Lin CX, Chen YY, Li L et al. Garbage collector verification for proof-carrying code. JOURNAL OF COMPUTER SCIENCE AND

TECHNOLOGY 22(3): 426~437 May 2007

Garbage Collector Verification for Proof-Carrying Code

Chun-Xiao Lin (4kFEE), Yi-Yun Chen (4% =), Long Li (2= [%), and Bei Hua (4¢ 1)
Department of Computer Science and Technology, University of Science and Technology of China, Hefei 230027, China

E-mail: {cxlin3, liwis}@mail.ustc.edu.cn; {yiyun, bhua}@ustc.edu.cn

Received September 19, 2006; revised March 20, 2007.
Abstract

We present the verification of the machine-level implementation of a conservative variant of the standard mark-

sweep garbage collector in a Hoare-style program logic. The specification of the collector is given on a machine-level memory
model using separation logic, and is strong enough to preserve the safety property of any common mutator program. Our
verification is fully implemented in the Coq proof assistant and can be packed immediately as foundational proof-carrying
code package. Our work makes important attempt toward building fully certified production-quality garbage collectors.

Keywords
1 Introduction

The latest developments in theorem provers, certify-
ing compilers and other program verification tools have
enabled the building of more trustworthy software sys-
tems using the Proof-Carrying Code (PCC) paradigm!!].
A PCC package contains the native code of the software,
its safety specification, and a machine checkable proof
saying that the code behaves as specified. The client can
then use a tiny checker to check the safety proof before
running the software.

Software verified in a high-level language is hardly
trustworthy if the compiler fails to correctly translate
the verified program into native code, which is often the
case due to the various bugs in the compiler. However,
in the PCC style of verification, the specification and
proof are directly given on, or translated to, the ma-
chine level, and the compiler is thus removed from the
Trusted Computing Base (TCB). Therefore, the PCC
packages are endowed with a higher level of safety.

However, in existing PCC frameworks like the
Touchstone-PCCI and Typed Assembly Language
(TAL)[Z], memory management is either regarded as
trusted primitive instructions, or included in the trusted
library. On the other hand, automatic memory manage-
ment, especially Garbage Collection (GC)[3, is acknowl-
edged as complex and error-prone. Thus, the overall
safety level of the PCC system will be undermined if an
unverified garbage collector is included in TCB.

In this paper, we present the formal verification of
a conservative variant/*! of the standard mark-sweep
garbage collector!®! in the PCC style. The technical
highlights and contributions of this paper include:

e Our verification is performed directly on the
machine level with the Hoare-style program logic
Stack-based Certified Assembly Programming (SCAP).
Thus, we are forced to specify and prove the concrete
machine-level behavior of the collector, which though
often abstracted out in a high-level language implemen-

program verification, garbage collector, proof-carrying code, program safety

tation, is indispensable by the PCC-style mutators for
the safe usage of the collector. On the other hand, as
we will show later, the major effort we spend in proving
the collector is on the manipulation of language inde-
pendent properties like heap predicates and finite sets.
Thus, verifying a low-level language, especially C, im-
plementation of the collector would require almost the
same effort. And a certifying compiler, if one could be
constructed, is still needed for making the C-level veri-
fication useful to other PCC packages.

e We use separation logic®! to define the machine-
level heap predicates for building the specification of
the collector. With separation-logic operators, we de-
fine new heap predicates to assert reachability on a con-
crete memory model, which could evade troubles caused
by cyclic links in heap objects. Our specification of the
collector states that all the live objects are preserved,
and all the unreachable objects (in a conservative defi-
nition) are collected, hence is strong enough to preserve
the safety of common mutator programs.

e Our verification is fully mechanized within the
Coq proof assistant(”]. We follow the Foundational-PCC
(FPCC)I®! style to give the proof of the collector along
side the soundness proof of the whole verification frame-
work. The collector’s proof in SCAP can be ported
to an open FPCC framework!®! without much difficulty
as shown in [9], which enables our collector’s possible
interoperability with other mutator systems. Our ve-
rification can also be used as a model for other PCC
systems where the verification of a garbage collector is
necessary.

e During our verification of the collector, we make
important improvements to the verification framework.
We build a sound verification condition generator (VC-
Gen) for the SCAP system, which alleviates the user
from understanding the details of the SCAP rules, and
introduces the potential for automatic verification of ba-
sic safety properties. We also build automatic tactics in
Coq to deal with proof goals involving separation logic

Regular Paper

Supported by the National Natural Science Foundation of China under Grant No. 60673126 (Verification and Compilation of

Software Safety); Intel China Research Center.

Chun-Xiao Lin et al.: Garbage Collector Verification for Proof-Carrying Code

427

inf_loop() {while (1); }
markbit (x) {

return (ED+(x-ST)/2);
} ptr=stack_pop();
stack_push(ptr) {

if (top>=buf) inf_loop();
*(top++)=ptr; }

gc) {
mark field(root);

stack_pop() {
return *(--top);

while(!stack_empty()) {

mark_field(ptr->first);
mark_field(ptr->second);

for (addr=ST; addr<ED; addr++)
if (markbit(addr)=
addr->first=freeptr;

=WHITE) {

freeptr=addr; l=freeptr;
stack_empty() { } freeptr=freeptr->first;
return (bot==top); else markbit(addr)=WHITE; return 1;
} } }

mark field(val) {
if (val<ST || val>=ED) return;
if (val mod 8 != 0) return;
if (markbit(val)==BLACK) return;
markbit(val)=BLACK;
stack_push(val);

alloc() {
if (freeptr==NULL) gc();
if (freeptr==NULL) loop();

Fig.1. Pseudo code of our collector.

and finite set operations. These improvements greatly
simplify the proof construction.

The work presented in this paper is a part of our on-
going project!?) to build an unified framework for cer-
tifying the mutator-collector interaction based on mod-
ern garbage collectors like the incremental ones and the
generational ones. As an extension to the work in this
paper, we have successfully linked a TAL with the veri-
fied collector'!] following the ideas in [9], however, this
part is beyond the scope of this paper. We also believe
that our improvements to the verification framework will
benefit future researches in this field.

The rest of this section is a brief introduction to the
collector we verified. Then, we introduce in Section 2
the verification framework and our extension. In Section
3, we discuss the heap predicates that formalize the heap
during a collection, and give the safety specification of
the collector using these predicates. Section 4 outlines
the methodology we used to certify the collector in the
SCAP framework. In Section 5, we discuss and eval-
uate our Coq implementation. Finally, we talk about
the related work in Section 6 and give the conclusion in
Section 7.

Note that since all the lemmas and theorems in this
paper are mechanically proved in Coq, we skip their de-
tailed proofs, interested readers may refer to [12].

1.1 Collector

Fig.1 shows the pseudo code of the garbage collector
we verified, a conservative variant of the standard stop-
the-world mark-sweep collector. To simplify the prob-
lem, we adopt a heap layout shown in Fig.2: the size of
each heap object is two words; all heap objects reside in
a continuous subheap; the collector also keeps the mark
bits, a mark stack and a record of global variables. This
simplification implies that our allocator only works with
mutators that always require two-word objects.

The valid-pointer check the
mark field procedure follows [4]. A value is consid-
ered as a valid object pointer only if it is inside the

conservative n

boundaries of the allocatable heap, and aligns to the
size of two words.

