
OTHER CLASSICAL MODELS

Models with continuous variables

In classical models, going from discrete to continuous variables in MC
schemes introduces minimal modifications. If the problem is to evaluate an
integral

< A >= Z−1
∫

. . .
∫

dx1dx2 . . . dxMA({xi})W ({xi})

Z =
∫

. . .
∫

dx1dx2 . . . dxMW ({xi})

we simply define the configuration as a collection of real numbers, ν =
{x1, x2, . . . , xM} and proceed in exactly the same manner as before. Al-
though the configuration weight now involves differential measures

weight = W ({xi})dx1dx2 . . . dxM ∼ (dx)M

they all cancel in the weight ratios in the balance Equation

(weight)ν2

(weight)ν1

=
W (ν2)

W (ν1)

In the simplest updating strategy, after choosing at random a variable to
modify, e.g., xI , we may suggest another value for this variable with equal
probability density anywhere in the domain of definition of this variable. For
example, if xI ∈ (xmin

I , xmax
I ), then

x′I = xmin
I + r (xmax

I − xmin
I ) , (∗)

In other words, we seed the new value of the variable with the normalized
probability density

u(x′I) =
1

xmax
I − xmin

I

= const .

Note that U(x′I) = u(x′I) dx′I is the probability to apply an update U→(xI →
x′I) and it has to be used in the balance equation! In the example considered
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above it does not depend on the initial value of xI , and thus is the same for
the inverse update from x′I to xI . The balance Eq. for this update is then

P acc
→ (xI → x′I)

P acc
← (x′I → xI)

=
W (ν ′)(dx)N

W (ν)(dx)N

N

N

u(xI)dx

u(x′I)dx
= R

We see that all differential measures cancel each other and

R =
W (ν ′)

W (ν)

u(xI)

u(x′I)
=⇒for u(x)=const

W (ν ′)

W (ν)

We have considered the simplest updating scheme. Depending on the model,
one may develop more sophisticated algorithms; the only necessary require-
ments are ergodicity and the balance equation

At this point it is worth recalling the “heat bath” trick to enhance the
acceptance ratio which we discussed for the Ising model. Formally, the pro-
cedure of selecting the new value for xI is flexible, and any normalized dis-
tribution function u(x) can be used. In the random number generator Sec.
we discussed techniques of how one may generate random variables with ar-
bitrary distributions, so it is not a problem at all to use u(x) which makes
R larger; in certain cases it is even possible to make R = 1 independent
of xI and x′I !, i.e., every update is definitely accepted! One more reason
to use the distribution u(x) 6= const is the ability to handle cases where
xmax

I − xmin
I → ∞. Then, one simply has to use some normalizable function

u(x).
As an illustration consider the following model (never mind it can be

solved exactly)

E = J
∑

<ij>

(xi − xj)
2 ; xi ∈ (−∞, +∞)

Suppose we have to update the variable xI . Evaluate first

a = z−1
∑

<Ij>

xj , where z = the number of n.n.

The energy difference between the new and current configurations can be
written as

∆E = Jz [x′I − a]
2 − Jz [xI − a]2

and the ratio of the configuration weights as

W (ν ′)

W (ν)
=

e−βJz[x′

I
−a]2

e−βJz[xI−a]2
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If we seed the new variable using the Gaussian probability density (as we
have seen the extra CPU time for doing this is minimal)

u(y) =

√

βJz

π
e−βJz(y−a)2

the acceptance ratio will become unity!

Problem. Do the simulation for the one-dimensional system
with periodic boundary conditions (ring geometry, when vari-
able xN is the left ”neighbor” of variable x1) and compare you
answer with the exact solution, e.g. for 〈E〉.

The idea seems clear here - try to seed a new variable as close as possible
to the probability density set by the current local “environment” (in our
example a is defined by the values of the neighboring variables). Of course,
you should not do it “at all costs”, since what counts at the end is the best
product to(in updates)×CPU time per update. Still, almost any u(x) which
qualifies for the transformation method is worth considering.

