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Note to the Reader

The following notes are based on my course “Monte Carlo Methods in Statistical
Mechanics: Foundations and New Algorithms” given at the Cours de Troisieme Cycle de
la Physique en Suisse Romande (Lausanne, Switzerland) in June 1989, and on my course
“Multi-Grid Monte Carlo for Lattice Field Theories” given at the Winter College on
Multilevel Techniques in Computational Physics (Trieste, Italy) in January—February
1991.

The reader is warned that some of this material is out-of-date (this is particularly
true as regards reports of numerical work). For lack of time, I have made no attempt to
update the text, but I have added footnotes marked “Note Added 1996” that correct
a few errors and give additional bibliography.

My first two lectures at Cargese 1996 were based on the material included here. My
third lecture described the new finite-size-scaling extrapolation method of [97, 98, 99,
100, 101, 102, 103].

1 Introduction

The goal of these lectures is to give an introduction to current research on Monte
Carlo methods in statistical mechanics and quantum field theory, with an emphasis on:

1) the conceptual foundations of the method, including the possible dangers and
misuses, and the correct use of statistical error analysis; and

2) new Monte Carlo algorithms for problems in critical phenomena and quantum
field theory, aimed at reducing or eliminating the “critical slowing-down” found
in conventional algorithms.

These lectures are aimed at a mixed audience of theoretical, computational and math-
ematical physicists — some of whom are currently doing or want to do Monte Carlo
studies themselves, others of whom want to be able to evaluate the reliability of pub-
lished Monte Carlo work.

Before embarking on 9 hours of lectures on Monte Carlo methods, let me offer a
warning:

Monte Carlo is an extremely bad method; it should be used only when all
alternative methods are worse.

Why is this so? Firstly, all numerical methods are potentially dangerous, compared
to analytic methods; there are more ways to make mistakes. Secondly, as numerical
methods go, Monte Carlo is one of the least efficient; it should be used only on those
intractable problems for which all other numerical methods are even less efficient.



Let me be more precise about this latter point. Virtually all Monte Carlo methods
have the property that the statistical error behaves as

1
v/computational budget

error

(or worse); this is an essentially universal consequence of the central limit theorem. It
may be possible to improve the proportionality constant in this relation by a factor of
10% or more — this is one of the principal subjects of these lectures — but the overall
1/4/n behavior is inescapable. This should be contrasted with traditional deterministic
numerical methods whose rate of convergence is typically something like 1/n* or e™" or
e~?". Therefore, Monte Carlo methods should be used only on those extremely difficult
problems in which all alternative numerical methods behave even worse than 1/4/n.

Consider, for example, the problem of numerical integration in d dimensions, and
let us compare Monte Carlo integration with a traditional deterministic method such
as Simpson’s rule. As is well known, the error in Simpson’s rule with n nodal points
behaves asymptotically as n~*¢ (for smooth integrands). In low dimension (d < 8) this
is much better than Monte Carlo integration, but in high dimension (d > 8) it is much
worse. So it is not surprising that Monte Carlo is the method of choice for performing
high-dimensional integrals. It is still a bad method: with an error proportional to n='/2,
it is difficult to achieve more than 4 or 5 digits accuracy. But numerical integration in
high dimension is very difficult; though Monte Carlo is bad, all other known methods
are worse.’

In summary, Monte Carlo methods should be used only when neither analytic meth-
ods nor deterministic numerical methods are workable (or efficient). One general domain
of application of Monte Carlo methods will be, therefore, to systems with many degrees
of freedom, far from the perturbative regime. But such systems are precisely the ones
of greatest interest in statistical mechanics and quantum field theory!

It is appropriate to close this introduction with a general methodological observation,
ably articulated by Wood and Erpenbeck [3]:

... these [Monte Carlo] investigations share some of the features of ordinary
experimental work, in that they are susceptible to both statistical and sys-
tematic errors. With regard to these matters, we believe that papers should
meet much the same standards as are normally required for experimental
investigations. We have in mind the inclusion of estimates of statistical

LThis discussion of numerical integration is grossly oversimplified. Firstly, there are deterministic
methods better than Simpson’s rule; and there are also sophisticated Monte Carlo methods whose
asymptotic behavior (on smooth integrands) behaves as n~? with p strictly greater than 1/2 [1, 2].
Secondly, for all these algorithms (except standard Monte Carlo), the asymptotic behavior as n — oo
may be irrelevant in practice, because it is achieved only at ridiculously large values of n. For example,
to carry out Simpson’s rule with even 10 nodes per axis (a very coarse mesh) requires n = 10¢, which
is unachievable for d 2 10.



error, descriptions of experimental conditions (i.e. parameters of the calcu-
lation), relevant details of apparatus (program) design, comparisons with
previous investigations, discussion of systematic errors, etc. Only if these
are provided will the results be trustworthy guides to improved theoretical
understanding.

