
CLASSICAL MONTE CARLO & METROPOLIS ALGORITHM

Monte Carlo (MC) simulations are, probably, the most powerful numer-
ical tool to get the answers for large systems. MC is a universal technique,
and can be applied to virtually any problem, but unfortunately its conver-
gence is severely affected by the sign problem (to be discussed at the end of
this section). We will start with the simplest application of MC methods to
discrete and continuous classical systems. Quantum systems will be covered
later in the course.

Classical Monte Carlo

Suppose one has to evaluate the ratio of two N -dimensional sums (or
integrals) of the form

〈A〉 = Z−1
∑
i1

∑
i2

. . .
∑
iN

A(i1, i2, . . . , iN) W (i1, i2, . . . , iN ) , (1)

Z =
∑
i1

∑
i2

. . .
∑
iN

W (i1, i2, . . . , iN) , (2)

where functions A and W are arbitrary. Let us also introduce the no-
tion of configuration, ν, which is just the collection of all summation in-
dices: ν ≡ {i1, i2, . . . , iN}. For the moment, assume that W is positive defi-
nite; then the combination p(ν) = W (i1, i2, . . . , iN)/Z may be interpreted as
the configuration weight because it is positive and normalized to unity.
The expression for 〈A〉 may be considered then as the average of quantity
A(ν) over all possible configurations were each configuration is included with
the probability p(ν). The short hand notation is

〈A〉 =

∑
ν A(ν)W (ν)∑

ν W (ν)
(3)

The connection between Eq. (3) and statistical physics is apparent. In
stat.mech one is interested in various quantities averaged over the equilibrium
statistics of the system states. If all system states are enumerated by the
(multi-dimensional) index ν and their energies are Eν , then the probability of
ν to happen in the equilibrium is given by the normalized Gibbs distribution
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p(ν) = e−Eν/Z, i.e. W (ν) = e−Eν and the normalization constant Z is
nothing but the partition function.

Even if there is no denominator in Eq. (1) and one needs to know just∑
ν A(ν), then the formal strategy is to introduce W (ν) ≡ 1 and Z =∑
ν W (ν) =

∑
ν . The calculation is then reduced to exactly the same form

provided
∑

ν is easy to get analytically. A typical example is provided by the
MC simulation of the multi-dimensional body volume. Imagine that some
nasty function F (x1, x2, . . . , xN ) = F (ν) = 0 specifies the body surface (all
points with F < 0 belong to the body) and our task is to calculate its volume,
i.e. we need

Vb =
∫

dx1

∫
dx2 . . .

∫
dxN θ(−F (ν)) , (4)

where θ(z)
is the step-
function:
θ(z < 0) = 0
θ(z > 0) = 1,

z

θ(  )z

1

0

θ=1

θ=0

a

Well, we may include the body into the box of linear size a and volume
V0 = aN , and write Vb identically as an average of θ(ν) over V0

Vb ≡ aN 〈 θ(−F (ν))〉ν where (ν ∈ V0) , (5)

The second factor is the average of θ(−F (ν)) over all configurations in the
enclosing box.

There are many other examples of how expressions similar to Eq. (1)
appear in different fields of science, but what concerns us now is the prob-
lem of having N so large that it is not possible to sum over all terms in a
reasonable time even with the use of supercomputers. For example, if each
variable takes only two values ik = ±1, but there are N = 100 of them, then
the total number of terms in the sum will be 2100 or roughly 1030, and even
Tera-flop (1012 operations per second) computers will fail to do the job. In
a human life-time only a tiny fraction of all configurations can be accounted
for. What is the hope then that the answer can be found with some reason-
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able and controlled accuracy? [At this point we have to forget about exact
answer!].

There are two separate considerations of why it is possible to find 〈 A〉
with high accuracy.
Consideration #1. This is similar to the direct election of the president
between two candidates. Yes, every vote counts, and there are exponentially
many individual vote combinations. However we would like to know just
one number—what is the percentage of “in favor of person A”? It is crucial
that the number of combinations with this number being > 50% is also
exponentially large. You will probably agree that if many, say 100, elections
are held in a raw and person A wins all of them then we have determined
the public opinion who should be the president pretty accurately. So, we do
not need to know all the vote combinations (in fact we have now idea about
most of them), all we need is a large representative set of votes.

Exactly same reason makes MC simulations a useful numerical tool. The
W and A functions typically take the same (or very close) value for exponen-
tially many configurations ν, let’s call them a subgroup setA{ν}. Now, if we
split all configurations into subgroups setA{ν}, then all we need for a good es-
timate of the average value of A is a large representative set of configurations
from different subgroups. The body volume problem nicely illustrates how it
works. For all configurations in the body we have θ = 1, for all other config-
urations we have θ = 0. The algorithm of MC simulation is very simple then:

1. Initialize counters; Attempt=0; Result=0.

2. Use random numbers to seed a point inside the V0 volume with the
uniform probability density, e.g. x1 = a · rndm(),x2 = a · rndm(), etc.

3. update counters; Attempt=Attempt+1; Result=Result+θ(ν); and go
back to point 2. From time to time you may check how the calculation
is going by printing V0 · (Result/Attempt).

Of course, all we do in this algorithm is computing the fraction of volume
occupied by the body which is also the probability if hitting it by generating
points in V0 at random.

Problem . Implement this algorithm and calculate the volume
inside the 5-dimensional unit sphere F = x2

1+x2
2+x2

3+x2
4+x2

5−1 =
0.
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The other example is the simulation of magnetization for the Ising model
which describes a system of lattice spin variables coupled by nearest neighbor
(short hand notation is “n.n.”) couplings

H = −J
∑

<ij>

σiσj − h
∑

i

σi . (6)

Here J is the coupling energy, < ij >
stands for the nearest neighbor pairs of
spins on a simple cubic one- two- three- or
higher-dimensional square lattice, h is the
effective magnetic field (h = μB, where
μ is the magnetic moment), and σi = ±1
describes two spin states on each lattice
site. The two-dimensional arrangement of
spins is shown to the right. σj

J
σi

Magnetization is defined as the difference between the number of up- and
down-spins

M =
∑

i

σi . (7)

Suppose we have to find the average modulus of magnetization. Then,
in our formal notation, ν = σ1, σ2, . . . σN , A(ν) = |M(σ1, σ2, . . .)|, and
W (ν) = exp{−H(σ1, σ2, . . .)/T}. We notice, that for N spins, which have
in total 2N different configurations, there are only N/2 + 1 different values
of |M | = 0, 2, 4, . . . , N . To understand what 〈 |M |〉 is, a representative set
of configurations of order N will be sufficient. It should be appreciated that
N/2N is an incredibly small fraction of configurations (in state of the art
simulations N is as large as N = 500 000 000!)

Consideration #2.
In many cases (e.g. in statistical physics) the structure of the W -function
is such that only a tiny fraction of configurations determine the answer. All
the other configurations have extremely small W , so small that it beats their
large number (in other words the number of “unrepresentative” configura-
tions does not compensate the small value of W , and their contribution to
the answer remains exponentially small). What is necessary in this case, is
a clever procedure of summing up only the most important terms. Note,
that this is not an optimization problem because one has to add many terms
to get the right answer, and the dominant contribution may come not from
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the maximum value of W , but from the maximum of W times the num-
ber of configurations with roughly the same W , i.e., from the maximum of
WeS ∼ e−F/T where the following statistical physics notations were used:
number of configurations with the given energy = eS;
S=entropy
Helmholtz free energy F = E − TS

configuration space

relevant region 

ν

e-F/T

representative config. 