An important continuous classical model, the so-called XY-model, is a
straightforward generalization of the Ising model

E = −J
∑

<ij>

~ni~nj . (1)

Instead of discrete variable σi we now have two-dimensional unit vectors
~ni = (cos θi, sin θi). We may actually use angles θ to write XY-model as

E = −J
∑

<ij>

cos(θi − θj) . (2)

The difference in physics between the Ising and XY-models is (i) minimal,
because they have similar high-T (spins are disordered and uncorrelated) and
low-T (spins tend to be parallel and correlated) phases, and (ii) enormous,
because phase transitions (and even transition scenarios) between nigh-T and
low-T phases are different as well as the spectrum of low-energy excitations.
For example, the Ising model is a prototype for the liquid-vapor transition
(see also below), and the XY-model is a prototype for the superfluid-normal
fluid transition. This correspondence derives from the theory of critical phe-
nomena which states that the only “important features” in continuous phase
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transitions are
- the dimension of space
- whether interactions are short- or long-range , and, finally,
- number of components of the order parameter.
Ising spin order is characterized by a single number—spontaneous magnetization—
which is the difference between the number of up and down spins.. Similarly,
the difference between the liquid and vapor phases is characterized by the
volume per particle difference. Order among XY-spins is characterized by the
magnetization vector ~M =

∑

i ~ni which has two components, modulus and
direction in the XY-plane. Similarly, the superfluid order is characterized by
the complex order parameter which is no different from the two-dimensional
vector. Systems having the same “important features” have continuous phase
transition of the same kind, i.e. the scenario of the transition, important fluc-
tuations, large-scale behavior of correlation functions, temperature or param-
eter dependence of various quantities in the vicinity of the critical point—all
are universal=model/system independent.

One may go further and consider the so-called O(N)-models by making
~ni in Eq. (1) unit vectors in N-dimensions. What concerns us now, however,
is not what these models represent, but how we can simulate them using MC
techniques. The simplest approach would be to select at random some site,
and to propose ~n′i by generating new values for N-dimensional solid angles
using appropriate distribution functions.

Problem. Figure out the single-spin heat bath algorithm for the
O(3)-model (where ~ni are familiar three-dimensional unit vec-
tors) with the ”perfect” acceptance ratio R = 1. By algorithm
I mean an explicit set of instructions/equations for perform-
ing an update. [You may explain in words the part related to
rotating the coordinate system.]

Potts models

Potts models are another generalization of the Ising model, now in the
direction of extending the list of possible values for discrete lattice variables
σi. It reads

E = −J
∑

<ij>

δσi,σj
, σi = 1, 2, . . . , q . (3)
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The number of allowed values q is an important parameter of the q-state Potts
model. For q = 2 it is identical to the Ising model with JIsing = JPotts/2.
Indeed, if we count energy from the fully polarized state E0 = E(σi = const),
then for every pair of neighbors with different spin values we pay an extra
energy JPotts. In the Ising model we pay energy 2JIsing for antiparallel spins.

In the Potts model spins are also correlated (would like to have the same
value) at low temperature. The transition temperature to the spontaneously
ordered state is decreasing with increasing q because there are more and more
ways of making disordered states and thus the entropic contribution, −TS,
decreases the free energy of the disordered state.

It takes seconds to adapt the single spin flip or heat bath algorithm for
the Ising model to perform simulations of the Pott model. The only thing to
note here is that for large q the heat bath algorithm is more efficient since
chances are getting smaller to suggest the same value of the spin variable
(see discussion in the previous Sect.).

Problem. Heat bath algorithm. If ns, s = 1, 2, . . . , q is the
number of n.n. spins with σ = s then propose a new value
σ′k with the probability pσ =. Hmmm..., what is pσ?

Glasses. First-order phase transitions.

Glasses are one of the toughest topics in all of physics. Formally, glasses rep-
resent systems with very strong degree of disorder and frustration such that
there is no easy way to guess what the lowest free-energy state looks like, or
even how many macroscopically distinguishable states may be realized at a
given temperature. In fact, the appearance of many minima with comparable
free-energies which are separated by macroscopically large barriers is consid-
ered to be the origin of the glass transition at Tg. Experimentally, the glass
transition is observed as freezing of the system dynamics; the empirical law
used in many cases is τ ≈ τo eTg/(Tg−T ), which says that the relaxation time
for some observed quantity (stress, magnetization, density, etc.) diverges
at Tg. Below Tg the system response shows hysteresis, memory effects, and
other features expected when the relaxation time is much longer than the

5



experimental time scale.
The picture of multiple minima with large
barriers separating them (the time required
to cross the barrier is an exponential func-
tion of the barrier height, FB, and diverges
fast in the thermodynamic limit if the free-
energy barrier scales with the system size,
FB ∼ Lα>0) is consistent with the experi-
mental observations.

