
A Certified Thread Library for Multithreaded User Programs

Yu Guo Xinyu Jiang Yiyun Chen Chunxiao Lin

Department of Computer Science and Technology

University of Science and Technology of China

Hefei, Anhui 230026, China

{guoyu,wewewe,cxlin3}@mail.ustc.edu.cn yiyun@ustc.edu.cn

Abstract

Ensuring the safety of multithreaded software is a task

both important and challenging. Currently, most ap-

proaches focus on the safety of multithreaded programs

rather than the runtime based on which those concurrent

programs run. In order to fundamentally solve this problem,

a method of ensuring the safety of the runtime should be de-

veloped. Such a runtime could be organized as a thread

library typically.

This paper presents the development and certification of

a simple but realistic thread library. The thread library

provides common multi-threading features such as dynamic

thread creation, termination and joining as well. This li-

brary also carries machine-checkable proof which guaran-

tees the library does not violate the safety policies. This

paper also presents an approach to link the library to exist-

ing certified multithreaded user programs to form an inte-

grated foundational proof-carrying code (FPCC) package.

Comparing with the uncertified libraries, our work makes

multithreaded applications much more reliable.

1. Introduction

Multithreaded software is widely employed in realistic

applications. For example, in a web browser, it is common

that while one thread is displaying images or text, another

thread is retrieving data from the Internet. However, the

safety of multithreaded programs is hard to ensure, since the

interference between the simultaneously executing threads

must be taken into account.

Many efforts have been devoted to the verification of

concurrent programs. Jones [13] introduced the composi-

tional rely-guarantee method (or A-G method) [26, 7, 5] to

describe the state changes performed by the environment

and by the program respectively. Lamport proposed the

Temporal Logic of Action (TLA) [14] as a logic for speci-

fying and reasoning about concurrent programs at the high-

language level. Xu et al. [24] proposed a logic system to

verify deadlock freedom and convergence by rely-guarantee

method. Model checkers [9] are developed to verify con-

current programs with a fixed number of threads. Flanagan

et al. [10] used A-G method to check java multithreaded

programs. CCAP [26] applied the A-G method to the as-

sembly code based on a concurrent abstract machine with

a built-in thread scheduler. CMAP [7] proposed by Feng

and Shao supports thread-modular reasoning with dynamic

thread creation and termination.

However, most of the previous work concentrates on

safe multithreaded programming, not the runtime (thread

library). Nonetheless, only when the safety of underlying

thread library is guaranteed, can the programs verified by

their methods be safe. The thread library often contains

lurking flaws which are subtle and hard to detect and fix

due to its complexity, so a fully certified thread library is of

urgent necessity. However, the certifying task is full of chal-

lenges. A thread library generally involves sophisticated

manipulations on memory and machine context. The invari-

ants are subtle and hard to specify. Furthermore, the control

flow transfers between threads and the scheduler of thread

library increase the certification burden.

In this paper, we propose a simple but realistic certified

thread library, named CTL, which implements dynamic

thread creation, termination and joining. CTL is written

in low-level code and certified thoroughly in the program

logic SCAP [8]. The certification convinces us that the se-

mantics of CTL conform to its formal specifications. The

code and its specifications, as well as corresponding safety

proof are all encoded in a foundational mathematical logic

and packed together to form a foundational proof-carrying

code (FPCC) package [1, 12], in which a neat and consis-

tent logic system instead of the entire complicated thread

library has to be trusted. In this way, not only multithreaded

programs but also CTL itself can be reasoned about and ver-

ified on a solid and rigorous base.

Even if we have the individual safety proof of them, it is

still inadequate to ensure the safety of the interactions be-



����

� ����	
�� ����
� ��� ���

����

����

� �� �� �� �

���� �

� ���

���
���� �

�����

� ��� ������� �

Figure 1. The OCAP framework

tween CTL and multithreaded programs due to the absence

of safety proof for the code with respect to linkage. Al-

though the construction of such safety proof is possible, it

is non-trivial because of the differences between specifica-

tion languages, as well as certification methods’ variety.

Recently, Feng et al. [6] proposed an open certification

framework (OCAP) to support inter-operation of different

certification systems. OCAP serves as a common layer in

which different program logics can be embedded.

Based on OCAP, we demonstrate in this paper the link-

age between CTL certified in SCAP and user programs cer-

tified in CMAP, and construct the extra safety proof of in-

teraction, as shown in Figure 1.

The main contributions of our work are as follows:

• We describe, specify, and certify a simple but real-

istic thread library CTL. It provides common multi-

threading features including thread scheduling, dy-

namic thread creation, termination and joining.

• We define formal specifications to capture the seman-

tics of CTL routines. This library carries machine-

checkable proof which ensures that the library does not

violate the safety policies.

• Meanwhile, we adapt and embed CMAP in a simpli-

fied OCAP framework. Thus, CTL can be linked to

the user programs certified in CMAP to construct an

integrated mechanized FPCC package. As far as we

know, CTL is the first thread library which can be

safely linked to multithreaded user programs.

We have formalized the work presented in this paper,

including CTL, OCAP, CMAP, and their soundness proof,

in the Coq proof assistant [3]. Interested readers may find

them on our web site [11].

The remainder of this paper is organized as follows: Sec-

tion 2 presents the formalization of basic settings. In Sec-

tion 3 we describe and certify the CTL library. We dis-

cuss the verification framework CMAP in which the mul-

tithreaded programs are certified in Section 4. Section 5

shows the linkage of CTL and user programs in a simpli-

fied OCAP framework. Section 6 is related work and the

conclusion.

2. Basic settings

In order to certify CTL in the FPCC framework, we

formalize all the related concepts into a mechanized meta-

logic. In other words, the machine model, the code of CTL,

its specifications, program logics and related safety proof

are all based on a common formal logic, resulting in smaller

trusted computing base for safety. In this section, we will

present these basic settings.

The mechanized meta-Logic. We use the calculus of in-

ductive constructions (CiC) [21] as our meta-logic. CiC is

supported by the Coq proof assistant [3], which we use to

implement the work presented in this paper.