A GC cycle begins with tracing and marking the
objects reachable from root. A mark stack is used to
temporarily store the marked objects whose fields are
to be examined. Then, the collector examines the mark
bits of all the objects, reclaims those unreachable ob-
jects to form a free list, and resets all the mark bits.
The free list can then be used by the allocator when the
GC cycle is finished.

1 Mark Stack !

IHeap |
N ettt ettt R STttt
I | Objects Mark Bits X
I ::
:: 5 -] - 77|99 1]o o
|
I X
By it ST ===
I |
:I ; I ;:
| |
I N o/ - - E 'L e N | - i:
[|
& ' ! H
I | N

Fig.2. Collector’s heap layout.

2 Verification Framework

We discuss in this section the three components of our
verification framework: a MIPS-like abstract machine
model; a Hoare-style program logic, the SCAP system;
and a heap specification language with separation-logic
operators.

The whole framework is formalized within a mecha-
nized meta logic, the Calculus of inductive Construction
(CiC)[*3l. CiC is a higher-order predicate logic extended
with inductive definitions. The CiC terms in this paper
are written with the standard logic notations. We let
Prop be the universe of all logical propositions, and let
Set be the universe of all computational terms.

2.1 Abstract Machine

We show the syntax of the abstract machine in Fig.3.
A program P is a triple of a code heap C, a machine

428

state S and an instruction sequence I. A code heap C
is a map from code label £ to instruction sequence I. A
machine state S contains a data heap H and a register
file R. A data heap H is a map from address 1 (aligns
to 4) to word value w, while a register file R is a map
from register r to word value, with rO always maps to
0. We use the standard MIPS register aliases(!¥ in the
rest of the paper. A command c is a non-controlflow
instruction such as a register add or a heap load. An
instruction sequence I, or code block, is a series of com-
mands followed by an unconditional jump instruction.
For simplicity, we separate the code heap C from the
mutable data heap H. Also, we use instruction sequence
instead of the standard pc register, and this results in
the additional return address f ¢ in the jump and link
instruction jal f, f,.t, which can be viewed as a macro
for the MIPS instruction pair jal f and j f,et.

(Prog) P = (C,S8,I)

(CdHeap) C = {f~1I}"

(State) S = (H,R)

(Heap) H = {l~w}®

(I2File) R = {r~w}*

(Rr:g) r {rk}ke{o,,,Sl}

(Wd, Lab) w,f 011/21]3]...
(Address) 1 04812 ...
(ISeq) I c;1| beq rg, 1y, £; 1

bne rg, ry, £; [

j £]jalf, frec | T Ts

addu rq, rs, ry | addiu rg, rs, W
subu Iy, Is, Ty | STl Ty, Ty, 1
sltury, rs, Ty | andi ry, rs, 7
1w xq, w(rs) | sw re, w(ry)

(Commn) ¢

Fig.3. Abstract machine syntax.

Following [14], we give the small step operational se-
mantics of the abstract machine in Fig.4. We write X (z)
for the value bound to z in the map X, and X{z ~ v}
for the map obtained by updating the binding of z to
v in X. We also write S.R for the register file in state
S. Note that for an 1w or sw command, if the source
address is not in the domain of the heap, the next state
is undefined. The next step of a program is undefined if
it jumps to a wrong label, or the next state of its initial
command is undefined.

2.2 Program Logic

The SCAP system!®! is a Hoare-style program logic
for modular verification of assembly code with proce-
dure call/return. Procedures can be verified separately
and then linked together to form a verified program. As
shown in Fig.5, an SCAP code specification is a partial
correctness specification containing a pair of precondi-
tion p and guarantee g. p reassembles the precondition
in Hoare logic, while g relates the entry state of the code
block to the return state of the corresponding procedure.
Thus the g at the entry label of a procedure asserts the
guarantee of the procedure, as we will see in the later
sections. A code heap specification ¥ maps the labels

J. Comput. Sci. & Technol., May 2007, Vol.22, No.3

of the code blocks to their specifications. We also define
the implication relation = on SCAP specifications.

| il = | then (C, (H, R),I) —
j £ if £ € dom(C), (C, (H,R), C(f))
jal f, fret if £ € dom(C),
(Cv (Hv]R{r31 ~ fret})7(c(f))
jr s if R(rs) € dom(C),

((C7 (H7]R)z (C(]R(rs)))

beq rsartu f;]I,

if R(rs) # R(re), (C, (H, R),T'),
else if £ € dom(C),(C, (H, R), C(£))

bne rg, r¢, £; I'

it R(rs) = R(ry), (C, (H, R),I'),
else if £ € dom(C), (C, (H, R), C(£))

I

1

if Next,((H, R)) = §', (C,§',I')

[[ife=

| then Next.((H,R)) =

addu rg4, rs, e

(H, R{rq ~ R(rs) + R(zrt)})

addiu rg, re, w

(H, R{rq ~ R(rs) + w})

subu ry, rg, ry

(H, R{rq ~ R(rs) — R(rs)})

srl ry, re, 1

(H, R{rq ~ R(xrs)/2})

sltu rg, rs, Iy

(H, R{rq ~ k})
if R(rs) < R(ry), k=1,clse k=0

andi rq, rs, 7

(H, R{rq ~ R(xs) mod 8})

if (R(rs) +w) € dom(H),
(H, R{rq ~ H(R(r.) + w)})

1w rq, W(Ts)

sw rg, w(ra) if (R(xq) +w) € dom(H),
(H{R(ra) + v~ R(rs)}, R)
Fig.4. Abstract machine semantics.
(SPred) D, q € State — Prop
(Guar) g € State — State — Prop
(BSpec) o = (pg)
(CHSpec) v = {l~o}*
WFST(0,9,S, #) ¥ -35'gS¥

WFST(n,0,S, %) %< VS'gSS — S R(ra) € dom(¥)A
p S AWFST(n—1,4',§', ¥)
where (p',¢') = #(S'.R(ra))

(p,g9) = (p’,g')déf VS, pS— (p SA(VS'.g’ SS' - ¢S S))

Fig.5. SCAP specification constructs.

A set of operational-semantics-based inference rules,
as partly shown in Fig.6, is provided to build a well-
formed program from bottom-up. The abstract stack
predicate WFST(n,g,S, ¥) in Fig.5 generally asserts
that the current procedure can return to the label in
ra of its return state. n indicates the number of stack
frames, once it becomes 0, the current code will never
return. A detailed knowledge of these rules and WFST
is not required for understanding the rest of the paper,
interested readers may refer to [5].

Lemma 1 states that if a code block is well-formed
with some o’, it is also well-formed with a stronger as-
sert o, and the proof of a well-formed code block can be
lifted from a local ¥ to a global ¥'.

Lemma 1 (Weakening).

1. If o = ¢’ and ¥; o' 1, then: ¥; o+ 1.

2. If W C ¥ and ¥; o F 1, then: ¥'; o 1.
Theorem 1 ensures that a well-formed program will

run safely without stopping at any program step unde-
fined in Fig.4.