F

configuration space

F
B

The simplest glass model is obtained by making coupling between spins ran-
dom

H/T = −
∑

<ij>

Kijσiσj . (4)

The distribution of Kij can be discrete with Kij = ±K randomly on each
bond, or continuous, e.g. with the Gaussian distribution P (K) ∼ e−K2/2σ2

.
This type of spin glass models are called Edwards-Anderson glasses.

Problem. Suppose that random couplings between spins
are obtained from Kij = ξiξj where ξi = ±1 on each site
(Mattis, 1976). Show that the Mattis “glass” is not glass
at all, and in fact its properties are identical to the regular
Ising model.

The other model of interest is the random-field Ising model

H/T = −K
∑

<ij>

σiσj +
∑

i

hiσi , (5)

with the second term describing random local fields acting on spins. Again
the distribution of local fields may be discrete or continuous with the zero
mean. Strictly speaking, the random field Ising model is not a glass model,
but simulating it is as hard as a true glass because its free-energy landscape
also has large barriers. In the paramagnetic state T > Tc of the regular
Ising model spins are oriented randomly and typical fluctuations of the total
magnetization are of order N1/2. Close to Tc spins become correlated over
a large correlation length ξ and form a complex structure of large fractal
domains which, are free to evolve and change their shapes. When random
fields are present, the domain structures are pinned to the lattice, and trans-
forming them requires overcoming large energy barriers which scale with the
correlation length.
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Simulations of equilibrium properties of glasses are notoriously difficult for
exactly the same reasons why experimental relaxation times diverge—large
free-energy barriers. One may argue that simulating equilibrium properties
of glasses is a useless exercise, since they are never observed in real life. True,
but then there are also theories of glassy states which make predictions of
equilibrium properties. In the long run, physics is about distilling our knowl-
edge of Nature into the smallest number of basic concepts, ideas and theo-
ries. So far, there is no good method for simulating glasses. However, there
are techniques designed specifically for problems with large energy barriers
which perform much better then the simple Metropolis spin-flip algorithm
(next Sect.)

A related issue is how to simulate efficiently systems with first-order phase
transitions. First-order phase transition, say between phases A and B, is
discontinuous, which means that energies of phases A and B at the transition
point satisfy EA(Tc) − EB(Tc) ∼ N . In the equilibrium state of A/B the
probability of having system energy E is given by the Gaussian (see previous
Section) P (E) ∼ exp{−(E − EA/B)2β2/2CA/B}, where CA/B is the specific
heat of the corresponding phase. When |EA − EB|β ∼ N ≫

√
CA + CB ∼√

N , the overlap between the energy distributions of phases A and B is so
small that in a realistic MC simulation which generates configurations with
probabilities proportional to their Gibbs weights one will never see both A
and B at Tc. The simulation will simply stuck in one of the phases.

Moreover, even when T is slightly
shifted to the B=phase side but
the initial configuration is of the
A-type it is still possible that it
will never change to B-type un-
less |T − Tc| is large enough. It is
typical to see hysteresis in results
when the transition is first-order.

<E>, C, etc.

TTc

The size of the hysteresis loop is determined by the probability of the overlap
between the two energy distributions times the simulation time.

Conserved order-parameter models
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This is yet another version of the Ising model. The Hamiltonian itself is
exactly the same, i.e. n.n. coupling between spins, but there is also an explicit
condition that the total magnetization is conserved

∑

i σi = M0 = const.
This model is interesting for two reasons (i) it describes the classical system
of interacting particles on a lattice when the number of particles is fixed, and
(ii) it models Ising spins in the presence of external magnetic field at high
enough temperature, e.g. T > Tc, provided MIsing(H, T ) = M0 since in the
thermodynamic limit it really does not matter whether M is fluctuating a
little or not.

