in which the return value and actual ar-
gument point to a same tree predicate node, as the
post-condition in the analysis stage.

6 Related Work

6.1 Comparison Between SGL and Separation
Logic

Our SGL and separation logic[16] are both extensions
to Hoare logic. They can be used to verify imperative

programs manipulating mutable data structures. Sep-
aration logic can be used in the verification of arbi-
trary pointer programs, while SGL is designed to verify
programs manipulating mutable data structures dedica-
tedly.

Shape graphs contain more information which can
be used in program verification than assertions written
in separation logic. We can make the following conclu-
sion by comparing frame rules in separation logic and
SGL.

{P}C{Q}
{P ∗R}C{Q ∗R}

{W1}C{W2}
{X[W1]}C{X[W2]} .

To our knowledge, the main difference between SGL
and separation logic according to how to use the frame
rule is whether the context should not be concerned
completely or not. In separation logic, the context (R)
is not concerned. That is, separation logic does not
concern whether there is any pointer (i.e., objects as-
serted by R) pointing to objects asserted by P and Q.
In SGL, when statement C changes the program state,
the changes are reflected by changing point-to relations
of edges and nodes in the window W , not the context
X[]. Although X[] is not changed, edges sourced from
context to nodes in the window reflect our concern on
the context.

In one word, separation logic emphasizes separation.
It results in that when operating on one heap block, it is
hard to concern the relation between the current heap
block with other heap blocks. As a contrast, shape
graphs give attention to both separation and integrity.
On the one hand, heap blocks described by a context
are separated with those described by the correspond-
ing window. On the other hand, edges across windows
are connections between contexts and windows. For ex-
ample, we can guarantee that programs which can pass
analysis and verification using SGL will be free of mem-
ory leaks. In separation logic, it is not intuitionistic to
judge how many pointers point to a same heap block.
This kind of information can be collected from asser-
tions of heap blocks, but it is hard to give such a rule
in separation logic. As a result, the rule for memory
leaks is hard to figure out in separation logic. To solve
this problem, O’Hearn et al. proposed the concept —
precise assertion[17]. But it is defined based on the ab-
stract machine other than the syntax of assertions.

Separation logic uses separation conjunction (∗) and
special designs in inference rules to avoid the effects on
reasoning of aliasing. Alias can only appear in the asser-
tion about one heap block, by using separated expres-
sion of assertions on various heap blocks and forbidding
the use of access paths concerning multiple heap blocks
in syntax (e.g., p->next->next in C). For example, if
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p==q (p, q are pointers) exists in the pure assertion,
p 7→ 5 and q 7→ 5 can appear in the assertion about the
heap block pointed by them (p 7→ and q 7→, i.e. ∗p and
∗q in the syntax of C, are aliases). However, when the
heap cell pointed by them is accessed by some state-
ment, there is no inference rule to be used directly to
reason about the statement when these two assertions
appear at the same time.

Our strategy in SGL is to guarantee no alias (by us-
ing information provided by constructed shape graphs
as reasoning context) in the assertions and statements
when using assignment axiom of Hoare logic. That is,
we guarantee that corresponding rules of Hoare logic
are used soundly. Similarly, when generating VCs, we
guarantee that there is no alias in VCs. So our VCs use
only first-order connectives other than special ones like
separation conjunction. The proving of VCs will bene-
fit from such considerations. Currently, in provers for
separation logic[6,18], their inference rules are obtained
from an existing proof system for separation logic with
list segments[19].

6.2 Comparison with Other Shape Analysis

Shape analysis attempts to discover the shapes of
data structures, which can be regarded as invariants in
pointer programs. There has been a lot of work that
builds shape analysis based on shape graphs, in which
heap cells are represented by graph nodes. In particu-
lar, the elements of potentially unbounded data struc-
tures are grouped into a finite number of graph nodes
by using summary nodes[20-21]. The approximation of
memory states leads to loss of information about the
shapes of recursive data structures. Precision can be
improved by using associate grammars, which finitely
summarize run-time heap structures, with the summary
nodes of the shape graphs[22]. With the help of hints
on shape declarations and under constraints on the ope-
rations of pointers, our shape analysis is a kind of pre-
cise pointer analysis. In our proposed shape graphs,
by using the condensation node and information about
the number of structure nodes represented by it, we can
get accurate finite graphs of the potentially unbounded
data structures. This kind of condensation node can
be regarded as the graphic counterpart of segments[10],
but the node number can be included to guarantee that
no information is lost.

