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Introduction

• Examples
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• Statistical Models

– Ising model on Graph (V, E).

1, Configuration Space �s ∈ {+1,−1}|V |.

2, A priori measure 1
2(δs,+1 + δs,−1).

3, Hamiltonian

H/kBT = −K
∑

〈i,j〉
sisj − H

∑

k

sk



– Partition function Z =
∑

e−H/kbT

or free energy F = − lnZ

– Physical quantities as derivatives of F .

First derivative: ρH2O, m

Second derivative: C, χ

� nth-order transition:

nth derivative of F is singular,

but (n − 1)th derivative is analytic.
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• Critical phenomena

Specific-heat : C ∝ |T − Tc|−α

Susceptibility : χ ∝ |T − Tc|−γ

Magnetization: m ∝ |T − Tc|β

At Tc, correlation: g(r) ∝ r−2X

� Universality: critical exponents, α, γ, · · ·,

take same values in different systems.



Four-state Potts at criticality; the Hamiltonian reads

H/kBT = −J
∑
〈i,j〉

δσi,σj



High-temperature expansion of the
zero-field Ising model

Parition function:

Z =
∑

{±1}|V |
e−H

=
∑

{±1}|V |

∏

〈i,j〉
eKsisj (1)

Identity

eKsisj = coshK + sisj sinhK

= coshK(1 + vsisj) (v = tanhK)

(2)

Insert (2) into (1), and expand the product∏
. Then, label each term in the expansion by

a graph Λ:

• If factor 1 is taken, do nothing;

• If vsisj, put a bond 〈i, j〉.



A closed graph An non-closed graph

Parition function Z reads

Z = (coshK)|E| ∑

G∈G0

vb(G) ∑

{±1}|V |

⎛
⎝∏

i

s
mi(G)
i

⎞
⎠

– mi(G): number of bonds incident on vertex i.

�: Any graph with at least one odd number

mi contributes to Z by zero.

Z becomes

Z = 2|V |(coshK)|E| ∑

G∈G0 ,∂G=0

vb(G).



� High-T graph of 〈sisj〉: Almost closed graphs

with ∂G = (i, j).

� High-T graph of the Potts model: Flow

polynomial

Application:

• 1D Ising model: Z = 2L(coshK)L (free)

Z = 2L(coshK)L[1+(tanhK)L] (periodic)

• Exact solution of the 2D Ising model

• Worm Algorithm (has considerable appli-

cations in quantum systems).

• O(n) loop model and its cluster simula-

tions.



Low-temperature expansion of the
zero-field Ising model

Dual Lattice: G → G∗

G: solid and black lines G∗: dashed and blue lines

Partition function Z:

Z =
∑

{±1}|V |
e−H



1) All spins DOWN: e|E|K

2) One spin UP: e|E|K ∗ e−8K = e|E|K ∗ u4



2) Two spins UP:

e|E|K ∗ u6 e|E|K ∗ u8

...

Z becomes

Z = e|E|K ∑

G∗∈G∗
0 ,∂G∗=0

ub(G∗).

Duality Relation:

Z(G; v) = constant × Z(G∗;u) if

v = u. Namely, tanhK = e−2K∗

Criticality on Square Lattice:2Kc = ln(1 +√
2).



Fortuin-Kasteleyn Representation of
the zero-field Ising model

Hamiltonian H

H/ = −K
∑

〈i,j〉
sisj = −2K

∑

〈i,j〉
δsi,sj + constant

Identity:

e
2Kδsi,sj = 1 + μδsi,sj (μ = e2K − 1)

Partition function Z:

Z =
∑

{±1}|V |
e−H

=
∑

{±1}|V |

∏

〈i,j〉
(1 + μδsi,sj) (3)

Expand the product
∏
, label each term by

the graph: if the factor 1 is taken, do nothing;

if μδsi,sj is taken, put a bond on 〈i, j〉.

δsi,sj ⇒ Each component is of a unique color



Z becomes

Z =
∑

G∈G0

μb(G)2k(G)

–b: bond number, k: component number



Random-cluster model:

Z(q, μ) =
∑

G∈G0

μb(G)qk(G)

Some special cases:

• q → 0: spanning tree or spanning forests

• μ = −1: Chromatic polynomial (such as

The Four Color Prolem)

Monte Carlo Methods:

• Sweeny algorithm

• Swendsen-Wang-Chayes-Machta Algorithm



Baxter-Kelland-Wu (BKW) mapping
of the random-cluster model

Medial Graph : G → G̃

G̃–Water: blue area; Island: white

Operation:



Random-Cluster (RC) Model:

Z(q, μ) =
∑

G∈G0

μb(G)(
√

q)c(G)

– c(G): loop number

Application: Map the RC model onto the

8-vertex model.



Recent Development: Stochastic Lowner Evo-

lution (SLE), by Oded Schramm (1999).

In the scaling limit, critical systems are not

only scale invariant, but also conformally in-

variant.

In the scaling limit, BKW curves with appro-

priate boundary conditions are described by

SELκ in Z+:

∂gt(z)

∂t
=

2

gt(z) −
√

κBt
, g0(z) = z ,

— Bt, t ∈ [0,∞): Brownian motion.
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