
Design of a Certifying Compiler Supporting Proof of Program Safety

Yiyun Chen Lin Ge Baojian Hua Zhaopeng Li Cheng Liu
Department of Computer Science and Technology

University of Science and Technology of China
Hefei, Anhui 230026, China

yiyun@ustc.edu.cn {gelin, huabj, zpli, liuc5}@mail.ustc.edu.cn

Abstract

Safety is an important property of high-assurance soft-
ware, and one of the hot research topics on it is the veri-
fication method for software to meet its safety policies. In
our previous work, we designed a pointer logic system and
proposed a framework for developing and verifying safety-
critical programs. And in this paper, we present the design
and implementation of a certifying compiler based on that
framework. Here we will mainly explain verification con-
dition generation, generation of code and assertions, and
proof generation for basic blocks. Our certifying compiler
has the following novelties: 1) it supports a programming
language equipped with both a type system and a logic sys-
tem; 2) and it can produce safety proofs for programs with
pointers.

1. Introduction

Nowadays, high-assurance software is more and more
valued, and among its properties, safety and security are
most important. Safety is the ability to guarantee that soft-
ware execution does no harm to the system. And security
is the ability to preserve the confidentiality, integrity, avail-
ability and authentication of data. There is a close relation-
ship between safety and security. For example, hackers usu-
ally use low-grade safety errors, such as buffer overflows,
out-of-bound array accesses and dangling pointer derefer-
ences, to destroy a system or achieve unauthorized control
of a system. Apparently, it is helpful to ensure software se-
curity by strengthening its safety, and it makes us focus on
software safety in this paper.

To achieve software safety, all program errors should
be discovered before the execution of the program or be
gently captured during the execution. The research goal
of software safety is to build a wholesome scientific and
technological infrastructure for the management of software
safety. And the verification method for software to meet its

safety policies is one of the hot topics in this research field.
In the past decade, great progress has been made in the

area of program verification. Many projects adopt type-
based or logic-based approaches to reason about the prop-
erties of low-level or high-level programs. The TAL (Typed
Assembly Language) [15] project and the theory of type re-
finements [13] are two typical projects using type-based ap-
proaches, while Proof-Carrying Code (PCC) [16], Founda-
tional PCC (FPCC) [1], Certified Assembly Programming
(CAP) [19] and Stack-based CAP (SCAP) [6] are typical
projects on logic-based techniques. Type-based and logic-
based techniques are complementary to each other, and
some projects have tried to combine them. Hamid et al.
adopted a syntactic approach to FPCC [7], and gave a trans-
lation from a typed assembly language into FPCC in the
Flint project. The ATS (Applied Type System) [18] project
proposed by Hongwei Xi et al. extends a type system with
a notion of program states, so that invariants on states can
be captured in stateful programming. By encoding Hoare
logic in its type system, ATS can support Hoare-logic-like
reasoning via the type system.

Based on the above work, we have proposed a new
framework for developing and verifying safety-critical soft-
ware:

1. Safety policies of a program are specified formally by
programmers. These specifications as well as the cor-
responding program are submitted to a compiler.

2. The compiler produces verification conditions (VCs)
for the submitted program. These VCs are required to
verify whether the program satisfies its specifications.
If all of them are proved, the program is believed to
satisfy the specifications. Most VCs can be proved
automatically by the embedded theorem prover in the
compiler, and the rest are proved interactively by pro-
grammers using proof-assistant tools. All the proofs
should be produced and preserved.

3. The compiler compiles the source code and specifica-
tions into assembly level counterparts while translating

the proofs obtained from step 2 into proofs at assem-
bly level. The latter proofs are carried in the assembly
code and they ensure that the code meets the corre-
sponding specifications. These specifications must be
equivalent to the counterparts at source level. Such a
compiler is called a certifying compiler.

4. At assembly level, a proof checker checks the proofs
carried in the assembly code automatically to ensure
that the code satisfies its specifications.

The advantage of this framework is that it provides
source-level approach for reasoning about program proper-
ties rather than the assembly-level one. Compared with the
approaches for assembly code certification, this approach
can improve the efficiency of safety-critical software devel-
opment. Since the proofs are checked at assembly level,
the compiler, including a VC generator and a prover, can be
removed from the TCB (Trusted Computing Base). There-
fore, the TCB of the system will be reduced remarkably.

In this framework, we choose a C-like programming lan-
guage PointerC [9] as our source language and implement
a certifying compiler prototype for it. Our main contri-
bution is the design of a certifying compiler for a source
language with pointers and explicit memory management
(malloc/free). And a prototype of the certifying compiler
has been implemented in our work. A distinct feature of our
certifying compiler is that it supports languages equipped
with both a type system and a logic system.

In this paper, we introduce the design and implemen-
tation of our certifying compiler. The rest of the paper is
organized as follows. We introduce the source language—
PointerC briefly in section 2. In section 3, we discuss how
the compiler generates VCs at source level from the asser-
tions given by programmers and the side conditions in the
typing rules. Section 4 describes the scheme for generat-
ing corresponding assertions at some program points dur-
ing intermediate code generation. This ensures that each
basic block has proper pre- and postconditions. Section 5
explains how the compiler generates a proof for each ba-
sic block. Each proof ensures that the corresponding basic
block satisfies its pre- and postconditions. Section 6 com-
pares our work with related work and section 7 concludes.