Chun-Xiao Lin et al.: Garbage Collector Verification for Proof-Carrying Code 429

(Well-Formed Program)

TC: ¥ pS ¥ (p,g) FI InWFST(n,g,S, ¥)
7+ (C,S,I)

Y +C: 9| (Well-Formed Code Heap)

vy (f) - C(£) V£ € dom(W)

(PROG)

VEC ¥ (cpHP)
V;(p,g) b 1| (Well-Formed Instruction Sequence)
7;(p,g) 1
VS. p S — IS Next.(S)=S"Ap’ S'A
VSH. gl SI SI/ — g S SII .
¥ (pg) kol (s29)
v(t)=(p',9")
VS.pS—p' SAVS. ¢SS = ¢SS)
i(pg) bt
() =(p',9") P(frer) = (@",9")

V(H,R). p (H,R) = p' (H,R{ra~ fret})A
VS ¢' (H,R{ra~ fret}) S’ —
p' S'AVS". ¢" §'S" = g (H,R) S" V(H, R), (H', R").
¢ (H,R) (H',R') - R(ra) = R'(ra)
¥ (p,g) b jalf, free
VS.pS—=¢gSS
¥;(p,g) b jr ra

(cALL)

(RETURN)

Fig.6. SCAP inference rules (excerpt).

def

Theorem 1 (Soundness). If ¥ + (CS,I), for
all natural number n there exists a (C,S',1"), such that
(C,S,I) —, (C,S',T).

We extend SCAP by building for it a VCGen, which
is partly shown in Fig.7. wp(¥,I) is a code block speci-
fication formed from the code heap specification ¥ and
the code block I. The predicate rapred(¥,I) makes sure
that if T calls procedure £, £ will keep ra unchanged, as
required by the CALL rule in Fig.6. Since it is hard to
directly embed rapred into wp, we just make it a stan-
dalone predicate. With these definitions, we obtain The-
orem 2 from Lemma 1 and the cDHP rule in Fig.6.

Theorem 2 (VCGen Correctness).

1. If o = wp (¥,I) A rapred (¥,1), then ¥;o + 1.

2. If ve (¥,C), then ¥+ C: V.

With the help of VCGen, the SCAP proof construc-
tion is lifted onto the code block level. For each block,
only the proof of a ¢ implication is required, instead
of the proofs of o implications for each instructions fol-
lowing the rules in Fig.6. This alleviates the user from
understanding the complex details of the SCAP rules,
simplifies the proof construction, and makes the reason-
ing more natural. Besides, by eliminating the need for
instantiating the specifications for each instruction in-
side a code block, the VCGen introduces the potential
of automatic proof construction for programs verified
against simple properties.

ve(?,C) = Vi € dom(¥).(¥(f) = wp(¥,C(£))) A rapred(¥, C(f))

if I = then wp(¥,T) = in case that
ol (AS.p Next.(S), AS,S".g Next.(S)S') wp(?,1') = (p,g)
jf (p,9) ¥(£) = (p,9)
jal f,fre | (AH,R).p" (H,R{ra~ fret}) A (VS.¢'(H,R{ra~ fey) ' = p" §', | #(£) = (¢, 9)
AH,R),S".38".¢" (H,R{ra~ fret}) S'Ag" S’ S") P (free) = (0", 9")
jr ra (AS.True, AS,S'.S =§')
if I = | then rapred(?,I) = | in case that |
oI rapred(?,T)
jf True
Jal 1, frer V(L), (),). g/ (B, R) (I, K) - R(ra) = K'(ra) 53 = 0.9)
jr ra True
Fig.7. VCGen (excerpt).
2.3 Heap Predicate A,B € Heap — Prop
T € Set
1oy o AH.H = {1~ w}
To specify the behavior of a collector, we introduce emp € AH.dom(H)= 0
the separation-logic operators. Separation logic was true < \H. True
originally proposed as an extension to Hoare logic for AxB Y A\H. 3H,,H,.
reasoning mutable data structures(®. In order to em- HywHy =H A (A Hy) A (B Hs)
ploy it in the SCAP system, we directly embed a set of Jo:TA € NH3:T. (AH)
separation-logic operators as heap predicate construc- L(P) ' XH.P A (emp H)
tors using CiC, as shown in Fig.8. Thus, the SCAP VarehA € emp
specifications p and g, which are state predicates, may Viee{ntUSA 9 Anjz]xV.zeS—nA

contain heap specifications build with these predicates.
We write H I A if (A H) is a valid proposition in
CiC. The definitions are consistent with the semantics

Fig.8. Separation logic operators.

430

described in [6]. For simplicity of presentation, we use
the same notation to denote the separation-logic con-
nectives and the logic connectives in CiC. We also use
the standard separation-logic abbreviations: 1 +— wy,wy
for 1 —wy*x1+4— wy, 1~ — for dz: Nat.1 — x and
SO on.

The inductively defined iterated separating conjunc-
tion V,z € S. A, taken from [15], asserts that the heap
can be split into a finite set of subheaps according to the
finite set S of natural numbers, while for each member n
of S, there is a unique subheap on which A[n/z] holds.

We prove as lemmas the properties of these
separation-logic operators (axioms in [6]), and provide
Lemma 2 for linking the heap predicates with the oper-
ational semantics of the 1w and sw instructions.

Lemma 2 (Heap Operations).

1. IfHIF 1~ wx*true, then: H(1) = w.

2. IfHIF1— —x A, then: H{1 ~w}lF1— wx A.

Most of our separation logic lemmas follow the
frame-rulel®! style to support local reasoning. For exam-
ple, the universal quantification of the heap predicate A
in Lemma 2 ensures that a local heap update never af-
fects the rest of the heap. We also use this kind of heap
predicate quantification in our specifications of the col-
lector to achieve local reasoning in sub-procedures.

3 Specification

We present in this section the SCAP specification of
the collector we proved. First, we give the reachability
predicate on which our specification is built. Then, we
model the collector’s heap with separation-logic-based
heap predicates. Finally, we give the specification of
the collector’s interface, the alloc procedure.

3.1 Specification Interface

We define in Fig.9 the heap conceptions that should
be consistent between the collector and the mutator.
The constant address null is set to be 0, while the lower
and upper boundaries of the collector’s allocatable heap,
st and ed, should both align to 8, which is the size of a
heap object. A value 1 is a valid pointer (vptr(1)) only
if it is the address of an allocatable heap object.

The reachability predicate reach(H,1,1’) is induc-
tively defined. In the base case, a valid pointer is self-
reachable. And in the inductive case, 1’ is reachable
from 1 if it is reachable from the pointers in the heap ob-
ject at 1. The predicate rchrt(S,1) asserts that 1 points
to a live heap object (reachable from the root) in the
state S. For the sake of simplicity, we consider the case
of a single root register t0, which can be extended to
support more root registers without much difficulty.

The heap predicate obj_hp(S’, S) in Fig.9 asserts an
object heap with reachability information. A value w is
valid with a pointer set S (ok_val(S,w)) if it is either a
member of S or a non-pointer value. ok_fld(S,1) asserts

J. Comput. Sci. & Technol., May 2007, Vol.22, No.3

that the field value at 1 is valid with S. A valid ob-
ject (ok_obj(S,1)) is composed of two valid fields. Thus,
the proposition H I obj_hp(S’,S) is true only if H is
formed exactly with the heap objects in S, and all its
field values are valid with S’. It is noteworthy that once
H IF obj_hp(S, S) holds, H will be a closed heap with no
outgoing pointers. The relationship between obj_hp and
reach is stated in Lemma 3.

nul == 0
st,ed 8116]24] ...
{1/ (1 mod8=0)A(st<1<ed)}
1 € ptrs
reach(H, R(t0),1)
vptr(1)
reach(H, 1,1)
vptr(1) vptr(1l') reach(H,1”,1")
H(1) = 1" VH(1+4) = 1"
reach(H,1,1’)

ptrs
vptr(1)

(l(;
(I;f
rchrt((H,R),1) %'

(REFL)

(NEXT)

okval(S,w) € weptrs - w €S
ok fld(S,1) X I w.l(okval(S,w)) * 1w

ok_obj(S,1) % ok_fld(S,1) * ok_fld(S,1 +4)

objhp(S",8) “ V.2 € S. ok_obj(S',z)

Fig.9. Specification interface.

