Random numbers and random number generators

It was a very popular deterministic philosophy some 300 years ago that
if we know initial conditions and solve Eqgs. of motion then the future is pre-
dictable. First, there is no way to get initial conditions for all particles even
in a relatively small “practical” systems of 10%* particles. Second, on ”hu-
man” time scales interactions with the outside world will enter the problem
and we will be forced to include the outside world into the solution (along
with its initial conditions), etc. The popular philosophy finally died with the
rise of quantum mechanics.

With our ability to monitor only a few parameters for the system, like
energy, pressure, magnetization, ... we often have to resort to the statistical,
or probabalistic, description of all the other degrees of freedom we do not
have under our control. Throwing dice is formally not a random experiment
if it is done by the precisely engineered mashine with very precise control over
the relatively short trajectory; this control is far more difficult to achieve for
flipping coins. In real life, if coins are flipped by humans, the coin rotation is
fast, the trajectory is long, the substrate is rough, ... it becomes impossible
to predict the outcome and we start using probabilitites.

The Nature makes things random and probabalistic by employing macro-
scopically large number of variables and quantum mechanics. In MC meth-
ods, where simulations are based on the notion of probability, the “source of
randomness” is actually a very short, completely deterministic piece of code
generating “random numbers”! It is not practical to ask Nature for random
numbers since the corresponding interface would be too slow for most Monte
Carlo applications (Nature generated random numbers are also sold on CDs
and DVDs but even this resource is too slow and short of supply). It comes
as a surprise that several lines of code are capable of producing extremely
long sequencies of numbers which appear to be absolutely random For All
Practical Purposes (FPPA).

The output of the random number generator produces a variable rndm
which is uniformly distributed in the range [0,1). Simple techniques exist
then for transforming rndm into random numbers with any other probability
density distribution. By simple rescaling ¢ - rndm and shift s + ¢ - rndm we
produce a random number uniformly distributed on the [s, s+ ¢) interval. To
convert real or double precision rndm to random integer, I, taking on any



value from 1 to N with equal probability 1/N we just take the integer part
of [rndm - N| (here [#] stands for the closest integer smaller than #) and
add unity, I = [rndm - N] + 1.

The most important application of random numbers in MC simulations
is the possibility to perform some action with the probability p. Indeed, the
propability of rndm to be smaller than p is p, so if the action is performed
only if rndm < p then it is performed with the probability p.

Simple realizations of the random number generator

The rndm-generator should necessarily depend on the history of its own
work, otherwise it will return the same number all the time. The simplest
realization would be

in = f(zn—l) s

i.e. the next number depends on the previous one. To get the process started
we need to provide the first number which is called a seed. Most rndm-
codes work with integers in the interval [0, m) which are then converted to
real numbers by dividing them by m. Clearly, at best such generators may
produce only m different random numbers, so they will start reproducing
the same sequence again after a while. The length of the sequence before it
starts repeating itself is called the generator period.

A widely used generator of the above mentioned form is called a linear
congruential generator (Lehmer, 1951)

in = MODm(ain_l + C) 3 (1)

where MOD,, (k) is the modulo operation which returns the remainder after
k is divided by m. It can generate up to m random numbers with the right
choice of a and ¢ constants. The larger m the better but unfortunately there
is a limit on the maximum one-word integer—32 bit computers typicaly allow
integers up to w = 23! (one bit for the sign in Fortran) or w = 232 (in C and
Pascal). In addition, some languages are sensitive to the overflow problem
and complain if ai,,_; + ¢ > w. A good choice of constants requires that a
and m are coprime (i.e. do not have common factors other than 1), and one
of the recommended/tested sets is a = 9301, ¢ = 49297, m = 233280. It
generates m numbers which pass most tests on ‘randomness” (see below).
Recent AMD-processors (opterons) work already with 64 bit numbers and
it seems that the overflow problem will soon become history. In any case,
there are tricks to handle the problem with some extra CPU time (Schrage,
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1979). Consider the linear congruential generator with m = 23 — 1 and
a = 16807, ¢ = 0 (it has the largest possible m in FORTRAN) The trick is
to subtract the right number of periods while multiplying a by 4,_1:

e Define (as parameters) ¢ = [m/a] = 127773 and p = m — ga =
MOD,(m) = 2836 (notice that p < ¢ in this example). The idea
is to write m = qa + p.