2. Source language—PointerC

PointerC is a C-like programming language that we have
designed as the source language in our work. In order to
check more pointer programs statically, some pointer oper-
ations are restricted in PointerC [9]. These restrictions are
based on the premise of not affecting the language function-
ality of PointerC. Variables with pointer type can only be
used in assignment, equality comparison, dereference or as
the parameters of functions; the address-of operator (&) and

pointer arithmetic are forbidden. To guarantee that type-
checked programs are well-typed, union types and coercion
of types are also forbidden. malloc and free are used as pre-
defined functions which meet the primary safety policies.
For example, each invocation of malloc will allocate an area
of memory successfully, and the region of the memory will
never overlap those already in use.

Pointers are classified into effective pointers (those
point to objects), null pointers and dangling pointers, and
the latter two are also called ineffective pointers. Ineffec-
tive pointer dereferences, memory leaks or using an ineffec-
tive pointer as the actual parameter of function free are all
considered as violations of the primary safety policies.

A type system is a tractable syntactic method for prov-
ing the absence of certain program behaviors by classifying
phrases according to the kinds of values they compute. It
is mainly used to eliminate context-sensitive errors in pro-
grams. A traditional type system is not sufficient when the
legality of a phrase depends not only on the context but
also on some expression values in the phrase. Dependent
types [18] is one possible solution to this problem. Another
solution is not to treat the constraints on values as parts of
the type system, and the constraints don’t appear in the typ-
ing rules. The former leads to a complicated type system
and the latter leads to an unsound one. We try to find a trade-
off between these two solutions in the design of PointerC.
To achieve simplicity in the type system and guarantee the
safety of the language at the same time, side conditions are
introduced into the typing rules to express the constraints on
values. For example, the following two typing rules show
that the constraints on subscript expressions and pointers
are put in the side conditions.

Γ�e : int Γ�a : array(10, bool)
Γ�a[e] : bool

0 ≤ e ∧ e ≤ 9

Γ�p : ptr(struct(. . . , x:int, . . .))
Γ�p->x : int

p ∈ effective ptrs

These side conditions must be checked before the ex-
ecution of the program to ensure that the execution does
not violate the primary safety policies. And to check these
side conditions statically, we have designed a pointer logic
for PointerC. The pointer logic is an extension of Hoare
logic and essentially is a pointer analysis tool. It collects
pointer information in a forward manner. This information
includes whether a pointer is null, dangling or effective, and
the equality relation between effective pointers. The in-
formation can be used to prove that the program satisfies
the side conditions in the typing rules and then to support
value-sensitive static checking. For example, according to
the pointer logic, the following two Hoare triples

{{{p, q} ∧ {p->next}}} p=malloc(· · ·)
{{{p} ∧ {q} ∧ {q->next} ∧ {p->next}D}}

and

{{{p, q} ∧ {p->next}N}} free(p) {{{p, q}D}}

hold, where the set {p} represents an assertion, and its in-
formal meaning is “p is an effective pointer and is not equal
to any other pointers”. Similarly, the set {p, q} means “Ef-
fective pointers p and q are equal (but not aliases), and they
are not equal to any other pointers”; {p, q}D denotes p and q
are dangling pointers; and {p->next}N means that p->next
is a null pointer. According to the pointer logic, there are
no postconditions Q1 and Q2 which make the following two
Hoare triples hold. That is, the preconditions of malloc and
free here can not satisfy the side conditions in the corre-
sponding typing rules.

{{{p} ∧ {p->next}N}} p=malloc(· · ·) {{Q1}}

(The object previously pointed by p is lost.)

{{{p} ∧ {p->next}}} p=free(p) {{Q2}}

(The object previously pointed by p->next is lost.)
In history, pointer analyses were mostly conservative es-

timates of the pointer status at runtime. And they mainly
answered the question: what was the possible set of objects
that a pointer may point to at runtime? Such pointer analy-
ses can be used in many fields of static analysis and program
optimization, such as liveness analysis needed by register
allocation and constant propagation etc. To meet the safety
requirements of software, we have restricted some unde-
cidable pointer operations in PointerC, and thus obtained
an accurate pointer analysis instead of an approximate one.
This is the primary difference of our pointer analysis from
others. Although accurate pointer analysis does not exist
for all programs, our practical experience on the applica-
tions of some data structures, such as singly linked list, bi-
nary tree and circular doubly linked list etc., shows that the
pointer logic is feasible. Besides side conditions in the typ-
ing rules, the pointer logic can also be used to reason about
other program properties to accommodate the requests of
user-defined safety policies.

3. Verification condition generation

In order to check program safety statically, side condi-
tions in the typing rules must be provable at the correspond-
ing program points. This is achieved through the following
steps:

1. Programmers annotate each function with a pair of pre-
and postconditions and each while loop with a loop in-
variant. These annotations belong to the specifications
of the source program.