This observation is both a “blessing” and a “trouble”. On one hand,
we understand that we can discard most of configurations and deal with a
much smaller number of terms. However, even if the relevant region is only
a tiny fraction, e.g. as small as

√
2N (an enormous reduction from 2N !!!),

still it is very large and the consideration #1 should be used. On the other
hand, it is not possible any more to select configurations at random without
thinking since with near certainty the selected configuration will be having
vanishingly small W and completely irrelevant for the answer. It would be
nice, of course, if we can select configurations with probabilities proportional
to their weight, since then configurations with large weights are most likely
to be selected. But how to achieve this goal in the general case? The solution
is provided by the Metropolis algorithm (MetA) (1953).

Metropolis algorithm

The algorithm of summing up only the most important terms in such a
way that in the limit of infinitely long calculation the result converges to
the exact value was found by Metropolis et al. when the time was just
right for the computer age. In the spirit of the body-volume calculation,
MetA suggests to replace the original sum over all configurations with the
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stochastic sum ∑
ν A(ν)W (ν)∑

ν W (ν)
=⇒

∑′
ν Aν∑′

ν

where configurations to be included into the sum
∑′ are generated using

random numbers, and one actually includes them into the sum with certain
probabilities. The following two rules (laws) must be satisfied:

• Starting from any initial configuration the process of stochastic genera-
tion of new configurations to be included into the sum has to allow all other
configurations to be generated in a long run - this is the ergodicity require-
ment. It is very important to satisfy it, since we are not going to miss any of
the terms without being able to look at them. This rule is also very important
for the proof that the simulation converges to the exact answer (which is the
sum of all terms).
• The probability to have a configuration ν in the stochastic sum is propor-
tional to Wν

Let us first prove that in the limit of infinite calculation time the two
answers - full sum and the stochastic sum - will agree with each other exactly.
Next, we will discuss how one can arrange a simple random process so that the
probability of the configuration to be included into the sum is proportional
to its weight. Indeed, in the infinite time limit we can write:∑′

ν Aν∑′
ν

=

∑
ν AνMν∑

ν Mν
=⇒ c

∑
ν AνW (ν)

c
∑

ν W (ν)

The first equality follows from the ergodicity requirement that all configura-
tions will be accounted and Mν is telling us how many times. The second
transformation for the number of times each configuration appeared in the
sum is possible because Mν is proportional to the configuration weight, i.e.
Mν = cW (ν). Canceling the c-factors we arrive at the original expression for
〈A〉, see Eq. (1).

The algorithm of including/accepting configurations into the stochastic
sum is very simple.

1. Initialize counters: Z=0; Result=0;
Choose any configuration ν to be the first one to be included into the
sum
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2. Include the configuration into the sum: Z = Z+1; Result=Result+A(ν);

3. Suggest another configuration ν ′ which derives from ν by, e.g., sug-
gesting to change the value of one of the variables ik. The variable
ik and its new value may be selected at random, e.g. play random
numbers to pick which variable to change k = [rndm ∗ N ] + 1, and if
ik can take any value from the list a1, a2, . . . , aK with K-entries, then,
play random numbers to pick the new value for ik to be the list entry
number s = [rndm ∗ K] + 1. In this example the suggested config-
uration change ν → ν ′ is {i1, . . . , ik, . . . , } → {i1, . . . , i′k, . . . , }, where
i′k = as. The procedure of getting ν ′ from ν is called an update. At
this point the algorithm is very flexible, and many different updates
can be designed. This freedom may be used to maximize the efficiency
of the algorithm, or to minimize the programming work. Moreover, in
the same code several updates may be used (more details later).

4. Now we have to figure out how to include the new configuration into the
sum with probability proportional to it’s weight. Since we start from ν
being already accepted into the sum, the probability to accept ν ′ may
be determined by simply comparing the W (ν) and W (ν ′) weights. In
particular, we have to make sure that for any accepted ν we accept
ν ′ on average W (ν ′)/W (ν) times. The requirement Mν = cW (ν) is
established then through a series of ratios

Mν′ = Mν
W (ν ′)
W (ν)

= W (ν ′)
Mν

W (ν)

Mν′′ = Mν′
W (ν ′′)
W (ν ′)

= W (ν ′′)
Mν′

W (ν ′)
= W (ν ′′)

Mν

W (ν)

Mν′′′ = Mν′′′
W (ν ′′′)
W (ν ′′)

= W (ν ′′′)
Mν

W (ν)

i.e. Mν/W (ν) = const as required!

5. Depending on the decision to accept or reject the update, modify the
configuration accordingly: if ν ′ was rejected, then do nothing, ν = ν;
if ν ′ is accepted then implement the change ν = ν ′. Proceed to point
2 above in a cycle.
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ν
suggest

update
ν ν ’

Accept
or

reject
decision

ν=ν

ν=ν’

if rejected

if accepted

ν ...

keep
working

indefinitely

The only crucial equation which is at the heart of all Monte Carlo simu-
lations is the so called balance equation which tells us the exact relation
between the probability of accepting the new configuration into the sum and
the ratio of configuration weights. Imagine an infinite set of computers each
performing exactly the same MC simulation as described above (this trick is
used to avoid waiting infinitely long time for the simulation to converge to
the exact answer!); alternatively, imagine that we run the same simulation
on a multi=∞-processor computer and each processor is working indepen-
dently. Since the set of computers is very large, for each configuration we
may count how many computers are having it at a given moment of time;
call it Mν . Since the simulation is done according to the rules, at any mo-
ment we have Mν = cW (ν) to make sure that averaging over all computers
we correctly reproduce 〈A〉. This, in particular, means that the distribution
Mν is static and time independent. During the next operational cycle, all
computers will suggest to update their current configurations, and many will
accept the changes.

ν1 ν2 ν3

...

In this figure an ensemble update generates a flow of computers between
different configuration states, but all flows cancel each other so that Mν

remain the same. Mathematically, the cancellation of all flows can be written
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as
Mν

∑
ν ′,u

puP
acc
u (ν → ν ′) =

∑
ν ′,u

Mν ′puP
acc
u (ν ′ → ν) . (8)

The l.h.s. of this equation reads <<the decrease in the number of configu-
rations ν is given by their number times the sum of all probabilities which
change ν to any ν ′ using any of the updating procedures (here ”u” is the
index of the updating procedure)>>. Correspondingly, pu is the probability
of applying update ”u” in the simulation, and P acc

u (ν → ν ′) is the probability
that the modification suggested by ”u” is actually accepted—this quantity
is also called the acceptance probability. The r.h.s of Eq. (8) counts all
cases which result in the accepted ν when updates are performed on other
configurations.

Finally, we substitute here Mν = cW (ν) to get

Wν

∑
ν ′,u

puP
acc
u (ν → ν ′) =

∑
ν ′,u

Wν ′puP
acc
u (ν ′ → ν) . (9)

Eq. (9) is called the balance equation because is requires that flows “out”
and “in” balance each other.