e Calculate first = [i,_1/q] and y = 4,1 — qx; so that 4,1 can be
written as i, 1 = qr+y (by definition, y < g and x < a since i,,_1 < m).

e The identity MOD,,(ai,—1) = MOD,,(a(qx + y) — xm) may be used
then to transform the first argument as a(qx +vy) —z(ag+p) = ay — xp.
Both numbers in the last expression are smaller than m and the calcu-
lation does not result in the overflow. So, in practice we perform

T =lin1/q); y=MOD,(in-1); in=ay—zp, 1F(i, <0)i, =1i,+m,

Let’s call this set of operations i,, = rndm;() for brevity.



This an example of the code.

Keep learning some programming language, please. Later in the course you
will have to write things yourself. I will use Fortran in my examples.
Below 0 is an integer defined as a common variable outside rndm ().

double precision function rndm; () I just the name

integer, parameter :: m=2147483647
integer, parameter :: a=16807
integer, parameter :: q=127773
integer, parameter :: p=2836
integer:: X,y

x=i0/q
y=mod(i0,q)
i0=a*y-x*p
IF(i0<0) i0=i0-+m

rndm; =i0/m

return
end function rndm; ! this is all



The linear congruential generator is too simple and in fact has some
correlations between the generated numbers. Also, the sequence length is
not as long as necessary. A simple solution with little CPU overhead is to
make the generation of i,, dependent on many previously generated numbers
in = f(in_1,%n—2,...,in_x). The sequence length is then the “FAPP infin-
ity”, i.e. not possible to reach in practice. The so-called shuffled generator
(Bays and Durham, 1976), which has very good random properties, is of this
“long-memory” type. It works as foolows.

o At the start of the program it has to be initialized by generating a list
of L+1 random numbers:

uyp = rndmyq (from seed) , wus =rndmy , ... up = rndmy ,

y =rndm; .

Typically L is rather short, say smaller than 100.

e The new random number is generated by using existing y to determine
the index k = [y x L] + 1. This index determines the new random
number rndm = uy, and the new value of y = ;.

e Finally, the u value is replaced with ug = rndm;.

In essence, rndm; is used to fill in the storage boxes, and random numbers
extracted from the boxes determine also which box to use next, i.e. we
constantly shuffle the sequance of L numbers.

The last rndm-code I would like to discuss is the lagged Fibbonacci
generator by Mitchell and Moore, 1958. It is also based on a long history
of previously generated numbers, but uses only two of them in a simple
MOD-function:

in=MOD,;,(in_r QOin_s), where O = “+"or“ x" operation ,

The most common choice proved to be very good is r = 24, and s = 55. It
has to be initialized as well, using, e.g. the rndm; generator. Its period is
extremely long FAPP.

How random?

There are many other codes for rndm-functions, some nice some bad. It
is always a good idea to have at least two “good” generators and verify that



results do not change when rndm is replaced. Also, there are many standard
tests for rndm and good generators should pass all of them. Tests are looking
for deviations from the predictions of what “true” generators should give. For
example, if rndm is perfect then

((rndm)") = /Ol(rndm)"d(rndm) =1/(n+1)

( (rndm; — 1/2)(rndm;x — 1/2) ) =0

testing that the distribution is flat and that numbers in the sequence sepa-
rated by k£ rndm-calls apart are not correlated. By average here is meant the
result of a very long run

. . Zi:LM QuantitYTun 7
(Quantity) = A}linoo i :

Problem. Perform these tests for the shuffled linear con-
gruential and lagged Fiibonacci generators discussed above,
i.e. compare your results for ((rndm)") with (n=1,2,3) and
((rndm; — 1/2)(rndm; s, — 1/2)) with (k=1,2,3) averaged over 107
runs with the ideal behavior. Please, write codes for rndm-
functions yourself.