2. A verification condition generator (VCGen) is embed-
ded into the front end of the compiler. It can convert
the task of proving a program satisfying its specifica-
tions into the task of proving a set of VCs. From the
annotations mentioned in 1 and the side conditions in
the typing rules, the VCGen generates a set of VCs us-
ing the pointer logic rules. And these VCs should be
proved in order to guarantee program safety.

3. A simple theorem prover, which produces correspond-
ing proofs for pointer-related VCs, is embedded into
the compiler as well. Integer-related VCs are proved
interactively in Coq [4] by the programmers. The VCs
and their proofs show that the source program satisfies
its specifications.

At first, we discuss how to generate VCs for functions
with pointer-type data. Figure 1 shows the structure of a
function chosen from PointerC syntax, some irrelevant de-
tails are omitted.

FunDcl → id(arg){Body}
Body → VarDecList StmtList

StmtList → Stmt StmtList | ε
Stmt → lval = Exp

| if (Bexp) {StmtList} else {StmtList}
| while (Bexp) {StmtList}
| lval = alloc(Type)
| free(Exp)
| lval = id(Exp)
| return res

Figure 1. Structure of function

The pointer logic is fit for collecting pointer information
in a forward manner, so that the VC generation is based
on the strongest postcondition calculus. Figure 2 shows the
main rules for the strongest postcondition calculus (function
sp) in the pointer logic and the framework of VC generation
(for data with pointer types). These rules are recursively de-
fined according to the syntactic structures in a function. In
Figure 2, Π, N and D denote the equivalent division of all
effective pointers, the set of null pointers and the set of dan-
gling pointers respectively [2]; Ψ is the short notation for
Π ∧N ∧D; the first parameter of function sp is a syntactic
structure, and the second one is the precondition of the syn-
tactic structure. The VC generation described here has the
following important characteristics:

1. Since the precondition Ψ and the postcondition Ψ′ of
a function are given, the VC sp(StmtList, Ψ) ⊃ Ψ′ is
generated at the exit of the function (note that StmtList
forms the statement list of the function).

1. Function definition

{{Ψ}} id(arg){Body} {{Ψ′}}, that is {{Ψ}} StmtList {{Ψ′}}, where the StmtList is the StmtList in the Body production.

2. Statement List

• sp(Stmt StmtList, Ψ) = sp(StmtList, sp(Stmt, Ψ))

• sp(ε, Ψ) = Ψ. If ε forms the StmtList of a function, then VC = Ψ ⊃ Ψ′ (see 1 for Ψ′) will be generated.

3. Statement

• assignment: sp(lval = Exp, Ψ) = Ψ′, Ψ′ can be calculated using Ψ according to the assignment rules in the
pointer logic.

• condition: sp(if (Bexp) {StmtList1} else {StmtList2}, Ψ) = sp(StmtList1, Bexp∧Ψ)∨sp(StmtList2, ¬Bexp∧Ψ)

• loop: sp(while (Bexp) {StmtList}, Ψ) = ¬Bexp ∧ I, where I is the loop invariant for pointer-type data.
VC1 = Ψ ⊃ I and VC2 = sp(StmtList, Bexp ∧ I) ⊃ I should be generated at the entry point and the exit of
StmtList respectively.

• allocation: sp(lval = alloc(Type), Ψ) = Ψ′, Ψ′ can be calculated using Ψ according to the allocation rules in the
pointer logic.

• deallocation: sp(free(Exp), Ψ) = Ψ′, Ψ′ can be calculated using Ψ according to the deallocation rule in the
pointer logic.

• function call: If the pre- and postconditions of function id are {arg}∧{lval}N ∧Qarg and Ψ′∧Q respectively, then
sp(lval = id(Exp), Ψ) = (Ψ′ ∧ Q)[arg← Exp][res← lval], where Q and Qarg are assertions that have nothing to
do with pointers, arg is the formal parameter, and res is the return value (see Figure 1).
VC = Ψ ⊃ ({arg} ∧ {lval}N ∧Qarg)[arg← Exp] should be generated at the entry point of this statement.

• return: sp(return res, Ψ) = Ψ

Figure 2. The Strongest postcondition calculus and the VC generation of pointer-type data

2. One difficulty of strongest postcondition calculus is the
need to find a fixpoint for a recursive equation in a loop
statement. The solutions to such equations are usually
undecidable, and it is also the primary reason why the
correctness of a program can not be proved automat-
ically. The loop invariant provided by programmers
is used to avoid the difficulty. However, in order to
prove the validity of the loop invariant, two VCs must
be generated at the entry point and the exit of the loop
respectively.

3. The pre- and postconditions of each function have also
deeply simplified the computation of sp for function
call statement. Briefly speaking, the Ψ before the call
statement should imply the precondition of the callee,
and the callee’s postcondition should be used as the
strongest postcondition after the call statement. Cer-
tainly, we also need to consider the substitution of ac-
tual parameters for formal parameters as well as the
substitution of the variable lval for the variable res (see
function call in Figure 2).

4. One remarkable distinction of our pointer logic from
Hoare logic is that the pointer logic has no uniform

assignment axiom. Instead, different assignment rules
are used in different cases in our pointer logic. Since
the pointer analysis is precise, it is easy to determine
which rule to use in a certain case and it is clear how
to compute Ψ′ using Ψ in the sp rule for assignment.
Please refer to [2] for some details skipped in Figure 2.