=ν ν

accepted updates accepted updates

The solution of the balance Eq. depends on the updating scheme. The
updating scheme by itself is an art because there are infinitely many ways
one can design updates. The simplest way to satisfy Eq. (9), which is also
general enough for most practical applications, is to balance updates in pairs.
If ”u” can transform ν to ν ′ and ū can perform the opposite transformation
of ν ′ to ν, then the pair is balanced if

WνpuP
acc
u (ν → ν ′) = Wν ′pūP

acc
ū (ν ′ → ν) , (10)

(no summation !), or

P acc
u (ν → ν ′)

P acc
ū (ν ′ → ν)

=
Wν ′

Wν

pū

pu
≡ R , (11)
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where R is called the acceptance ratio. Eq. (11) is called the detailed
balance Eq. for obvious reasons: if each term in the sum is balanced then
the whole sum is balanced as well. The idea is illustrated below

OR
ν ν’

u

u
ν

One may also try other schemes where updates form loops, like

...

ν
ν

ν

ν

ν

...

’ ’’

’’’
(n)

Loop-update

and solve a chain of balance equations. It is possible to do so in special cases,
but one has to be very accurate in doing this.

Spin-flip algorithm for the Ising model

It is probably best at this point to illustrate how MetA works by employ-
ing the case of the Ising model. Suppose we are interested in the average
energy (not magnetization modulus, just for a change), so A(ν) = E(ν) =
−∑<ij> Jσiσj , and W (ν) = e−βE(ν). It is sufficient to use only one update
to generate an ergodic process. This update consists of the following steps
(i) choose at random any site in the lattice; well, this is familiar k =
[rndm ∗ N ] + 1.
(ii) suggest to flip the spin on the selected site, σk

′ = −σk, i.e, ν ′ is differ-
ent from ν by the value of only one spin variable. By repeating this update
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many-many times we may, obviously, generate any other configuration.

All we need to start calculating is the solution of the detailed balance
Eq. for the acceptance probabilities. Since we have only one update, and
this update is self-similar (going backwards from ν ′ to ν we use the same
updating scheme), the balance equation says

Pacc(σk → σk
′)

Pacc(σk
′ → σk)

= e−β[E(ν ′)−E(ν)] N

N
= e−β[E(ν ′)−E(ν)] . (12)

The 1/N factors relate to the probability of selecting site k out of N sites
(formally, we have to consider updating different spins as different updates).
Denoting the energy difference as

ΔEk = E(ν ′) − E(ν) = 2Jσk

∑
<kj>

σj , (13)

we finally get
Pacc(σk → σk

′)
Pacc(σk

′ → σk)
= e−βΔEk ≡ R . (14)

In this particular example the acceptance ratio is the ratio of configuration
weights, nothing else.

There are two quantities to be determined from one equation. The solu-
tion is not unique then. One choice is

Pacc(σk → σk
′) =

R

1 + R
=

e−βE(ν ′)

e−βE(ν) + e−βE(ν ′)

Pacc(σk
′ → σk) =

1

1 + R
=

e−βE(ν)

e−βE(ν) + e−βE(ν ′) (15)

Easy to check that the balance Eq. is satisfied, and P ’s can be considered as
probabilities, i.e. they both are ≤ 1.

The other (more elegant from my point of view) solution is

Pacc(σk → σk
′) =

{
R if R < 1
1 if R ≥ 1

(16)

Pacc(σk
′ → σk) =

{
1 if R ≤ 1
1/R if R > 1

(17)
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It also has an advantage that acceptance rates are larger, and it is easier to
do numerically the step that follows next.

If the random number generated is smaller than Pacc(σk
′ → σk)

rndm < Pacc , (18)

the new configuration is accepted (obviously we do not need to generate rndm
if Pacc = 1).

“Accepted” means that we have to update the configuration file and may
add the new configuration to the stochastic sum. We may also choose to
include into the sum only every second accepted configuration; the final an-
swer may not depend on this since all we do then is Mν → Mν/2. More
generally, we may include into the sum only every m’s accepted configura-
tion. Remember, however, that m has to be set once and for all in a given
MC simulation—if you change m during the simulation the balance Eq. will
be violated unless you figure out how to incorporate changing m into the bal-
ance Eq. If the system is large, it usually makes sense to perform at least N
updates before adding the configuration to the sum. The frequency of adding
accepted configurations to the statistics is arbitrary since the final result does
not depend on it. However in certain cases it may be time consuming to eval-
uate the configuration value A(ν), and to optimize the calculation time one
has to spend at least half of the time on updates. For the average energy in
the Ising model this problem does not exist, because E(ν ′) = E(ν) + ΔEk,
and after each update we know both the previous configuration energy E(ν)
(by simply keeping it in the memory) and the energy difference, so we may
update also the current energy variable.

The simple updating scheme discussed above can be modified a little using
the so called heat bath method. Instead of suggesting to flip the selected
spin variable, we may try to play random numbers so that the probabilities
of having σk up or down are reproducing the exact statistics of σk when the
neighboring spins are frozen. In other words, we do the best we can for
σk in its present environment. So, after σk is selected, we calculate B =
(J/T )

∑
kj σj , and with probability p1 we propose the new value to be σ′

k = 1
and with probability p−1 = 1 − p1 we propose σ′

k = −1, where

pσ =
eσB

eσB + e−σB
=

eσB

2 coshB
. (19)

Note, that the current value of σk does not play any role in the selection
process.
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We may now write the acceptance ratio for the “heat bath” scheme

R = eσ′
kB−σkB

(
N

N

) (
pσk

pσ′
k

)
≡ 1 .

Whatever is suggested is definitely accepted now! The second factor is the
ratio of probabilities to select updates which transform {σ1, . . . , σk, . . .} to
{σ1, . . . , σ

′
k, . . .} and {σ1, . . . , σ

′
k, . . .} to {σ1, . . . , σk, . . .} [sorry, for boring

reminders of what we do explicitly]. The result we got is not surprising since
we literally do what “the doctor prescribed” - suggest configurations with
probabilities proportional to their weight in the most straightforward form.

The heat bath scheme for the Ising model is not, however, more efficient
than the single flip Metropolis method. In fact, some of the heat bath updates
do nothing by leaving the spin value unchanged; in the Metropolis scheme
this would be considered as a rejection. The ratio of rejections is given by
Eq. (19) and it is larger than in the single flip method for any B. However,
when spins take more than two different values, e.g. in continuous spin or
Potts models, then the heat bath algorithm becomes more efficient than the
single flip one.

Problem. Write down the spin-flip MetA for the Ising model in
any language you know. You have to develop it yourself because
many problems later in the course will be based it. Consider a
two-dimensional square lattice with L = 6 spins per dimension,
choose any value of J/T in the range (1, 3) and evaluate the
average magnetization modulus.

