
From “Simple” to “Art”: more elaborate and efficient methods.

There are cases when the single spin-flip Metropolis scheme is so slow
and inefficient (in terms of its autocorrelation time) that it fails to produce
answers with the required accuracy. Below we look at some of the methods
which outperform the spin-flip algorithm by orders of magnitude in certain
regions of parameter space, especially in the vicinity of continuous phase
transition points.

What the right data structure can do.

Single spin-flip algorithm works fine at high temperature where there no
correlations between spins.

At very low temperature when most spins
point in the same direction it makes little
sense to select spins at random and sug-
gest to flip them because the typical ac-
ceptance ratio will be exponentially small,
R ∼ exp{−2d · 2J/T} � 1.

The low-T phase of the Ising model presents a nice example illustrating
importance of the proper data structure. If we describe the spin configuration
as a simple array {σi}, i = 1, 2, . . . , N , we have to store N numbers and
update them. But when most of them are σi = 1, the array is “boring”.
Instead, we may store in memory an array {il}, l = 1, 2, . . . ,M , where il are
sites with σil = −1

and understand (without mentioning this ex-
plicitly) that all other spins are up. The same
configuration as above is now described by
the following picture. Given new data struc-
ture describing low-T configurations we have
to update only M and {il} numbers → an ex-
ponentially smaller amount of information.

The efficient algorithm follows immediately then, and this is how one can
do it. We will need two updates U+ and U−, one increasing the number of
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down-spins, M →M + 1, and the other decreasing it, M →M − 1. At each
MC step we decide whether to use update U+ or U− with probabilities p+

and p− = 1 − p+ correspondingly.

- In U+, select at random any site which is not in the {il}-list, and sug-
gest to flip it. A simple way to implement this efficiently is to introduce
an auxiliary array of logical variables, up(N), such that up(i) =.true. if
σi = 1 and up(i) =.false. otherwise. To select the up-spin we generate
I = [rndm() ∗ N ] + 1, and check the value of up(I) until it is .true. If the
update is accepted, we add I to the {il}-list as the M + 1-st entry and in-
crease M = M + 1.

- In U−, we select at random any spin from the {il}-list and suggest to flip it.
If this update is accepted, we drop the corresponding site from the {il}-list
and decrease M = M − 1.

Tiny-tiny-tiny Appendix : Updating lists is easy:
- adding entry I: M = M + 1; iM = I
- removing entry iI : iI = iM ; M = M − 1

To complete the scheme we need the formula for the acceptance ratio.
The balance Eq. is

p+
1

N −M
e−βEM P (+)

acc = p−
1

M + 1
e−βEM+1 P (−)

acc , (1)

where term-by-term we write the probabilities of using a particular update,
selecting a given site, configuration weight, and accepting the update. Thus

P (+)
acc

P
(−)
acc

= R =
p−
p+

N −M

M + 1
e−β(EM+1−EM ) . (2)

Important reminder! In Eq. (2) the value of M is the number of down-
spins before the U+ update is implemented. Since the value of M is updated
by the algorithm, the same expression will look like

P (−)
acc

P
(+)
acc

=
1

R
=
p+

p−

M

N − (M − 1)
eβ(EM−EM−1) , (3)

when the acceptance ratio is calculated for going backwards using the U−

update with M understood as the current configuration parameter.
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Note that at low temperature N � M ≈ Ne−4dJ/T , which means that
for p+ = p− = 1/2 the acceptance ratio will be very close to unity most
of the time (except rare cases when we update n.n. of down-spins). The
efficiency of the low-T spin-flip algorithm is in addressing up and down spins
separately, in fact, we suggest to flip down spins far more frequently then
up-spins as T → 0. The lesson to learn is that efficient algorithms should
address the “important” degrees of freedom frequently. In the low-T phase
of the Ising model such degrees of freedom are isolated down-spins. Our
“advanced” spin-flip scheme works reasonably well at high temperature too
when M ≈ N/2, but it has no efficiency gain over the more simple scheme
discussed previously.

The real disaster happens when we start simulating critical properties
of the model, i.e. in the immediate vicinity of the critical point Tc, or at
|T − Tc|/Tc � 1. In the critical region the system is developing long-range
correlations between the spins and the important degrees of freedom are
fluctuating fractal domains of similarly oriented spins. This picture has very
little to do with the individual values of spins and, correspondingly, single
spin-flip algorithms are not updating the relevant (collective in nature) de-
grees of freedom efficiently. To quantify how algorithm works we look at the
autocorrelation time behavior, e.g. for energy, magnetization modulus, or
magnetic susceptibility at Tc for different system sizes.

Even when t0 is measured
in sweeps, the spin-flip algo-
rithm gives t0(Tc, L) ∼ Lz,
where z is called the dynam-
ical critical exponent of the
algorithm.

L

t0

1
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100
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The divergence of t0 with the system size means that it takes longer and
longer (even disregarding the scaling of the time unit = sweep = Ld updates)
for the algorithm to produce an uncorrelated configuration. The dynamical
critical exponent for the spin-flip algorithm is about z ≈ 2 in two dimensions.
It is possible to simulate square systems with L = 104; the large value of
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z tells us then that the efficiency will drop by a factor of 106−7 for the
largest system size. Obviously, we face a serious problem here (it is called
the “critical slowing down” problem) and should seek a better algorithm
for updating configurations close to Tc.

The idea of having a better data structure also helps to simulate the
COP Ising model at low temperature, or for M0 close to saturation. Instead
of selecting a pair of opposite-direction spins at random and rejecting most
selections (because at low T randomly selected pairs will be same-direction
spins with probability close to unity) we may select σ1 from the list of down-
spins and σ2 from the list of up-spins. In this case the number of up- and
down-spins does not change in the update (we still have to update the cor-
responding lists by exchanging their entries) and the probability of selecting
a given pair is exactly same in ν and ν ′. Although the acceptance ratio from
the previous Section does not change, R = e−β(Eν′−Eν), no time is wasted on
the selection process—all pairs qualify for the update.

Classical cluster algorithms: Swendsen-Wang, Wolff and
Niedermayer, approaches

The original idea of cluster algorithms was introduced by Swendsen and
Wang and later slightly modified by Niedermayer and Wolff. I will discuss
the Wolff’s implementation first. Well, if relevant degrees of freedom close
to Tc are domains of similarly oriented spins then we should update domains
as a whole, not single spins. Easy to say then to do it properly without
violating the balance Eq.! However, the solution proposed by Swendsen and
Wang is simple and thus brilliant (Wolff’s version):

1 Select any spin in the lattice at random; let it be σI . This is the first spin
of our future domain, or cluster, which I will denote by C for brevity.

2 Look at all n.n. of spin σI , and if some of them point in the same direc-
tion then include them into C with probability Padd. Make a list of all new
members of C.

3 For each new spin added to C examine its n.n. which are not part of C,
and if they point in the direction of σI then include them into the cluster
with probability Padd. Make a list of new members of C...
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4 The construction stops when the new member list is empty :(
Flip all spins in C with probability R.

There is a convenient language of bond states to describe cluster algo-
rithms which is introduced in the picture below

σi σj

satisfied bond

σi σj

unsatisfied bond

σi σ j

occupied bond  
(spins will be flipped together)

In bonds language, in point 2 above we identify “satisfied” bonds around
σI ; the bond is satisfied if spins across the bond have the same orientation.
Next, we “occupy” satisfied bonds with the probability Padd, add spins on
occupied bonds into to the cluster, and compose a new list of satisfied bonds
for just added spins (bonds may be considered for becoming occupied only
once), etc.

The algorithm is ergodic because there is finite probability of flipping
just one spin, and a sequence of such updates is sufficient to get an arbitrary
configuration. As usual, the balance Eq. must be satisfied. To write it we
compute the probability of constructing and flipping cluster C built from spin
σI in configuration ν, and balance it with the backwards move of constructing
and flipping exactly same cluster C built from the same initial spin σI in the
configuration ν ′. Since all spins in C are pointing in the same direction, the
probability of occupying bonds between the cluster spins are identical for the
direct and reversed updates. Also, the interaction energy between the cluster
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spins is the same.

ν /ν

C
σIσI C

σ σj j

The energy difference between ν and ν ′ is only due to the “surface” of the
cluster because ν and ν ′ differ by the number of bonds with are satisfied
across the boundary of C. Let us call the corresponding numbers Kν and
Kν′. Note, that C-boundary bonds satisfied in ν are unsatisfied in ν ′ and
vise versa, i.e. Kν +Kν′ account for all boundary bonds. The probability of
not occupying Kν bonds is (1 − Padd)

Kν—this is necessary for having C the
way it is. The detailed balance Eq. then reads

(1 − Padd)
Kν P (ν→ν′)

acc e−βEν = (1 − Padd)
Kν′ P (ν′→ν)

acc e−βEν′

P (ν→ν′)
acc

P
(ν′→ν)
acc

= (1 − Padd)
Kν′−Kν eβ2J(Kν′−Kν)

R =
(

1 − Padd
e−2Jβ

)Kν′−Kν

. (4)

It turns out that for Padd = 1 − e−2Jβ we get R = 1 and every update is
accepted!