5. At the entry point of a function, the pointer logic
should check the initial values of the pointer-type for-
mal parameters and local variables. And at the exit of
the function, their effectiveness should also be checked
to avoid memory leaks. But for the space limit, the VC
generation in Figure 2 does not reflect this.

For integer-type data, we adopt a complemented ap-
proach of Hoare logic—weakest precondition calculus
(wp) [5] to generate assertions or VCs at each program
point. And we only introduce its distinctions from the ap-
proach for pointer-type data as follows.

1. Since the assertions in a function are calculated back-
ward using the postcondition Q of the function, a VC
P ⊃ wp(StmtList, Q) is generated at the entry point of
the function, where P is the precondition of the func-

tion and StmtList is the statement sequence of the func-
tion.

2. The side condition in a typing rule should be combined
with the assertion which is at the entry point of the
corresponding statement. For pointer-type data, such a
problem does not exist. Because a pointer-related side
condition is consistent with the premise of the corre-
sponding inference rule in the pointer logic, and should
have been checked before the rule is chosen.

3. When we compute pointer-related assertions, we need
to decide which assignment rule to use according to the
assertion before the assignment. However, there is no
need to do that about integer-related assertions using
wp.

In fact, the computations of assertions and VCs for
integer-type data and pointer-type data interact with each
other.

1. Both of them should be performed together with type
checking, since they both need side conditions in the
typing rules. But the backward calculus for integer-
related assertions will reduce the efficiency of the per-
formance, because the calculus direction does not con-
sist with the direction of type checking.

2. The pre- and postconditions of functions, loop invari-
ants and the Bexps of while and if statements may
contain both integers and pointers. Such an assertion
should be divided into two parts, each of which con-
cerns only one kind of data and participates one calcu-
lus.

3. The variable p->data makes sense only when p is an
effective pointer, but in Hoare logic, there is no such a
consideration. Therefore, rules in Hoare logic can not
be used in the case where pointers are concerned. The
pointer logic collects pointer equality information, and
this information can help us check whether p->data
makes sense. Moreover, when using assignment ax-
iom, we can perform alias substitution [2] according
to the equality information of pointers.

Using the pointer logic, it is easy to prove the correct-
ness of the VC generation, i.e., if all of the VCs are proved,
the Hoare triple {{P}} id(arg){Body} {{Q}} holds. The VC
generator is removed from the TCB, since there is a proof
checker at assembly level in our framework. Specifications,
VCs and the proofs of VCs at source level will be trans-
lated into equivalent assembly-level counterparts. And the
translated counterparts will be used in the verification at as-
sembly level.

4. Code and assertion generation

In our framework, specifications and the proof of code
satisfying the specifications are carried in the assembly
code. The assembly code is divided into basic blocks. Basic
block, which is a concept in code optimization and gener-
ation, is a sequence of instruction; and in our design, the
instruction sequence ends with a control transfer instruction
such as jmp or call. Each basic block B has its precon-
dition P, postcondition Q, and the proof or proof hint of
{{P}} B {{Q}}. The proof can be checked by a proof checker.
According to the principle that the postcondition of a basic
block should imply the precondition of the succeeding ba-
sic block in the control flow, Q can be omitted since we can
just take the precondition of the succeeding basic block as
Q.

In order to make sure that each basic block has perti-
nent pre- and postconditions, assertions should be gener-
ated at proper program points during code generation. In
this section, we introduce a scheme for generating interme-
diate code and the corresponding assertions. For the lack
of space, we only consider pointer-related assertions. Us-
ing the calculi in section 3, we can get a proper assertion
at each program point. Figure 3 shows the scheme for the
main syntactic structures. The first parameter of the recur-
sive function Code is a syntactic structure, and the second
parameter is the precondition of the structure. The function
Code generates intermediate code and assertions at some
program points. The generated assertion is at the right side
of the code. The assertion which follows “--” should be
inserted before the line of the code, and which follows “++”
should be inserted after the line of the code; and the as-
sertion led by “∗∗” is the VC to be proved. The function
Code calls function code which uses syntactic structure as
the only parameter. The function code only generates in-
termediate code for the syntactic structure. The function
Code does not generate assertions between the intermediate
code which will obviously be translated into the same ba-
sic block, such as the code for assignment statements and
Boolean expressions (Boolean expression calculation does
not use short-circuit here). The description in Figure 3 actu-
ally covers some assertion and VC generations in Figure 2,
hence all of these can be done via a one-pass inspection of
source programs during compilation.

When considering the generation of integer-related as-
sertions and VCs, it is difficult to do all the work about
pointers and integers in one pass, because they are based
on the calculi in different directions. The compiler can
do type checking, pointer-related assertion generation, VC
generation, integer side-condition annotation and interme-
diate code generation in the first pass and generate integer-
related assertions and VCs using the annotation of integer
side conditions in the second pass.