The target machine. A MIPS-style [15] target machine

(TM) is chosen as our machine model on which our thread

library runs. We omit some physical machine features

irrelevant to threading, such as address alignment, bits-

arithmetic etc.. The target machine and its operational se-

mantics are formally defined in Figure 2. A machine pro-

gram P contains a code heap C and an updatable state S. A

code heap C is a segment of memory mapping addresses to

machine instructions, but C is read-only and isolated from

the mutable data heap H. The state S, which specifies the

execution of the program, consists of a register file, muta-

ble data heap H and the program counter pc. The target

machine has 32 general-purpose registers. Following the

MIPS convention, the table below shows the register alias

and usage.

r0 r0 always zero v0−v1 r2 −r3 return values

a0−a3 r4 −r7 arguments t0−t7 r8 −r15 temporary

k0−k1 r26 −r27 reserved ra r31 return address

The basic TM instruction set covers the common MIPS

instructions for arithmetics, jump, conditional branch and

load/store. It is easy to add more instructions in our TM.

The relation P 7−→ P
′ indicates that the program state P

steps to the program state P
′. The relation P 7−→k

P
′ means

that P reaches P
′ in k steps, and 7−→∗ is the reflexive and

transitive closure of the step relation. The auxiliary func-

tion Nextι( ) specifies the state transition according to the

operational semantics instruction ι. We use the notation Ŝι

to denote Nextι(S).

Safety. Safety of the program means that:(i) the execution

of the programs in CTL will not go stuck; (ii) the code of

CTL satisfies certain safety specifications. The code heap

specification Ψ is a map from code labels f to code specifi-

cations θ, as defined below:

(CdSpec) θ ::= · · ·

(CHSpec) Ψ ::= {f ; θ}∗



(Program) P ::= (C,S)

(CodeHeap) C ::= {f ; ι}∗

(State) S ::= (R,H,pc)

(Memory) H ::= {l ; w}∗

(RegFile) R ::= {r ; w}∗

(Register) r ::= {rk}
k∈{0...31}

(Labels) f,l,pc ::= n (nat nums)

(Word) w ::= i (integers)

(Instr) ι ::= addu rd rs rt | addiu rd rs w

| subu rd rs rt | subiu rd rs w

| move rd rs | li rd w

| lw rt w(rs) | sw rt w(rs)

| beq rs rt f | bgtz rs f

| j f | jal f | jr rs

(C,(H,R,pc)) 7−→ (C,NextC(pc)(H,R,pc)) =

if C(pc) = ι = then Nextι(H,R,pc) = Ŝι =

addu rd rs rt (H,R{rd ;R(rs)+R(rt)},pc+1)

lw rt w(rs) (H,R{rt ;H(R(rs)+w)},pc+1)

when R(rs)+w ∈ dom(H)

sw rt w(rs) (H{R(rs)+w;R(rt)},R,pc+1)

when R(rs)+w ∈ dom(H)

beq rs rt f (H,R,pc+1) when R(rs)≤R(rt)

(H,R,f) when R(rs)>R(rt)

jal f (H,R{r31 ;pc+1},f)

jr rs (H,R,R(rs))

Figure 2. The target machine TM

Note that θ has different form in different program logic

and is defined in Section 5.1.

Separation logic. We define some notations common in

separation logic [22, 19]. These notations are defined as

shorthand and are used in the specifications of CTL to spec-

ify the data heap.

H ° A , A H

A1 ∗A2 , λH .∃H1,H2 .H1⊎H2 =H∧H1 ° A1 ∧H2 ° A2

Top , λH .True

l 7→ w , λH .l 6=NULL∧H={l;w}

l 7→ , λH .∃w .(H °l 7→ w)

l 7→ w1, . . . ,wn , l 7→ w1 ∗ l+1 7→ w2 ∗ . . . ∗ l+(n−1) 7→ wn

We use H ° A if the heap predicate A is valid with H.

A1 ∗ A2 asserts the heap H1 ⊎H2 in which H1 ° A1 and H2 °

A2 hold respectively. Top is valid with any heap. l 7→ w

asserts a heap with only one memory cell, at address l with

content w.

3. CTL: a certified thread library

In this section, we give a detailed description of CTL.

Because of space limitations, we cannot fully discuss the

� ��

�� ��

���� �

��
�

� �� ����

��������

�������

Figure 3. Core data structures of CTL

certifications of every routine of CTL. So we concentrate

on certifying the yielding routine, which is an essential part

of the thread library.

3.1. Overview

CTL is a lightweight implementation of thread library

whose thread model is similar to GNU Pth [4] or FSU

pthreads [16], in which threads are implemented in the user-

space and the machine context switching is performed by an

application library without knowledge of the kernel. This

model does not rely on the kernel threads and is adaptable to

various platforms. CTL supports non-preemptive schedul-

ing and can directly run on the processors without interrupts

handling, for example, the SPIM simulator [20]. CTL is

fully certified at the assembly level, so the certification of

the compiler correctness can be spared.

3.2. Thread model

We use pseudo C code to illustrate the prototype of the

core data structures and API of CTL.

The core data structures in the CTL space are shown in

Figure 3. The main data structure is a queue, whose el-

ements are called thread control block(TCB). Each TCB

identifies one dynamic thread and contains one thread id

and corresponding executing context. The TCB is proto-

typed by:

struct t_tcb {

word id; /* unique id */

word pc; /* program counter */

word state; /* ready, dead or wait */

word wait_id; /* id of thread to wait */

word regfile[28];

/* array for saving registers */

};

Meanwhile, an isolated TCB identifies the current running

thread. Note that the global pointers referring to these data

structures are stored in a global pointer array.

CTL provides a threading API:

void ctl_yield(void);

word ctl_spawn((* void)());

word ctl_exit();

word ctl_join(int thread_id);



(StPred) p ::= State → Prop

(GrPred) g ::= State → State → Prop

(CdSpec) θSCAP ::= (p,g)

∀ f ∈ dom(Ψ′) : Ψ ;C ⊢SCAP {Ψ′(f)}f : C(f)

Ψ ⊢SCAP C : Ψ′
(CDHP)

ι = jal f′ (p′,g′) = Ψ(f′) (p′′,g′′) = Ψ(f+1)

∀S. p S → p′ Ŝι

∀S,S′. S.pc = f→ p S → g′ Ŝι S
′

→ p′′ S
′ ∧ (∀S

′′. g′′ S
′
S
′′ → g S S

′′)
∀S,S′ .g′ S S

′ → S.R(ra) = S
′.R(ra)

Ψ ;C ⊢SCAP {(p,g)}f : jal f′
(CALL)

ι = jr ra ∀S .p S → g S Ŝι

Ψ ;C ⊢SCAP {(p,g)}f : jr ra
(RET)

Figure 4. SCAP

The routine ctl_yield() causes the current thread to

yield its execution in favor of another thread with certain

scheduling policy. ctl_yield() stores the execution con-

text in the queue of the TCBs and picks up one TCB,

loads it and switches the control to the new continuation.

ctl_yield() adopts the round-robin scheduling algorithm.