At high temperature Padd → 0 and we are likely to perform a single
spin-flip update, just like in the ordinary Metropolis algorithm. At low tem-
perature, Padd → 1 and we typically end up with the cluster containing most
spins in the lattice. Not nice, but we already discussed how to handle the
low-T phase properly.

The remarkable feature of the Wolff algorithm is that it virtually elimi-
nates the critical slowing down problem by reducing the dynamical critical
exponent z to very small value z ≤ 0.25 [in fact, it is hard to tell whether
z is finite or not, since the data for t0(L) can also be fitted to A(1 + α lnL)
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with α ≈ 0.25]. This means an enormous efficiency gain over the spin-flip
schemes for the study of critical phenomena.

In the original Swendsen-Wang algorithm the whole lattice is partitioned
into clusters in a single update. Namely, after the construction of C = C1 is
over, we may select any of the remaining spins at random and start building
another cluster C2, excluding all bonds linking it to C1 from consideration.
Then we build C3, etc. until we run out of spins.

In practice, we simply address all satisfied bonds in the lattice, occupy
them with probabilities Padd, and identify clusters as spins connected by
chains of occupied bonds. At this point, if we select at random some spin σI
and flip the cluster it belongs to, we would get the Wolff algorithm because
we repeated all steps of this algorithms exactly (we also did extra work by
partitioning the rest of the lattice, but decided to “throw” it away). The
Swendsen-Wang algorithm instead decides to flip each cluster with prob-
ability 1/2. The proof of detailed balance is the same as for the Wolff’s
version—only cluster boundary bonds are treated differently when proposing
ν → ν ′ and going back ν ′ → ν but the probabilities of occupying such bonds
are exactly compensated by the corresponding Gibbs factors.

Now, why Wolff’s version of 1989 is better then the original 1987 scheme?
From the discussion in previous paragraph we see that the probability of
selecting a cluster to flip in the Wolff algorithm is proportional to its size,
i.e. the algorithm is oriented towards flipping larger clusters more frequently.
Flipping small clusters hardly makes sense because of the extra CPU time
spent on the construction process which involves a lot of rndm() calls, and
our knowledge that single-spin updates are not efficient at the transition
point. The difference between the Wolff and Swendsen-Wang approaches is
not dramatic though.

In 1988 Niedermayer proposed a cluster scheme which allows to occupy
all bonds, no matter satisfied or not. In his implementation, the probability
of occupying the bond is a function of the bond state, e.g. its energy, Padd =
Padd(E<ij>), where E<ij> = −Jσi · σj. For the Ising model satisfied bonds
have E<ij> = −J , and unsatisfied bonds have E<ij> = +J . The algorithm
itself is exactly the same as before with the only difference that all bonds
are now considered for being occupied (but only once!). The balance Eq. is
slightly different with respect to the bonds on the perimeter of the cluster
(bonds between cluster spins do not change their states when the cluster is
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flipped). Using previously introduced notations:

[1 − Padd(−J)]Kν [1 − Padd(J)]Kν′ P (ν→ν′)
acc e−βEν =

[1 − Padd(−J)]Kν′ [1 − Padd(J)]KνP (ν′→ν)
acc e−βEν′ . (5)

The product of the two first factors is the probability of not occupying any
of the cluster perimeter bonds. The acceptance ratio

R =

(

1 − Padd(−J)

1 − Padd(J)
e2βJ

)Kν′−Kν

, (6)

can be made perfect, i.e. ≥ 1, in a number of ways. Padd(−J) = 1 − e−2βJ ;
Padd(J) = 0 is the Swendsen-Wang solution, but there are other possibilities
too. For example,

Padd(E) =

{

1 − eβ(E−E0) if E < E0

0 otherwise
(7)

with arbitrary E0 ≥ J will result in R ≥ 1. Niedermayer argued that free
parameter E0 may be used to further optimize the performance of cluster
schemes, but this still remains a poorly researched proposal. For E0 < J the
acceptance ratio is less than unity, and, finally, for E0 < −J the algorithm
is reduced to the single-flip update because Padd(E) ≡ 0.

Invaded cluster algorithm (ICA) for critical points

This algorithm, invented by J. Machta et al. (1995), is an interesting
deviation from the mainstream of MC methods because it is not based on
the balance Eq. (!!!), and thus statistics of generated configurations is not
representing the state of thermal equilibrium. However, it does find the
critical point of the model automatically, and this is its main utility.

Let us first discuss differences between the low- and high-temperature
states of the system in terms of cluster decomposition. In the disordered
phase the spin-spin correlation function decays to zero at large distances,
while in the ordered phase g(i → ∞) → const. We thus expect all cluster
sizes much smaller than the system size at high T, and the largest clus-
ter spreading through the whole system at low T. Using previously derived
expression for magnetic susceptibility χ = 〈M 2〉/TN =

∑

i g(i)/T we imme-
diately see that χ→ ∞ when T → Tc (in the thermodynamic limit). In the
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Swendsen-Wang algorithm all spins are partitioned into clusters which are
then independently assigned random spin orientations. If nI is the number
of spins in cluster I, then M =

∑

I sInI , and

〈M2〉 = 〈
∑

I

s2
In

2
I〉 + 〈

∑

I 6=I′
sIsI′ nInI′〉 = 〈

∑

I

n2
I〉 (8)

The last equality follows from the fact that cluster orientations sI = ±1 are
random and uncorrelated. For χ to diverge at the critical point, it is crucial
to have clusters with macroscopic sizes, i.e. nI ∼ Nα with positive α (at low
T spins are strongly correlated and cluster sizes grow as large as ∼ N).

Macroscopic clusters stretch across the entire system and it is possible
to connect system boundaries by a network of occupied bonds. Such clus-
ters are called “percolating”. The outcome of this lengthy discussion is the
relation between the percolating network just appearing in the system and
the critical point. ICA uses this relation to determine Tc. It works as follows:

1. For any configuration of spins determine satisfied bonds and generate one
random number for each satisfied bond.

2. By occupying bonds having their random numbers smaller than some
initial parameter p = pini we build clusters with sizes nI(p). If none of them
is percolating, we increase p and keep growing clusters until one of them is
percolating. The final value of p is denoted as pfin. Formally, this procedure
is identical to the conventional Swendsen-Wang update at temperature

T = − 2J

ln(1 − pfin)
, (9)

because pfin is the probability of occupying a satisfied bond by construction.

3. Flip clusters as in the Swendsen-Wang algorithm and start over again
from point 1.

Clearly, ICA is driving the system to the critical point by iteratively ad-
justing system temperature to be at the percolating point. In every update,
system temperature is calculated from the probability of occupying satisfied
bonds, Eq. (9). The outcome of the simulation is the average over the ICA
process: Tc(L) = 〈 T 〉ICA. As usual, the thermodynamic-limit answer is ob-
tained by extrapolating a series of finite-size simulations Tc = limL→∞ Tc(L).
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One may also study other system properties at the critical point such as χ(L)
and E(L).

The most important feature of ICA is its fast equilibration time. In most
tests it equilibrates just in few MC updates, and its autocorrelation time
is close to unity. This property is extremely important for multiprocessor
simulations when MC statistics is increased by simply summing results of
independent runs. When the thermalization time is short, very little CPU
time is wasted on the initial thermalization process. Unfortunately, ICA
works by constantly changing system temperature and thus properties of
statistical fluctuations at the critical point (and even finite size corrections)
can not be studied by this method. However, one may always ”switch”
from the ICA to the Swendsen-Wang mode in the same code and perform
conventional stat. mech simulation at a fixed temperature.

Problem. Let some MC code with the autocorrelation time t0
and thermalization time tth � t0 is used in the multiprocessor
simulation (the number of processors is M � 1). The goal is to
generate K �M statistically independent configurations. Each
processor runs independently. Estimate the required CPU time
per processor. When the problem of long thermalization time
is a serious issue?
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Concluding remarks: All cluster methods discussed above can be easily
reformulated for many other classical models, e.g. Potts, XY and O(N) sys-
tems. Consider, for example, how Wolff algorithm can be implemented for
the continuous XY-model.

1. Choose at random the seed spin, σI , and
the direction in the XY plane, ~z. For ev-
ery spin in the lattice the notion of “up-” or
“down-spin” is defined with respect to the
~z-axis, i.e. if ~σj · ~z > 0 we say that ~σj is
pointing up. Correspondingly, the bond is
satisfied if σi and σj are both up- or down-
spins; otherwise the bond is unsatisfied.

z

σI

2. The rest of the update is done very much the same way as for the Ising
model: consider all satisfied bonds around σI and occupy them with the
probability

Padd(~σi, ~σj) = 1 − e−2βJσz
i
σz

j , where σz = ~σ~z . (10)

For each new spin added to the cluster by occupying the bond, make a list
of new satisfied bonds not considered before, etc ... The cluster construction
continues until the list of new satisfied bonds is empty.