1. Statement list
• non-empty: Code(Stmt StmtList,Ψ) =

Code(Stmt, Ψ) -- Ψ
Code(StmtList, sp(Stmt, Ψ))

• empty: Code(ε,Ψ) = ε ∗∗ If ε forms the StmtList of a function Body, VC = Ψ ⊃ Ψ′

will be generated. Ψ′ is the postcondition of the function.
2. Statement
• assignment: Code(lval = Exp,Ψ) =

code(lval = Exp) ++ sp(lval = Exp, Ψ)
• condition: Code(if Bexp {StmtList1} else {StmtList2},Ψ) =

code(Bexp) ++ Ψ
JUMP on false to L1
Code(StmtList1, Bexp ∧Ψ)
GOTO L2

L1: Code(StmtList2, ¬Bexp ∧Ψ)
L2:
• loop: Code(while (Bexp) {StmtList},Ψ) =
L1 : code(Bexp) -- I, ++ I, ∗∗ VC = Ψ ⊃ I (I is the loop invariant.)

JUMP on false to L2
Code(StmtList, Bexp ∧ I)
GOTO L1 ∗∗ VC = sp(StmtList, Bexp ∧ I) ⊃ I

L2 : -- ¬Bexp ∧ I
• function call: Code(lval = id(Exp),Ψ) =

temp := code(Exp) -- ({arg} ∧ {lval}N ∧ Qarg)[arg← Exp]
∗∗ VC = Ψ ⊃ ({arg} ∧ {lval}N ∧ Qarg)[arg← Exp]

param temp ++ ({arg} ∧ {lval}N ∧ Qarg)[arg← temp]
call id ++ (Ψ′ ∧ Q)[arg← Exp][res← res temp]
lval := res temp ++ (Ψ′ ∧ Q)[arg← Exp][res temp← lval]

Figure 3. Intermediate code generation and generation of pointer-related assertions

When generating assembly code, the pre- and postcondi-
tions of basic blocks should be adjusted as follows:

1. At source or intermediate level, variables are repre-
sented by names in assertions; but at assembly level,
they are represented by memory addresses or registers.
Also, an assertion at assembly level is parameterized
by a machine state. So, assertions also need to be trans-
lated during code generation. It is lucky that this kind
of translation is straightforward.

2. Registers are used to store temporary values in the as-
sembly code, so the contents of some registers may
equal the values of some variables at the exit of one
basic block. Usually, code generation algorithm can
collect such information. And this information makes
it easy to adjust Ψs at the entry point and the exit of
one basic block.

The assertion generation in Figure 3 also faces this
problem, because temporary variables may be intro-
duced into the intermediate code for expressions.

3. At the entry point and the exit of each basic block,

there are some relatively steady assertions such as “the
return address saved in the current stack frame will
not be overwritten during the execution of the basic
block”. All of these assertions depend on the target
machine. Since they are almost the same for each ba-
sic block, there is no difficulty in generating them.

5. Proof generation for basic blocks

In the generated assembly code, each basic block B has a
proof or proof hint for {{P}} B {{Q}}. The proof or proof hint
is generated by the compiler. Besides the proofs or hints
for basic blocks, the assembly code also carries assembly-
level VCs and their proofs. These VCs and proofs can be
achieved by translating the source-level VCs in Figure 2 and
their proofs respectively. And they are usually used when
a basic block’s postcondition should be proved to imply its
successor’s precondition.

At assembly level, we adopt an approach that applies the
method of Hoare logic directly to the operational semantics
of Intel x86 ISA. This approach has the following charac-
ters. First, an assertion is parameterized by a machine state;

second, the primary inference rules are based on the oper-
ational semantics of the instructions, that is, the machine
state before the execution of an instruction is used to calcu-
late the state after it [12]. While in Hoare logic, the calcu-
lation of the precondition from the postcondition is directly
based on syntactic substitution. Generally, machine state
denotes a map from registers, stack locations and heap loca-
tions to values. The change of machine state is based on the
operational semantics of the instructions. The formal de-
scription of our proof-carrying assembly code has referred
to CAP and SCAP [19, 6], which are common frameworks
supporting Hoare style reasoning for assembly code certifi-
cation.

The instruction execution may change pointer informa-
tion in Π, N and D, and the change can be deduced ac-
cording to the pointer logic at assembly level [11]. Besides
function call, the instructions which may change the pointer
information include movl, pushl etc. (we call them assign-
ment instructions in general). The rules for these instruc-
tions in the pointer logic at assembly level are almost the
same as the corresponding assignment rules at source level,
except that variables are replaced by memory addresses,
registers, and register indirect addresses etc. Since there
is no complex access path in assembly programs, aliasing
calculation at assembly level is much simpler than that at
source level.

To generate the proof of a basic block satisfying its pre-
and postconditions, it is important to generate assertions
between the instructions in the basic block. These asser-
tions can be generated from the pre- and postconditions of
the basic block. According to P, Q and the correspond-
ing machine state, the verification framework at assembly
level checks whether {{P}} ι {{Q}} holds for each instruction
ι in the basic block. Pointer-related assertions are generated
and inserted into the basic block in a forward manner, with
integer-related assertions in a backward manner. Pointer-
related assertions at assembly level are rather difficult to
understand, so we take a basic block with integer-related
assertions as an example to explain how to generate and in-
sert assertions between instructions.