Thread creation is achieved by using ctl_spawn() with

a parameter of start code pointer. This function first allo-

cates a new thread control block (TCB). Then the current

machine context is cloned and stored into the TCB with a

new thread id. Lastly, the new TCB is marked with ready

flag and put into the queue. A thread will be running forever

if it does not terminate. The role of ctl_exit() is stopping

the current thread and marking its TCB with dead flag. The

ctl_join() function suspends the calling thread until the

specified thread terminates. It takes a thread id as argument.

3.3. Certification of CTL

SCAP. We use SCAP [8] to certify CTL. SCAP sup-

ports modular certification of assembly code with func-

tion call/return abstraction, making CTL routines well-

organized. The specification constructs of SCAP and some

selected SCAP rules are shown in Figure 4. A code spec-

ification θSCAP is a pair of two predicates p and g. p is the

precondition, while g is a predicate over the entry state and

the future return state after jr ra. g relates the entry state of

a code to the return state of the corresponding procedure. g

can also be treated as a general postcondition parameterized

by the entry state.

Specification constructs. Figure 5 describes the specifi-

cation constructs of CTL. We use the word value w to spec-

ify the thread id σ. The state ts of a thread may be ready,

dead or wait . A thread control block Tcb consists of a pc, a

(Thread-id) σ ::= w

(RegFileX) R̃ ::= R\{r0 ; ,k0 ; ,k1 ; ,ra ; }

(TCB) Tcb ::= (pc, R̃, ts,σw)

(Th State) ts ::= ready | dead | wait

(Th Queue) Q ::= {·} | {σ ; Tcb} ∪ Q

Figure 5. Specification constructs of CTL

partial registers file R̃ and a thread state ts. A partial regis-

ters file R̃ is a registers file R excluding r0, k0, k1 and ra.

The registers k0 and k1 are preserved for thread scheduling

and then unusable in user programs. Because the register r0

always holds the value of zero, it needn’t to be saved. When

ra is used to call the routines of CTL, its value is saved in

the Tcb.pc field. A thread queue Q is a dictionary mapping

σ to Tcb and constructed inductively.

Formal core data structures. We formally specify the

core data structures that are used in our thread library CTL.

As shown in Figure 3, the memory space for CTL is divided

into four parts, the global pointer array, the isolated TCB for

current thread, the thread queue and the free-block list.

Core(σ,Tcb,Q) , ∃gbl .gbl 7→ cth,hd, tl, f l

∗QNode(cth,σ,Tcb,NULL) ∗ TQ(hd, tl,Q) ∗ GoodL( f l)

The global pointers (cth,hd, tl, f l) are saved in the mem-

ory starting from gbl. cth points to the current thread TCB.

hd and tl point to the thread queue. f l points to a memory

block list, which is used for dynamic heap allocation.

QNode(p,σ,(pc, R̃, ts,σw),q) , (p−2 7→ q,34)

∗(p 7→ σ,pc, ts,σw)

∗(p+4 7→ R̃(r1), . . . , R̃(r25), R̃(r28), R̃(r29), R̃(r30))

Cth(p,σ,Tcb) , QNode(p,σ,Tcb,NULL)

We define the predicate TQ to model the queue for

threads. TQ has three arguments, the formal queue Q which

is isomorphism to the concrete memory data, a queue-head

pointer hd and a queue-tail pointer tl. TQseg models a queue

segment in the middle of the queue, with a non-null pointer

pointing to the next node. TQseg is defined inductively on

the structure of Q.

TQseg( {} ,hd, tl,q)

, (hd = tl) ∧ (hd = q)

TQseg( {σ ; Tcb} ,hd, tl,q)

, (hd = tl) ∧ QNode(hd,σ,Tcb,q)

TQseg( {σ ; Tcb} ∪ Q ,hd, tl,q)

, ∃q′ .QNode(hd,σ,Tcb,q′) ∗ TQseg(Q,q′, tl,q)

TQ(Q,hd, tl)

, TQseg(Q,hd, tl,NULL)



As defined above, a queue segment consists of several

nodes modeled by QNode. The routines in the CTL may

traverse, search, add a TCB node or delete one in the queue,

whose structure should be preserved.

When a thread is created, the scheduler will allocate a

heap block from the free block list. If a thread is joined by

another one, the scheduler will free its TCB. The definition

of free block-list GoodL follows the work by Yu et al. [25]

and Xiang et al. [23], and it can be ported to our framework

directly.

Implementation of yielding. The yielding routine is used

to schedule threads and perform the context switching. The

code body of the ctl_yield() are presented in Figure 6.

The first phase of yielding (from YIELD to APPENDTCB)

consists in loading address of the current TCB to k0, saving

the machine context to the current TCB and loading other

global pointers. The code address of the next instruction of

the current thread has already been saved in ra. ra has to

be saved into TCB firstly, because ra will be used to call

SAVECTX.

The second phase of yielding is appending the current

TCB (by calling APPENDTCB) to the thread queue, search-

ing for a ready TCB through the queue, and fetching it out

(by calling FETCHTCB). Since there is at least one ready TCB

(consider the one just appended) in the queue, the routine

FETCHTCB never fails to return. The algorithm of searching

ready thread depends on the scheduling policy. Here the

naive FIFO method is used and then the code of searching

is a loop over the thread queue.

The role of the last switch phase (from SWITCH) of yield-

ing is to switch the machine context from the old context

to the new context fetched by FETCHTCB. Concretely, it sets

k0 with the address of the new TCB, then makes a tail call

to LOADCTX. Inside LOADCTX, the registers file are restored

including ra. The last step is tricky, and when program re-

turns, the control flow is transferred to the new thread.