The mapping to the lattice model of interacting particles is done by sub-
stituting σi = 2ni − 1 where ni = 0, 1, to the Ising model

H/T = −K
∑

<ij>

(2ni − 1)(2nj − 1) = −ǫ
∑

<ij>

ninj + ǫd
∑

i

ni − dNǫ/4 , (6)

where ǫ = 4K. The conserved magnetization condition transforms into the
conserved particle number constraint

∑

i ni = Np = (N + M0)/2 = const.
Given this condition, the second and third terms in the Hamiltonian (6) are
constant ǫd(Np − N/4) and may be safely omitted. In this model particle
interactions include the hard-core repulsion potential which does not allow
to have more than one particle per site, and n.n. attraction ǫ which favors
larger particle densities. In fact, this model, often called the conserved order
parameter (COP) Ising model, is a pretty accurate representation of binary
alloys.

As mentioned already, properties of the COP model are closely related
to properties of the Ising model. Since states with M0 > 0 and M0 < 0 have
identical properties we restrict ourselves to the case of positive M0.

As long as M0 is larger then the
spontaneous magnetization of the
conventional Ising model M(H =
0, T ) ≡ Ms shown by the solid
line, the system state is homoge-
neous and in the thermodynamic
limit corresponds to some state
of the Ising model in an external
magnetic field. If M0 < Ms, the
system state is phase separated.

M

N

cT T

M(H=0,T)

0

hom
ogeneous

phase
separated

The reason for phase separation is the competition between the bulk and

8



domain wall energies. If M is not conserved, then below Tc the best thermo-
dynamic state with the lowest bulk free-energy corresponds to the state with
spontaneous magnetization Ms. If M0 = Ms then the system is “happy” and
homogeneous, but if M0 < Ms the best bulk energy is obtained by splitting
the system into two parts N1 + N2 = N such that in each part the magne-
tization density is exactly Ms/N but opposite in direction. We have then
M1 + M2 = Ms(N1 − N2)/N = M0 which defines

N1/N = M0/2Ms + 1/2 ; N2/N = M0/2Ms − 1/2 .

Of course, there is an energy penalty for creating a surface between the up-
and down-oriented spins (small and high density regions of the lattice gas)
but this is only a tiny correction to the total free-energy with is dominated
by the bulk in the limit of infinite system size. The study of surface tension
(free-energy per unit area) is the most interesting application of the COP
Ising model.

It is easy to suggest an algorithm for MC simulations of the COP Ising
model. Obviously, the single spin-flip scheme is not applicable because it
does not conserve M . The minimal effort should involve two spins, and if
the selected pair has σ1 + σ2 = 0, i.e. spins are pointing in the opposite
directions, we may suggest to flip them σ1 → −σ1 and σ2 → −σ2. Spins σ1

and σ2 can be selected at random anywhere in the lattice; if we select the
same spin twice, or if σ1 + σ2 6= 0, we simply try to select the pair again.
The acceptance ratio is then simply the ratio of system Gibbs factors

R =
P ν→ν′

acc

P ν′→ν
acc

= e−β(Eν′−Eν) .

Most of the time spins in the pair are far away from each other and R
is nothing but the square of the acceptance ratio for the single spin-flip
algorithm.

Polymers.

Formally, polymers are long molecules consisting of many connected monomers
(monomers are small, compact, elementary units consisting of several atoms).
In what follows we will consider polymers having only one type of monomers.
Polymer models have different levels of complexity. More realistic ones con-
sider spheres of radius R connected by elastic rods which are characterized
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by the corresponding spring and bending constants. In addition, there is
also an interaction potential between the spheres which has short-range re-
pulsive and long-range (e.g. Coulomb) components. If one is interested in
large scale equilibrium properties, especially at the transition between the
dilute and globule (dense) phases, then more simple lattice polymer models
are used.

The natural length-scale in lattice polymer
models is the so-called persistence length, l;
this is the length over which the directions
between the n.n monomers are correlated. At
distances smaller than the persistence length
the polymer is basically a rigid elastic rod.
In lattice models l is a natural unit of length
equal to the lattice constant.

l

Consider a three dimensional simple cubic lattice of sites. The lattice polymer
of length L is defined as an ordered list of lattice points R1,R2, . . . ,RL such
that Ri+1 is the n.n. site of Ri.

Basically, it is a continuous oriented line
of length L. In realistic models com-
pact monomers repel each other at short
distances and the polymer line does not
intersect itself. Since persistence length
is typically much larger then the dis-
tance between monomers, it is less obvi-
ous whether self intersections should be
allowed or prohibited in lattice models.