There are many other tests which check for correlations between more
than two numbers, but we will not review them (if interested, — Knuth, The
Art of Computer Programming , Vol. 2, 1981).

From uniform to arbitrary probability density distribution.

Suppose, that you need random numbers generated not according to the
uniform probability density distribution g,ngm(z) = 1, but according to some
other function g(z). By definition, g(z)dz is the probability of producing
random number within the interval (z — dz/2, z 4+ dz/2). What we need is
the relation z = F(rndm) such that if rndm is uniformly distributed between
0 and 1 then z is distributed acording to g(z). Just write down the “wish”
using inverse function rndm = F~!(z) and differentiate:

d(rndm) = [F_l(z)]/ dz = g(2)dz . (2)



Integrating this Eq.

F(2) = / g(z)dz = rndm . (3)
we obtain the functional relation between rndm and 2. F~!(z) is nothing
but the probability of producing any random number smaller than z. Un-
fortunately, this relation is not of the form we would like to have it. Even
when F~!(2) can be found in a closed analytic form we still have to invert
the functional relation to get F'(rndm).

One easy case we already did before (scale and shift): for g(z) = 1/(b—a)
and z € [a,b) we have

Fl'2)=(2—a)/(b—a) = z=a+ (b—a)- (rndm)
The other example of interest is the exponential distribution g(z) = ae™*
for z € [0, 00). Following the rule

1
Flz)=1—e* = z=—=In(1 —rndm) .
a

Similarly, for the Lorentzian distribution g(2) = (v/7)/(2?4+7?), 2 € (=00, )
we find

F(2) = % + %tan_l(z/'y) = z = vytan[r(rndm — 1/2)] .

and for the spherical angle distribution g(z) = sin(z)/2, z € [0, 7) we find

F'(2) = (1 —cos(2))/2 = z=rcos (1 —2-rndm) .

Problem. Find the z = F(rndm) relation such that z is dis-
tributed according to ~ e%?/2%, z € [0, 00).

The method described above is called the transformation method.
When it works, i.e. when a closed form solution for F'(rndm) exists, it is the
best we can do. For the Gaussian distribution

1 2 2
_ —22 /20
G = Joras © ’

the transformation method is of little help unless you wish to tabulate your-
self the inverse of the error-function. However, there is a trick to get around
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this problem by generating two random variables with the Gaussian distri-
bution using two standard random numbers. The solution originates from
the properties of two-dimensional integrals in cylindrical coordinates. If we
have two independent random variables x and y then the probability to have
them in the differential interval is a product

1
G(z)G(y) dedy = e @Hy?)/207 dxdy = ﬁe_(ﬁ)/%g rdrdo

2mo? o

where x = 7 cos(¢), and y = rsin(¢). The problem is reduced to generating
r with the probability distribution re=()/27" /g2 r € [0,00), and ¢ with
the uniform distribution 1/27, ¢ € [0,27). Both can be easily done by the
transformation method (7?/2 distribution is exponential):

r= 0\/—21n(1 —rndm), ¢ =2m-rndm .

and immediately converted back to z and y.

If the inverse relation cannot be found one may use the rejection method.
It is absolutely general, works in all cases, and with tricks can be made quite
efficient. In its simplest form it is as follows. Let the maximum value of the
distribution is gpee = maz{g(z)} and z € [a,b).

(1) Suggest the value of z uniformly distributed on the [a, b)-interval

z=a+ (b—a)-rndm .