Certification of yielding. Part of the formal specifica-

tions of ctl_yield() are also presented in Figure 6. Note

that the guarantees in the middle of code body are not listed

because they are unnecessary for the readers to understand

the specification, although indispensable to the certification

process. For the same reason, the initial state (R,H,pc) and

the final state (R′,H′,pc′), playing their roles as parameters

of p and g, are omitted as well.

The specification of ctl_yield() (py,gy) is defined be-

low:

py , ∃Q .(H ° Core( , ,Q) ∗ Top)

gy , λ

[

(R,H,pc)
(R′,H′,pc′)

]

.∀A,Q,σ,Tcb .∃σx .

[

(H ° Core(σ,Tcb,Q) ∗ A)
(H′ ° Core(σx,(pc′, R̃′, ready, ),Q′) ∗ A)

]

where

(pc′, R̃′, ready, ) = (Q ∪ {σ ; (R(ra),R, ready, )})(σx)

Q′ = (Q ∪ {σ ; (R(ra), R̃, ready, )})\{σx ; (pc′, R̃′, ready, )}

ctl_yield() mainly performs context switching. Its

precondition py requires that the memory space of CTL

should be well-formed, specified by the predicate Core.

gy is a condition which specifies the actions performed

by the whole ctl_yield() routine. We assume that the

control flow is transferred to thread σx, whose TCB is

Tcbx = (pcx, R̃x, ready, ). Then gy specifies the postcondi-

tions which ctl_yield() must satisfies that: (i) at the exit-

ing point of ctl_yield(), the old machine context is added

into Q; (ii) a ready control block Tcbx, which contains the

current register file Rx and the code pointer pcx, has been

fetched out of Q; (iii) the memory space of Core is still

well-formed while the irrelevant heap A is unchanged. Ob-

viously, the specification of ctl_yield() is independent of

CTL scheduling algorithm. Core is related to the implemen-

tation, which should be hidden from user programs.

By the SCAP rules presented in Figure 4, it can be

proved that the yielding routine satisfies these specifica-

tions.

Certification of CTL. The certification of ctl_spawn(),

ctl_exit() and ctl_join() follows this method of certi-

fying the ctl_yield() routine. We take CCTL as the code

heap of CTL and ΨCTL as the code heap specification. By

the CDHP rule, we have:

ΨCTL ⊢SCAP CCTL : ΨCTL

4. CMAP: a concurrent program logic

CMAP is a program logic for certifying multithreaded

assembly code with unbounded dynamic thread creation

and termination. It assumes that the register files are

thread local, i.e., saving and loading registers during con-

text switching. CMAP is based on an abstract machine with

built-in thread operations, e.g., yield, spawn and exit are

treated as atomic primitives. This approach simplify the cer-

tification of user programs. However, the operations are not

directly supported by most existing hardwares.

In Figure 7, we present a simplified CMAP system,

which is adapted to our thread model. Notice that the whole



{(py,gy)}

YIELD: lw k0 cth r0

sw ra 1 k0

sw r0 2 k0

addiu k0 k0 4

jal SAVECTX

p = ∃Q,gbl,σ,Tcb .Tcb.ts = ready ∧ Tcb = (R(ra), R̃, ready, ) ∧
H ° gbl 7→ p,hd, tl, ∗ Cth(p,σ,Tcb) ∗ TQ(Q,hd, tl)∗True

LOAD: jal LOADPTR

p = ∃Q,gbl,σ,Tcb .R(t0,t1,t2) = (p,hd, tl) ∧
H ° gbl 7→ p,hd, tl, ∗ Cth(p,σ,Tcb) ∗ TQ(Q,hd, tl) ∗ True

APPEND: beq t1 r0 SWITCH

jal APPENDTCB

p = ∃Q,gbl .R(t1,t2) = (hd, tl) ∧
H ° gbl 7→ , , , ∗ TQ(Q,hd, tl) ∗ True

FETCH: jal FETCHTCB

p = ∃Q,gbl,σ,Tcb .R(t0,t1,t2) = (p,hd, tl) ∧
H ° gbl 7→ , , , ∗ Cth(p,σ,Tcb) ∗ TQ(Q,hd, tl)∗True

SAVE: jal SAVEPTR

p = ∃Q,gbl,σ,Tcb .

H ° gbl 7→ p,hd, tl, ∗ Cth(p,σ,Tcb) ∗ TQ(Q,hd, tl) ∗ True

SWITCH: move k0 t0

addiu k0 k0 4

j LOADCTX

APPENDTCB: ...

FETCHTCB: ...

ps = ∃p,σ,Tcb .R(k0)=p+4 ∧ H ° Cth(p,σ,Tcb) ∗ True

gs = ∀A, p,σ,pcx, tsx .H ° Cth(p,σ,(pcx, , tsx, )) ∗ A

→ R(ra) = R
′(ra) ∧

H ° Cth(p,σ,(pcx, R̃, tsx, )) ∗ A

SAVECTX: sw r1 0 k0

sw r2 1 k0

...

sw r25 24 k0

sw r28 25 k0

...

sw r30 27 k0

jr ra

pl = ∃p,σ,Tcb .R(k0)=p+4 ∧ H ° Cth(p,σ,Tcb) ∗ True

gl = ∀A, p,σ,pcx,Rx .H ° Cth(p,σ,Tcb) ∗ A

→ R
′(ra) = Tcb.pc ∧ R̃

′ = Tcb.R̃ ∧
H ° Cth(p,σ,Tcb) ∗ A

LOADCTX: lw r1 0 k0

lw r2 1 k0

...

lw r25 24 k0

lw r28 25 k0

...

lw r30 27 k0

subiu k0 k0 3

lw ra 0 k0

jr ra

SAVEPTR: ...

LOADPTR: ...

Figure 6. Code and specification of yield(part)

system is unchanged except for the primitives of yield,

spawn and exit are replaced with function calls in CTL.