The source program in Figure 4 is a function to mul-
tiply integer m by n. The assertions in notation {{ }} are
provided by programmers. The precondition of the func-
tion is represented as the assertion in the first line; in line
12 is the postcondition. The loop invariant for while is in
line 6. The symbol “result” represents the return value
of the function. The assembly code in the same figure cor-
responds to the while loop (line 6-9), where the addresses
of n, m, x and y in the stack are represented by 12(%ebp),
16(%ebp), -16(%ebp) and -20(%ebp) respectively, and
ebp is the base pointer of current stack frame. Then, we
take the basic block ltrue (the basic block which are num-
bered in Figure 4) as an example to explain the generation

of the proof.
The precondition p of the basic block is

λS.S(S(ebp)− 16) = S(S(ebp) + 16)× S(S(ebp)− 20)∧
S(S(ebp)− 20) ≤ S(S(ebp) + 12)∧
S(S(ebp)− 20) < S(S(ebp) + 12).

(Note that the corresponding assertion at source level is
{{x == m * y ∧ y <= n ∧ y < n}}.)

The postcondition q (q is also the precondition of the
succeeding basic block lloop) is

λS.S(S(ebp)− 16) = S(S(ebp) + 16)× S(S(ebp)− 20)∧
S(S(ebp)− 20) ≤ S(S(ebp) + 12).

(Similarly, the corresponding assertion at source level is
{{x == m * y ∧ y <= n}}, i.e., the loop invariant.)

In these assertions, S denotes the current machine state.
If the postcondition of an instruction ι is Q, its precondition
P can be achieved through the formula: (note that P and Q
are parameterized by a machine state S)

P = gp(ι, Q) = λS.Q (upd(S, ι)),

where the function upd(S, ι) represents the operational se-
mantics of the instruction ι, and the return value of upd(S, ι)
is a machine state after the execution of the instruction ι in
state S.

Figure 5 shows the operational semantics and precondi-
tion generation formulas of some instructions. S[a
→ b] is
a machine state, and it means:

S[a
→ b](c) =

{
b if c = a,

S(c) if c �= a.

For example, suppose the postcondition for instruction
“movl r1, r2” is

λS.S(r2) = 3,

according to gp((movl r1, r2), Q) in Figure 5, the pre-
condition is

λS.((λS
′.S′(r2) = 3) S[r2
→ S(r1)]),

that is,
λS.S[r2
→ S(r1)](r2) = 3.

According to the definition of S[a
→ b], the precondition
can be reduced to

λS.S(r1) = 3.

Using gp(ι, Q), we can get the precondition of each
instruction backward from the postcondition of the basic

1 {{n >= 0}}
2 int mult (m, n){
3 int x, y;
4 x = 0;
5 y = 0;
6 while (y < n) { {{x == m * y ∧ y <= n}}
7 x = x + m;
8 y = y + 1;
9 }
10 return x;
11 }
12 {{result == m * n}}

lloop:
· · ·
cmpl %esi, %eax
jg ltrue

lfalse:
movl -16(%ebp), %eax
jmp lend

ltrue:
1 movl 16(%ebp), %eax
2 addl -16(%ebp), %eax
3 movl %eax, -16(%ebp)
4 movl $1, %eax
5 addl -20(%ebp), %eax
6 movl %eax, -20(%ebp)
7 jmp lloop
lend:

· · ·

Figure 4. The source code and corresponding assembly code of mult (m, n)

Instruction: ι Operational semantics: upd(S, ι) Precondition: gp(ι, Q)
movl r1, r2 S[r2
→ S(r1)] λS.Q (S[r2
→ S(r1)])
movl r1, z(r2) S[z + S(r2)
→ S(r1)], λS.Q (S[z + S(r2)
→ S(r1)])

if (z + S(r2)) ∈ Dom(S)
movl z, r S[r
→ z], λS.Q (S[r
→ z])
jmp l S Q
addl z(r1), r2 S[r2
→ S(z + S(r1)) + S(r2)], λS.Q (S[r2
→ S(z + S(r1)) + S(r2)])

if (z + S(r1)) ∈ Dom(S)
movl z(r1), r2 S[r2
→ S(z + S(r1))], λS.Q (S[r2
→ S(z + S(r1))])

if (z + S(r1)) ∈ Dom(S)

Figure 5. Operational semantics and assertion generation of some instructions

block. For example, from postcondition q, we can get the
precondition of “jmp lloop” (the instruction labeled with
7):

λS.S(S(ebp)− 16) = S(S(ebp) + 16)× S(S(ebp)− 20)∧
S(S(ebp)− 20) ≤ S(S(ebp) + 12).

The preconditions of the rest instructions can be generated
in a similar way. The precondition of the first instruction is:

λS.S(S(ebp)− 16) + S(S(ebp) + 16)
= S(S(ebp) + 16)× (S(S(ebp)− 20) + 1)∧

S(S(ebp)− 20) + 1 ≤ S(S(ebp) + 12).