2 Dynamic Monte Carlo Methods:
General Theory

All Monte Carlo work has the same general structure: given some probability mea-
sure m on some configuration space S, we wish to generate many random samples from
7. How is this to be done?

Monte Carlo methods can be classified as static or dynamic. Static methods are
those that generate a sequence of statistically independent samples from the desired
probability distribution 7. These techniques are widely used in Monte Carlo numerical
integration in spaces of not-too-high dimension [2]. But they are unfeasible for most ap-
plications in statistical physics and quantum field theory, where 7 is the Gibbs measure
of some rather complicated system (extremely many coupled degrees of freedom).

The idea of dynamic Monte Carlo methods is to invent a stochastic process with
state space S having 7 as its unique equilibrium distribution. We then simulate this
stochastic process on the computer, starting from an arbitrary initial configuration;
once the system has reached equilibrium, we measure time averages, which converge
(as the run time tends to infinity) to m-averages. In physical terms, we are inventing a
stochastic time evolution for the given system. Let us emphasize, however, that this time
evolution need not correspond to any real “physical” dynamics: rather, the dynamics is
simply a numerical algorithm, and it is to be chosen, like all numerical algorithms, on
the basis of its computational efficiency.

In practice, the stochastic process is always taken to be a Markov process. So
our first order of business is to review some of the general theory of Markov chains.?
For simplicity let us assume that the state space S is discrete (i.e. finite or countably
infinite). Much of the theory for general state space can be guessed from the discrete
theory by making the obvious replacements (sums by integrals, matrices by kernels),
although the proofs tend to be considerably harder.

Loosely speaking, a Markov chain (= discrete-time Markov process) with state space
S is a sequence of S-valued random variables X, X, X5, ... such that successive tran-
sitions X; — X, are statistically independent (“the future depends on the past only

2The books of Kemeny and Snell [4] and Iosifescu [5] are excellent references on the theory of
Markov chains with finite state space. At a somewhat higher mathematical level, the books of Chung
[6] and Nummelin [7] deal with the cases of countable and general state space, respectively.



through the present”). More precisely, a Markov chain is specified by two ingredients:

e The initial distribution o. Here « is a probability distribution on S, and the
process will be defined so that IP(X, = z) = a.

o The transition probability matric P = {pzy}zyes = {p(z = y)}zyecs. Here P is a
matrix satisfying p, > 0 for all z,y and >°, p,,, = 1 for all z. The process will be
defined so that P(Xiy1 =y | Xy = ) = Dy

The Markov chain is then completely specified by the joint probabilities
]P(XO = Xy, Xl = T, X2 =T2, ..., Xn = xn) = Ogy Prozy Pzizo " Prp_1zs - (21)

This product structure expresses the fact that “successive transitions are independent”.
Next we define the n-step transition probabilities

P = P(Xpn=yl|X,=1). (2.2)

Clearly p(o) = gy, pxy Pzy, and in general {pg’;)} are the matrix elements of P".

A Markov chain is said to be irreducible if from each state it is possible to get to
each other state: that is, for each pair z,y € S, there exists an n > 0 for which pg’g‘) > 0.
We shall be considered almost exclusively with irreducible Markov chains.