The code specification θCMAP is a quadruple (p, ǧ,A,G),
The predicate p and the local guarantee ǧ describe the states

and transitions of the program. When checking concurrent

properties during the interleaving execution, we rely on the

A-G method, in which the assumption A and the gurantee

G are used. In one thread, the assumption A gives informa-

tion of what atomic transitions may be performed by other

threads, while the guarantee G holds on every atomic tran-

sition performed by the thread itself. So long as the en-

vironment (i.e., the collection of all the rest of the threads)

satisfies A, the thread’s behavior to the environment will sat-

isfy its G. Furthermore, every thread should be verified to

ensure that the guarantee of any other thread satisfies its as-

sumption.

By this method we could then certify each thread sep-

arately without worrying about the rest of the threads.

That is how we achieve thread-modular reasoning. And if

all threads satisfy their specifications, the following non-

interference property results in correct collaboration be-

tween threads.

NI ([(A1,G1,σ1, R̃1), . . . ,(An,Gn,σn, R̃n)]) ,

∀i 6= j .σi 6= σ j ∧ ∀H,H′ .(Gi R̃i H H
′ → A j R̃ j H H

′)

Suppose the program will yield its control by executing

jal yield, when pc points to f. In order to ensure the yield-

ing safety, the premises of YIELD rule are: (i) the precon-

dition and assumption at the address f+1 are the same in

each thread; (ii) the local guarantee ǧ at the address f+1 is

equal to the guarantee G; the state of yielding thread always

satisfies the current precondition if it would satisfy the as-

sumption A after any state transition; (iii) the current thread

completes the required state transition specified by the guar-

antee G.

Example. We give an example to explain how to cer-

tify user multithreaded programs. The example adapted

from [7] is a program for unbounded dynamic thread cre-

ation as shown in Figure 8. When running, the main thread

initialize 100 pieces of data with 0 to 99 respectively, and

distributes them to 100 child threads. These child threads

add their own data by one in parallel. To ensure the safety

property of the program, each child thread assumes that no

other threads will touch its own working data and guaran-

tees that it will not change other threads’ data. The assump-

tions and guarantees of the main thread and its child threads,

defined in Figure 8, reflect these ideas.

Suppose the example code is CEX and its specification is

ΨEX, we have the safety of the code heap CEX with CMAP

inference rules.



(StPred) p ::= RegFileX → Heap → Prop

(Guar) ǧ,G ::= RegFileX → Heap → Heap → Prop

(Assume) A ::= RegFileX → Heap → Heap → Prop

(CdSpec) θCMAP ::= (p, ǧ,A,G)

∀ f ∈ dom(Ψ′) : Ψ ;C ⊢CMAP {Ψ′(f)}f : C(f)

Ψ ⊢CMAP C : Ψ′
(CDHP)

Ψ(f+1) = (p,G,A,G) ∀R̃,H .p R̃ H → ǧ R̃ H H

∀R̃,H,H′ .p R̃ H → A R̃ H H
′ → p R̃ H

′

Ψ ;C ⊢CMAP {(p, ǧ,A,G)}f : jal yield
(YIELD)

Ψ(f+1) = (p,G,A,G) ∀R̃,H .p R̃ H → ǧ R̃ H H

∀R̃,H,H′ .p R̃ H → A R̃ H H
′ → p R̃ H

′

∀R̃,H .p R̃ H → Ψ(R̃{a0}) = (p′,G′,A′,G′) ∧ p′ R̃ H

∀R̃,H,H′ .p′ R̃ H → A′ R̃ H H
′ → p′ R̃ H

′

A
◦
⇒ A′ G′

◦
⇒ G G

◦
⇒ A′ G′

◦
⇒ A

Ψ ;C ⊢CMAP {(p, ǧ,A,G)}f : jal spawn
(SPAWN)

∀R̃,H .p R̃ H → ǧ R̃ H H

Ψ ;C ⊢CMAP {(p, ǧ,A,G)}f : jal exit
(EXIT)

where

G
◦
⇒ A , ∀R̃,H,H′ .G R̃ H H

′ → A R̃ H H
′

Figure 7. CMAP

ΨEX ⊢CMAP CEX : ΨEX

5. Linking CTL to user programs

The main purpose of CTL is to provide a certified run-

time for multithreaded user programs. In Section 3.3, we

have already certified a thread library CTL and a multi-

threaded program. As to build safety multithreaded pro-

grams, just providing a certified library is insufficient. In

this section, we will complete our work by linking the cer-

tified multithreaded user programs with CTL.

As stated in Section 1, we choose OCAP as our com-

mon certification framework. OCAP uses an extensible and

heterogeneous program specification. OCAP rules are ex-

pressive enough to embed most existing verification logic

systems for low-level code. We can embed a program logic

and prove system specific rules/axioms as lemmas based on

an interpretation function and OCAP rules. Thus, the safety

program certified in foreign logic systems can be translated

down to the OCAP level and then linked with CTL.

5.1. OCAP-light

For simplicity, we present a light-weight OCAP (OCAP-

light) framework in Figure 9. OCAP-light uses heteroge-

neous code specifications θ to support specification lan-

guages of both SCAP and CMAP. The code heap specifi-

cation Ψ is defined as a map from code labels f to their

MAIN: (True,A1,G1)
move t0 r0

addiu t1 r0 100

LOOP: (p,G2,A2,G2)
beq t0 t1 CONT

jal YIELD

sw t0 data t0

jal YILED

move a0 CHLD

move a1 t0

jal SPAWN

(p,G3,A3,G3)
jal YIELD

addiu t0 t0 1

jal YIELD

j LOOP

CONT: (p′,G4,A4,G4)
jal EXIT

CHLD: (p′′,A,G)
lw t0 data a1

jal YIELD

addiu t0 t0 1

jal YIELD

sw t0 data a1

jal EXIT

A1 , ∀i.0 ≤ i < 100

→ (data[i] = data′[i])

G1 , True

A2 , ∀i.(0 ≤ i < 100 ∧ i ≥ [t0])
→ (data[i] = data′[i])

G2 , ∀i.(0 ≤ i < 100 ∧ i < [t0])
→ (data[i] = data′[i])

A3 , ∀i.(0 ≤ i < 100 ∧ i > [t0])
→ (data[i] = data′[i])

G3 , ∀i.(0 ≤ i < 100 ∧ i ≤ [t0])
→ (data[i] = data′[i])

A4 , True

G4 , A1

A , data[a1] = data′[a1]

G , ∀i.(0 ≤ i < 100 ∧ i 6= [a1])
→ (data[i] = data′[i])

p , 0 ≤ [t0] < 100 ∧ [t1] = 100

p′ , [t0] = 100

p′′ , 0 ≤ [a1] < 100

Figure 8. Unbounded thread creation

specifications θ. Note that code labels f may be mapped to

θSCAP or θCMAP.