3. Flip the cluster with respect to the
plane perpendicular to the ~z-axis, i.e. change
the sign of the spin projection on ~z-axis,
while keeping perpendicular components in-
tact: ~σ′ ≡ ~σ − 2~zσz.

z
σ

σ /

We can always write the scalar product of n.n. spins as ~σi · ~σj = σzi σ
z
j +

~σi
⊥ ·~σ⊥

j by separating components ‖ and ⊥ to the ~z-axis. The system energy
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then takes the form

E = −J
∑

<ij>

σzi σ
z
j − J

∑

<ij>

~σi
⊥ · ~σ⊥

j .

The second term remains constant in the update and is the same for ν and ν ′.
The first term is identical to the Ising model. We immediately realize that
the algorithm has acceptance ratio R ≥ 1 because it reproduces precisely
what is done for the Ising model. The only extra feature (familiar from the
Niedermayer’s scheme) is that Padd is a function of the ~z-axis contribution to
the bond energy.

The efficiency of cluster methods is based on the possibility of having R ≥
1 for flipping arbitrary large clusters. Perfect acceptance ratio is obtained
by clever building rules which take care of the surface energy. Since all spins
in the cluster are flipped together, there is no energy penalty coming from
the cluster bulk. However, this is true only in zero magnetic field, or, more
generally, when the system Hamiltonian is invariant under flipping (rotating
by the same angle) all spins. In finite magnetic the acceptance ratio gets an
extra factor

R(H 6= 0) = R(H = 0) exp

{

− 1

T

∑

cluster

~H · (~σi − ~σi
′)

}

,

which is exponentially small for large clusters. Small acceptance ratio is
obviously a very serious problem since most of the CPU time is wasted for
nothing.
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Classical Worm algorithms (WA)

WA was originally introduced for quantum statistical models by Prokof’ev,
Svistunov and Tupitsyn (1997), and later generalized to classical models by
Prokof’ev and Svistunov (2001). The idea of WA is extremely simple. Imag-
ine that the configuration space of the model can be represented by a collec-
tion of closed paths.

Many loops are allowed, they
may overlap and intersect. In
other words, anything you may
draw with only one restriction—
no open ends. In some models
the path is oriented, i.e. one
has to specify the direction along
the line. Notice, that intersec-
tions make the “reading of the
graph”, i.e. deciphering how it
was drawn, ambiguous, and this
ambiguity is different for oriented
and unoriented graphs.

continuous lattice

oriented

We will see shortly how closed path (CP) representation is obtained for
the Ising, XY, and other classical models, but for now take it for granted.
System energy is a function of the path, Epath, and the partition function is
obtained by summing over all possible CP-configurations Z =

∑

CP e−Epath .

The most straightfor-
ward update of the
CP-configuration is to
add/remove an ele-
mentary loop (or pla-
quette, in lattice mod-
els). Only a small
fragment of the CP
configuration is shown
here.

add

rr

ν

r

ν /

ν /ν

remove

r

By repeating this procedure many times one can create paths of arbitrary
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shapes and change the number of loops. One thing, however, can not be
changed by adding and removing elementary loops, namely, loops which wind
around the system with periodic boundary conditions. For example, in the
figure below

A B C

A cannot be transformed to B and B can not be transformed to C (periodic
boundary conditions are important here (!), otherwise the path in B and C
is not closed).

To account for loops winding around the system one may supplement
elementary-loop updates with global updates which propose to add/remove
a large loop stretching across the system.

Global updates, however, have expo-
nentially small acceptance ratio to in-
sert the line, and exponential small
probability to find one if we want to re-
move it, i.e. they are inefficient in large
scale simulations.

ν /ν

Worm Algorithm (WA) uses another strategy for updating CP-configurations.
It consists of two major steps:

1. Configuration space is enlarged to include one disconnected loop, as if
someone started drawing a new loop but is not finished yet. Let us denote
such configurations as CPg. From time to time the two ends of the dis-
connected loop meet at some point, and we recover the CP-configuration.
In most cases configurations with one disconnected loop are not just an in-
termediate stage of the “drawing algorithm” trick, but represent important
correlation functions, e.g. g(i) = 〈σiσj〉 (the derivation of this statement,

14



and more examples are given below).

2. All updates on CPg configurations
are performed exclusively through the
end-points of the disconnected loop, no
elementary-loop updates, no global up-
dates. In essence, WA is literally a
“draw” and “erase” procedure, exactly
as you would produce a subtle tangle of
loops on a paper.

pen

eraser

WA is a local Metropolis scheme, but, remarkably, its efficiency is sim-
ilar to the best cluster methods at the critical point, i.e. it does not suffer
from the critical slowing down problem. It has no problem producing loops
winding around the system and transforming A to B and further to C. In
what follows we will study how WA works for the Ising, XY, and |ψ|4-models.

High-temperature expansions for the Ising model:
It seems, at first glance, that the Ising model has nothing to do with the CP
configuration space. The trick is to switch from site to bond variables. Let
us write the partition function as

Z =
∑

{σi}

e−H/T ≡
∑

{σi}

∏

b=(i,µ)

eKσiσi+µ , (K = βJ) , (11)

where b is the bond index; we label
bonds by site i and direction µ =
1, 2, ..., d, so that site i + µ is the n.n.
of site i in direction µ. The convention
is that i − µ is the n.n. of site i in the
direction opposite to µ.

i i+

µb=(i,   )

µ

Before summing over spin variables we first expand exponents for each
bond into Taylor series and rearrange terms

Z =
∑

{σi}

∏

b=(i,µ)





∞
∑

nb=0

Knb

nb!
(σiσi+µ)

nb



 ≡
∑

{nb}

(

∏

b

Knb

nb!

)

∑

{σi}

(

∏

i

σpi

i

)

, (12)
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where pi =
∑

µ(n(i,µ)+n(i,−µ)) is the sum of all “bond variables”, nb, for bonds
connecting site i to its n.n. Summation over spins is trivial now because

∑

σi=±1

σpi =

{

2 for even pi
0 for odd pi

We are left with the sum over all possible bond variables which satisfy the
constraint that on all sites pi are even numbers

Z = 2N
∑

{nb}CP

W ({nb}) ; W ({nb}) =
∏

b

Knb

nb!
. (13)

As usual, W is the weight of the bond configuration defined as a collection
of {nb} numbers.

If we present graphically each term in the expansion over K by a line
on the corresponding bond (Knb/nb! is presented by nb lines), then the
{pi}=even constraint is equivalent to the condition that bond lines form
a closed path configuration. Indeed, if we draw a continuous closed path we
always enter and exit each site and ensure that lines are added to the site in
pairs.

A typical {nb}CP configura-
tion is shown in the figure,
with bond variables men-
tioned next to the solid line.

1

1

1

1

2

21 1

111

1 1
1

1

1
1

1

So far we did not make any progress in the solution of the Ising model; we
simply formulated it in terms of statistics of un-oriented loops.

Next, consider the spin-spin correlation function

g(j2 − j1) = Z−1
∑

{σi}

σj1σj2 e
−H/T ≡ G(j2 − j1)/Z . (14)

We may now repeat all steps of the expansion in terms of bond variables
and perform summation over spins for G. The only difference between G
and Z is that for two special sites, j1 and j2, we now have σpj1

+1 and σpj2
+1.
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As a consequence, bond configurations with non-zero weight must satisfy
a constraint: {pi} are all even with the exception of sites j1 and j2 where
pj1 and pj2 are odd unless j1 = j2. Graphically, sites j1 and j2 are the
end-points of some disconnected path, i.e. configurations contributing to G
are the CPg-configurations representing intermediate stages of the “drawing”
process. Thus we have

g(i) =

∑

{nb}CPg
W ({nb})Aj1,j2=j1+i

∑

{nb}CP
W ({nb})

, (15)

where A is simply a “reminder” telling us the distance between the end-
points, or the relative location of σj1 and σj2 variables in the correlation
function.

What we did above is also known as a high-temperature expansion be-
cause K = βJ → 0 as T → ∞ and the expansion is converging fast. It
is almost self-evident now that this expansion is perfectly suited for WA.
The algorithm itself has only one “shift” update which straightforwardly
implements the draw-and-erase procedure. The convention is to call the end
points “ira”=j1-site and “masha”=j2-site.

1. If ira = masha, select at random a new site j and assign ira = masha = j;
otherwise skip this step. It is introduced to be able to start drawing a new
line from any site when the current path is closed. Select at random the
direction (bond) to shift masha to the n.n. site, let it be j3, and whether
this shift will increase or decrease the bond number by one, i.e. whether we
would like to draw or erase the line.