We now turn to the question of how fast the MC scheme converges to the
final answer.
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Example of the Fortran code for the Ising model:
(Random number generator is separate from this code)

integer, parameter :: N=6 !this is linear system size
real, parameter :: JT=1.5 ! this is the ratio J/T
integer, parameter :: L=100000 ! how often to print (in updates)
integer*2 :: s(N,N) ! spin configuration
integer :: counter ! counter for printing
real :: Z,A,M,dE ! sum counters
real :: R ! acceptance ratio

s=1 ! initialize configuration
M=N*N ! initial value of magnetization
Z=0 ; A=0; counter=0 ! initial Z, A, and counter

DO ! Main MC cycle
Z=Z+1; A=A+ABS(M) ! include to the sum
counter=counter+1; ! increase counter
k1=rndm()*N+1; k2=rndm()*N+1; ! lattice point for update

dE=0 ! calculating the energy change
I=k1-1; if(I>0) dE=dE+s(I,k2) !
I=k1+1; if(I<N+1) dE=dE+s(I,k2) !
I=k2-1; if(I>0) dE=dE+s(k1,I) !
I=k2+1; if(I<N+1) dE=dE+s(k1,I) !
dE=dE*JT*2.*s(k1,k2) ! energy change calculated

R=exp(-dE) ! acceptance ratio
if( R>1. .OR. rndm() <R ) then ! decision to accept
s(k1,k2)=-s(k1,k2) ! update configuration
M=M+2.*s(k1,k2) ! update M value
endif ! update done

if(mod(counter,L)==0) then ! print result after L updates
print*, ’< A >=’, A/Z ! print
counter=0; endif ! reset counter
ENDDO ! looks like we are done

END
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Convergence and autocorrelation time

As discussed above, the wonder of MC simulations is that the result
becomes accurate even when only an incredibly small fraction of relevant
configurations is sampled. This is because Aν is not sensitive to the detailed
structure of ν, and enormous number of different configurations result in
very much the same Aν . It means that looking at some of them already
gives the right idea about the answer. Of course, sampling only some of the
configurations we know the answer only approximately. Moreover, the simu-
lation result is approaching the exact answer only when the set of accepted
configurations covers the whole relevant region (i.e., the region around the
maximum of e−F/T )

Having many points in
each region is sufficient
for an accurate estimate
of what is the 〈A〉 value.

Fmax

F
F
F

F
F

1
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Thus, starting from some initial configuration, and performing local updates
(by local I mean updates which change only one, or several variables around
some point and leave the rest of the configuration intact) it will take some
time before the set of accepted configurations will cover the relevant region.
Only then we may hope that our result is meaningful. Let the simulation
result after time t0 be

< A >0,t0=< A >exact +δAt0

Imagine that t0 is long enough (how to define “long” quantitatively will be
discussed later), and we have a reasonably good sampling of the relevant re-
gion in the phase space. Let us now double the calculation time and evaluate
< A >t0,t0+t0 - the average over configurations generated during the period
of time between t0 and t0 + t0. This average is no different from the first one
except that now we are dealing with another set of configurations from the
same region of the configuration space, i.e., we have

< A >t0,t0+t0=< A >exact +δAt0,t0+t0

15



with another random deviation δAt0,t0+t0 . Repeating this procedure many
times and denoting

< A >(n−1)t0,nt0=< A >n=< A >exact +δAn

we obtain a collec-
tion of independent
random variables, call
them “block averages”)
with the same average
< A >exact and standard
deviation σt0 (at this
point the distribution
of block averages is not
necessarily Gaussian)

P(<A>  )

<A>

σ

<A> iexact

i

t0

The central limit theorem then says that the average over the entire simula-
tion, i.e. over time period t = nt0

< A >0,t≡< A >=

∑n
i=1 < A >i

n

has a much smaller standard deviation from the exact answer

σ2
t =

1

n2

n∑
i=1

σ2
t0

= σ2
t0
/n ,

or
σt = σt0

√
t0/t , (20)

and its distribution is Gaussian. It means that MC results are getting more
and more accurate with time, but only as 1/

√
t. Still, it is possible to achieve

accuracy better than 10−4 in most calculations, and up to 10−6 in the state
of the art procedures. For example, the critical temperature of the 3D Ising
model is known now to accuracy 0.2216546(1) (the number in parenthesis
gives the standard deviation from the reported answer in terms of last digit,
we have to read this as 0.2216546 ± 0.0000001).
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By definition σt may be calculated as the dispersion of block-averaged
results

σt =

√∑n
i=1(< A >i − < A >)2

n2
, (21)

and this is how the calculation error may be obtained in MC simulations.
There is one unknown parameter though in the procedure, namely t0. We
assumed that t0 is sufficiently long so that < A >n are statistically inde-
pendent. If < A >n are correlated, then the whole analysis is wrong! One
method of estimating error bars which avoids this uncertainty is based on
making larger and larger blocks as the simulation progresses.

The blocking method

Let us look at the simulation data in prime terms: instead of working with the
list of block averages < A >1, < A >2, . . . , < A >n we may consider the list
of block numerators R1, R2, . . . , Rn with each block containing ZB accepted
configurations, Ri =

∑
ν∈i−th block Aν . By definition, < A >i= Ri/ZB. We

may now calculate not just one errorbar, σ
(n)
t using Eq. (21) for n blocks,

but also σ
(m)
t for the smaller number m of larger blocks. If n = m ∗ j then

we simply “glue” j blocks together to form “superblocks”

< B >i =
1

j · ZB

i·j∑
k=1+(i−1)·j

Rk (22)

and use the {< B >i }-sequence to estimate the errorbar

σ
(m)
t =

1

m

√√√√ m∑
i=1

(< B >i − < A >)2 , (23)

For large n, e.g. for n = 2L, we may construct larger and larger superblocks
by doubling their sizes many times. To calculate the dispersion we need
many blocks, so it is wise to keep the number of blocks sufficiently large, say
> 16.

Now, if the block numerators Ri are statistically independent, the value
of σ

(m)
t will not depend on m. But sufficiently large blocks will eventually

become statistically independent, so the expectation is that σ
(m)
t will saturate
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to the correct errorbar value to matter whether the initial choice of t0 was
good or bad. More elaborately, one may form superblocks using

< B >i=
1

j · ZB

j∑
k=1

Ri+(k−1)∗m , (24)

i.e. by combining blocks well separated in time, or just by selecting j blocks
at random. In either case we expect this

σt

log(m)

small bocks are

0

"honest" errorbar

probably correlated

log(16)

Whatever the method, it has to produce the same ”honest” errorbar in the
long run simulation obeying the sqrt-law (20).

The bootstrap and jackknife methods

The idea of making large randomized superblocks to estimate errorbars
has other solutions. In the bootstrap method superblocks are formed by
combining n blocks selected at random from the list {Ri}. Some of the
prime blocks may contribute to the superblock more than once, some may
not contribute at all. After a large number of superblocks are generated, say
m, one estimates the errorbar, σ

(bootstrap)
t , from

σ
(bootstrap)
t =

√√√√ 1

m

m∑
i=1

(< B >i − < A >)2 ≡
√

(δB)2 . (25)

The bar over (δB)2 stands for the average over the selection process. The
last equality makes it clear that the answer is independent of m >> 1, which
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should be the case since m is arbitrary. The advantage of the bootstrap
method is that its error bar does not depend on the choice of t0 for the prime
block.

If block averages are statistically independent then another method of
estimating errorbars is called the jackknife [I do not like it, since I do not
see any difference with Eq. (21) which is the most “natural” procedure]. In
the jackknife method, superblocks are formed by combining all but one
block

< B >i=
1

(n − 1) · ZB

n∑
k �=i

Rk , (26)

and the dispersion of superblock answers gives the errorbar as

σ
(jackknife)
t =

√√√√ n∑
i=1

(< B >i − < A >)2 . (27)

Problem. Prove that the bootstrap method reproduces correct
answer for the errorbar when contributions Ri are statistically
independent and the number of superblocks is large.