And the VC at the entry point of the basic block is:

λS.S(S(ebp)− 16) = S(S(ebp) + 16)× S(S(ebp)− 20)∧
S(S(ebp)− 20) ≤ S(S(ebp) + 12)∧
S(S(ebp)− 20) < S(S(ebp) + 12) ⊃
(λS.S(S(ebp) − 16) + S(S(ebp) + 16)

= S(S(ebp) + 16)× (S(S(ebp)− 20) + 1)∧
S(S(ebp)− 20) + 1 ≤ S(S(ebp) + 12)).

That is, the precondition of the basic block should imply the
precondition of the first instruction in the basic block. And
this VC is easy to prove obviously.

When we get all the assertions between the instructions,
there is no difficulty to generate the proof of {{P}} ι {{Q}} for
each instruction ι in a basic block. And it is also easy to
generate a proof for the basic block if we have the proofs
for all the instructions in the basic block and the proof for
the VC of the basic block.

6. Related work

Verifying compiler [8] is a research topic proposed in re-
cent years. It uses mathematical and logical reasoning to
check the correctness of the program that it compiles be-
fore the program executes. The criterion of correctness is
specified by types, assertions, and other redundant annota-
tions associated with the program. Now it can be classified
into two research directions on this topic. One is to prove
the correctness of the compiler formally, that is, the com-
piler carries a formal proof which confirms the correctness
of the generated objective code. Such a compiler is called
a certified compiler. The other is to prove the correctness
of the compiled code formally, i.e., the code carries a for-
mal proof to guarantee its correctness, safety or some other
properties and the proof can be checked by a code consumer
independently. This kind of compiler is called a certifying
compiler. Obviously, this paper presents the design of parts
of a certifying compiler.

In the research area of certified compiler, Moore was
one of the first to mechanically verify semantic preserva-
tion for a compiler [14], although for a custom language
and a custom processor that were not commonly used. Af-
ter that, more compilers were verified, including a compiler
for a subset of Common Lisp, a byte-code compiler for a
subset of Java, and a compiler for a tiny subset of C. The
most recent typical work is the certification of a lightly-
optimizing back end that generates PowerPC assembly code
from a simple imperative intermediate language called Cmi-
nor [10] by Leroy. A front end translating a subset of C to
Cminor is under development and certification. One of the
novel features of his work is to emphasize the certification
of a complete compilation chain instead of parts of a com-
piler. Another novelty is that most of the compiler is written
directly in the Coq specification language, in a purely func-
tional style.

Generally, it is much easier to prove the correctness of
a calculation result than to prove the correctness of the cal-
culation itself, so that certifying compiler has more possi-
bility to come into use than certified compiler. Necula first
proposed the concept of Proof-Carrying Code, and imple-
mented a certifying compiler called Touchstone [17]. This
compiler was composed of a traditional optimizing com-
piler for a type-safe subset of C and a certifier that automati-
cally produced a proof of type safety and memory safety for
each assembly program. A proof checker could be used to
check the generated proofs automatically. Since the source
programs compiled by Touchstone were written in a very
small safe subset of C, their type safety and memory safety
were easy to be checked. The main limitations of the source
language in Touchstone were in the aspects of pointer types
and memory deallocation, which made the language only
used in writing programs with simple data structures. Later,

Colby et al. implemented a certifying compiler called Spe-
cial J [3] for a large subset of Java. It compiled Java byte
code into target code for Intel IA32 architecture. The ma-
jor advance of Special J over Touchstone was the scope of
the source language compiled, which in turn necessitated
the handling of non-trivial run-time mechanisms such as
object representation, dynamic method dispatch and excep-
tion handling. Moreover, Special J was freely able to apply
many standard local and global optimizations.

Our design has the following significant differences from
Touchstone and Special J:

1. PointerC has more pointer types and operations, and
also provides dynamic storage allocation and deallo-
cation. These features make it suitable for writing
system-level programs. Both Touchstone and Special J
have no dynamic storage deallocation.

2. We use some new techniques to handle the features of
the language equipped with both a type system and a
logic system. For example, our VC generator can per-
form both forward and backward VC generations, and
the theorem prover embedded in the compiler and the
Coq proof assistant can be used to prove VCs for dif-
ferent types of data respectively.

3. To certify the proof-carrying assembly code, we adopt
an approach that applies the method of Hoare logic di-
rectly to the operational semantics of Intel x86 ISA.
We use machine state as the parameter of assertions, so
as to describe program properties which may change
with the machine state. These properties are usu-
ally difficult to be expressed in common type systems.
Touchstone and Special J mainly focus on type proper-
ties of programs, and rarely concern complicated pro-
gram properties.

4. Due to the simplicity of the source language, loop in-
variants which only concern types can be generated au-
tomatically in Touchstone and Special J. In our certify-
ing compiler, loop invariants may contain more infor-
mation than types, and it should be provided by pro-
grammers explicitly.

7. Conclusion

This paper presents the design and implementation of a
certifying compiler for PointerC (a programming language
equipped with both a type system and a logic system). Al-
though the implemented certifying compiler prototype only
enforces the primary safety policies such as type safety and
memory safety, the whole framework can fit in the situation
where user-defined safety policies are allowed. This paper
only concentrates on the main work of the certifying com-
piler and skips the translation of assertions, VCs and proofs

of VCs. The design of the theorem prover, which is em-
bedded in the compiler to prove pointer-related VCs, is also
skipped in this paper.