Lemma 3 (Object Heap Reachability). If H I+
obj_hp(S,S), 1 € S, and reach(H,1,1’), then 1’ € S.

By virtue of the obj_hp predicate, we can avoid the
problem caused by the possible cyclic links in the object
heap when the reach predicate is directly used. This
benefit greatly simplifies our verification of the mark
phase of the garbage collection.

3.2 Collector’s Heap

The object heap in the collector’s heap layout (de-
scribed in Subsection 1.1) is formalized with the obj_hp
predicate introduced in the previous subsection.

The rest of the formalization of the collector’s heap
is listed in Fig.10. The free list is inductively defined by
the set of free objects. The heap that storing the mark
bits n for an objects set S is specified with mbits(S,n),
which asserts that there is a mark bit n for each member
x of S at the address (ed + (z — st)/2). The mark stack
mstk(S, z,y, z) is represented by a continuous memory
area, with the lower part containing pointers to a set of
objects. The collector’s record gcinfo stores three point-
ers to the collector’s internal data structures. flist(R, S)
and mstack(R, S) are used when the pointers are loaded
to the corresponding registers. The free list header is
stored in t5, and the stack pointers (top, bot and buf)
are stored in t2, t3 and t4.

3.3 Specification of alloc

We formalize the SCAP specification of the collec-
tor’s main procedure alloc in Fig.11. The precondition
Partoc 1s defined in terms of the predicate gc_inv. The

Chun-Xiao Lin et al.: Garbage Collector Verification for Proof-Carrying Code 431

first conjunct of ge_inv(S,H, 1) asserts that the allocat-
able object set ptrs is composed of the allocated object
set B and the free object set F'. The following two heap
propositions ensure that the heap contains an allocated
subheap H, a free list with head at 1¢, an empty mark
stack and the record of pointers. This faithfully follows
the heap layout in Fig.2.

eq(H) ¥ \H'.H' = H

flst(1,0) 211 = nul)

flst(1, {1} US) 11 # nul) » 3171 — 1’ « flst(1’, S — 1)
hdr(1) % (ed + (1 — st)/2)

def

mbits(S,n) = V.z € Shdr(z) —» n
array_set(1,0) def emp

array_set(1, {w} U S) ey w array set(1 +4,5 —w)

buffer(l,l’)défv*x e{z|zmodd=0A1<z< 1}z —

mstk(S, z,y, z) def

Wy — x = size(S)) * array_set(z,S) * buffer(y, z)
geinfo(1,11,15,15) 15 1 * 1+4 5 1y 1 +8 — 15

flst(R, S) % flst(R(t5), S)

mstack(R, S) ' mstk(S, R(t3), R(t2), R(t4))

Fig.10. Auxiliary heap definitions.

ge.inv((H, R), Hy, 1) < 3B, F 1, 1,.

BUF =ptrs A

H I ed(Hr) * flst(1e, F') % mbits(ptrs, 0)
mstk((}, 1y, 1y, 1¢) * geinfo(R(t1), 1y, Lg, 1) A

Hr IF obj_hp(ptrs, B)

saved._regs def {s0 --- s7, ra, t0, t1}
def

reg_ok((H, R), (H',R’)) = Vr € saved._regs. R(r) = R'(r)
Pavoe = AS.3H, 1;.gc.inv(S, H, 1¢)
Grnoe XS, S reg_ok(S,S') A
VH, 1¢.gc-inv(S, H, 1¢) — 3H', 1f. geinv(S', H', 15) A
(1f =0 — JHy. dom(Hy) = {1,144 | rchrt(S,1)} A
H IF eq(Hr) * true A
H' IF eq(Hy) * S"R(v0) = —,—) A
(1 #0 — H' IF eq(H) * S".R(v0) — —, =)

Fig.11. Collector specification.

The guarantee g, oc comprises two parts. In the
first part, reg_ok(S,S’) asserts that the MIPS callee-
saved registers (sO to s7, and ra), together with the
root register t0 and the record pointer t1, are identical
in the two states.

The second part asserts that gc_inv is preserved in S
and S'. If the free list is empty (1 = 0) at the entry
state of alloc, a garbage collection will remove all un-
reachable objects in H. The allocated subheap H' at the
return state thus contains exactly the untouched live ob-

ject heap Hy plus a new object at §".R(v0). Otherwise,
H' is simply formed by extending H with a new object
if the free list is not empty in S.

A mutator program accesses only the live parts of the
allocated object heap. A proper specification of a mu-
tator only asserts the values or data structures on this
subheap. Since the guarantee g, oc ensures that the
live object heap is preserved between the entry/return
states of the collector, the validity of any mutator side
specification is preserved. In this sense, our GC spec-
ification is strong enough to preserve the safety of any
common mutator programs. Note that the specification
given here is based on the fact that a mark-sweep col-
lector never moves objects, thus it is not suitable for a
copying collector®!. The reader may find a specification
for a copying collector in [15].

4 Proof Construction

The SCAP well-formedness proof of the collector is
constructed as follows. For each procedure, we firstly
form a local code heap specification ¥ by composing
the specifications for all its code blocks and the proce-
dures it calls. Then, we generate for each code block
I the wp(¥;,I), and build their well-formedness proof
using Theorem 2.

After verifying each procedure with its local ¥;, we
sum up the specifications to form a global ¥,. With
Lemma 1 and the CDHP rule in Fig.6, we prove the well-
formedness of the collector’s code heap with ¥;. A mu-
tator verified in SCAP can then link to this code heap
through Lemma 1 and the CDHP rule.

The tricky part of the proof construction is to figure
out the correct specification of the collector’s internal
code blocks. We present these specifications in the fol-
lowing subsection. After that, we briefly discuss the
theorem proving issue.

4.1 Code Heap Specification

The SCAP specifications of the collector’s code blocks
follow the pattern of (psLioc, garoc) in Fig.11. Unfamil-
iar readers may just get the general idea instead of going
through the complex specifications in Figs. 12~15.

We use the following shorthand throughout this sec-
tion. nin_rid(R, R’, R) asserts that any register which is
not a member of the register set R is identical in R and
R’. sted_ok(R) asserts that the allocatable heap bound-
aries are loaded into the corresponding registers in R.
We store st in kO and ed in k1.

nin_rid(R, R, R) €' vr ¢ RR(r) = R'(x)
def

sted_ok(R) = R(k0) = st A R(k1) = ed.
Mark Stack Operations. We show the assembly
code with specifications of the stack-related procedures

(is_empty, push and pop) in Fig.12. Each precondition
generally asserts that there is a mark stack in the entry

432

state. The guarantees ensure that if the preconditions
are satisfied, the intended operations on the stack are
performed. Note that the universally quantified heap
predicate A in the guarantees ensures the frame-rule
style local reasoning.

Mark an Object. The mark field procedure is also
shown in Fig.12. The precondition pygp requires that
either the argument R(a0) is a non-pointer value, or the
heap predicate contains enough information for checking
the mark bit of R(a0) and performing stack push. The
guarantee gypp ensures that the procedure only modi-
fies a few registers if the argument R(a0) is a non-pointer
value or a pointer to a marked object. Otherwise, gyrip
guarantees that R(a0) is marked and pushed to the mark
stack.