(2) Accept this value with the probability ¢(z)/¢maz, i-€. accept it only if
another random number satisfies

rndm < ¢(2)/Gmaz -

Otherwise, start over again from point (1) and continue untill the number is
accepted

To see that the goal is achieved we compute the probability distribution
of producing different z numbers which is the product of probabilities to
suggest it, dz/(b — a) and to accept it

dz g(z) 1
b — 4 Gmax B g(Z)dZ gmaz(b - (Z) ‘



This distribution is proportional to g(z)dz as required, and we do not have to
worry about normalization since the answer depends on the ratio ¢(z)/gmaz-

The rejection method can be immediately generalized to deal with infinite-
range distributions and to improve its efficiency by making the initial sug-
gestion as close to g(z) as possible (this generalization is also known as a
hybrid method). Instead of ¢ we may introduce some function g-(z)
which has two properties,

(i) g-(2) = g(z) for all 2, gorg,
and (ii) ¢-(z) is from the
class of functions which may be
dealt with by the transforma-
tion method, i.e. easy to inte-
grate and solve for the inverse ==
of the integral. Then

(1) Suggest the value of z distributed according to the g (z) function.
(2) Accept this value with the probability ¢g(z)/g~(z). Otherwise, go back to
point (1).

The proof is exactly as before: the probability of z to be accepted is
proportional to [g=(z)dz] - [g(2)/g>(2)] = g(z)dz. 1t is also easy to estimate
the efficiency of the method. The probability to accept the suggested number
is, on average, [ g(z)dz, and each time we use two random numbers to get
it. Thus on average we need N = 2/ [ g(z)dz rndm-numbers to produce
z. Since g-(z) is normalized to unity (we need this to be able to use the
transformation method), and ¢~ (z) > ¢(z), we have [ ¢g(z)dz <1 and N > 2
(N = 2 would mean that ¢g-(z) = g(z) which we assume is not the case).

The hybrid method also illustrates an idea of “reweighting” which we
will discuss later in the course. In it’s most general form the idea is to
generate a distribution similar but somewhat different from the desired one
and then “reweight” the corresponding contribution to the statistics by a
factor gaesired/ Gactuar- Why doing it? Well, simplicity and efficiency are among
the reasons.

As an example, consider the problem of evaluating the integral

I = /Ooog(z)dz.
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For one of the functions which can be simulated by the transformation
method, go(z), we know how to take the integral

I :/0 go(z)dz

If we pretend that both distributions were generated by the hybrid method,
then their efficiencies would relate as I/I’. On another hand, the first dis-
tribution is g(z)/go(z) times more likely to be rejected then the other, thus
I/1" = (g9(2)/90(2)). where the average is taken over the process of suggesting
different z values (we do not need to perform actual rejections in this sim-
ulation). Finally, we may choose go(z) itself to be the generating function
normalized to unity and get

I'=(9(2)/90(2) ) , (4)

Now, the average is over the process of randomly generating z with the
distribution go(z).

One may complain that we are restricted here to study only positive
definite g(z). In fact, Eq. (4) is general, and works equally well for non-
positive g(z) too. Simply imagine that that I is evaluated piece by piece on
intervals where g(z) does not change sign, i.e. if there are k intervals and
g(z)-sign on interval i is s; then

k
I = Z Si[i
i=1

L= [ lg=)ldz

can be calculated using Eq. (4) with g(z) — |g(2)]|, thus

where each contribution

Ea

k

= si{19(2)|/90(2) )zei = > _(9(2)/90(2) ):ei = (9(2)/90(2) )

=1 =1

Problem. Implement this calculation in a code and determine

0o gin2 [e§) )
I - / sin (2) & I :/ sin(z) &
0 0

zsinh 2 z cosh z

using ¢o(z) = e *. Not the most eficient way of doing low-

dimensional integrals, but still ...
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Accidentally, if you finished this problem you finished the first realistic
MC simulation in this course, the rest is just a little more elaborate but
similar in spirit.
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