Chang et al. proposed a shape analysis[23-24] based
on a shape graph representation which abstracts mem-
ory cells by edges. They described memory states in
a manner based largely on separation logic. For com-
parison, their complete checker edge corresponds to our
predicate node, and their partial checker edge is similar
to our condensation node. Moreover, they only treated

shape graphs as a representation easy to understand
symbolic assertions. They still used symbolic asser-
tions in their analysis. We use shape graphs directly in
our assertion calculus and program reasoning. In addi-
tion, the shape analysis in [23-24] is guided by invariant
checking code supplied by programmers, i.e., the defi-
nitions of shapes can come from checking code, which is
translated to inductively defined predicates. It seems to
be more flexible than our method, which provides only
several fixed shapes. However, it is hard to define the
inductive invariant checker for circular doubly-linked
lists. Analysis on programs using inductive properties
of data structure is difficult, such as programs deleting
a node in an ordered binary search tree using the in-
order successor (the leftmost child of its right sub-tree)
or in-order predecessor (the rightmost child of its left
subtree) of one node to replace itself. Moreover, there is
no test case for circular lists or delete function of binary
search trees in their analysis statistics table. Laviron et
al., using their shape graph, created an analysis that is
capable of reasoning about low-level C features, such as
unions, while not unnecessarily complicating the analy-
sis of higher-level, Java-like code[25]. However, we have
not tried our shape graph in such low-level C features.

6.3 Comparison with Other Pointer Program
Verification

There are also some studies doing program veri-
fication on pointer programs during program analy-
sis. Lev-Ami et al. proposed a method to verify pro-
grams dealing with lists via static analysis[26]. For
example, they verified various sorting programs based
on lists. However, it is hard to verify more proper-
ties such as list length in our first example. To verify
such properties, core predicates, instrumentation predi-
cates, and predicate-update formulae for them must
be provided in their system. The research of Podel-
ski and Wies showed that the techniques developed
in CEGAR (counterexample-guided abstraction refine-
ment) scheme[27] in software verification and the fo-
cus operator[21] in shape analysis can be fruitfully inte-
grated to enhance one another for the inference of quan-
tified invariants[28]. They applied the tool Bohne[28] to
verify operations on a diverse set of data structure im-
plementations, checking a variety of properties. Their
experiments covered data structures such as (sorted)
singly-linked lists, doubly-linked lists, two-level skip
lists, trees, and trees with parent pointers, but not in-
cluding circular singly/doubly-linked lists. We use two-
staged method: program analysis and program veri-
fication, using shape graphs to express the most impor-
tant property — point-to and equality relations among
pointers. It makes the verification phase easy to take
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advantage of the information provided by the analysis
stage, and it is convenient to express the properties to
verify. We use a shape system to standardize the be-
haviors of programs. It is useful in helping to infer the
loop invariant shape graphs, and it frees programmers
from providing pre-/post-conditions for functions and
loop invariants.

Madhusudan et al. developed a new recursive ex-
tension of first-order logic[29]. The recursive logic over
trees, DRYAD, is essentially a quantifier-free first-order
logic over heaps augmented with recursive definitions of
various types defined for location that have a tree un-
der them. Based on this methodology, a sound and
terminating procedure can prove a wide variety of al-
gorithms on tree-structures written in an imperative
language fully functionally correct. In this paper, foot-
print is made of a symbolic heap and DRYAD formulae.
They are similar to our shape graphs and properties
described using symbolic assertions respectively. There
is no concept like our condensation node for loop pro-
grams in their symbolic heap. As a result, they only
support recursive programs. Furthermore, no examples
dealing with circular lists were presented.

7 Conclusions

In program verification, the highest expectation of
shape analysis is to make users avoid having to write
loop invariants or even pre/post specifications for pro-
cedures: these are inferred during analysis[30]. This
paper proposed methods to ease burdens of program-
mers and provers when doing verification on pointer
programs by using shape declarations, program analy-
sis and verification based on SGL, and using a shape
system to constrain program behaviors.

Our future work is to break the limitation of our
method that only several shapes can be declared by
programmers. We plan to classify the shapes, and use
different methods to deal with different kinds of shapes.
The shapes introduced in this paper are called basic
shapes. Currently, we are trying to extend our work
by supporting additional pointers on data structures
except necessary pointers to maintain the basic shapes.

1) Additional pointers point to other shapes. An
additional pointer is a pointer pointing to another in-
dependent nested shape. For example, on each node
of a doubly-linked list, there is an additional pointer
pointing to an independent singly-linked list. It is not
hard to extend our prototype to support shape nesting.

2) Additional pointers point to nodes on the same
shape. We solve these problems by dividing them into
two cases.
• Targets of additional pointers are clear. Exam-

ples of such a case are binary trees with a pointer on

each node pointing to its parent node, left-child right-
sibling trees with two kinds of backward links, skip lists,
queues, etc. We will provide certain description method
to allow programmers to describe about these addi-
tional pointers using equations between pointers. We
consider generating, from such a description, the corre-
sponding code to check whether these pointers confirm
to the description or not. At program points of shape
checking, these codes are executed to do checking on
additional pointers after original basic shape checking.
• Targets of additional pointers are not clear. One

example of this case is a doubly-linked list as a re-
quest queue, in which some nodes are connected us-
ing additional pointers to form a singly-linked list as
a ready queue. We consider using simple and feasible
constraints in programming, in order to make sure that
we can statically determine whether some nodes form
a singly-linked list using additional pointers and addi-
tional pointers of other nodes are equal to null or not.
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