2. Perform the shift if rndm() < R: assign masha = j3, and undate the
corresponding bond number nb = nb ± 1. This is it!

The acceptance ratio is given by the ratio of the configuration weights:

R =
2d

2d

{

K/(nb + 1) when the bond number is increased
nb/K when the bond number is decreased

(16)

In this algorithm every configuration is contributing to the spin-spin cor-
relation function; if i =(distance between masha and ira) then you may
add to the statistics of G(i) = G(i) + 1. The partition function is updated
Z = Z + 1 only when ira = masha, i.e. when the configuration is CP.
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This correlation function is automatically normalized properly because we
get g(0) = 1 as expected, 〈 σiσi〉 = 〈 1〉 = 1. Magnetic susceptibility is just
the sum over all points for the correlation function χ =

∑

i g(i)/T . As usual,
the estimator for energy is obtained from E = −∂ lnZ/∂β, but now we have
to use the representation (13) to apply it:

E = −Z−1
∑

CP

∑

b

(nb/β)W ({nb}) = −T 〈Nb〉 , (17)

where Nb =
∑

b nb is the sum of bond numbers in the configuration. The
corresponding counter is easy to keep track of; when the “shift” update is
accepted, Nb = Nb ± 1.

Problem. Figure out how to calculate the average en-
ergy through the correlation function, i.e. without using
Eq. (17).

There are a couple of notes worth discussing here. It went unmentioned
in the discussion above that CP and CPg configurations can, in general,
have arbitrary relative weights even when ira = masha. This arbitrary
relative weight, let us call it ωG, is removed at the end of the calculation
by normalizing the correlation function to the known answer, for example,
if it is known that g(0) = C, then we apply the following transformation
to the MC data g(i) = C[g(i)/g(0)]. For the Ising model we are lucky that
σ2
i = 1, and thus C = 1; next, we discuss the |ψ|4-model where C 6= 0. The

other observation is that in the update shifting masha to the ira-site we do
not have the 1/N factor in the acceptance ratio. Formally, the probability
of going backwards is 1/2dN , but we can always assume that when shifting
masha to the ira-site we also go from CPg to the CP configuration and thus
their relative weight ωG should be mentioned in the balance equation (below
masha′ = ira)

P (masha→masha′)
acc ωG (1/2d)Wν = P (masha′→masha)

acc (1/2dN)Wν′ . (18)

By choosing ωG = 1/N we compensate the 1/N factor on the r.h.s. and
obtain properly normalized g(i). Of course, it makes sense to select ωG so that
the normalization of the correlation function is automatic, but, unfortunately,
sometimes the true value of g(0) is known only from the same MC simulation.
In any case, Eq. (18) may be used instead of Eq. (16) if necessary.
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The other note is specific to the Ising model. Instead of expanding bond
exponentials into the Taylor series we can use the following identity

eKσiσj ≡ cosh(K)(1 + tanh(K) σiσj) ≡ cosh(K)
1
∑

nb=0

tanhnb(K)(σiσj)
nb ,

This simple identity is possible because the σiσj product has only two val-
ues, ±1. This representation has an advantage that bond numbers nb can
take only two values 0 and 1, i.e. we have a smaller configuration space—
this makes a big difference in the algorithm performance at low temperature
when K → ∞ and tanh(K) → 1. The rest in the algorithm is exactly as
before with R = tanh±1(K).

Problem. Write down an explicit expression for the parti-
tion function for this nb = 0, 1 representation, and use it to
derive the estimator for energy,

E = −J tanh(K) [2N + 〈Nb〉/ sinh2(K)] .

Problem. This is a long one. Develop a WA code with
the shift update for the Ising model and use it to calculate
the spin-spin correlation function in 2D. Take K = Kc and
L2 = 1002. Do not forget to thermalize for 108 updates
before you start. Ask me for tricks if necessary.

High-temperature expansion and WA for the |ψ|4 model:
The model itself is defined by the Hamiltonian (i, j and k below are d-
dimensional vectors)

H = −t
∑

<ij>

[ψ∗
i ψj + ψiψ

∗
j ] − c

∑

i

|ψi|2 + (U/2)
∑

i

|ψi|4 , (19)

where {ψi} are complex number variables. The first term cam be written in
the diagonal form

Hk =
∑

k

εk|ψk|2 , εk = −2t
∑

µ

cos(kµ) . (20)
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if we use the Fourier representation for ψi

ψk = N−1/2
∑

j

e−ikjψj ,

ψj = N−1/2
∑

k

eikjψk .

The second and third terms describe linear and nonlinear interactions be-
tween the complex fields. I will skip here arguments how this model can be
relevant for simulations of the weakly-interacting Bose gas, and simply note
that it can be obtained from the quantum Hamiltonian

H = −t
∑

<ij>

[b†ibj + bib
†
j] − c

∑

i

ni + (U/2)
∑

i

n2
i , (21)

where bi and b†i are bosonic creation and annihilation operators, and ni = b†ibi
are site occupation numbers. The first term describes particle hopping be-
tween lattice sites, the second term is then the chemical potential contri-
bution (often considered formally as an integral part of the Hamiltonian
in the Grand canonical ensemble simulations), and, finally, U describes on-
site interactions between particles. This model is also known as lattice Bose
Hubbard model. If we replace bi → ψi we will transform (21) to (19). This
transformation does not change the physics of the model only under special
conditions (not discussed here), but we will keep notations and constants
names as they were for the quantum case, e.g. ni = |ψi|2 and nk = |ψk|2
are occupation numbers in the site and momentum representations, and
Np =

∑

i ni =
∑

k nk is the total number of “particles”.

Problem. Explain the connection between the XY and
|ψ|4 models. More specifically, show that the XY-model is
a specific limiting case of the |ψ|4 model.

The partition function of the |ψi|4 model reads

Z =
∏

i

(∫

dψi

)

e−H/T .

It depends on the ratios of t/T = t̃, c/T = c̃ and U/T = Ũ . In fact,
the dependence on one ratio is trivial and can be singled out by rescaling
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fields. Since fields ψ are continuous and their real and imaginary parts vary
from −∞ to ∞ we may apply the scaling transformation ψ → ψ̄/λ without
changing the structure of the partition function integral. Then

Z = λ2dN
∏

i

(∫

dψ̄i

)

eS̃ , (22)

where

S = −H/T =
t

Tλ

∑

<ij>

[ψ̄∗
i ψ̄j + h.c.] − c

Tλ

∑

i

|ψ̄i|2 +
U

2Tλ2

∑

i

|ψ̄i|4 .

One may choose λ = t/T to make the coefficient in front of the first term
equal to unity and write Z = (T/t)2dNf(c̄, Ū), where c̄ = c/t, and Ū =
UT/t2. In what follows I will not use this property, though.

The high temperature expansion proceeds as follows. Expand bond ex-
ponentials into Taylor series

e(t/T )ψ∗
i
ψj =

∞
∑

n=0

(ψ∗
i ψj)

n (t/T )n/n! ,

e(t/T )ψiψ
∗
j =

∞
∑

m=0

(ψ∗
i ψj)

m (t/T )m/m! .

Now we have two exponentials for the bond: one corresponds to the particle
hopping from site j to site i and the other describes hopping events in the
opposite direction. Graphically, we may use directed lines to specify terms
in each expansion (line arrows specify the direction of the hopping event).

Now we have two exponentials for the
bond: one corresponds to the parti-
cle hopping from site j to site i and
the other describes hopping events in
the opposite direction. Graphically, we
may use directed lines to specify terms
in each expansion (line arrows specify
the direction of the hopping event). It
is also convenient to call directed lines
“currents”.

The obvious convention is that for bond between n.n. sites i and j the
incoming current for i is the outgoing current for j.
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The partition function takes the form

Z =
∑

{nb,mb}

(

∏

b

(t/T )nb+mb

nb!mb!

)

∏

i

(∫

dψi ψ
pi

i (ψ∗
i )
rie−(U/2T )|ψi |

4+(c/T )|ψi|
2

)

,

(23)
where pi =

∑

µ n(i,µ) + n(i,−µ) and ri =
∑

µm(i+µ,−µ) +m(i−µ,µ) are the sums
over all outgoing and incoming currents correspondingly. When the integral
over the complex field is written in the polar or (module,angle) coordinates

∫

dψψp(ψ∗)re−(U/2T )|ψ|4+(c/T )|ψ|2 =
∫

d|ψ||ψ|p+r+1e−(U/2T )|ψ|4+(c/T )|ψ|2eiϕ(p−r)dϕ ,

it becomes obvious that due to the phase integral the non-zero result is
obtained only for p = r, i.e. when the number of incoming and outgoing
currents are equal for each site. Once again, this is the CP constraint on the
allowed bond or current configurations. The remaining integral is a function
of the site ”charge” p

Q(p) =
∫

dx x2p+1e−(U/2T )x4+(c/T )x2

(recall that for the Ising model the corresponding site factors were all the
same, Q = 2). These integrals are not a big deal in terms of practical
implementation of the code, since they can be easily tabulated (for a given
set of Hamiltonian parameters) at the beginning of the MC run.