Problem. Develop your code for the two-dimensional Ising
model further to be able to do the analysis of errorbars for
the magnetization modulus using the bootstrap method. For
system parameters L = 16, J/T = 0.6, and the size (number of
updates performed) of the smallest block equal to L × L = 256

make a plot of σ
(bootstrap)
t (here t = n =# of blocks) and check

whether it is decaying as ∼ 1/
√

n for large n. Make sure that in
your simulation n is large enough, e.g. 106 or larger.
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Autocorrelation time

Since configurations derive one from another (although not in a determin-
istic way, but still only a small part of the cnf. is updated in local schemes)
it is not at all obvious when < A >n will become statistically independent,
and we need some means to check it. In fact, block averages are strongly
correlated if t0 is small. To study these correlations we keep a long record
of subsequent values of Aν , i.e., A1 = Aν1 , A2 = Aν2, . . . , AM = AνM

, taken
at equal number of MC updates apart from each other. Let us denote the
number of updates between the records as Δt and use it as a time unit, i.e.
if νi+1 is obtained from νi after performing 1000 updates, then the time unit
is Δt = 1000 updates. Next, we look how Ai fluctuate in time around the
average

Γj = Γ(t/Δt) =

∑M−j
i=1 δAi δAi+j∑M−j

i=1 δA2
i

, where δAi = Ai− < A > .

The so called autocorrelation function Γ tells us how different values of Aν

are correlated in time. The typical form of the autocorrelation function is

We see that corre-
lations die away af-
ter some characteristic
time t0. We may de-
fine the characteristic
time formally as t0 =
Δt/2 +

∑∞
i=1 ΓiΔt (in

reality we sum up to
some very large num-
ber and verify that the
result has converged)

Γ

1

t
0

t
0

This definition, which works for any shape of Γi, is also known as an inte-
grated autocorrelation time. If the time decay of Γ is purely exponential,
Γ = e−t/τ , then the integrated autocorrelation time is the same as τ .

In a system with N degrees of freedom we expect correlations to persist
at least up to N updates until we have a chance to change every degree
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of freedom (otherwise the two configurations will share identical values for
some of the variables and will be obviously correlated). This sets a natural
time unit which is called a Monte Carlo sweep, Δt = one sweep = N
updates. Usually the autocorrelation time is measured in the MC sweeps,
and t0 � 1 would mean that we have to address each degree of freedom
many times before we get an independent value Ai. In practice, the study of
autocorrelations takes a lot of CPU time since very large M ∼ 106 ÷ 107 are
necessary to suppress noise in the autocorrelation function.

In general, t0 will depend on the quantity measured, i.e., t0(A) �= t0(B).
Also, it may happen that there are several time scales in Γ(t), especially when
the system is inhomogeneous, or disordered. The other important remark
concerns algorithms used to update MC configurations. Some of them have
very long autocorrelation times and thus are ineffective. Clever algorithm
may improve efficiency by a factor of thousand or more; the most famous
example of this kind is the invention of the cluster algorithm by Swendsen
and Wang (for Ising-like models).

Problem. Using your code for the two-dimensional Ising model
(take system parameters L = 16, J/T = 0.6 ), make a list of 106

magnetization measurements separated by one MC sweep, and
study the correlation function Γ and the integrated autocorre-
lation time t0.

Thermalization problem

Starting MC simulation from some arbitrary configuration we are unlikely
to hit the relevant region. For a while the algorithm will work its way to the
state of thermal equilibrium. This initial period is called the thermalization
stage. Any data collected during thermalization process should be trashed
because they are artifacts of the initial condition and algorithm details. In
fact, it is wise not to update Z and counters for other calculated quantities
for a while, and wait until the thermal equilibrium is reached. In most cases
the thermalization time is much longer than t0, as long as 100 or even 1000t0.
It does not hurt much even if we spend on themalization a significant fraction
of the total CPU time, say 20%. Indeed, the convergence of errorbars in MC
simulations is proportional to 1/

√
t, thus the errorbars for the calculation

time t and 0.8 t relate as
√

0.8 ≈ 0.9, a 10% difference only.

21



It is hard to express ttherm in terms of t0 because the latter is the property
of the equilibrium state, and the former depends also on the algorithm per-
formance for states far from equilibrium. The “based on experience” rule is
to monitor the convergence of errorbars using the blocking method and wait
until the superblock doubling does not change the estimate for σt. Next,
ttherm may be set equal or longer than this waiting time and the actual sim-
ulation is started. One may also take advantage of “well thermalized” initial
configurations from previous MC runs, especially when the new simulation
parameters are only slightly different.

Other quantities to measure.

Energy and magnetization modulus are the simplest quantities to measure
for the Ising model. They also have very simple MC estimators. By
MC estimator for quantity A is understood an expression A(ν) which allows
to calculate 〈A〉 using Eq. (3). Sounds almost self evident, especially for
energy and magnetization which have estimators E = −J

∑
<ij> σiσj , and

M =
∑

i σi. However, specific heat is already more tricky: formally C =
d〈E〉/dT ; it may be calculated by subtracting average energies at two close
values of temperature

C ≈ 〈E〉T1 − 〈E〉T2

T1 − T2
.

This is not the best we can do however, because the procedure is not exact
for large |T1 − T2|, and the error bars shoot up for small |T1 − T2|. However,
if we do the differentiation analytically, then

C =
d

dT

∑
ν E(ν)e−E(ν)/T∑

ν e−E(ν)/T
(28)

=
1

T 2

⎛
⎜⎝
∑

ν E2(ν)e−E(ν)/T

Z
−
(∑

ν E(ν)e−E(ν)/T
)2

Z2

⎞
⎟⎠ =

1

T 2

(
〈E2〉 − 〈E〉2

)
,

the specific heat is expressed in terms of the energy dispersion, and both
terms in this expression have MC estimators.

At the phase transition the magnetic susceptibility per particle χ =
L−d dM/dH|H=0 (here d is the dimension of space) diverges. The trick of
deriving the estimator for χ is to pretend that we calculate magnetization
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in finite magnetic field, differentiate M(H), and set H = 0 in the final
expression (the analogy with the specific heat is straightforward):

χ =
1

Ld

d

dH

∑
ν M(ν)e−[E(ν)−hM(ν)]/T∑

ν e[−[E(ν)−hM(ν)]/T

∣∣∣∣
H=0

=
1

TLd

⎛
⎜⎝
∑

ν M2(ν)e−E(ν)/T

Z
−
(∑

ν M(ν)e−E(ν)/T
)2

Z2

⎞
⎟⎠ =

=
1

TLd

(
〈M2〉 − 〈M〉2

)
≡ 〈M2〉/TLd , (29)

The last identity follows from the fact that 〈M〉 ≡ 0 by symmetry. In fact,
the differentiation with respect to some Hamiltonian parameter is a very
useful general trick to derive MC estimators, and we will see more examples
later.

In the standard Metropolis scheme the calculation of entropy, S, is a
problem. Later, in the discussion of re-weighing (or importance sam-
pling) techniques and the entropy sampling/flat histogram approach, we
will see how S can be simulated. However, we may also make use of the
thermodynamic relation between entropy and the specific heat integral

S = S(T0) +
∫ T

T0

C(T )dT

T
.

If we are not interested in the value of S(T0) then we may stop here. If
absolute values of S(T ) are of interest, then (assuming that the ground state
is non-degenerate and S(T = 0) = 0 —the third law of thermodynamic) we
have to integrate all the way to T = 0

S =
∫ T

0

C(T )dT

T
.

This approach requires that we evaluate specific heat at many T points.
The integration itself is not a big problem, and can be done using linear- or
higher-order interpolation techniques.