We are improving PointerC and its certifying com-
piler: relaxing the restrictions on pointer arithmetic op-
erations and allowing calloc which is often used in pro-
grams. We are also studying an embedded theorem prover
for integer-related VCs, and exploring the possibilities to
replace the current proof-assistant tool. The influences of
proof-carrying compilation on code optimizations are also
under consideration.

8. Acknowledgements

We thank Professor Zhong Shao in Yale University and
anonymous referees for suggestions and comments on an
earlier version of this paper. This research is based on work
supported in part by grants from Intel China Research Cen-
ter and National Natural Science Foundation of China under
Grant No.60673126. Any opinions, findings and conclu-
sions contained in this document are those of the authors
and do not reflect the views of these agencies.

References

[1] A. W. Appel. Foundational proof-carrying code. In LICS
’01: Proceedings of the 16th Annual IEEE Symposium on
Logic in Computer Science, pages 247–258, Washington,
DC, USA, 2001. IEEE Computer Society.

[2] Y. Chen, B. Hua, L. Ge, and W. Zhifang. A
pointer logic for safety verification of pointer programs.
http://ssg.ustcsz.edu.cn/lss/papers/index.html.

[3] C. Colby, P. Lee, G. C. Necula, F. Blau, M. Plesko, and
K. Cline. A certifying compiler for java. In PLDI ’00:
Proceedings of the ACM SIGPLAN 2000 conference on Pro-
gramming language design and implementation, pages 95–
107, New York, NY, USA, 2000. ACM Press.

[4] Coq Development Team. The Coq proof assistant reference
manual. Coq release v8.0, Oct. 2005.

[5] E. W. Dijkstra. A discipline of programming. Prentice-Hall,
Englewood Cliffs, New Jersey, 1976.

[6] X. Feng, Z. Shao, A. Vaynberg, S. Xiang, and Z. Ni. Mod-
ular verification of assembly code with stack-based con-
trol abstractions. In PLDI ’06: Proceedings of the 2006
ACM SIGPLAN conference on Programming language de-
sign and implementation, pages 401–414, New York, NY,
USA, 2006. ACM Press.

[7] N. A. Hamid, Z. Shao, V. Trifonov, S. Monnier, and Z. Ni.
A syntactic approach to foundational proof-carrying code.
In LICS’02: Proceedings of the Seventeenth Annual IEEE
Symposium on Logic In Computer Science, pages 89–100,
Copenhagen, Denmark, July 2002. IEEE.

[8] T. Hoare. The verifying compiler: A grand challenge for
computing research. J. ACM, 50(1):63–69, 2003.

[9] B. Hua and L. Ge. The definition of pointerc programming
language. http://ssg.ustcsz.edu.cn/lss/doc/index.html.

[10] X. Leroy. Formal certification of a compiler back-end or:
programming a compiler with a proof assistant. In POPL
’06: Conference record of the 33rd ACM SIGPLAN-SIGACT
symposium on Principles of programming languages, pages
42–54, New York, NY, USA, 2006. ACM Press.

[11] Z. Li. Coq implementation of the soundness proof of fcap
(description). http://ssg.ustcsz.edu.cn/lss/software/index.
html.

[12] Z. Li. A framework of function-based certified assembly
programming. http://ssg.ustcsz.edu.cn/lss/doc/index.html.

[13] Y. Mandelbaum, D. Walker, and R. Harper. An effective the-
ory of type refinements. In ICFP’03: Proceedings of the
eighth ACM SIGPLAN international conference on Func-
tional programming, pages 213–225, New York, NY, USA,
2003. ACM Press.

[14] J. S. Moore. Piton: a mechanically verified assembly-
language. Kluwer Academic Publishers, Norwell, MA,
1996.

[15] G. Morrisett, D. Walker, K. Crary, and N. Glew. From
system f to typed assembly language. In POPL ’98: Pro-
ceedings of the 25th ACM SIGPLAN-SIGACT symposium on
Principles of programming languages, pages 85–97, New
York, NY, USA, 1998. ACM Press.

[16] G. C. Necula. Proof-carrying code. In POPL ’97: Pro-
ceedings of the 24th ACM SIGPLAN-SIGACT symposium on
Principles of programming languages, pages 106–119, New
York, NY, USA, 1997. ACM Press.

[17] G. C. Necula and P. Lee. The design and implementation
of a certifying compiler. In PLDI ’98: Proceedings of the
ACM SIGPLAN 1998 conference on Programming language
design and implementation, pages 333–344, New York, NY,
USA, 1998. ACM Press.

[18] H. Xi. Applied type system (extended abstract). In post-
workshop Proceedings of TYPES 2003, pages 394–408.
Springer-Verlag LNCS 3085, 2004.

[19] D. Yu, N. A. Hamid, and Z. Shao. Building certified libraries
for pcc: dynamic storage allocation. Sci. Comput. Program.,
50(1-3):101–127, 2004.