R

R R

R

1

14

2 4

R 6

10R

Both cases may be considered, and site list ordering is important to specify
the polymer topology and to avoid ambiguous reading of the graph.

We are ready to write the lattice polymer model as

H/T =
L

∑

(i6=j)=1

V (Ri − Rj) . (7)

Its crucial features are the ordered list of n.n. (a chain of sites) and nonlocal
(along the chain index i) interaction potential V (R). Note, that there is
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no energy penalty for changing the chain direction locally, i.e. it is free to
bend. For V (R) = [V → ∞]δR=0 we obtain the so-called self-avoided
walk model, which is identical to the conventional random walk plus the
constraint of no self-intersection = all sites in the list {Ri} are different. Of
course, one may reintroduce the notion of the persistence length by adding
energy terms equivalent to κ

∑L−1
i=2 |2Ri −Ri−1 −Ri+1| which are non-zero if

vectors Ri−Ri−1 and Ri+1−Ri are different and the chain direction changes
at site Ri

In simulating polymers one is interested in such issues as the gyration
radius R2

g = 〈(R1 − RL)2〉and the end-points correlation function P (R =
|R1 − RL|) as a function of interaction potential and/or temperature. If V
has and attractive, e.g. Van der Waals type, component than at some point
the polymer undergoes a continuous transition to the globule state with much
higher density. Finally, in the limit of T → 0 polymers may form crystalline
states.

So, what would be a simple MC way to simulate polymers?

Well, one may select at ran-
dom any monomer RI and
suggest to shift it along the
diagonal of the plaquette
formed by Ri − Ri−1 and
Ri+1 − Ri vectors (if vec-
tors are parallel the update
is not possible).

I

R R I+1

R

I

RI-1
/

R

R1

R
R

R
I

I

I

I
/

/

/

/

R
2

If RI is the end point then it can be shifted to any of the points shown in the
figure, i.e. along the diagonal of the plaquette formed by RI+1 −RI and one
of the perpendicular lattice vectors. The update conserves chain ordering and
its length, and its acceptance ratio is the ratio of Gibbs factors for the final
and initial states. It is probably not the most efficient way of doing things,
for example, if the initial state is a straight line, then only end-point updates
will work at the beginning (but we address end-points only with probability
2/L). Of course, after the end-points have moved away from the straight line
we may update their neighbors, etc. and the polymer will eventually evolve
into a complex line shape.

In the snake algorithm one suggests to translate the polymer chain
along itself by one monomer, i.e. the polymer “head” is shifted to the n.n.
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lattice point selected at random, R1 → R′1, and all other sites follow it
R′i>1 = Ri−1, or, going backwards, the “tail” is shifted to the n.n. lattice point
selected at random, RL → R′L, and all other sites follow it R′i<L = Ri+1. The
detailed balance equation for this simple algorithm involves only the ratio of
configuration weights. This algorithm is not efficient since each move involves
at least ∼ L operations (we will see soon that a better handling of the data
make the snake update entirely local), but changes the shape of the polymer
only a little bit. However, its worm-algorithm version works better.

In the pivot algorithm one selects at random the monomer RI and uses
it as a pivot point for rotating either part of the polymer attached to RI . Let
we select to rotate the higher index part. Then we choose RI+1 to be any n.n.
site (assuming, for generality, that overlaps and selfintersections are allowed)
but preserve the relative order of all sites with i > I +1. The pivot algorithm
is very efficient in the dilute phase but fails to work in the globule phase.
The reason is clear—updates involve many beads at once because most of
the time we rotate large ∼ L parts of the system and create multiple overlaps
between the monomers which are not favored by the potential energy, thus,
exponentially small acceptance ratio.

Even in dilute phase, the number of
overlaps scales roughly as L0.6 according
to some tests and theoretical estimates
(Sokal). This scaling is not too bad given
the possibility of radically changing the
large-scale structure of the polymer in one
update. Long range interactions further
reduce the algorithm efficiency because its
acceptance ratio involves macroscopically
large Gibbs factors.

R I

Kinetic Equations.

Formally kinetic equations are a set of differential Eqs. for the distribution
function fi(t)

dfi(t)

dt
= F [{fi}] , (8)
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where F depends, in principle, on all fi. The “i” index may represent particle
coordinates, momenta, spins, energy levels, etc. If F is linear in fi and the
number of different i values is relatively small, then one may use linear algebra
methods to solve (8). Otherwise, MC simulations may turn out to be more
efficient.