For each state x, we define the period of x (denoted d,) to be the greatest common
divisor of the numbers n > 0 for which p(”) > 0. If d, = 1, the state x is called
aperiodic. It can be shown that, in an irreducible chain, all states have the same
period; so we can speak of the chain having period d. Moreover, the state space can

then be partitioned into subsets Si,Ss, ..., Sg around which the chain moves cyclically,
ie. pg;) = 0 whenever z € S;, y € S; with j —i #n (mod d). Finally, it can be shown

that a chain is #rreducible and aperiodic if and only if, for each pair z,y, there exists
N,y such that p(”) > 0 for alln > Ny,

We now come to the fundamental topic in the theory of Markov chains, which is the
problem of convergence to equilibrium. A probability measure 7 = {7, },cs is called
a stationary distribution (or invariant distribution or equilibrium distribution) for the
Markov chain P in case

> Tabay = Ty for all y. (2.3)

A stationary probability distribution need not exist; but if it does, then a lot more
follows:

Theorem 1 Let P be the transition probability matrix of an irreducible Markov chain
of period d. If a stationary probability distribution 7 exists, then it is unique, and 7, > 0
for all x. Moreover,

dry ifx€S;,y€ S; withj—i=r (mod d)
(nd+r) — ] i j
A, Py {o ifz €S, yeS; withj—i#r (mod d) (2.4)
for all x,y. In particular, if P is aperiodic, then
lim p( " = 1, . (2.5)

n—oo



This theorem shows that the Markov chain converges as ¢ — oo to the equilibrium
distribution 7, irrespective of the initial distribution oc. Moreover, under the conditions
of this theorem much more can be proven — for example, a strong law of large numbers,
a central limit theorem, and a law of the iterated logarithm. For statements and proofs
of all these theorems, we refer the reader to Chung [6].

We can now see how to set up a dynamic Monte Carlo method for generating samples
from the probability distribution 7. It suffices to invent a transition probability matrix
P = {pyy} = {p(xr — y)} satisfying the following two conditions:

(A) Irreducibility.® For each pair z,y € S, there exists an n > 0 for which pfv’;) > 0.

(B) Stationarity of m. For each y € S,

Z Ty Doy = Ty (2.6)

Then Theorem 1 (together with its more precise counterparts) shows that simulation
of the Markov chain P constitutes a legitimate Monte Carlo method for estimating
averages with respect to m. We can start the system in any state x, and the system is
guaranteed to converge to equilibrium as ¢t — oo [at least in the averaged sense (2.4)].
Long-time averages of any observable f will converge with probability 1 to m-averages
(strong law of large numbers), and will do so with fluctuations of size ~ n~'/2 (central
limit theorem). In practice we will discard the data from the initial transient, i.e. before
the system has come close to equilibrium, but in principle this is not necessary (the bias
is of order n~!, hence asymptotically much smaller than the statistical fluctuations).

So far, so good! But while this is a correct Monte Carlo algorithm, it may or may
not be an efficient one. The key difficulty is that the successive states Xy, X1, ... of the
Markov chain are correlated — perhaps very strongly — so the variance of estimates
produced from the dynamic Monte Carlo simulation may be much higher than in static
Monte Carlo (independent sampling). To make this precise, let f = {f(z)}scs be a
real-valued function defined on the state space S (i.e. a real-valued observable) that
is square-integrable with respect to . Now consider the stationary Markov chain (i.e.
start the system in the stationary distribution 7, or equivalently, “equilibrate” it for a
very long time prior to observing the system). Then {f;} = {f(X;)} is a stationary
stochastic process with mean

pp = (fi) = Dm0 f(2) (2.7)

3We avoid the term “ergodicity” because of its multiple and conflicting meanings. In the physics
literature, and in the mathematics literature on Markov chains with finite state space, “ergodic”
is typically used as a synonym for “irreducible” [4, Section 2.4] [5, Chapter 4]. However, in the
mathematics literature on Markov chains with general state space, “ergodic” is used as a synonym for
“irreducible, aperiodic and positive Harris recurrent” [7, p. 114] [8, p. 169].



and unnormalized autocorrelation function®

Crs(t) = (fsfsrs) — 1 (2.8)
= > f(@) [mapll) — momy] £(y).

The normalized autocorrelation function is then

prr(t) = Cp(t)/Crs(0). (2.9)

Typically pss(t) decays exponentially (~ e~!4/7) for large t; we define the ezponential
autocorrelation time

t
Tepp. f = lIMmSUp ——— 2.10
wd = B o o @) (210)
and
Texp = s1)1cp Teap,f- (2.11)

Thus, ez is the relaxation time of the slowest mode in the system. (If the state space
is infinite, 7.z, might be +o0!)