The other quantity of interest in MC simulations is the spin-spin corre-
lation function which tells us how the direction of one spin, say at the origin
of the coordinate system, influences other spins. Formally:

g(i, j) = 〈 σi · σj〉 ,
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The problem with g(i, j) is not in what is its MC estimator (this is obvious)
but how to make it work efficiently. In the d-dimensional system of linear
size L, the correlation function contains L2d points!

First, let us introduce the so-called periodic boundary conditions.
They are used to get rid of the edge effects and make the system translation
invariant, i.e. when every point in the system is no different from any other
point. Periodic boundary conditions for the system with the linear sizes
L1, L2, . . . , Ld mean that spins σ(i1, . . . , iμ + Lμ, dots) and σ(i1, . . . , iμ, dots)
are identical for any direction μ = 1, . . . , d.

In one dimension, the
geometry of the sam-
ple is a circle, i.e. the
clockwise neighbor of
spin σ(L) is spin σ(1).
In two dimensions, the
geometry of the sam-
ple is a torus.

i=1

2

L

L-1

3

In higher dimensions you simply have to imagine that starting from any
lattice point i and going exactly Lμ steps in the direction μ you end up back
at i. If the system is translation invariant then g(i, j) may depend on i − j
only, since all points have identical properties, g(i, j) = g(0, j− i) ≡ g(j− i).
This alone saves us a lot of memory, since we need only N = Ld points
to consider. Using simple cubic lattice rotation symmetries it is possible to
further reduce the number of points.

The other problem comes from the count of how many operations are
required to make the measurement of g(j− i) for a given configuration. If we
address all pairs of spins and add the product σi ·σj to the counter for g(j−i),
i.e. g(j − i) = g(j − i) + σi · σj we will perform N(N − 1)/2 operations. If
measurements are performed every MC sweep (N updates), then most of the
CPU time will be spent on the g-measurement, and not on the simulation
itself. This is unacceptable. One solution is to measure less frequently, for
example once every N(N−1)/2 updates, but this might be much longer than
the autocorrelation time. The other solution is pick at random only N spin
pairs in the g-measurement instead of looking at all of them. The ultimate
solution is to use the fast Fourier transform technique.
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Let us Fourier transform g(i):

g(j) = N−1
∑
k

g̃(k)eikj , g̃(k) =
∑
j

g(j)e−ikj ,

where the sum over the multi-dimensional (in the general case) Fourier index,
or “momentum”, k = (k1, k2, . . . , kd) contains exactly Lμ points in each direc-
tion, kμ = 2πnμ/Lμ, nμ = 0, 1, . . . , Lμ − 1. This discrete Fourier transform
works because

N−1
∑
j

eipje−ikj ≡ δp,k =

{
1, if p = k
0, otherwise

We have then (using translation invariance “backwards”)

g̃(k) =
∑
j

g(j)e−ikj = N−1
∑
i,j

〈σi · σj〉e−ik(j−i)

= N−1〈|σ̃(k)|2〉 . (30)

The advantage of this relation is that g̃(k) may be calculated using MC
estimator for the Fourier coefficients of the spin distribution σ̃(k). Thus in
the simulation we collect statistics of |σ̃(k)|2 by making Fourier transforms
of σj , and after the calculation is finished we perform the inverse Fourier
transform for g̃(k).

One may immediately object that we really do not gain anything because
in the measurement we will need to evaluate N Fourier coefficients and each
of them is the sum over N spins. This is true provided we calculate σ̃(k)
naively by taking sum after sum over and over again. In fact, it is possible
to get σ̃(k) in just N log2 N operations by the fast Fourier transform (FFT)
technique, Gauss=genius (1805). Below I will assume that N is a power of 2,
i.e. N = 2I . If this is not the case, then simply add a certain number of zeros
to the end of the σj file making it longer and matching the nearest power of
2. This is how it works in one dimension, Danielson and Lanczos (1942) [it
can be generalized to higher dimensions and there are well developed codes
in libraries to do it; FFT is not the MC technique so in this course I will be
very brief]. First, split σ̃(k) into even- and odd-sites contributions

σ̃(k = 2πn/N) =
N∑

j=1

σ(j)ei2πnj/N
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=
N/2∑
j=1

σ(2j)ei2πn2j/N +
N/2∑
j=1

σ(2j − 1)ei2πn(2j−1)/N

=
N/2∑
j=1

σ(2j)ei2πnj/(N/2) + W n
N/2∑
j=1

σ(2j − 1)ei2πnj/(N/2)

≡ σ̃(e)(n) + W nσ̃(o)(n) , W = e−i2π/N . (31)

Well, still this requires N operations to do, but we immediately observe that
σ̃(e)(n) and σ̃(o)(n) are periodic with the period N/2, not N !, and thus we
may calculate it only for half of the momentum points. The beauty of the
Danielson and Lanczos lemma is that it can be taken recursively to the next
level

σ̃(e)(n) = σ̃(ee)(n) + W nσ̃(eo)(n) ,

σ̃(o)(n) = σ̃(oe)(n) + W nσ̃(oo)(n) ,

and the next level functions, e.g. σ̃(ee)(n), are all periodic with the period
N/4. It means that the second level functions should be calculated only for
N/4 momentum points. If we continue further along the tree of iterations,
at step I (remember that N = 2I), we will have to take the one spin sums,
i.e. for any I-long word consisting of “e” and “o”

σ̃(I−long word)(n) = σ(j) , for some j

If the eo-word is written in the binary representation with e = 0 and o = 1,
then j = (binaryword) + 1. The total number of operations we have to per-
form to complete the transform is then, counting backwards from the I-th
level and going up

N - at the lowest level we have N single values functions
N - one level up we have N/2 functions each having 2 values
N - one level up we have N/4 functions each having 4 values
.................................................................
N - one function σ̃(k) which has N points

Total=N log2(N).

Well, may be a factor of two larger to explain the code which pairs to combine
at each level. Still, the scaling is almost linear, and thus the measurement
can be performed almost every autocorrelation time.
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The other useful formula relates g(j) and the susceptibility

χ = 〈 M2〉/TN = 〈∑
i

σ(i)
∑
j

σ(j)〉/TN =
∑
j

g(j)/T = g̃(k = 0)/T .

This is one of the “faces” of the so-called fluctuation/dissipation theorem
which relates linear response coefficients and correlation functions. In essence,
system fluctuations away from the average position tell us how easy it would
be to shift the average if we apply external forces.

Re-weighing (importance sampling), histogram, and multiple
histogram data analysis.

The central idea of the Metropolis algorithm is to make sure that the
scheme samples configurations in the relevant region and deviations from
this region are naturally penalized by larger free energy barriers. If efficiency
is not an issue, or overcoming large energy barriers becomes crucial, one
may consider other schemes which allow configurations to “wonder” more
freely away from the relevant region. The general theory of how this may be
achieved is extremely simple.

Suppose, we decided to include configurations into the stochastic sum
with probabilities proportional to some arbitrary function P (ν), and not
proportional to W (ν). Now M(ν) = cP (ν), and the question is now we
should modify estimators in stochastic sums to ensure that our final results
do not change and still converge to the exact answer. Let’s seek the solution
in the form

〈 A〉 =

∑′
ν A(ν)X(ν)∑′

ν X(ν)
.

