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1) Critical Slowing Down

Usually, simulations at criticality are slow.
Dependence on finite size L:

TLOCLZ

Computer time o« L%T% per independent configu-
ration in d dimensions. Typically, z ~ 2 for local
updates:

z = 2.1665(2) for 2-d Ising model (Metropolis)
However, see also

z = 3.75 for 2-d Ising model (Kawasaki dynamics)
and

z = 0 for the percolation problem.

In general, critical slowing down restricts simula-
tion to small L.



LLocal Ising update according to Metropolis:

i) select particle in state s;

if) propose new state s, = —s;

iii) calculate energy change AFE
iv) if AE <0, accept new state s;

if AFE > 0, accept new state with probability
o—AE/kgT

spin is flippable if AE <0, and
if AE > 0 it is flippable with probability e AE/ksT’

2) Cluster Monte Carlo

Ferro Potts model: Swendsen-Wang algorithm.
Clusters: groups of spins connected by rigid bonds.
Bonds: not rigid if they connect unequal spins.
Equal spins: rigid with probability 1 — e It

with AE/kgT = £K. Similarity with local updates:

bond is flippable if AFE < O0;
if AE > 0, flippable with probability e AFE/ksT



3) Detailed Balance

Consider single-cluster version (WoIff):

Cluster C: all sites connected by rigid bonds.

Flip cluster C: configuration I — I’

L

Probability of this cluster flip:

T(r,a I_) — Pinternal(ryc) Pboundary(rac)

Pinternal:

nected;

Ppoundary: that no site outside C is connected.

Thus

where Z"‘ AFE collects the energy changes of bonds

Ppoundary = exp[— Z_I_ AE/kgT]

whose energy increases when I — .

probability that all sites in C are con-




Next: probability of inverse flip "' — I:

T(r7 I_’) — Pinternal(r/aC)Pboundary(r,ac)

or

T(r,r') = Pinternal (I, C) exp[— Z +AE,/kBT]

where Z+ AFE' collects the energy changes of bonds
whose energy increases when I’ — TI".
Thus

T(I,T") = Pnternal(T,C) exp[+ > ~AE/kgT)]

where > =~ AF collects the energy changes of bonds
whose energy decreases when I — I/,
Taking the ratio leads to

T(r',r
T, r’)

exp[-(Y_TAE+Y ~AE)/kgT]
exp[—{E(") — E(")}/kgT]

This proves the condition of detailed balance.



4) The role of symmetry

Essential requirements for the proof of detailed bal-
ance are:

e [ he ‘flipping’ of a cluster corresponds with a
global symmetry, e.g. permutation symmetry
in the case of the Potts model. 'H must be
invariant under this symmetry.

e the symmetry operation must be its own in-
verse.

Another (implicit) condition is that there are only
pair interactions. Any model with a symmetry sat-
isfying these conditions can be simulated by a clus-
ter Monte Carlo method.



5) The geometric cluster Monte Carlo method

Consider a self-inverse geometric symmetry oper-
ation interchanging lattice sites 7 and ¢/, 5 and j/,
etc. These operations can be:

e translations over half the system size (in case
of pbc),

e rotations over m,
® MIrror inversions,

e and combinations of these.

In many cases the Hamiltonian of a model satisfies
such global symmetries, and a cluster Monte Carlo
algorithm can be formulated. See:

continuous space: Dress & Krauth,

J. Phys. A 28 L597 (1995)
lattice models: Heringa & BIlote,

Physica A 232 369 (1996)
2 lattice models: Redner et al.,

Phys. Rev. E 58 2749 (1998)



Cluster formation rule:

bond pair is flippable if AE < O;
if AE > 0, flippable with probability e AE/ksT

Examples:

e Ising and Potts models at nonzero magnetiza-
tion

e |attice gases with nearest-neighbor exclusion

e critical and tricritical Blume-Capel model (spin-
1 Ising model)

e Potts models with vacancies

e Baxter’'s hard-square and hard-hexagon lattice
gases



Example of geometric cluster formation:

Hard-square LG

Critical slowing down if only clusters

e Of size of order 1

e Of size of order L

Optimal efficiency if cluster formation occurs
on percolation threshold



Proof for 2-D ferro Ising model:

L R

One system (R) has AF seam (red lines).

Fold lattices: — ++4, +—, —4, and —— pairs.
Critical susceptibility of L% system:

X(L) = N"Y(Nyy — N__)?) oc L2¥n—¢

for both systems L and R. Add indices:

N~H(Nyt — N_))r
N=H(N4— = N_ )L

XR(L)

Form S-W style geometric clusters on L
using mirror inversion (green line)



There are 2 sorts of clusters:

e 2-spin clusters: ++4 or —— pairs;

e Oothers: 4 spins in one sheet, — spins in other.

Let there be n. ‘other’ clusters. Since +— and —+
are equally probable, one has

N Y (Ny_—N_)2)=nN"1ome

(Y 0 Y Oomsk)?) =N ng)
k

s1==x1 sSne==x1 £k

Since probability to select cluster k is ny /N,
this is the average geometric cluster size
for the single-cluster method.

Recall:

X X L2Yn—d

— percolation threshold.



Probability * L°
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107° 10 y, 10 10
cluster size / L

Cluster size distribution for critical simple-cubic lat-
tice gas with nn exclusion. System sizes are L3 with
L =8, 16 and 32.
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Autocorrelation times 7 of energy of tricritical 3D
Blume-Capel model (Ising with vacancies)

circles: single-spin updates

squares: geometric clusters

Result z = 0.21 seems to violate Li-Sokal limit
(Phys. Rev. Lett. 63, 827 (1989)) which says
z>al/v=1 (a=v=1/2)

for tricritical 3D Ising model.

Way out: calculate a under constraint. o = —1.



6) Fisher Renormalization

Constraint: scaling properties modified. Example:
Blume-Capel model (s =1 Ising):

= K Z SSJ—I-DZSk

<19 >

with s; = 41 or 0. The canonical partition sum is

Z =) exp(—H)
{si}

under the restriction that there are N, vacancies:

Z(Nv) = > 05~ 2 n_p, ©P(=H)
{si}

we explore the constant vacancy density ensemble.



I/K

exp D/K

System describes path D(K) determined by

dlog Z(K, D)
2 :
(Ek:sm— 5D = v

Thermodynamic |limit: M.E. Fisher, Phys. Rev.
176, 257 (1968).

Finite-size-scaling: mostly unexplored.



7) Conclusion

e Cluster simulation of new models

e Investigation of constrained systems

e EXploration ‘new’ physics

e More applications are possible