An equivalent definition, which is useful for rigorous analysis, involves considering
the spectrum of the transition probability matrix P considered as an operator on the
Hilbert space [?(m).5 It is not hard to prove the following facts about P:

(a) The operator P is a contraction. (In particular, its spectrum lies in the closed
unit disk.)

(b) 1 is a simple eigenvalue of P, as well as of its adjoint P*, with eigenvector equal
to the constant function 1.

(c) If the Markov chain is aperiodic, then 1 is the only eigenvalue of P (and of P*)
on the unit circle.

(d) Let R be the spectral radius of P acting on the orthogonal complement of the
constant functions:

R= inf{T: spec (P M 11) C {\: |\ < r}} (2.12)

Then R = e/ 7ewr,

Facts (a)—(c) are a generalized Perron-Frobenius theorem [9]; fact (d) is a consequence
of a generalized spectral radius formula [10, Propositions 2.3-2.5].

The rate of convergence to equilibrium from an initial nonequilibrium distribution
can be bounded above in terms of R (and hence 7..,). More precisely, let v is a

4In the statistics literature, this is called the autocovariance function.

5 [2() is the space of complex-valued functions on S that are square-integrable with respect to 7:
£l = (X, 72| f(2)[?)}/? < 0o. The inner product is given by (f,g) = 3", 7. f(z)*g().
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probability measure on S, and let us define its deviation from equilibrium in the /2
sense,

v
do(vsm) = ||= = 1|2ty =  sup /fdll—/fdﬂ" . (2.13)
T ||f||12(7r)§1
Then, clearly,
dy(aPhm) < [|PY) 1%|| do(os ) . (2.14)

And by the spectral radius formula,
[Pt 15| ~ RY = exp(—t/Teap) (2.15)

asymptotically as ¢ — oo, with equality for all ¢ if P is self-adjoint (see below).
On the other hand, for a given observable f we define the integrated autocorrelation
time

i prs(t) (2.16)

Tint,f =

The factor of 1 is purely a matter of convention; it is inserted so that Tin & Tegp 7 if
2 i D, f

prs(t) ~ e /7 with 7 > 1.] The integrated autocorrelation time controls the statistical
error in Monte Carlo measurements of (f). More precisely, the sample mean

_ 1.
f==X"h (2.17)
ni3
has variance
_ 1 »
var(f) = - > Cyp(r —s) (2.18)
r,s=1
1 n—1 ( w)
= — - — Cff(t) (2.19)
n t=—(n-1) n
1
R~ ﬁ(27‘mt’f) Crr(0) forn > (2.20)

Thus, the variance of f is a factor 2Tins,s larger than it would be if the {f;} were
statistically independent. Stated differently, the number of “effectively independent
samples” in a run of length n is roughly n/27;,, s.

It is sometimes convenient to measure the integrated autocorrelation time in terms of
the equivalent pure exponential decay that would produce the same value of 332 psf(2),
namely .

Tint,f = 1o (QTint,ffl) )
8 \2rjn 1

(2.21)
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This quantity has the nice feature that a sequence of uncorrelated data has T, = 0
(but Tine s = %) Of course, Tip s is ill-defined if 7, 5 < %, as can occasionally happen
in cases of anticorrelation.

In summary, the autocorrelation times 7., and 7;,; ¢ play different roles in Monte
Carlo simulations. 7., places an upper bound on the number of iterations ngs. which
should be discarded at the beginning of the run, before the system has attained equi-
librium; for example, n4isc = 2074, is usually more than adequate. On the other
hand, 7,y determines the statistical errors in Monte Carlo measurements of (f), once
equilibrium has been attained.