In OCAP-light, the code specifications written in differ-

ent languages should have interaction to form a cooperative

system. Accordingly, the interpretation function [[ ]] is used

to translate the specification θ to assertion a which is used at

OCAP-light level. Each assertion a is a CiC predicate over

Ψ and machine state S. With interpretation functions, the

specific inference rules of program logics can be proved as

lemmas based on a thin layer of Hoare-style inference rules

over meta-logic. Then the soundness of a program logic is

reduced to the soundness of OCAP-light.

The soundness and correctness theorem of OCAP-light

ensures safety, stated in Section 2. It says that any well-

formed program will run forever without reaching any un-

defined state in Figure 2, and any reachable states satisfy

the corresponding assertions in Ψ.

Theorem 1 (OCAP-light - Soundness and Correctness).

If Ψ ⊢ (C,S), for all natural number n there exists a S
′ =

(R′,H′,pc′), such that (C,S) 7−→n (C,S′); and if pc′ ∈ Ψ, then

[[Ψ(f) ]] Ψ S
′.

5.2. Embedding SCAP in OCAP-light.

As stated in Section 3.3, θSCAP is a pair of predicates

(p,g). The predicate p is the precondition and the guarantee

g specifies the state at the (function-call) return point and

the relationship between the current point and return point.

In our TM, the jal instruction is used to perform function



V ::= Specification Constructs

(CdSpec) θ ::= θSCAP | θCMAP

(CHSpec) Ψ ::= {f ; θ}∗

(Assert) a ∈ CHSpec → State → Prop

(Interp) [[ ]] ∈ CdSpec → Assert

[[θSCAP ]] , SCAP Interpretation

[[ (p,g) ]] , λΨ,S .p S ∧ ∃n .WFST(n, ǧ S,Ψ)

WFST(0,q,Ψ) , ∀S
′ .q S

′

→∃θCMAP .Ψ(S′.R(ra)) = θCMAP ∧ [[θCMAP ]] Ψ S

WFST(n+1,q,Ψ) , ∀S
′ .q S

′

→∃p′,g′ .Ψ(S′.R(ra)) = (p′,g′)
∧ p′ S

′ ∧ WFST(n,g′ S
′,Ψ)

[[θCMAP ]] , CMAP Interpretation

[[ (p, ǧ,A,G) ]] , λΨ,(R,H,pc) .∃H1,H2,σ,Q .

H = H1 ⊎H2 ∧ p R̃ H1

∧ H2 ° Core(σ,Tcb,Q)
∧ WFTQ(Ψ,Q,(ǧ R̃ H1),A,G,σ, R̃)

WFTQ(Q,q,A,G,σ, R̃) ,

∀σ′,pc′, R̃′ .Q(σ′) = (pc′, R̃′, )
→∃p′,A′,G′ .Ψ(pc′) = (p′,G′,A′,G′)

∧ NI ([(A,G,σ, R̃), . . . ,(A′,G′,σ′, R̃′), . . .])
∧ (∀R̃,H,H′ .p′ R̃ H → A′ R̃ H H

′ → p′ R̃ H
′)

∧ (∀H .q H → p′ R̃
′
H)

Ψ ⊢ P Well-formed program

Ψ ⊢ C :Ψ (a Ψ S) C ⊢{a}pc : C(pc)

Ψ ⊢ (C,S,pc)
(PROG)

Ψ ⊢ C :Ψ′ Well-formed code heap

for all f ∈ dom(Ψ′): a = 〈[[Ψ′(f) ]]〉
Ψ

C ⊢{a}f : C(f)

Ψ ⊢ C :Ψ′
(CDHP)

C ⊢{a}f : ι Well-formed instruction sequence

a⇒ λΨ,S .S.pc = f

→∃θ′ .Ψ(f′) = θ′ ∧ [[θ′ ]] Ψ Ŝ
jal f′

C ⊢{a}f : jal f′
(JAL)

a⇒ λΨ,S. ∃θ′ .Ψ(S.R(rs)) = θ ∧ [[θ ]] Ψ Ŝjr rs

C ⊢{a}f : jr rs

(JR)

ι∈{addu,addiu,subu,subiu,move, li, lw,sw}
a⇒ λΨ,S .(f+1 ∈ dom(Ψ)

→∃θ′ .Ψ(f+1) = θ′ ∧ [[θ′ ]] Ψ Ŝι)
∧ (f+1 6∈ dom(Ψ)

→∃a′ .a′ Ψ Ŝι ∧ (C ⊢{a′}f+1 : C(f+1)))

C ⊢{a}f : ι
(SEQ)

where

〈a〉
Ψ

, λΨ,S .Ψ ⊆ Ψ′ ∧ a Ψ′
S

a⇒ a′ , λΨ,S .a Ψ S ⇒ a′ Ψ S

Figure 9. OCAP-light

call, while the return action is performed by jr ra. The in-

variant of the abstract control stack is captured by the pred-

icate (WFST), which tells us what is a well-form abstract

control stack. Certainly, a safe function call jal won’t break

the well-formedness of the abstract control stack.

We define the interpretation function of SCAP accord-

ing to these intuitive ideas in Figure 9. Through the inter-

pretation function, we can build SCAP instruction rules as

lemmas in OCAP-light. With these lemmas, safety proof

can be constructed directly at OCAP-light level, while still

reasoning at the SCAP level. Furthermore, we can prove

the soundness of SCAP semantically by this interpretation

function.

Theorem 2 (SCAP - Soundness).

If Ψ ⊢SCAP C : Ψ′, then Ψ ⊢ C : Ψ′.