This is not just a “wild guess”—we know that if P (ν) = const, i.e. all
configurations are equally likely to appear in the sum, then X(ν) = W (ν)
reproduces the original expression we started with. Repeating the “infinite
simulation time” proof we did for the Metropolis algorithm, we get

∑′
ν A(ν)X(ν)∑′

ν X(ν)
=⇒

∑
ν A(ν)X(ν)M(ν)∑

ν X(ν)M(ν)
=

∑
ν A(ν)X(ν)P (ν)∑

ν X(ν)P (ν)
.

The solution of our problem is immediate, use

X(ν) = W (ν)/P (ν) , (32)
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and this will guarantee that the answer remains unchanged.
Often, P (ν) is presented as P (ν) = W (ν)·Y (ν) to underline the difference

between configuration weight and the probability of the configuration to be
included into the stochastic sum. To implement this change, all we need to
do is to “re-weigh” the standard acceptance ratio R =⇒ R [Y (ν ′)/Y (ν)], as
well as the estimators for the numerator and denominator, i.e. now

〈 A〉 =

∑′
ν A(ν)Y −1(ν)∑′

ν Y −1(ν)
. (33)

I will call this a “re-weighed simulation” or a simulation with importance
smapling..

Histogram method takes advantage of this flexibility and uses it to cal-
culate quantity A not just for one set of the system parameters used in the
simulation, but for the immediate vicinity of this parameter set as well. In
the example below, which is also the standard application of the histogram
method, we will consider system temperature as a parameter. However, sim-
ilar considerations apply to any other parameter in the Hamiltonian without
limitations. This is how it works.

Let the simulation is performed at inverse temperature β0 as usual with
M(ν) = cW (ν, β0), or Y (ν, β0) = 1. The result is A(β0). Equivalently, this
same simulation may be considered also as a simulation at some other temper-
ature β and Y (ν, β) = W (ν, β0)/W (ν, β).Thus the same set of configurations
may be analyzed as if it was a re-weighted simulation for temperature β

A(β) =

∑′
ν A(ν)W (ν, β)/W (ν, β0)∑′

ν W (ν, β)/W (ν, β0)
=

∑′
ν A(ν)e−E(ν)(β−β0)∑′

ν e−E(ν)(β−β0)
. (34)

This is a wonderful tool because for the CPU time of one simulation we may
get many points in temperature at once! The only downside here is that we
either have to store all A(ν) and E(ν) values during the simulation process
(well, one per autocorrelation time), or, decide ahead of time at what points
exactly around β0 we would like to know A(β). The last method is more
economic and is easy to implement when we update counters:
instead of Z=Z+1; A=A+Aestimator

we use an array of, say K, temperature points {β(j)} to do update counters
arrays
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DO j=1,K
Y=exp(Eestimator*(β0 - β (j) ))
Z(j)=Z(j)+Y
A(j)=A(j)+ Aestimator*Y
ENDDO

We should recognize, however, that histogram re-weighting has its limits
and will not work if β and β0 differ significantly. From Eq. (29) we know
that energy fluctuations in a given simulation are controlled by the specific
heat. Since C ∼ N and 〈 E〉 ∼ N the energy distribution is very narrow in
relative units.

P(E)

<E> <E>β β0
E

σ  ∼        ∼E T  C     N
2 2

σ 

It is given by the Gaussian
exp{−(E − 〈E〉)2β2/2C}.
For |E − 〈E〉|β � √

C the
MC statistics will be very
poor, or none at all. Corre-
spondingly, doing simulation
at β0 there is no way of
knowing what system prop-
erties are at temperature β
if the corresponding energy
distributions P (E, β0) and
P (E, β) do not overlap.

The shift of 〈 E〉 with temperature is given by C(T − T0), and it gets com-
parable to the distribution dispersion when

C(T − T0) ∼ T
√

C , or
|T − T0|

T
∼ 1/

√
C ∼ 1/

√
N . (35)

This Eq. sets the range of temperatures which can be addressed by the
histogram method. For large N the method is not really giving us extra
information for a wide range of parameters. Still, some techniques for cal-
culating critical temperatures and critical indices work best if we can fix
temperature with accuracy up to seven meaningful digits! Using histogram
method we should not worry about this ahead of time (I mean before we
know what Tc is) because we can always re-weight our simulation to the
required temperature value in the final analysis.

Suppose now that we perform a series of simulations at temperatures Ti

which are sufficiently close to each other, i.e. Ti+1 − Ti are within the range
given by Eq. (35). Of course, we can re-weight each simulation separately
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and then combine results. This is not the optimal procedure, though, since
different energy distributions overlap, and the accuracy may be improved if
we know how to utilize data from all simulations at once. The multiple
histogram method allows us to achieve this goal.

Before we discuss how it works ...
Lemma: Suppose we have a collection of independent statistical variables
xi with distributions characterized by exactly same average 〈 xi〉 = 〈 x〉 but
different dispersions σi. What we are modeling here is the situation when the
same quantity is calculated using MC methods many times with calculations
being completely independent from each other and having different errorbars.
The problem is in combining results in the most optimal way, so that the
final error bar for the variable

xall =
∑

i xiwi∑
i wi ,

(36)

is as small as possible. The relation between xall and xi must be linear in
order to satisfy the requirement that 〈 xall〉 = 〈 x〉, and be able to to reduce
to the obvious xall = xi when all variables except some xi have very large
error bars (and thus are better not to be considered at all!). The solution is

wi = 1/σ2
i . (37)

Proof: For the sum of independent variables xiwi/
∑

j wj we have

σ2
all =

∑
i σ

2
i w

2
i

(
∑

i wi)
2 .

To minimize σall with respect to wi we require that all derivatives ∂σ2
all/∂wi

are zero

∂σ2
all/∂wi = 2

wiσ
2
i(∑

j wj

)2 − 2

∑
j σ2

j w
2
j(∑

j wj

)3 = 0 ,

or

wi =
1

σ2
i

∑
j σ2

j w
2
j∑

j wj
=

const

σ2
i

. (38)

Since the value of const is arbitrary here [it cancels in Eq. (36)] we simply
choose Eq. (37) as the correct solution. Now back to the multiple histogram
method.
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Let us introduce the notion of the density of states

ρ(E) =
∑
ν

δE,E(ν) = eS(E) , (39)

which counts how many states have energy E. The log of this quantity is
also known as a microcanonical entropy. We may use it to write the partition
function and average energy as one dimensional energy sums or integrals:

Z =
∑
E

ρ(E)e−βE , (40)

〈 E〉 = Z−1
∑
E

Eρ(E)e−βE , (41)

If we know ρ(E), which is by definition temperature independent, we may
use it to calculate many thermodynamic properties at any temperature we
want. The central piece of the multiple histogram method is to find the most
optimal way of obtaining ρ(E) from a series of simulations performed at a
fixed set of β(j).

The probability of having a configuration with energy E is given by

pβ(E) = ρ(E)
e−βE

Z
.

On another hand, in a given simulation performed this probability may be
estimated as the fraction of time the measured configuration energy was E

pβ(E) = Hβ(E)/Hβ .