Our problem is now formulated in terms of summation over directed CP-
configurations

Z =
∑

{nb,mb}CP

W ({nb, mb}) , W ({nb, mb}) =
∏

b

(

(t/T )nb+mb

nb!mb!

)

∏

i

Q(pi) .

(24)
Similarly to the Ising model, the correlation function g(i = j2 − j1) =
〈 ψ∗

j1ψj2〉 ≡ G(i)/Z, also known as the Green function, is described by
the CPg-configurations for its numerator. Extra ψ∗

j2
and ψj1 factors require

that on the corresponding sites p − r = ±1, i.e. one extra current line is
entering/exiting the site.

At this point we recover the familiar set up suitable for the WA “draw and
erase” procedures. Since the configuration weight now depends explicitly on
the location of end-points even when ira = masha it makes sense to consider
the procedure of taking the pen out of the paper and placing it somewhere
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else (without drawing any lines) as a separate “relocate” update. Thus if
ira = masha = j0 we may choose with probability pre to do the “relocate”
update by selecting at random a new site j and, if j 6= j0 and rndm() < R,
assigning new values ira = masha = j. The acceptance ratio for this simple
update is

R =
Q(pj0)Q(pj + 1)

Q(pj0 + 1)Q(pj)

The “shift” update is almost identical to the shift update for the Ising
model:

1. Select at random the direction (bond) to shift masha to the n.n. site,
let it be j3, and whether this shift will increase the outgoing current of de-
crease the incoming current by one, i.e. whether we would like to draw the
outgoing line or erase the incoming line. This update is accepted with prob-
ability psh = 1− pre if ira = masha and probability psh = 1 if ira 6= masha.
Correspondingly, the shift update in the backwards direction is selected with
probability p′sh = 1 − pre if ira = j3 and psh

′ = 1 if ira 6= j3

2. Perform the shift if rndm() < R: assign masha′ = j3, and undate the
corresponding bond, nb = nb + 1 or mb = mb − 1, and site numbers.

The acceptance ratio is given by the ratio of configuration weights and
probabilities to select the shift procedure

R =
\2d psh ′

\2d psh















t
T (nb+1)

Q(rj3+1)

Q(rj3 )
when the outgoing current number is increased

Tmb

t

Q(rj−1)

Q(rj)
when the incoming current number is decreased

(25)
Since configurations are generated with probabilities proportional to their

contributions to the G-function, the statistics for the correlation function can
be updated after every MC step, G(masha − ira) = G(masha − ira) + 1.
When ira = masha the configuration of bond numbers is of the CP -type, but
its weight in the G(i = 0)-sector is by a factor Q(pira + 1)/Q(pira) different
from its weight in the Z-sector since it contains an extra |ψira|2 factor. Thus
the MC estimator for the partition function is obtained by removing (in our
mind) one extra |ψira|2 factor

Z = Z +Q(pira)/Q(pira + 1) .
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The average particle density n = 〈 |ψi|2〉 is at the same time the normal-
ization factor for the correlation function n = g(0) = G(0)/Z. The average
interaction energy is given by 〈 |ψira|4〉 which has one more |ψira|2 factor on
site ira. Its estimator is then Q(pira+2)/Q(pira+1) when ira = masha. The
hopping energy is given by the sum of bond numbers −T 〈∑b(nb +mb)〉; this
formula derives from the now familiar approach 〈Hk〉 = −t∂ lnZ/∂(t/T ).

Superfluid stiffness and winding numbers.

This section is not about efficient MC methods. It discusses how one can
study the system response to the gauge field—the most important question in
the theory of superfluidity. We are still looking at the properties of classical
systems and one may object that superfluidity is a quantum phenomenon.
In short, the answer is NO, it is not quantum as far as the general principles
leading to superfluidity are concerned. Superfluidity arises when there is a
well defined, single valued complex order parameter field, Ψ = |Ψ|eφ. True,
often it originates from the quantum system wavefunction, but complex num-
bers can be considered as vectors in the XY-plane and classical systems such
as XY- and |ψ|4-models have similar macroscopic properties.

I will use the lattice |ψ|4-model with periodic boundary conditions to
introduce the gauge field and twisted boundary conditions, but same consid-
erations apply to continuous quantum/classical systems. Lattice gauge field
is defined by phases added to the hopping amplitudes

−t
∑

<ij>

ψ∗
i ψj + c.c. −→ −

∑

<ij>

(t eiφ<ij>)ψ∗
i ψj + c.c. . (26)

Since ψi are complex numbers, it does not change anything in the system if
we substitute ψi → eiδi ψi. This will, however, result in the gauge trans-
formation from φ<ij> to φ̃<ij> = φ<ij> − δi + δj. All gauge transformed
fields are equivalent to each other. If by proper choice of δi we can make φ̃
field equal to zero (or multiple of 2π) everywhere, then it has no effect on
the system.

In continuous models, gauge fields are introduced by making long space
derivatives

∇ −→ [∇− ia] . (27)

The connection between lattice gauge fields and more familiar continuous
version is obtained by considering slowly varying ψ and φ fields, or the limit
of small lattice constant l, and identifying φi,µ = −laµ(i) (using site-direction
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index to specify the bond). Notice, that in this limit φi,µ → 0. Then, writing
Eq. (26) explicitly in the self-conjugated form

−t
∑

iµ

(

ψ∗
i ψi+lµ e

−ilaµ(i) + ψ∗
i ψi−lµ e

ilaµ(i−µ)
)

, (28)

and expanding to order l2 one can show that it reduces to

Problem.

− 1

2m

∑

i

ψ∗
i [∇− ia]2ψi .

where 1/2m = tl2. Do the derivation and get this result
from Eq. (28).

We see that lattice gauge theories are more general than continuous ones
because the latter represent only a particular limiting case of the former.
Thus, all results derived for the lattice gauge field automatically apply to
continuous systems as well.

Consider now a gauge field which has non-zero bond phases only along
one direction, let it be the x̂-direction [recall also that i is the d-dimensional
index i = (x, y, . . .)]

φi,µ = δµ,x̂f(x)/Lx , (29)

where f(x) is arbitrary and Lx is the system size in x̂-direction. We ob-
serve that only the closed loop sum over all sites in the selected direction,
∑

x f(x) ≡ Φ, is physically meaningful; indeed, under gauge transformation
δx+lx̂ = δx− f(x), all bond phases φ̃i,µ become zero except φ̃Lx,x̂ = Φ. So far,
dealing with periodic boundary conditions, we insisted that sites obtained by
going Lµ steps in the direction µ are identical to themselves, i.e. ψi+Lµµ ≡ ψi.
This is exactly why we are not capable of eliminating all bond phases by the
gauge transformation performed on the ψ variables. If instead we formally
allow

ψi+Lµµ = e−iΦψi , (30)

then all gauge phases become zero but our ψ variables are not single valued
anymore unless Φ is a multiple of 2π. Eq. (30) is known under the name
of twisted boundary conditions. They are nothing but another way of
looking at things which may be useful in some calculations. Twisted bound-
ary conditions, are automatically satisfied if we, for simplicity, ”spread out”
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the gauge phase Φ evenly between the x-bonds; in other words, we add a
constant gradient term to the phase of the ψi field: ψi → eiϕ(x)ψi, where
ϕ(x) = Φx/Lx. For fixed Φ and large Lx the added phase gradient is macro-
scopically small, ∇ϕ(x) = Φ/Lx → 0.

Next, we look at the system response to this gauge field, or twisted bound-
ary conditions. The partition function, and all other thermodynamic quan-
tities are now functions of Φ. In finite-size systems the dependence on Φ is
analytic, and for small Φ one may use Taylor series to write the free-energy
F as

F (Φ) − F (0) =
ρ(x)
s Φ2

2m

V

L2
x

. (31)

This equation may be considered as the definition of ρs—it is a linear re-
sponse coefficient describing free-energy change in response to the gauge field
phase. Depending on the context, it is called the superfluid density, or
the helicity modulus, or the spin stiffness. The name does not matter
much here. The linear in Φ term is absent, because H is a real function
(hermitian operator in quantum case), and thus is an even function of phase:
H(−Φ) = H∗(Φ) = H(Φ). Correspondingly, Z and other thermodynamic
functions are also even in Φ. In a more general treatment, the gauge field is
non-zero in all directions, Φ = (Φx,Φy, . . .), and the superfluid density is a
tensor,

F (Φ) − F (0) =

(

ρ(x)
s

2m

)

µν

V ΦµΦν

LµLν
.