I will consider here only the simplest case of linear F :

dfi(t)

dt
=

∑

j

Rij fj . (9)

Furthermore, I will assume that Eq. (9) describes an ensemble of particles
which occupy states indexed by “i” and undergo transitions between them
with rates Rij. Since the number of particles is conserved (or the distribution
function is normalized) we have

d
[

∑

i

fi(t)
]

/dt = 0 =
∑

ij

Rij fj

which for arbitrary distribution fj requires that

Rjj = −
∑

i6=j

Rij . (10)

Now we switch the point of view from ensemble to single particle one,
and say that if one particle is distributed initially over states “i” with the
probability distribution fi(t = 0) and then evolves in time by changing it’s
current index from i to i′ in time ∆t with probability ∼ Rii′∆t, then an
average over all possible random single-particle trajectories i(t) is identical
to solving Eq. (9). More precisely, if for each such trajectory we record it in
the histogram of visited sites, hi(tα) ≡ hiα, where index α refers to the time
grid, tα = α · ∆t, then

fi(tα) =
hi(tα)

∑

trajectories

; in the limit ∆t → 0 . (11)

This correspondence is possible because Eq. (9) is linear and it does not
matter whether we consider N → ∞ independent particles and see their
distribution evolving as they move around, or sum over independent single-
particle trajectories.

The advantage of the second point of view is that it is ready for the MC
simulation immediately. To begin with, initiate the histogram, hiα = 0, the
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time, α = 0, and trajectory, N = 1, counters. Then do the following:

1. Select the initial value of i with the probability distribution fi(0).

2. Update hiα = hiα + 1.

3. If rndm() < ∆t
∑

j 6=i Rji ≡ ∆t|Rii|, change the value of i to j by selecting
the new position from the normalized distribution Pj 6=i = Rji/|Rii|.

4. Increase α = α + 1 and go to point 2, unless α has already reached the
maximum value αmax; in this case reset α = 0, increase N = N + 1, and go
to point 1.

Sounds easy. The only tricky point is the value of ∆t. Formally, it
is arbitrarily small. In practice, it has to be finite to have non-vanishing
probabilities of changing the state and being able to reach interesting time
scales tmax = αmax∆t. Large ∆t are introducing systematic errors into the
simulation which scale as ∆t2. Indeed, we ignore the possibility that the
particle will change its state several times (most probably twice) during the
time interval ∆t. It seems reasonable to have ∆tR ∼ 10−2 or similar, where
R is the typical rate among Rii. Unfortunately, in some kinetic problems
there is no well defined notion of typical rates Rii because they vary orders
of magnitude depending on i. In such cases one may consider doing multiscale
simulations with adapting time grids, but I will not touch this subject.

At the beginning of this course we discussed random walks and mentioned
that they reproduce diffusion at large scales, In the previous version, the
random walker was living on a time grid tα = ατ , and was forced to shift
one step in space between temporal points. A better lattice version is given
by the kinetic Equation

dfi

dt
= −1

τ

∑

±µ

(

fi − fi±lµ

)

. (12)

where µ is the set of d directions on the lattice, µ = x̂, ŷ, . . . and l is the
lattice constant. When fi is a smooth function of i we may reduce (12) to
the conventional diffusion Equation by expanding small differences

fi+lµ + fi−lµ − 2fi ≈ l2
d2fi

di2µ
.
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Then, Eq. (12) becomes (denoting i ≡ r)

df(r, t)

dt
= D ∆f ; D = l2/τ . (13)

Problem. Doing MC simulation of model (12) in three di-
mensions (d = 3) is the homework. Note, that selecting a
new value of i if rndm() < ∆t 2d/τ is easy—just shift it one
step in any direction selected at random. Stop your simu-
lation at tmax/τ = 100. For initial distribution use fi = δi,0.
At the end of the simulation compare your MC result with
the Green function of the continuous diffusion Eq. (13)

G =
(

1

4πDt

)d/2

e−r2/4Dt .

There are models, models and more models. The Nature is complex in
appearance and behavior and simple models may only provide a limiting view
on some of its properties. We have to stop now ...
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