Most commonly it is assumed that 7., and 7, s are of the same order of mag-
nitude, at least for “reasonable” observables f. But this is not true in general. In
fact, in statistical-mechanical problems near a critical point, one usually expects the
autocorrelation function py(t) to obey a dynamic scaling law [11] of the form

pas(t:B) ~ [t F (5= 6o [t’) (2.22)
valid in the region
it >1, |8-08|<1, |B— 3]t bounded. (2.23)

Here a,b > 0 are dynamic critical exponents and F' is a suitable scaling function; 3 is
some “temperature-like” parameter, and f. is the critical point. Now suppose that F
is continuous and strictly positive, with F'(z) decaying rapidly (e.g. exponentially) as
|z| — oo. Then it is not hard to see that

Teaps ~ |B— B/ (2.24)
Tinty ~ B — B TUTV (2.25)
prit; B=0) ~ [t[™ (2.26)

so that 7ezp r and 7, ¢ have different critical exponents unless a = 0.6 Actually, this
should not be surprising: replacing “time” by “space”, we see that 7., s is the analogue
of a correlation length, while 7;,, r is the analogue of a susceptibility; and (2.24)—(2.26)
are the analogue of the well-known scaling law v = (2 —n)v — clearly v # v in general!
So it is crucial to distinguish between the two types of autocorrelation time.

Returning to the general theory, we note that one convenient way of satisfying
condition (B) is to satisfy the following stronger condition:

(B') For each pair z,y € S, TyPry = TyDya- (2.27)

[Summing (B’) over z, we recover (B).] (B') is called the detailed-balance condition;
a Markov chain satisfying (B’) is called reversible.” (B') is equivalent to the self-
adjointness of P as on operator on the space [*(w). In this case, the spectrum of

6Qur discussion of this topic in [12] is incorrect.

"For the physical significance of this term, see Kemeny and Snell [4, section 5.3] or Iosifescu [5,
section 4.5].



P is real and lies in the closed interval [—1, 1]; we define

Amin = inf spec (P | 11) (2.28)
Amaz = sup spec (P | 14) (2.29)
From (2.12) we have
-1
Tezp = (2.30)

lOg max[|)\min|a )\maz] .
For many purposes, only the spectrum near +1 matters, so it is useful to define the
modified exponential autocorrelation time

[ —1/108 Amas if Appas > 0
T {+OO 2 (2.31)

Now let us apply the spectral theorem to the operator P: it follows that the auto-
correlation function py(t) has a spectral representation

)‘maw,f

prrlt) = [ Adog (V) (2.32)

with a nonnegative spectral weight dosr(A) supported on an interval
[/\min,fa /\mam,f] C [)‘mzna /\maz]- Clearly

—1

"o = Jog max Ay s dman ] (2.33)
and we can define
iy = {1/ BNt s 20 (.30
(if Amaz,r > 0). On the other hand,
1" 40
Tint, f 3 T doss(N) (2.35)
Amin, f

It follows that

1 (14 e Yeans 11+ e Yea ,
Tint,f < 3 (m) < 3 <1—eﬁ S (2.36)

Moreover, since A — (1 + X)/(1 — A) is a convex function, Jensen’s inequality implies
that 1 1)
+ Pss
; > - —— 2.37
Tmt,f - 2 1 _ pff(]_) ( )



If we define the initial autocorrelation time

1 Togpgp(1) if pgp(1) >0
Tinit,f = {undeﬁned if prr(1) <0 (2.38)

then these inequalities can be summarized conveniently as
Conversely, it is not hard to see that

Sup Tipst,f = Sup 7~—int,f = sup Tézp,f = Témp; (240)
Fe?(m) Fe?(m) Fe?(m)

it suffices to choose f so that its spectral weight doy; is supported in a very small
interval near \,,,;.

Finally, let us make a remark about transition probabilities P that are “built up
out of” other transition probabilities P, P, ..., Py:

a) If P, P, ..., P, satisfy the stationarity condition (resp. the detailed-balance con-
dition) for 7, then so does any convex combination P = Y ; \;P;. Here \; > 0
and > A\ =1

b) If Py, Ps, ..., P, satisfy the stationarity condition for 7, then so does the product
P =PP,---P, (Note, however, that P does not in general satisfy the detailed-
balance condition, even if the individual P; do.?)

Algorithmically, the convex combination amounts to choosing randomly, with proba-
bilities {\;}, from among the “elementary operations” P;. (It is crucial here that the \;
are constants, independent of the current configuration of the system; only in this case
does P leave 7 stationary in general.) Similarly, the product corresponds to performing
sequentially the operations Py, Py, ..., P,.

3 Statistical Analysis of Dynamic Monte Carlo Data

Many published Monte Carlo studies contain statements like:

We ran for a total of 100000 iterations, discarding the first 50000 iterations
(for equilibration) and then taking measurements once every 100 iterations.