Mark Phase. We show in Fig.13 the code blocks im-
plementing the mark phase of the collection. The spec-
ifications of these code blocks follow the same pattern.
Each precondition asserts that the corresponding state
predicates (mpre, minv, mfst, or msnd) is satisfied. On
the other hand, each guarantee ensures that if the corre-
sponding state predicate is satisfied, the mark procedure
will return on a state satisfying mpost.

On the entry state of mark, as asserted by mpre,
all objects are allocated and the heap boundaries are
After mark-
ing the root register t0, we reach the state where the

loaded into the corresponding registers.

mark loop invariant minv holds. Following the tri-color
abstraction!®/, minv asserts that the object set ptrs is
divided into the sets of black, gray and white objects,
which are separated by their mark bits and the mark
stack. The black and gray objects are reachable from
root, and the reachability between the three sets are

J. Comput. Sci. & Technol., May 2007, Vol.22, No.3

asserted by the obj_hp predicates on Hy.

In the mark loop, a gray object is popped into vO,
and the code blocks mfirst and msecond examine the
two fields of this object. The predicate mfst makes no
different than minv except for splitting out the object in
v0 from the gray object set G. The predicate msnd goes
one step further by asserting that if the first field of the
object in vO is a valid pointer, it will point to a marked
object. The call to mark_field in msecond returns to
mloop, where we can safely move the object in vO into
the black object set B and get minv again.

There is no more gray object on the return state of
mark. Thus we get a closed subheap in H; formed with
the live objects in B.

Sweep Phase. In Fig.14, we specify the first two code
blocks of sweep in the same way we specify the mark
code blocks. The predicate spre on the entry state of
sweep is different from mpost only in that we move the
unreachable objects out of the allocated subheap Hy.

In the sweep loop invariant sinv, G stands for the ob-
jects before the sweep pointer in a0. The unreachable
objects in G are collected into the free list with set F,
and the mark bits of the reachable objects in G are set
to 0. Finally, G becomes a superset of ptrs when the
sweep loop finishes. Thus all the unreachable objects
will be collected into the free list, as asserted by spost.
The other two code block specifications are simply gen-
erated by the wp function in Subsection 2.2.

Collector. The rest of the codes, including the gc
procedure and the alloc procedure, are shown in Fig.15.
The specification of gc is a trivial composition of the
mark and sweep specifications. The guarantee g as-
serts that the reachable subheap H, is preserved during

push: (Pouss, Grusu)
addiu $at $t2 4
sltu $at $t4 $1

is_empty: (Pemp, Gump)
beq $t3 $t2 empty2
addiu $v0 $0 O

VS. HIF mstack(R,.S) * true —
mM=0->S=0)An#£0—=S#0)
Pevsn = A(H, R).3S. R(a0) ¢ S A H IF mstack(R, S) * true
gousn = A(HL, R), (H, R').nin_rid (R, R', {£2, at})A
VS, A. H IF mstack(R, S) x A —
H' IF mstack(R’, S + R(a0)) = A

Pror = A(H,R).3S # 0. H IF mstack(R, S) * true

gror L A(H, R), (H, R').nin_rid(R, ', {£2, vO})A
VS # 0, A. H I mstack(R,S) * A —

R'(v0) € S AH' IF mstack(R', S — R'(v0) x A

pop: (PP(prgpoP)
addiu $v0 $0 4
subu $t2 $t2 $v0

jr $ra bne $at $0 stk_loop 1w $v0 0($t2) sltu $t9 $a0 $k1 1w $t9 O $at
sw $a0 0($t2) jr $ra beq $t9 $0 return addiu $vi $0 1
empty?2 : addiu $t2 $t2 4 subu $at $a0 $k0 beq $t9 $v1 return
addiu $v0 $0 1 jr $ra stk_loop: andi7 $t9 $at sw $vi O $at
jr $ra j stk_loop bne $t9 $0 return j push
Powe = A(HL R).3S.H IF mstack(R, S)* true Puswo = A(H, R).sted_ok(R)A
gour = A(H, R), (H',R').3n. (H',R') = (H, R{v0 ~ n})A —wptr(R(a0)) v

mark field: (pMFLD: gMFLD)
sltu $t9 $a0 $k0 srll $at $at
bne $t9 $0 return addu $at $at $ki

vptr(R(20)) A 3G.
(R(a0) € G A H IF mbits(G, 1) * mstack(R, G) * true)V
(R(a0) ¢ GA
H IF mbits(G, 1) * mstack(R, G) * hdr(R(a0)) — — x* true)

gurp = A(H, R), (H', R').nin_rid(R, R, {t2, v1, at, t9})A
(=vptr(R(20)) V H(hdr(R(a0))) = 1 —
H=H AR(t2) = R'(t2))A
(VG, A. vptr(R(a0)) —
H IF mbits(G, 1) * mstack(R,G) * hdr(R(a0)) — 0 x A —
H' IF mbits(G + R’(a0),1) * mstack(R',G + R'(a0) * A)

Fig.12. Assembly code with specifications: stack and mark field.

Chun-Xiao Lin et al.: Garbage Collector Verification for Proof-Carrying Code

433

mloop: (P.\(Loop, ,‘]MLOOP)
jal is_empty mloop2
mloop2:
bne $v0 $0 returni
jal pop mfirst

mark: (Puarxs Guark)
addiu $t6 $ra O
addiu $a0 $t0 O
jal mark field mloop

PuARK def AS.3H, A. mpre(S, H, A)

Guanx =S, S'. (VH, A. mpre(S, H, A) — mpost(S', H, A))A
nin_rid({t6, a0, at, v0, t9, t2, vi}, S.R,S"R)

Prroor = AS. IH, A. minv(S, H, A)

Guroor S, S'. (VH, A. minv(S, H, 4) » mpost(S', H, A))A
nin_rid({ra, t6, a0, at, v0, t9, t2, vi}, S.R,S"R)A
S R(ra) = S.R(t6)

Pursr = AS. IH, A. mfst(S, H, A)

gursr S, §. (VH, A. mfst(S, H, A) — mpost(S', H, A))A
nin_rid({ra, t6, a0, at, v0, t9, t2, vi}, S.R,S"R)A
S'R(ra) = S.R(t6)

Pusso = AS. FH, A. msnd(S, H, A)

Gusxp = XS, S'. (VH, A. msnd(S, H, A) — mpost(S', H, A))A
nin_rid({ra, t6, a0, at, v0, t9, t2, vi}), S.R,S .R)A
S’ .R(ra) = S.R(t6)

mpost ((H, R), Hy, A) def IB, W. sted_ok(R) A BUW = ptrsA

ok-val(B,R(t0)) A (Vz € B. reach(Hz, R(t0),z))A
H I eq(Hy) * mbits(B,1) * mbits(W, 0) * mstack(R,0) = AA
H; IF obj_hp(B, B) * obj_hp(ptrs, W)

mfirst: (Dupst, Gurst)

mpre((H, R), Hr), A)

minv((H, R)), Hy, 4)

msecond: (Pysxps Juswo)
1w $a0 4($v0)
jal mark _field mloop

1w $a0 0($v0)
jal mark field msecond

def

sted_ok(R)A
H IF eq(Hy) * mbits(ptrs,0) * mstack(R,) x AA
Hy IF obj_hp(ptrs, ptrs)

def

iB,G,W.

