I. Backbone exponents.

 \star backbones defined as current-carrying bonds (sites) in bus-bar geometry. $N_b \sim L^{d-X_b}$.

 N_b — number of backbones, L — finite linear system size; d — spatial dimensionality; X_b — backbone scaling dimension.

Burning Monte Carlo algorithm.

 \star path crossing exponents X_k . probability P_k of two points connected by at least k independent paths: $P_k \sim L^{-2X_k}$.

$$\Downarrow X_b = X_2$$

current Monte Carlo algorithm.

† † much more efficient than burning procedures.

* results.

1): 2D q-state Potts model (including Baxter-Wu model). bond probability p set at random cluster fixed point p ($p = 1 - e^{-K}$), and at Potts cluster fixed point p (p = 1).

q	g	Mod.	$X_h^{(r)}$	$X_b^{(r)}$	$X_h^{(p)}$	$X_b^{(p)}$
0	2	q = 0 P	0	3/4?	-3/16	
1	8/3	Perc.	5/48	0.3566(2)	0	0
2	3	Ising	1/8	0.2696(3)	5/96	0.0520(3)
3	10/3	q = 3 P	2/15	0.2105(3)	7/80	0.0871(7)
4	4	q=4 P	1/8	0.126(1)	1/8	0.1246(5)
4	4	B.W.	1/8	0.136(7)	1/8	0.1239(8)
2	14/3	Trc. I.	3/40	0.0760(15)	0.0752(3)	0.0753(8)

Note: 1), q=4 Potts model is at tricritical point (K=1.45790(1), D=2.478438(2)); 2), $X_b=2/3$ for q=0 Potts obtained from Eden tree.

* Q1: can one exactly calculate X_b in 2D?

Fit formula:

$$P = L^{-2X}(a + bL^{y_1} + cL^{-2} + dL^{-3}) \quad \text{or} \\ P = L^{-2X}(a + b/\ln L + c + b/\ln^2 L + dL^{-2}) \text{ (P.4 and BW)}.$$

- $\dagger \dagger X_b = X_h$ for $g \ge 4$, $X_b > X_h$ for g < 4.
- 2): 3D Ising $X_b = 0.829(4)$. 3D percolation and tricritical Ising $X_b = ?$
- II. 'Geometric cluster' fixed points.
 - † † $X_b = X_h$? depends on 'red-bond' exponent $X_r > 2$?;
 - † † Scaling argument $\Rightarrow X_r = X_p$ (RG exponent along bond-probability direction.
- \star 2D q-state Potts model.
 - e.g., Ising model (a) and tricritical Blume-Capel model (b) on square lattice.

† † at r.c., $X_p > 0$ for critical branch, $X_p > 0$ for tricritical branch, and $X_p = 0$ for 4-state Potts model.

• From Kac formula and other assumptions, we obtain following tables (last two pages).

RG flows in p-q space:

 \star for 3D Ising model $X_p=0.767(2),~X_h^{(g)}=0.14(1)$?; for tricritical Blume-Capel model $X_P>0$, so that RG flows:

Q2, for 3D q=0 Potts, are followings correct? at criticality, $X_t=3$ and $X_h=0$? at tricriticality, $X_t=0.5183$ and $X_h=0.14(1)$?

Q3, for Blume-Capel model, RG flows and percolation threshold are show in following figures, are they correct?

Q4, for tricritical 3D q=2 Potts, since it behaves mean-field-like, can one calculate X_b ?

Q5, concerning Ising models on triangular and simple-cubic lattices, (a) and (b), respectively, are following RG flows correct?

† † for Ising clusters (P = 1), percolation thresholds coincide with K_c for triangular lattice, but not for simple-cubic lattice.