For simplicity, we will consider below only isotropic systems with (ρs/m)µν =
ρs/m δµν and equal linear sizes in all directions Lµ = L.

What about system size dependent factors in (31)? They are intro-
duced to ensure that (ρs/2m)(∇ϕ)2 has the meaning of the free-energy
density which is system size independent, and (ρs/m)∇ϕ has the mean-
ing of the current density. The above expression is then a volume integral
F =

∫

dV (ρs/2m)(∇ϕ)2.
Since ρs is a macroscopic response to the external perturbation, it has

no microscopic definition in terms of ψi variables. It turns out, however,
that in the high-temperature expansion approach and its CP-configuration
space of bond currents used for WA, the Z(Φ) dependence can be easily
determined from the statistics of oriented loops winding around the system
in space direction. First, we notice that if all configurations of oriented
lines are closed loops then the sum of all currents going through any plane
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perpendicular to the x-direction is the same

Mx(R) =
∑

b=(i,x̂)

(nb −mb)δix,R = const ≡ L−1
x

∑

b=(i,x̂)

(nb −mb) . (32)

otherwise there are more lines entering the region between two planes than
exiting them and thus there are end points in this region. This property
can be used to define the winding number in the x-direction as the sum
over all bond-currents in this direction divided by Lx, see the last identity in
Eq. (32). Mx is an integer. It is called a winding number, because loops which
do not wind around the system and can be reduced to small size using local
transformations of its shape have zero contribution to winding numbers. It
means that configurations with different winding numbers are topologically
distinguishable, i.e. they may not be transformed into each other using local
(small in size) modifications of their shape. Some examples are shown in the
picture below.

M   = 0x xM   = 1

M   = 1x xM   = 2

The second figure can be decomposed into two loops in a number of ways,
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but one of the loops is always winding around the system, while the other
can be reduced to zero by small changes of its shape. Of course, winding
numbers, can be introduced to characterize topological properties of loops in
all d directions, M = (Mx,My, . . .).

Let us now examine what would happen to the configuration contribution
to Z when the gauge field is applied. Since W ({nb, mb}) depends on the

hopping amplitude as, see Eq. (24), ∼ t
∑

b
nbt
∑

b
mb , in the presence of the

gauge field it will transform as

W (Φ) = W (0) e
i(Φµ/L)

∑

b=i,µ
nb e

−i(Φµ/L)
∑

b=i,µ
mb = W eiΦ·M ,

(recall that the nb lines originate from −tψ∗
i ψj terms and mb lines originate

from complex conjugated ones, that is why the phase factors have opposite
signs for nb and mb lines). Correspondingly, the partition function is

Z(Φ) =
∑

M

ZM(Φ = 0) eiΦ·M , (33)

where ZM is the partition function of all configurations having the same wind-
ing number. The ratio ZM/Z(0) is the probability of finding the equilibrium
state with the winding number M.

The rest is pure math.
F = −T lnZ ,

∂F

∂Φx

=
−T
Z(Φ)

∑

M

iMxZM eΦ·M ,

∂2F

∂Φ2
x

∣

∣

∣

∣

Φ=0
= T

{

∑

M M2
xZM

Z
−
(

∑

M MxZM

Z

)

(

∑

M′ M ′
xZM

Z

)}

= T 〈M2
x〉 ,

Since (∂F/∂Φx)|Φx=0 = 0 (no linear in Φ terms), we also have 〈Mx〉 = 0. Our
final relation between ρs = 2mL2−d∂2F/∂Φ2

x|Φ=0 and the winding number
statistics is then

ρs = mTL2−d〈M2
x〉 ≡

mT

d
L2−d 〈 M2〉 , (34)

where I made use of 〈 M2〉 = d〈Mx〉 in the isotropic system.
The possibility of collecting winding number histograms, ZM/Z, is ex-

tremely important in studies of superfluid systems, and is considered as an
advantage of WA over cluster methods. It is also about the adequate model
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representation since winding numbers are not defined in the original ψi-field
representation.
WA for polymers:
In the previous Section we discussed the snake algorithm for polymers which
translates the chain along itself by one step. If the polymer chain is con-
sisting of identical monomers then the following two modifications make
the snake-WA algorithm a much better numerical tool capable of simulating
efficiently both dilute and dense polymer systems.

1. When monomers are identical, we may describe the polymer as a col-
lection of L points (not necessarily ordered, so that Ri and Ri+1 may be
far away from each other) with associations between them specified by the
ass±(i)-arrays: if j = ass±(i) then site R(j) is the nearest neighbor of R(i).
Most associations do not change in the standard snake move. For example,
when the “head” (head and tail are special points with only one association)
is shifted from R to the n.n. point Rnew we simply change associations for
the polymer end points:

newhead=tail
tail=ass+(tail)
ass+(head)=newhead
ass−(newhead)=head
head=newhead
R(head)=Rnew

3

5
7

8 2

4 1

9

6

3

5
7

8 2

4 1

9

6

head=3
tail=6 tail=9

head=3

This update is local and its computational cost does not scale with L any
more.

2. WA enters the picture by adding one more update which reconnects
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the polymer line (that is why having all monomers the same). When the new
head point Rnew happens to be one of the polymer points, we may choose to
reconnect it as shown in the picture below.

This update reconnects the polymer chain locally, and its acceptance ratio
does not contain macroscopic factors. However, reconnections change the
global topology of the chain, tight and relax topological knots, and allow the
head to move easily through the maze of monomers in the dense (globule)
phase. And there is a price to be paid for that—in the reconnection procedure
all associations along the loop between the old and new head positions must
be reversed (updated)— on average ∼ L operations.

Flat histogram or entropic sampling. Wang-Landau approach.

Cluster methods and WA solve the problem of critical slowing down for
continuous transitions, but they are of little help in the study of first-order
phase transitions and glassy systems. An efficient algorithm for these type
of systems should abandon the idea of generating configurations with proba-
bilities proportional to their weights and use another principle which allows
easy transitions between energy minima separated by large barriers. There
are several methods which achieve this goal.

The idea of entropic sampling is to generate system states with proba-
bilities resulting in the flat energy distribution histogram, i.e. in this method
the probability of having a state with energy E is energy independent. For-
mally,

Z =
∑

ν

e−Eν/t ≡
∑

E

(

∑

ν

δEν ,E

)

e−E/T =
∑

E

ρ(E) e−E/T .
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The density of states can also be written as an exponential ρ(E) = eS(E),
where S(E) is the entropy. Then,

Z =
∑

E

e−(E−TS(E))/T ≡
∑

E

e−F (E)/T .

When states are generated with probabilities proportional to Gibbs weights
∼ e−Eν/T , the energy histogram is given by e−β[F (E)−F (〈 E〉)], where 〈 E〉 is
the point of the free-energy minimum. To have a flat distribution we have
to generate states with energies away from 〈 E〉 with probabilities increased
by a factor eβ[F (E)−F (〈E〉)], i.e. with probability (note that constant factors
like 〈E〉 or F (〈E〉) can be absorbed into the distribution normalization and
thus can be added or dropped at will)

∼ e−β[E−〈E〉] eβ[F (E)−F (〈 E〉)] ∼ e−S(E) .

The last relation explains why the method is called entopic sampling. Now,
instead of Gibbs factors, e−Eν/T , we have to use entropy exponentials e−S(Eν) =
1/ρ(Eν) in the balance equation. For example, the acceptance ratio for the
single spin-flip update in the Ising model will become R = ρ(Eν)/ρ(Eν′).
Correspondingly, all averages will transform to (what we did is no different
from the standard reweighing technique)

〈 A〉MC =

∑

ν Aνρ(Eν)e
−Eν/T

∑

ν ρ(Eν)e−Eν/T
≡
∑

ν Aνe
−F (Eν)/T

∑

ν e−F (Eν)/T
.

There are two problems with the entropic sampling. One is that the
exponential e−F (Eν)/T may overflow. We already know how to handle the
overflow problem by writing everything in terms of logarithms. The other
issue is that ρ(E) is not known at the beginning of MC simulation! Entropy
is a statistical property; it is not a function of a given configuration. It can
be simulated, though, by MC methods. The idea then is to start entropic
sampling with some initial, rough approximation of what ρ(E) might be. Let
us denote the initial guess as ρ0(E). From reweighing technique we know that
final answers do not depend on the probability distribution used to generate
configurations (only efficiency does), thus in the long run it does not matter
what ρ0 is.

First, we study the density of states itself by collecting energy histogram,
h0(Ei) =how many times we had Eν ∈ (Ei−∆E/2, Ei + ∆E/2), (here {Ei}
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is the set of histogram points). Recall, that our goal is to have it flat. The
density of states is then

ρ1(Ei) = h0(Ei) ρ0(Ei) .