sted_ok(R) ABUG UW = ptrsA

okval(BUG,R(t0)) A (Vz € (BUG). reach(H;, R(t0),z))A

HIF eq(H:) * mbits(BUG,1) * mbits(IW,0) * mstack(R,G) * AA
Hy I+ obj_hp(BUG, B) * obj_hp(ptrs,GU W)

minv2((H, R), Hr, A, S1, S5, B,G, W) <

sted_ok(R) A BUG UW U {R(v0)} = ptrs A

ok_val(BUG U {R(v0)}, R(t0))A

(Vo € BUG U {R(v0)}. reach(H;,R(t0), z))A

H - eq(H,) * mbits(BUG U {R(v0)},1) * mbits(1¥,0)*
mstack(R, G) = A)A

H, IF obj_hp(BUG U {R(v0)}, B) * obj_hp(ptrs,GU W)
ok_fId(Sy, R(v0)) * okfld(Se, R(v0) + 4)

def

mfst(S, Hr, A) = 3B,G, W. minv2(S, Hy, A, ptrs, ptrs, B,G, W)

msnd(S, Hy, A) % 3B, G, W.

minv2(S, Hy, A, BUG U {S.R(v0)}, ptrs, B,G, W)

Fig.13. Assembly code with specifications: mark.

sloop: (Psuoors Ystoor)
sltu $at $a0 $ki
beq $at $0 return
subu $at $a0 $k0
srll $at $at
addu $at $at $ki1

sweep: (Psweer, Ysweee)
addiu $a0 $k0 O
addiu $t5 $0 0
j sloop

Psweep 4)s. 3H, A. spre(S,H, A)
Gower = XS, §'. nin_rid({(20, t5, at, v0},S.R,S".R)A
VH, A. spre(S,H, A) — spost(S',H, A)

Peroor = AS. TH, A. sinv(S, H, A)

JsLoop &f AS, §'.nin_rid({a0, t5, at, v0},S.R,S".R)A
VH, A. sinv(S,H, A) — spost(S', H, A)

def
(Psxrs Gswxr) = wp({sloop ~+ (Psioor, gsLoor) }s lsnxr)

def
(Psabps Ysaop) = WP({SHXt ~ (Psaxr) 95.\')('1')}7 Isapp)

def

spost((H, R), H;, A) = 3B, W. sted_ok(R) A BUW = ptrsA
ok_val(B,R(t0)) A (V& € B. reach(H,, R(t0),z))A
HIF eq(H;) % flist(R, W) * mbits(ptrs, 0) * mstack(R,0) = AA
H, IF obj_hp(B, B)

snext: (pSNXT:gSNXT)
addiu $a0 $a0 8

sadd: (Psapp; gsapp)
sw $t5 4($a0)

1w $v0 0($at)
beq $v0 $0 sadd
sw $0 0($at)

j snext

addiu $t5 $a0 0 j sloop
j snext returnl:

return: addiu $ra $t6 O
jr $ra jr $ra

spre((H, R), Hy, A) < 3B, W
sted_ok(R) A BUW = ptrs A
ok_val(B,R(t0)) A (V& € B. reach(Hr, R(t0),z))A
H IF eq(Hr) % obj_hp(ptrs, W) * mstack(R, §)x
mbits(B, 1) x mbits(W,0) * AA
H, IF obj_hp(B, B)

def

sinv((H,R), H,, 4A) = 3B, W, F,G.
sted_ok(R) A ok-val(B,R(t0))A
G={z|ze ptrs Az <R(a0)}A
WNG=0AFCG A (Ra0) —st) mod 8 = OA
BUWUF =ptrs A (Vo € B. reach(H;, R(t0),z))A
H I+ eq(Hy) = obj_hp(ptrs, W) % flist(R, F) * mstack(RR, ()=
mbits(W U F U (BNG),0) * mbits(B — G, 1) * AA
Hy IF obj_hp(B, B)

Fig.14. Assembly code with specifications: sweep.

434

J. Comput. Sci. & Technol., May 2007, Vol.22, No.3

alloc: (Paitoc, Gattoc)
addiu $t8 $ra 0

ge: (Pacs gac)
addiu $t7 $ra O

Pec 2 AS. TH, A. gepre(S, H, 4)

Yac & AS, §'. (VH, A. gepre(S,H, A) — gepost(S', H, A))A
nin_rid({t6, t7, t5, a0, at, v0, t9, vi}, S.R,S"R)

gepre((H, R), H,, 4) %" mpre((H, R{ t7 ~» R(ra)}), H;, 4)

addu $t2 $0 $t3

jal mark gc2 addiu $k0 $0 st 1w $t5 8($t1) addiu $v0 $t5 0 j retp

gc2: addiu $k1 $0 ed bne $t5 $0 retp 1w $t5 4($t5) loop:
addiu $ra $t7 0 1w $t3 0($t1) jal gc aloop sw $t5 8($t1) j loop
j sweep 1w $t4 4($t1) jr $ra

def
(pRFITP) .qRETP) = WP({ }7HRETP)

def
(pAL()()P7 gAL()()P) = WP({]-OOP ~ (/\S' True, AS, S False),

gepost (S, Hy, A) def M. spost(S, H),, A) A Hy IF eq(H!) * true

aloop: (Paroor; Yaroor)
beq $t5 $0 loop

retp: (Prpre, Grere)
addiu $ra $t8 0

retp ~ (pRETPa gRETP)}7]IALOOP)

Fig.15. Assembly code with specifications: gc and alloc.

the collection. The specifications of alloc is listed in
Fig.11, and the other specifications are generated by the
wp function.

4.2 Theorem Proving

With the VCGen in Subsection 2.2, the well-
formedness proofs of the code blocks are constructed
without the direct use of SCAP rules. Instead, the main
difficulty in the proof construction is to solve the domain
specific problem. For our collector verification, the prob-
lem is to prove those properties about the finite set and
the heap predicate, as the specifications are mainly con-
structed with assertions about them.

We tackle this problem by breaking the proof con-
struction into two steps. First, we prove as lemmas
the common properties of the finite set and the heap
predicate, such as the introduction/elimination rules of
the set operators, and the associative/communicative
properties of the separating conjunction *. These are
collected in two lemma libraries for the finite set and
the heap predicate. Both the finite set and the heap
predicate contain non-trivial inductive definitions hence
it is infeasible to implement fully automatic decision
procedures for either of them. However, there are still
many patterns in using these lemmas during our proof
construction. Following these patterns, we design au-
tomatic tactics to simplify the proof construction, an
example of such tactics is shown in the next section.

With the well-designed domain specific lemma li-
braries, the well-formedness proofs of the code blocks
are constructed with ease.

5 Coq Implementation

Our verification is fully mechanized within the Coq
proof assistant!”). Coq is an interactive theorem prover
based on the formulae-as-type notion!'®!, where theo-
rems and proofs are constructed in CiC as types and
terms, respectively. Proof checking in Coq is thus type
checking of terms in CiC, which is simple to implement
and more trustworthy than the methodologies used by
the other systems like PVS.

Coq provides a rich language which is able to define
both logical and computational terms using inductive
constructors and pattern matching. With this language,
we build the abstract machine, the SCAP rule set, and
other components for specifying the collector.

