Topics to be covered

(the list of topics and their order is preliminary for the quantum part)

Elements of probability theory 

 - definitions of probability
 - binomial, Gaussian, and Poisson distributions
 - characteristic functions and sums of random variables, Central Limit Theorem,
 - random walks

Random number generators  
 - randomness in Nature vs codes
 - congruential rndm(), overflow problems, period, shuffled rndm()
 - transformation method
 - generating arbitrary distributions; rejection and hybrid methods
 - universal integrals evaluator

Classical Monte Carlo. Metropolis Algorithm for the Ising model
 - Why using random sampling make sense at all; body volume problem
 - ergodicity, balance Eq., detailed balance Eq., Metropolis algorithm
 - single flip algorithm for the Ising model; heat bath update
 - convergence, errorbars, blocking, bootstrap and jackknife methods
 - autocorrelation function and thermalization time
 - quantities to calculate, estimators
 - correlation functions, fast Fourier transform    
 - reweighting, histogram, and multiple histogram method 

  Other classical models  
 -  continuous spin model, XY- and  O(N)-models
 -  q-state Potts model
 -  glasses
 -  first-order transitions
 -  conserved order-parameter Ising model and the classical lattice gas
 -  polymers
 -  kinetic equations

From "simple" to "art": more efficient and elaborate methods   
 -  What a better data structure can do?
 -  Swendsen-Wang, Wollf and Niedermayer cluster algorithms
 -  invaded cluster algorithm
 -   worm algorithm (WA)
 -  high-temperature expansions for various models and WA
 - WA for polymers
 -  entropic sampling; Wang-Landau approach
 -  simulated tempering, parallel tempering

Quantum Monte Carlo
 - quantum-to-classical maping;  Feynman representation of Quantum mechanics
   using path-integrals in discrete and continuous spaces; quantum configuration space
 - sign problem
 - diagrammatic expansions, Feynman diagrams

More qunatum methods (if we have time)
  - path-integral MC in continuous space   
 - diagrammatic MC; how it works for the interacting lattice systems
 -  Worm algorithm  for quantum models
 - MC estimators in quantum systems 
 - Stochastic series expansion
 - Variational MC
 - Diffusion/projection MC