5.3. Embedding CMAP in OCAP-light

Like SCAP, an interpretation function of CMAP is also

defined in Figure 9. Through the interpretation function, we

know that the whole data heap H is separated into two parts,

H1 and H2. H1 is for user programs, while H2 is for thread

library CTL. R̃ is a registers file excluding the registers r0,

k0, k1 and ra. The remainder of the interpretation function

is a complicated predicate WFTQ. Similar to WFST, WFTQ

describes the well-formedness of the thread queue. Upon

a well-formed thread queue, the thread library can run the

scheduling routine safely. The well-formedness of thread

queue is specified by the following invariants:

• each Tcb in the thread queue contains a valid code

pointer with code specification (p, ǧ,A,G);

• assumptions and guarantees of all the threads are non-

interference;

• the precondiction of a waiting thread still holds af-

ter any state transitions satisfying the assumption, i.e.,

∀R̃,H,H′ .p R̃ H → A R̃ H H
′ → p R̃ H

′;

• when calling the routines in CTL, the state satisfies

preconditions of all the waiting thread.

Next, we prove the soundness theorem of CMAP to com-

plete the embedding process. Firstly, we prove that the pro-

grams certified by CMAP logic system call the yield routine

of CTL safely. Informally, the safety proof of ctl_yield()

is divided into two subgoals. One subgoal is to prove that

the well-formed state before yielding satisfies the precon-

dition of ctl_yield() py. The alternative is to prove that

the state after the program returns from ctl_yield() is still

well-formed. The difficulties of proving this subgoal come



from the indeterminable transfer of control flow. Fortu-

nately, we could solve these difficulties by knowing that the

thread queue satisfies WFTQ. The following lemma speci-

fies the safety of ctl_yield().

Lemma 1 (Yielding - Safety).

If Ψ;C ⊢CMAP {(p, ǧ,A,G)}f :jal yield, Ψ(f+1) = (p,G,A,G)

then 〈[[ (p, ǧ,A,G) ]]〉Ψ ⇒ 〈[[ (py,gy) ]]〉Ψ

By the JAL rule presented in Figure 9 and Lemma 1, we

can prove the CMAP JAL rule presented in Figure 7 as lem-

mas at OCAP-light level.

Lemma 2 (Yielding - OCAP-light).

If Ψ;C ⊢CMAP {θCMAP}f :jal yield, then:

Ψ ∪ {yield ; (py,gy)};C ⊢ {[[θCMAP ]]}f : jal yield

Following the same pattern of ctl_yield(), we can

prove that all the routines are safe to call by the user pro-

grams. Then, we can have the soundness theorem of CMAP

by the CDHP rule in Figure 9 immediately.

Theorem 3 (CMAP - Soundness).

If Ψ ⊢CMAP C : Ψ, then Ψ ∪ ΨCTL ⊢ C : Ψ .

Discussion. Benefiting from the underlying OCAP-light,

we have bridged the two different program logics, CMAP

and SCAP. It is possible to embed other concurrent program

logics in OCAP-light with the same method presented in

this section. The essential step is to define a corresponding

interpretation function, which expresses the global invari-

ants of the program logic in another point of view. In the

original paper [7], the soundness of CMAP is proved by

PROG and DTHRDS rules, which is similar to our interpreta-

tion function of CMAP actually — all of them do the same

job checking whether the thread queue is well-formed. The

two rule express the global invariants of the CMAP logic.

As observed, the linkage does not increase the cost of

proof construction of user program. The safety proof of

linkage is hidden from the programmer writing and certify-

ing multithreaded applications.

The thread queue in the original CMAP is abstract and

similar to our Q, while the interpretation function in our

framework interprets the abstract queue Q into the concrete

one in real TM memory. Between the concrete queue of

CTL and the abstract one of the CMAP logic, there is a

one-to-one map which makes the bridging possible.

We believe that CTL can be linked with other concurrent

certification logics, such as AGL, CSL, etc. Because their

thread model is similar to ours, they can also be embedded

in OCAP-light by the similar techniques we used.

5.4. Example

In Section 3.3, we have proved that CTL is well-formed

in SCAP, ΨCTL ⊢SCAP CCTL : ΨCTL. By Theorem 2, we have

CTL is well-formed in OCAP-light ΨCTL ⊢ CCTL : ΨCTL. On

the other hand, from Section 4, the unbounded thread cre-

ation is well-formed in CMAP, ΨEX ⊢CMAP CEX : ΨEX. Hence

by Theorem 3, the example is well-formed in OCAP-light

ΨEX ∪ ΨCTL ⊢ CEX : ΨEX. Finally, CTL and the example are

all well-formed at OCAP-light level. By the CDHP rule of

OCAP-light, we can link CEX with our thread library CCTL

and have the conclusion that:

ΨEX ∪ ΨCTL ⊢ CEX ∪ CEX : ΨEX ∪ ΨCTL

From this, a complete multithreaded FPCC package can

be constructed by the PROG rule of OCAP-light easily.

6. Related work and conclusion

Thread library. Ni et al. have certified a thread library

named Mth [18], whose aim is quite different from our

CTL, they use a machine model that is a strict subset of x86

to ensure that their certified code is runnable on real CPU

without any changes, while we concentrate on the simplic-

ity to link our CTL to other certification frameworks with

ease, we take an abstract machine model as our platform.

But still, our code is MIPS-32 compatible. Mth may be ca-

pable of linking to programs certified in other logics, but the

linking has not been done yet. The program logic employed

by Ni is a variant of XCAP [17], which makes intensive

use of general embedded code pointer to support modular

reasoning, and results in larger proof size.

FPCC framework. Our work is based on the OCAP

framework proposed by Feng et al. [6]. In the original

OCAP paper, an example was shown to bridge a naive yield-

ing routine to the CCAP logic. Compared to our CTL, the

concurrency model of CCAP is rather simple. For exam-

ple, their model lacks machine context switching and thread

management. Our CTL is a big extension to their work, and

well illustrates the expressiveness and openness of OCAP.

Chang et al. proposed an open verifier for verifying un-

trusted code [2]. Their framework produces foundational

verifiers using untrusted extensions to customize the safety

enforcement mechanism. However, it is unclear whether

their extensions support concurrent verification.

Concurrency verification. SAGL [5] and concurrent

separation logic (CSL) [19] improve the modularity of A-G

reasoning method and make the definition of assumptions

and guarantees easier. In their machine models, the hold-

ing and releasing of locks are primitive operations. So it

would be safe to link the programs certified in SAGL or

CSL framework with our library just like linking CMAP

programs, as long as embedded in OCAP.