Since the initial guess ρ0 is not perfect, and statistics is exponential in E, it is
unlikely that h0(E) will be nearly constant. Most probably, it will be peaked
in one region and have zeros in other histogram bins. Correspondingly, ρ1(Ei)
is also far from being the final result for the density of states (we actually
have no idea what ρ1(Ei) is if the i-th bin has no entries), though it is a
better one than ρ0. To avoid zero values for ρ1 we can use ρ1(Ei) = ρ0(Ei) if
h0(Ei) = 0. At this point one may substitute ρ0 with ρ1 and start collecting
a new energy histogram h1. It is used then to improve the knowledge of the
density of states for the next iteration

ρn+1(Ei) =

{

hn(Ei) ρn(Ei) , if hn(Ei) 6= 0
ρn(Ei) , if hn(Ei) = 0

The procedure is repeated many times until the histogram hn is nearly flat.
Then the actual MC simulation starts.

It is hard to tell how long it takes to achieve the flat histogram goal
because reweighing factors are enormous ∼ eN exponentials and we have to
sample all scales with reliable statistics. On the other hand, if ρ(E) is known,
we may calculate system properties at all temperatures at once! For example

〈 E〉 =

∑

E ρ(E)Ee−E/T
∑

E ρ(E)e−E/T
.

Or, if at the final stage of the calculation one splits the statistics of Aν into
energy bins,

A(E) =

∑

ν AνδEν∈i−bin
∑

ν δEν∈i−bin
= 〈 A〉over i−bin ,

then

〈 A〉 =

∑

E ρ(E)A(E)e−E/T
∑

E ρ(E)e−E/T
.

In both cases temperature shows up only in the final analysis when the MC
calculation is already done.

Of course, nothing is for free. It takes much longer CPU to have similar
errorbars in the entropic sampling method than in the conventional scheme
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with T kept fixed. After all, in the last equation only a small region of
energies around F (E) minimum is contributing to the answer, and these
energies constitute a small fraction ∼ 1/

√
N of the total MC statistics.

Recently, Landau & Wang (2002) found a clever way of implementing the
procedure looking for the flat histogram distribution. Instead of improving
the knowledge of ρ(E) iteration after iteration with relatively large number
of MC sweeps per iteration, they proposed to modify ρ(E) currently used by
the algorithm after every update! In the standard approach it is a very slow
process of expanding the region of energies visited by the simulation because
the initial guess is not good. Landau & Wang suggested a procedure which
forces the simulation to explore energies not visited before and thus quickly
accumulate points all over the histogram.

The implementation is very simple. Let the current density of states
function used in the acceptance ratio is ρMC(E). The initial guess can be
anything, e.g. ρMC(E) = 1. After each MC update, whatever is the current
configuration energy, Eν , one takes the corresponding value of ρMC(Eν) and
multiplies it by a modification factor, f > 1

ρMC(Eν) → ρMC(Eν) f . (35)

The initial choice of f is formally arbitrary, but limited not to be very large
to ensure that the scheme remains stable. This is all! Of course, we also
collect the energy histogram. If the histogram is “reasonably” flat, i.e. flat
with certain accuracy, the calculation is stopped. In the next round, the
modification factor f is decreased to a smaller value (the suggested law is
f → √

f), and the simulation continues with the energy histogram being
reset. Iteration after iteration, the modification factor is decreased and is
made very close to unity, e.g. f = 1.00000001 or similar. Since at final
stages the modification factor is hardly changing ρMC(E) and the histogram
is flat, we conclude that the scheme has converged to the true density of
states.

So, why does it work better than the original scheme? Since the ac-
ceptance ratio is given by R(E → E ′) = ρMC(E)/ρMC(E ′), the increase of
ρMC(E) by a factor of f increases R by a factor of f too, and even if the
acceptance ratio is initially small it is bound to grow exponentially until we
accept the move, etc. The algorithm is literally forcing the configuration
to change its energy state. If the histogram is checked for flatness every K
sweeps then a good the rule of thumb for selecting the initial value of f (ac-
cording to Landau and Wang) is fK ∼ Υ, where Υ is the total number of
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states in the system. I understand this rule as an insurance policy that fK

can beat any mistake in the initial density of states because ρ(E) < Υ, by
definition.

Simulated and parallel tempering techniques for glasses

This method was proposed by Marinari and Parisi in 1992 for spin glasses.
Overcoming large energy barriers is painful at low temperature. At high tem-
perature, especially if it is above the glass transition point Tg, transforming
system configurations is relatively easy. The idea then is to make tempera-
ture itself one of the system parameters which can be changed in updates,
and make sure that the histogram h(Ti), i.e. how long the systems is spend-
ing at temperature Ti, is nearly flat. The last requirement is necessary to
ensure that both the high-T and low-T states are sampled. Literally, in the
simulated tempering, we heat and cool the system while keeping all config-
urations at any given T in the state of thermal equilibrium. This allows
to simulate the low-T configuration space more efficiently when there are
multiple valleys in the free-energy landscape separated by barriers.

F F

low T high T
stuck

wonders all over the cnf. space

Similar to the entropic sampling many temperatures are simulated at once
and there should be some problem with severe reweighing in the method.
Suppose we do simulated tempering using Metropolis algorithm as it is. The
only extra feature is an update suggesting to change the temperature from
Ti to Ti+1 or Ti−1 by ∆T . We decide whether Ti is increased or decreased

with probabilities p
(±)
i , and can use p

(±)
i = 1/2 for all values of i except for

imax (then p
(+)
i = 0 and p

(−)
i = 1) and imin (then p

(+)
i = 1 and p

(−)
i = 0).

Since only temperature, but not the energy is changed, the acceptance ratio
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is

R = exp

{

−Eν
(

1

Ti±1
− 1

Ti

)}

p
(∓)
i±1

p
(±)
i

∼ exp

{

±∆TEν
Ti±1Ti

}

. (36)

First, we notice that the temperature change ∆T should be relatively
small, ∆T ∼ 1/N to ensure that acceptance ratios are of order unity in
both directions. This is a hurdle, because to get from Tmin to Tmax we need
∼ N temperature points and it will take ∼ N 2 steps or more to make the
round-trip journey in temperature. Second, we notice that the histogram
hi ≡ h(Ti) will not be flat unless we use reweighing. The probabilities of
being at different temperatures in this algorithm relate as combined weights
of all configurations, i.e. as their partition functions. To make the histogram
flat we have to introduce Z(Ti)/Z(Ti±1) into acceptance ratio. This is not
a problem, except that Zi/Zi±1 are not known prior to simulation, and we
have to apply an iterative, self-adaptive procedure (e.g. Landau-Wang style)
to find it in the first place. When the partition function ratios are known
to certain degree of accuracy, the simulation may go. There is, however,
another elegant trick which entirely eliminates this problem.

Parallel tempering consumes more memory but this is not an issue
for glasses where system sizes are relatively small. Now, instead of making
temperature a MC variable, we simply simulate in parallel ∼ K � 1 replicas
of exactly the same system, but at different temperatures Ti. Temperatures
are never changed , and thus there is no reweighing problem. The new
feature is the exchange of configurations between replicas at neighboring
temperatures (we select the n.n. pair of replicas at random)

E(at Ti)
ν , E(at Ti±1)

µ −→ E(at Ti)
µ , E(at Ti±1)

ν ,

with the acceptance ratio

R = exp

{(

1

Ti
− 1

Ti±1

)

(Eν − Eµ)

}

= e±∆T∆E . (37)

The second factor is nothing but the product of two Gibbs exponentials.
The detailed balance is obviously satisfied because from the “perspective” of
replica ”i” we do the standard job

P ν→µ
acc e−Eν/Ti e−Eµ/Ti±1 = P µ→ν

acc e−Eµ/Ti e−Eν/Ti±1 ,

where the first exponential is the configuration weight and the second one is
proportional to the probability of selecting the new configuration from the
equilibrium set at another temperature.
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We see that there is no need for histograms of hi at all—just make sure
that each replica is updated for ∼ t0(i)-sweeps and do ∼ K random con-
figuration swaps then. Neighboring replicas frequently overlap in energies if√
CT ∼ C∆T , i.e. when

∆T/T ∼ 1/
√
C ∼ 1/

√
N ,

(recall that C is the specific heat). It means that K ∼
√
N is sufficient to

have Tmax twice as high as Tmin.

Finite-size scaling.

For someone doing numerical simulations the prime concern is “How do
my data obtained for a finite sample relate to the macroscopic world?” The
problem is known under the name of “finite-size” effects (FSE) to stress
that simulations performed for small number of spins or particles, N , are
only approximating the thermodynamic limit N → ∞ result. You may
think that finite-size effects are nothing but trouble (disregarding special
cases when the actual experimental system is so small that the extrapolation
N → ∞ is something you do not have to do!). Not at all! In the study of
critical phenomena finite-size effects, in fact, provide a very precise tool to
determine critical parameters (with up to seven digit accuracy!) and critical
exponents.