Here H is the total number of measurements, and H(E) is the number of
measurements with E(ν) = E, collected, e.g., as a histogram —this is where
the name of the method originates. From the last two Eqs. we get as estimate
for the density of states as

ρ(E) =
Hβ(E)

Hβ
Z(β)eβE . (42)

In a given simulation performed at temperature βi we will get some value for
the density of states as

ρi(E) =
Hi(E)

Hi
Zie

βiE . (43)
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which is fluctuating around the exact T -independent value ρ(E).
To use the Lemma proved above and to combine results from different

simulations we need to know errorbars on ρi(E). If the simulation at tem-
perature Ti is repeated infinitely many times (with the same number of mea-
surements Hi in each simulation) and we average all of them then we would
get the exact answer

ρ(E) = 〈 Hi(E)〉 Zie
βiE

Hi
.

Note, that the l.h.s. does not depend on index “i”. The number of measure-
ments in the histogram bin Hi(E) fluctuates from simulation to simulation
around its average pi(E)Hi and is subject to the standard Poisson statistics.
It means that the errorbar on the measured quantity, Eq. (43) is

σ2
i (E) = pi(E)Hi

(
Zie

βiE

Hi

)2

Substituting here the initial relation between pβ(E) and ρ(E) (see above),
we get

σ2
i (E) = ρ(E)

Zie
βiE

Hi

.

Now we may apply our lemma to write the optimal estimate for the
density of states

ρall(E) =

∑
i ρi(E)/σ2

i∑
i 1/σ

2
i

=

∑
i Hi(E)∑

i Hi (e−βiE/Zi)
. (44)

Nice, but we do not know what exact partition functions Zi are! Fortunately,
ρall(E) can be used to calculate Zi, see Eq. (40), and we can make everything
a selfconsistent loop of relations:

Zi =
∑
E

ρall(E)e−βiE =
∑
E

∑
j Hj(E)∑

j Hj (e(βi−βj)E/Zj)
. (45)

This equation can be solved by iterations: guess something about {Zj},
substitute the guess to the r.h.s. of Eq. (45) and get new values of {Zj},
substitute ... , if the result does not change after being iterated then it is the
solution.

Several remarks are due on the practical implementation of the method.
One is the overflow problem.
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(i) Partition function is a macroscopic exponential and may easily exceed
the largest number permitted by the computer, e.g. 10300. To deal with this
problem we may work instead with zi = ln Zi. Products and ratios of capital
”Z”s are sums and differences of ”z”s—easy. The only thing to remember
in programming everything in terms of logarithms is how to handle sums. If
Z1 > Z2 then

ln(Z1 + Z2) = ln Z1(1 + Z2/Z1) = ln Z1 + ln(1 + Z2/Z1)

and, further on,

ln(Z1 + Z2) = ln Z1 + ln
(
1 + eln Z2−ln Z1

)
.

Since Z1 > Z2, we always have lnZ2 − ln Z1 < 0 and the last exponent does
not cause overflow [ we may even replace it with zero if lnZ2 − lnZ1 < −100
because computer roundoff errors are larger anyway. This procedure works
for any sum of positive definite numbers; just single out the contribution
with the largest logarithm. Let it be Zi:

ln(
∑
j

Zj) = ln Zi + ln

⎛
⎝∑

j

eln Zj−lnZi

⎞
⎠ .

Not a big deal to program ...
(ii) The density of states may be considered as an auxiliary property used to
relate different quantities to each other. In the realistic simulation we may
“skip” calculating it and go directly to the answer. Sometimes this is even
a better way of doing things because it allows to eliminate systematic errors
introduced by grouping configuration energies into finite-size bins. Using
definitions of Hi and Hi(E) we rewrite identically

Zk =
∑
E

∑
i Hi(E)∑

j Hj e(βk−βj)E/Zj
=
∑
E,i

Hi(E)
1∑

j(Hj/Zj) e(βk−βj)E

−→ ∑
i,νi

1∑
j(Hj/Zj) e(βk−βj)Eνi

. (46)

In this implementation we do not have to keep the histograms, but we have
to keep the energy records for all runs. The advantage is in avoiding system-
atic, programmer-induced errors in the final answer. For example, if the
configuration space is continuous then collecting energy values into discrete
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bins is an approximate procedure. Of course, the bin size may be reduced
to such a small value that most bins will remain “empty” by the end of the
simulation, and only a small fraction of bins will have Hi(E) = 1— this is
exactly what Eq. (46) describes.

The multiple histogram method may be used to calculate any quantity A
over a broad range of temperatures. After solving for {Zj} iteratively, one
calculates

Zβ =
∑
i,νi

1∑
j(Hj/Zj) e(β−βj)Eνi

, (47)

for any other value of T , and, keeping in memory all records {Aνi
} finds

〈 A〉β = Z−1
β

∑
i,νi

Aνi∑
j(Hj/Zj) e(β−βj)Eνi

. (48)

Just a reminder: the multiple-histogram method is a generalization of the
simple re-weighting technique for the case when many points can be re-
weighted in temperature and their combined results are summed in the most
optimal way.

Sign Problem.

Let’s go back to the first formula in this Section and formally consider Wν

functions which are not positive-definite (for whatever reason; in the quantum
mechnics Section we will see how sign-alternating Wν happen naturally). We
may separate the sign of Wν from Wν explicitly and write

〈A〉 =

∑
ν Aν Signν Wν∑

ν Signν Wν
,

where Wν is now positive definite by definition. This allows us to proceed
with the standard MC simulation which replaces full sums with stochastic
sums and generates configurations according to their positive definite weights:

〈A〉 =

∑′
ν Aν Signν∑′

ν Signν
=

∑′
ν Aν Signν∑′

ν

∑′
ν∑′

ν Signν
=

〈ASign〉
〈Sign〉 .

The trouble comes in cases with 〈Sign〉 → 0 in the large system size limit
(typicaly 〈Sign〉 approaches zero exponentially fast!!!). Finite 〈A〉 is obtained
from the ratio of two quantities both converging to zero. Since both the
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numerator and denominator have finite MC errorbars we have no idea what
the correct answer is; we simply look at the ratio of errorbars which fluctuates
wildly. Indeed (assuming for a moment that averages have small errorbars)

〈A〉 + δA =
〈ASign〉 + δAS

〈Sign〉 + δS
≈ 〈ASign〉

〈Sign〉
(
1 +

δAS

〈ASign〉 +
δS

〈Sign〉
)

or,
δA

〈A〉 ≈ δAS

〈ASign〉 → 0
+

δS

〈Sign〉 → 0
.

There is no generic solution to the sign-problem. It prevents MC methods
from studies of such interesting systems as interacting fermions, frustrated
bosonis and magnetic systems, real time dynamics, etc. It does not mean,
however, that if you see the formulation of the problem which has a sign, you
have to ignore it right away. It may happen that sign-problem exists in one
formulation and is absent in another! Then the sign-free formulation may be
used for the MC simulation. There are many examples of this kind, though
they are always case specific. To illustrate the point consider arbitrary quan-
tum mechanical system and write the partition function in the Hamiltonian
eigenfunction representation, HΨα = EαΨα:

Z =
∑
α

e−Eα/T .

This expression contains only positive definite terms! But there is no way to
know eigenfunctions and eigenvalues for the complex many-body system in
the first place(!), and thus this formal setup is not suitable for the simula-
tion. Still, the lesson we learn is that the sign-problem may be reduced or
completely eliminated by the proper choice of the basis set. Unfortunately,
our choices are quite limited and there is no generic prescription of how to
get the basis set leading to the sign-free formulation of the problem.

Any solution of the sign-problem for specific models is a breakthrough
if it allows to calculate answers in time which scales as some power of the
system size.
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