Conclusion. We introduce in this paper the design, inter-

faces and implementation of a certified thread library, which

is implemented at assembly level and strictly proved. Dy-

namic thread management, thread scheduling and synchro-

nization mechanics are also covered, what is more, the mod-

ularity of the library endows it with high scalability.

In the open framework OCAP, we show that the thread

library can be linked to safe user programs certified in the

concurrent certification logic CMAP to form complete mul-

tithreaded FPCC packages.

Our long-term goals include the building of a mature

thread library with applicative perspectives, as well as the

certification of a tiny operating system kernel, whose con-

currency model resembles CTL.

Acknowledgments

We would like to thank Zhong Shao and Xinyu Feng

for their many inspirational suggestions and comments on

ealier drafts of this paper. We would also like to thank

Zhaozhong Ni and Hai Fang for help using Coq. Cheng Liu,

Yan Guo, Wei Hu and the anonymous reviewers provided

many useful suggestions of areas where the paper could be

improved.

This work is supported by the National Natural Science

Foundation of China under Grant No. 60673126. Any opin-

ions, findings, and conclusions contained in this document

are those of the authors and do not reflect the views of this

agency.

References

[1] A. W. Appel. Foundational proof-carrying code. In Proc.

16th Annual IEEE Symposium on Logic in Computer Sci-

ence, pages 247–258, June 2001.

[2] B.-Y. Chang, A. Chlipala, G. Necula, and R. Schneck. The

open verifier framework for foundational verifiers. In Proc.

TLDI’05, pages 1–12, Jan. 2005.

[3] Coq Development Team, INRIA. The Coq proof assistant

reference manual. Coq release v8.0, Oct. 2005.

[4] R. S. Engelschall. GNU Pth - the GNU portable threads.

http://www.gnu.org/software/pth/, 1999-2003.

[5] X. Feng, R. Ferreira, and Z. Shao. On the relationship

between concurrent separation logic and assume-guarantee

reasoning. In Proc. ESOP’07, pages 173–188, Braga, Por-

tugal, Mar. 2007. Springer-Verlag.

[6] X. Feng, Z. Ni, Z. Shao, and Y. Guo. An open framework to

foundational proof-carrying code. In Proc. 2007 ACM SIG-

PLAN International Workshop on Types in Language Design

and Implementation, Jan. 2007.

[7] X. Feng and Z. Shao. Modular verification of concurrent

assembly code with dynamic thread creation and termina-

tion. In Proc. 2005 International Conference on Functional

Programming (ICFP’04), September 2005.

[8] X. Feng, Z. Shao, A. Vaynberg, S. Xiang, and Z. Ni. Mod-

ular verification of assembly code with stack-based control

abstractions. In Proc. 2006 ACM Conf. on Prog. Lang. De-

sign and Impl., June 2006.
[9] C. Flanagan and S. Qadeer. Thread modular model check-

ing. In Proc. of the SPIN Workshop on Software Verification,

2003.
[10] C. Flanangan, S. N. Freund, and S. Qadeer. Thread-

modular verification for shared-memory programs. In Proc.

ESOP’02, pages 262–277, 2002.
[11] Y. Guo, X. Jiang, Y. Chen, and C. Lin. A certified thread

library for multithreaded user programs. http://ssg.

ustcsz.edu.cn/∼guoyu/thlib/, Jan. 2007.
[12] N. A. Hamid, Z. Shao, V. Trifonov, S. Monnier, and Z. Ni. A

syntactic approach to foundational proof-carrying code. In

Proc. LICS’02, pages 89–100, July 2002.
[13] C. Jones. Tentative steps toward a development method for

interfering programs. In ACM Trans. on Programming Lan-

guages and Systems, pages 596–619, 1983.
[14] L. Lamport. The temporal logic of actions. ACM Transac-

tions on Programming Languages and Systems, 16(3), May

1994.
[15] MIPS Technologies, Inc. MIPS32TM Architecture For Pro-

grammers Volume II: The MIPS32TM Instruction Set, v2.50.
[16] F. Mueller. A library implementation of POSIX threads un-

der unix. In Proc. of 1993 USEMIX Technical Conf. and

Exhib., pages 29–41, San Diego, CA, USA, Jan. 1993.
[17] Z. Ni and Z. Shao. Certified assembly programming with

embedded code pointers. In Proc. 33nd ACM Symposium on

Principles of Programming Languages, pages 320–333, Jan.

2006.
[18] Z. Ni, D. Yu, and Z. Shao. Technical report for modular

verification of machine level thread implementation. http:

//flint.cs.yale.edu/publications/mth.html, Nov.

2006.
[19] P. W. O’Hearn. Resources, concurrency and local reasoning.

In Proc. CONCUR’04, pages 49–67, 2004.
[20] D. A. Patterson and J. L. Hennessy. Computer Organiza-

tion and Design: The Hardware/Software Interface, chapter

Appendix A: Assemblers, Linkers, and the SPIM Simulator.

Morgan Kaufmann, Aug. 2004.
[21] C. Paulin-Mohring. Inductive definitions in the system

Coq—rules and properties. In Proc. TLCA, volume 664 of

LNCS. Springer-Verlag, 1993.
[22] J. Reynolds. Separation logic: a logic for shared mutable

data structures. In Proc. 17th IEEE Symposium on Logic in

Computer Science, 2002.
[23] S. Xiang, Y. Chen, C. Lin, and L. Li. Molularly certified dy-

namic storage allocation in scap. In Proc. 6th International

Conference on Quality Software (QSIC’06), pages 321–328.

IEEE CS press, Oct. 2006.
[24] Q. Xu, W. P. de Roever, and J. He. The rely-guarantee

method for verifying shared variable concurrent programs.

Formal Aspects of Computing, 9(2):149–174, 1997.
[25] D. Yu, N. A. Hamid, and Z. Shao. Building certified libraries

for PCC: Dynamic storage allocation. Science of Computer

Programming, 50(1-3):101–127, Mar. 2004.
[26] D. Yu and Z. Shao. Verification of safety properties for con-

current assembly code. In Proc. ICFP’04, pages 175–188,

September 2004.