The most important parameter in the discussion of FSE is the notion of
the correlation length ξ. To be specific, in what follows I talk about Ising-type
models but all considerations are general and can be applied to any other
system. Roughly speaking, ξ determines over what length scale spins in the
system are correlated with each other, or, being more precise mathematically
over what length scale the correlation function

g(j) =
∑

i

〈(Si − 〈S〉)(Si+j − 〈S〉)〉 ,

decays. If your linear system size L is much larger than ξ then you probably
do not have to worry about finite-size effects since they are expected to
be exponentially small, ∼ e−L/ξ. Indeed, on scales larger than ξ spins are
essentially independent from each other, and thus it does not matter what is
their total number—it makes no difference in the behaviour of a particular
spin. The correlation length is finite when we are in the parameter regime
far away from the critical points. In such cases finite-size effects can be
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easily controlled by simply simulating two system sizes L1 and L2 > L1

(say L2 = 2L1) and making sure that Answer1-Answer2 is smaller than your
errorbars, i.e. finite-size effects are smaller than the statistical uncertainty
of the unswer.

In the vicinity of the critical point things get more subtle, and beautiful!
First, let us consider what to expect from the first-order transition. We have
already discussed that at the transition line the system has two equivalent
(in terms of free energy) thermodynamic states A and B, separated by a large
free energy barrier. Formally, the free energy barrier scales as Ld−1, which
is the free energy cost for making a domain wall between phases A and B.
We already know that using, e.g. the flat histogram approach, we can force
transitions between phases A and B and collect good statistics to the energy
histogram ρ(E). In first order phase transitions the correlation length does
not diverge at the critical point, and thus we expect that even at the critical
point the maxima in ρ(E) corresponding to 〈E(L)〉A and 〈E(L)〉B have small
size dependence. On another hand, the value of ρ(E) between the peaks goes
to zero exponentially fast ∼ exp(−σABLd−1), where σAB is the A-B interface
tension.

In second order (continuous) phase transitions the correlation length di-
verges at Tc and many properties become extremely sensitive to the system
size. On another hand, the only relevant parameter on large scales with
which L can be compared to is ξ itself! If not for the long-range correlations
between spins which are described by ξ why would any property depend on
the system size? This simple consideration is very powerful since it allows
one to write any quantity in the vicinity of the transition point as

Q(t, L) = q(t)g(L/[±ξ(t)]) ,

where q(t)g(∞) and q(t)g(−∞) are the thermodynamic limit values of Q(t)
in phases A and B, t is the reduced temperature parameter t = (T − Tc)/Tc,
and g(x) is some function. Some quantities remain finite at the transition
point, some even have finite first derivatives with respect to t. However,
there are quantities which are identically zero in phase A and finite in phase
B, in the termodynamic limit, i.e. their dependence on reduced temperature
t is singular. In what follows I will concentrate on such singular properties
since their finite-size effects are the largest.

The last physics information we will need for the analysis is that critical-
point singularities are in the form of power-laws (with the exception of special
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cases like the normal-superfluid transition in two dimensions), i.e. the diver-
gence of the correlation length is given by

ξ ∝ |t|−ν ,

where ν is the correlation length exponent, and the Q(t, L = ∞) singularity
is of the form

Q(t, L = ∞) ∝ |t|β .

The value of β is quantity specific; if Q =
√

( < M2 >) for the Ising model
then β is the order-parameter exponent. With this knowledge we can now
write

Q(t, L) = tβg(Ltν) ≡ L−β/νf(tL1/ν) ,

where f(z) is some function of z = (L/ξ)1/ν (since we have assumed noth-
ing yet about g(x) above, I feel free to introduce another function using
xβ/νg(x) = f(x1/ν)). The rest is math. Of course, power laws work only in
the close vicinity of the critical point, and thus should not be assumed far
away from it.

Our first consideration is that there are no phase transitions, strictly
speaking, in finite-size systems! Indeed, look at the expression for the mar-
netization squared averaged

〈M2〉 =

∑

cnf M
2
cnfe

−Ecnf/T

∑

cnf e
−Ecnf/T

.

It is nothing but the finite sum of exponentials which are analytic functions
of temperature! Thus 〈M 2〉 can not be a singular function of T at any finite
T. This consideration works only for finite sums and can not be extended to
the thermodynamic limit though. We immediately recognize then that f(z)
is an analytic function of z for small values of z. In particular exactly at the
critical point we observe that Q(t, L) properly rescaled with the system size
becomes size independent:

Q(t = 0, L) × Lβ/ν = f(0) ,

This is extremely useful. Simulate Q as a function of T for several system
sizes and determine where the scaled curves cross. An illustration is given
in the next figure. The procedure is nearly automatic if one knows the ratio
of exponents β/ν. At present, exponents are known with good accuracy for
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many continuous transitions. For the superfluid density this ratio is actually
exactly unity.

The crossing of scaled
curves is not as perfect
as in this figure. More
precisely, one can define
Tc(Li, Lj) as the crossing
of curves for linear sizes Li
and Lj. This gives a good
estimate for the actual Tc
in the macroscopic system.

Q
(t

,L
)

c

1

L

L

β/
ν L L

2
3

T T

To account for the drift of the crossing point with L one has to consider
corrections to scaling. I will not elaborate on this here and simply mention
that one can account for this by writing

Q(t, L) × Lβ/ν = f(tL1/ν)[1 + CL−ω] ,

where C is some constant and ω is the exponent of the leading correction to
scaling. For the rest of the discussion I will neglect corrections to scaling.

We can go one step further and take a derivative of Q(t, L) × Lβ/ν with
respect of T at the critical point, which is the same as taking a derivative of
the f(z) function

[

Q(t, L) × Lβ/ν
]′

= f ′(0)L1/ν .

This is nothing but a very good, if not the best, method of determining
the correlation length exponent! The only question is how do we take the
derivative of something which is the result of a MC simulation. The generic
solution is as follows (I drop the cnf index for brevity)

d

dT

∑

Qe−E/T
∑

e−E/T
=

1

T 2

[

∑

QEe−E/T
∑

e−E/T
+

∑

Qe−E/T
∑

e−E/T
×
∑

Ee−E/T
∑

e−E/T

]

or
[

Q(t, L) × Lβ/ν
]′

=
〈QE〉 − 〈Q〉〈E〉

T 2
,

i.e. the derivative itself is the result of the Monte Carlo simulation.
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Finally, to find the thermodynamic curve for Q(t) we need the limiting
values of g(±∞) (either g(∞) or g(−∞) has to be finite). This is done using
the so called data collapse technique. It involves the following steps:
- Plot Q(t, L)/tβ as a function of x = Ltν for all data sets. Formally, con-
sider β and ν as free fitting parameters. If Tc is unknow, consider it as a free
parameter too (usually the crossing method is more precise).
- If β, ν, and Tc were guessed correctly we should see that all data sets col-
lapse on the same g(x) curve. This immediately suggests that one has to
choose β and ν from the condition of the best data collapse, e.g. by optimiz-
ing χ2 between spline interpolated curves for different system sizes.

An example of a real-
istic simulation for the
q = 3 Potts model is
shown to the left: Of
course, data collapse
can be done for the
f(z) function in a sim-
ilar fashion since g and
f are strictly related.
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I would like to conclude this subsection with the discussion of Binder comu-
lants. The most important property of QLβ/ν is that it is size independent
at Tc, but if we do not know β/ν (imagine that we have discovered a novel
phase transition ) the crossing method can not be used right away. Binder
suggested a way to get around this problem by considering ratios which
are size independent at Tc by construction. To make an example, consider
Q1 = 〈Q〉 and Q2 = 〈Q ∗ Q〉. For the Ising model Q = M 2 will do the job.
Since we expect that the leading singularity in Q2 is the square of that for
Q1 the ratio Q2

Q2
1

is expected to be regular at Tc. It means that for

R = 1 − Q2

3Q2
1

,

the β exponent is zero and we can proceed with the crossing analysis. The
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reason for writing R in this particular form is that for the state where spins
are uncorrelated the distribution of M is subject to the central limit theorem,
i.e. it is Gaussian. For the Gaussian distribution 〈M 4〉 = 3〈M2〉2 and thus
R = 0. In the magnetically ordered phase we expect R → 2/3.

Problem. Use your Worm Algorithm code for the 2D Ising
model to study finite-size effects. Consider Q = M 2 and plot
Q × L1/4 across the phase transition point for several system
sizes, Determine Tc from the crossing of scaled curves. Do the
data collapse curve.

Problem. Imagine that you are using the single spin flip or
cluster algorihtm for the Ising model and decided to construct
Binder comulants from Q1 = 〈|M |〉 and Q2 = 〈M2〉. Define R
such that it goes to zero in the high-temperature phase. Check
what you have got by running the single spin flip code of yours
for L = 6 and L = 12 in 2D.

For this problem my data are below:
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