Theorem proving in Coq is goal-directed and tactic-
based. A set of predefined tactics is provided to solve the
proof goals. This includes the basic tactics like apply,
intro and elim, which transform the goal according
to the corresponding CiC typing rules; an auto tac-
tic, which tries to apply previous lemmas declared as
hints; and several predefined tactics representing some
well-established decision procedures, such as the omega
tactic, which solves a goal in Presburger arithmetic. A
tactic language is also provided to build user-defined
tactics using pattern matching on proof goals, recursion
and other programming facilities. Our tactics for the
finite set and the heap predicate are defined using this
language.

In the following part of this section, we illustrate
our Coq implementation methodology with several ex-
amples: the state transition function for commands in
the abstract machine, the SCAP rule set for well-formed
instruction sequence, the wp function in VCGen, and
a user-defined tactic for solving goals with heap pred-
icates. Interested readers may get more details of our
Coq implementation from [12].

5.1 Verification Framework

The nextc function in Fig.16 is defined in Subsec-
tion 3.1 as the small step state transition relation for
commands. It is implemented as a function with pat-
tern matching. The tags such as Some and None on the
return value of such functions are the constructors of an
option type, like option state in this function. A value
with an option type is either a meaningful value with the
tag Some, or a bad value represented by None. For ex-
ample, a None returned by the heap read function hget
stands for a bad heap value, while a None returned by
the program step function stands for a stuck program.

We implement the SCAP well-formed instruction se-
quence rule set as a recursion function which performs

Chun-Xiao Lin et al.: Garbage Collector Verification for Proof-Carrying Code

pattern matching on the instruction sequence and re-
turns different proof obligations based on the rules in
Fig.6. The wp function in the VCGen follows the same
pattern to generate the corresponding specifications.

Definition nextc (c:comm) (s:state):
match ¢ with
| addu rd rs rt =>
Some (rset s rd (rget s rs + rget s rt))

option state :=

| 1w rt offset rs =>
match (hget s (rget s rs + offset)) with
| Some v => Some (rset s rt v)
| None => None
end
end.

Fixpoint scap-iseq_ok(P:chspec)(p:pre)
(g:guar) (is:iseq){struct is}: Prop :=
match is with

| jr 31 => forall s, ps -> g s s

| seq ¢ is’ => exists p’, exists g’,
(forall s, p s ->
match (nextc ¢ s) with
| Some s’ => p' s’ /\
forall s, g’ s’ s"” -> g s s’
| None => False
end) /\ scap-iseq.ok P p’ g’ is’
end.
Fixpoint wp(P:chspec)(is:iseq){struct is}
option (pre, guar) :=
match is with
| jr r31 => (fun s=>True, fun s s’ =>s=s)

| seq c is’ =>
match (wp P is’) with
| Some (p’, g’) => Some (fun s =>
match (nextc ¢ s) with
| Some s’ => p’ s’ | None => False
end, fun s s’/ =>
match (nextc ¢ s) with
| Some s’ => g’ s’ s” | None => False
end)
| None => None
end
end.

Fig.16. Coq implementation.

5.2 Tactics for Automation

The most complicated part of the collector’s proof
lies in heap manipulation with separation logic, that is
to say, to prove that one proposition with heap predi-
cates implies another. For complex heap predicates with
many separating conjunctions, like the ones mentioned
in Subsection 4.1, this will be enormously difficult us-
ing only the communicative, associative and monotonic
properties described in [6]. Usually hundreds of lines
are needed to prove one such goal, and it is not uncom-
mon to encounter several such goals in proving one code

435

block.

We build a tactic simplsep that automatically
matches and eliminates the identical or trivial parts of
the heap predicates in the hypothesis and proof goal,
leaving the different ones for manually proving. For
example, the following goal is trivially provable with
simplsep.

VH, A, B,C. HIF A*BxCx emp — HIF Cx true xB.

In most of the cases, a code block changes only a
small part of the heap. This tactic alleviates us from
complicate reasoning, and greatly reduces the proof
script size. The principle of simplsep is to regard the
heap predicates in the goal and hypotheses as two lists,
and prove that one is a permutation of another using
the classic algorithm. During this procedure, the iden-
tical parts are eliminated using the monotonic lemma of
separating conjunction. The running time of the tactic
is bounded by the size of the heap predicates.

| Lines Component |

816 Basic properties and tactics
1387 Ordered heap library

451 Abstract machine encoding and lemmas
1263 Ordered finite set library

844 Separation logic library

547 SCAP, VCGen and related tactics

529 Collector’s heap definitions and lemmas

1930 Code, specification and proof of the collector

Fig.17. Proof script size.

We also implement other automatic tactics for rea-
soning about heap lookup and update, the manipulation
of finite sets, auto rewriting on complicate states values
generated by VCGen and so on. The detailed examples
of these tactics can be found in [12].

5.3 Evaluation

Fig.17 lists the proof script size of our Coq imple-
mentation, in terms of the number of non-empty lines.
The work takes several man months for programmers
familiar with the Coq system. The intensive use of au-
tomatic tactics and the VCGen results in a 3/4 drop of
the proof script size and makes the proof much easier
to follow. The benefit of these facilities is also demon-
strated by our evaluation on the CDSA example in [5].
The malloc/free functions are verified within two days
by a single person, while each proof script has a length
of only 1/6 when comparing to their original ones.

Our implementation relies heavily on the Coq stan-
dard library. We also extend these libraries with various
lemmas and tactics. The heap model and the finite set is
designed with the ideas in [17], where a heap/set is a list
of data (as in the Coq ListSet library) together with
a proof that the list is well-ordered and with no redun-
dancy. Thus we obtain the heap/set extensionally from
the Law of Exclude Middle, and the Fixpoint functions
on sets, such as the iterated separating conjunction and
the mark stack predicate, can be built with ease.

436

6 Related Work

Intensive efforts have been dedicated to the building
of trustworthy PCC systems!2589 Our work com-
plements theirs by introducing verified garbage collector
into PCC, which will reduces the overall TCB.

The work on the formal correctness proof of a
garbage collector dates back to [18, 19], both with in-
formal proofs. Researches on mechanized verification of
GC algorithms2°~22] focus mostly on algorithms with
abstract memory model, and some are implemented
with model checking. Unlike their work, our collector is
verified as a machine-level implementation, which forces
us to employ a more concrete specification and thus our
verified program is more trustworthy to run directly on
a real machine.

The recent work by Birkedal et al.'% use the ax-
iom based separation logic to reason a copying collec-
tor. They give a formal paper proof of the Cheney
collector'¥ against a safety specification based on heap
isomorphism. The iterated separating conjunction on
finite set, which is intensively used in our work, comes
from this paper.

Prior work on type-safe garbage collection/23~2°]
mainly focus on including garbage collection into the
mutator’s type system. As a result, for reasoning each
of the non-trivial safety properties, complex type sys-
tems must be constructed and their soundness should
be proved, which are unlikely easy tasks. On the other
hand, as analyzed in Subsection 3.3, our collector speci-
fication is strong enough to preserve any common safety
properties of the mutator program.

7 Conclusion

We demonstrate in this paper the mechanical verifi-
cation of a conservative variant of the standard mark-
sweep garbage collector in the PCC style. The specifica-
tion of our collector is given on a machine-level memory
model using separation logic. Our verification is fully
implemented in Coq, and can be packed immediately as
an FPCC package. The verification can also be used
as a model for other PCC systems where the verifica-
tion of a garbage collector is required. We also make
non-trivial improvement to the verification framework,
which is helpful for the future researches.

The work presented in this paper is a part of our on-
going project for building an SCAP-based framework to
verify the mutator-collector interaction, where we adopt
an unified basic safety specification interface for any of
the copying, non-copying or incremental collectors. We
also utilize the OCAP! framework as the platform for
verifying the safe interaction between TAL and the col-
lector discussed in this paper. The natural choice of
future work includes verifying more efficient collectors,
such as incremental and generational ones, and their in-
teraction with various mutator systems.

J. Comput. Sci. & Technol., May 2007, Vol.22, No.3

References

[1] Necula G. Proof-carrying code. In Proc. 24th ACM Symp.
Principles of Prog. Lang., New York, ACM Press, January
1997, pp.106~119.

Morrisett G, Walker D, Crary K, Glew N. From system F to

typed assembly language. ACM Trans. Prog. Lang.

Sys., 1999, 21(3): 527~568.

Jones R E. Garbage Collection: Algorithms for Automatic

Dynamic Memory Management. Chichester: Wiley, July

1996, With a chapter on Distributed Garbage Collection by

R. Lins.

[4] Boehm H, Weiser M. Garbage collection in an uncoopera-
tive environment. Software Practice and Ezp., 1988, 18(9):
807~820.

[5] Feng X Y, Shao Z, Vaynberg A et al. Modular verification

of assembly code with stack-based control abstractions. In

Proc. 2006 ACM Conf. Prog. Lang. Design and Impl., Ot-

tawa, Canada, June 2006, ACM Press, pp.401~414.

Reynolds J C. Separation logic: A logic for shared muta-

ble data structures. In Proc. 17th IEEE Symp. Logic in

Comp. Sci., Washington DC, USA, IEEE Comp. Soc., 2002,

pPp-55~74.

[7] Coq Development Team. The Coq proof assistant reference

manual. Coq release v8.0, October 2005.

Appel A W. Foundational proof-carrying code. In Proc. 16th

IEEE Symp. Logic in Comp. Sci., IEEE Comp. Soc., Boston,

USA, June 2001, pp.247~258.

[9] Feng X, Ni Z, Shao Z, Guo Y. An open framework for foun-
dational proof-carrying code. In Proc. 3rd ACM SIGPLAN
Workshop on Types in Lang. Design and Impl., Nice, France,
ACM Press, January 2007, pp.67~78.

[10] McCreight A, Shao Z, Lin C, Li L. A General Framework for
Certifying Garbage Collectors and Their Mutators. In Proc.
2007 ACM SIGPLAN Conf. Prog. Lang. Design and Impl.,
San Diego, CA, USA, June 2007, ACM Press. (Paper to ap-
pear)

[11] Lin C, McCreight A, Shao Z, Chen Y, Guo Y. Foundational
typed assembly language with certified garbage collection. In
Proc. 1st IEEE & IFIP International Symp. Theoretical As-
pects of Soft. Eng., Shanghai, China, June 2007, IEEE Comp.
Soc. (Paper to appear)

[12] Lin C, Chen Y, Li L, Hua B. Garbage collector verification
for proof-carrying code (documents and Coq implementation).
2006, http://ssg.ustcsz.edu.cn/™ cxlin/gepaper/.

[13] C Paulin-Mohring. Inductive definitions in the system Coq—
Rules and properties. In Proc. 1st Int. Conf. Typed Lambda
Calculi and Applications, Utrecht, The Netherlands, LNCS,
Vol.664, Springer-Verlag, 1993, pp.328~345.

[14] MIPS Technologies, Inc. MIPS32™ Architecture for Pro-
grammers Volume II: The MIPS32™ Instruction Set. v2.50.

[15] Birkedal L, Torp-Smith N, Reynolds J C. Local reasoning
about a copying garbage collector. In Proc. 31st ACM Symp.
Principles of Prog. Lang., New York, USA, ACM Press, 2004,
pp.220~231.

[16] Howard W A. The formulas-as-types notion of construction.
To H. B. Curry: Essays on Combinatory Logic, Lambda Cal-
culus, and Formalism, Academic Press, 1980, pp.479~490.

[17] Marti N, Affeldt R, Yonezawa A. Formal verification of the
heap manager of an operating system using separation logic.
In Proc. ICFEM2006, Lecture Notes in Computer Science,
Volume 4260, Canberra, September 1998, Springer-Verlag,
pp.225~244.

[18] Dijkstra E W, Lamport L, Martin A J et al
garbage collection: An exercise in cooperation.
ACM, 1978, 21(11): 966~975.

[19] Ben-Ari M. Algorithms for on-the-fly garbage collection.
ACM Trans. Prog. Lang. and Sys., 1984, 6(3): 333~344.

[20] Russinoff D M. A mechanically verified incremental garbage
collector. Formal Aspects of Computing, 1994, 6: 359~390.

[21] Jackson P. Verifying a garbage collection algorithm. In Proc.
11th Int. Conf. Theorem Proving in Higher Order Logics,

[2

and

[3

6

8

On-the-fly
Commun.

Chun-Xiao Lin et al.: Garbage Collector Verification for Proof-Carrying Code

[22]

(23]

[24]

[25]

Lecture Notes in Computer Science, Canberra, Australia, Vol-
ume 1479, Springer-Verlag, 2006, pp.225~244.

L. Burdy. B vs. Coq to prove a garbage collector. In Proc.
14th Int. Conf. Theorem Proving in Higher Order Logics,
Edinburgh, UK, Boulton R J, Jackson P B (eds.), September
2001, pp.85~97.

Wang D C, Appel A W. Type-preserving garbage collectors.
In Proc. 28th ACM Symp. Principles of Prog. Lang., New
York, USA, ACM Press, 2001, pp.166~178.

Monnier S, Saha B, Shao Z. Principled scavenging. In Proc.
2001 ACM Conf. Prog. Lang. Design and Impl., New York,
ACM Press, 2001, pp.81~91.

Hawblitzel C, Huang H, Wittie L, Chen J. A garbage-

collecting typed assembly language. In Proc. The Third

ACM SIGPLAN Workshop on Types in Language Design
and Implementation, Nice, France, ACM Press, January 2007,
pp-41~52.

Chun-Xiao Lin is currently a
Ph.D. candidate in Dept. Comput.
Sci. & Technol. at University of Sci-
ence & Technology of China (USTC).
He received his B.S. degree in com-
puter science from USTC in 2003. His
research interests include language
based software safety, program veri-
fication on assembly code level, and
garbage collection verification.

/
1)

437

Yi-Yun Chen is a professor in
Dept. Comput. Sci. & Technol. at
USTC. He received his M.S. degree
from East-China Institute of Com-
put. Technol. in 1982.
search interests include applications

His re-

of logic (including formal semantics
and type theory), techniques for de-
signing and implementing program-
ming languages and software safety
and security.

Long Li is currently a Ph.D. can-
didate in Dept. Comput. Sci. &
Technol. at USTC. He received his
B.S. degree in computer science from
USTC in 2003.

ests involve language based software

His research inter-

safety, program verification on assem-
bly code level, and concurrent pro-
gram verification.

Bei Hua is an associate profes-
sor in Dept. Comput. Sci. & Tech-
nol. at USTC. She received the M.S.
degree in electronic engineering from
Peking Univ. and the Ph.D. degree
in computer science from USTC. Her
research interests include wireless sen-
sor networks and network processor
based algorithms and applications.