8Recall that if A and B are self-adjoint operators, then AB is self-adjoint if and only if A and B
commute.
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It is important to emphasize that unless further information is given — namely, the
autocorrelation time of the algorithm — such statements have no value whatsoever.

Is a run of 100000 iterations long enough? Are 50000 iterations sufficient for equi-
libration? That depends on how big the autocorrelation time is. The purpose of this
lecture is to give some practical advice for choosing the parameters of a dynamic Monte
Carlo simulation, and to give an introduction to the statistical theory that puts this
advice on a sound mathematical footing.

There are two fundamental — and quite distinct — issues in dynamic Monte Carlo
simulation:

e Initialization bias. If the Markov chain is started in a distribution « that is not
equal to the stationary distribution 7, then there is an “initial transient” in which
the data do not reflect the desired equilibrium distribution 7. This results in a
systematic error (bias).

e Autocorrelation in equilibrium. The Markov chain, once it reaches equilibrium,
provides correlated samples from 7. This correlation causes the statistical error
(variance) to be a factor 27, s larger than in independent sampling.

Let us discuss these issues in turn.

Initialization bias. Often the Markov chain is started in some chosen configuration
x; then a = §,. For example, in an Ising model, x might be the configuration with
“all spins up”; this is sometimes called an ordered or cold start. Alternatively, the
Markov chain might be started in a random configuration chosen according to some
simple probability distribution a. For example, in an Ising model, we might initialize
the spins randomly and independently, with equal probabilities of up and down; this
is sometimes called a random or hot start. In all these cases, the initial distribution «
is clearly not equal to the equilibrium distribution 7. Therefore, the system is initially
“out of equilibrium”. Theorem 1 guarantees that the system approaches equilibrium as
t — oo, but we need to know something about the rate of convergence to equilibrium.

Using the exponential autocorrelation time 7.;,, we can set an upper bound on
the amount of time we have to wait before equilibrium is “for all practical purposes”
attained. For example, if we wait a time 207,,,, then the deviation from equilibrium
(in the [? sense) will be at most e (=~ 2 x 107°) times the initial deviation from
equilibrium. There are two difficulties with this bound. Firstly, it is usually impossible
to apply in practice, since we almost never know 7.4, (or a rigorous upper bound for
it). Secondly, even if we can apply it, it may be overly conservative; indeed, there exist
perfectly reasonable algorithms in which 7., = 400 (see Sections 7 and 8).

Lacking rigorous knowledge of the autocorrelation time 7.,,, we should try to esti-
mate it both theoretically and empirically. To make a heuristic theoretical estimate of
Tezp, We attempt to understand the physical mechanism(s) causing slow convergence to
equilibrium; but it is always possible that we have overlooked one or more such mech-
anisms, and have therefore grossly underestimated 7.,,. To make a rough empirical
estimate of 7.,,, we measure the autocorrelation function Cy(t) for a suitably large

11



set of observables f [see below]; but there is always the danger that our chosen set of
observables has failed to include one that has strong enough overlap with the slowest
mode, again leading to a gross underestimate of 7.,.

On the other hand, the actual rate of convergence to equilibrium from a given initial
distribution o may be much faster than the worst-case estimate given by 7.4,. So it
is usual to determine empirically when “equilibrium” has been achieved, by plotting
selected observables as a function of time and noting when the initial transient appears
to end. More sophisticated statistical tests for initialization bias can also be employed
[13].

In all empirical methods of determining when “equilibrium” has been
achieved, a serious danger is the possibility of metastability. That is, it could appear that
equilibrium has been achieved, when in fact the system has only settled down to a long-
lived (metastable) region of configuration space that may be very far from equilibrium.
The only sure-fire protection against metastability is a proof of an upper bound on 74,
(or more generally, on the deviation from equilibrium as a function of the elapsed time
t). The next-best protection is a convincing heuristic argument that metastability is
unlikely (i.e. that 7., is not too large); but as mentioned before, even if one rules out
several potential physical mechanisms for metastability, it is very difficult to be certain
that one has not overlooked others. If one cannot rule out metastability on theoretical
grounds, then it is helpful at least to have an idea of what the possible metastable regions
look like; then one can perform several runs with different initial conditions typical of
each of the possible metastable regions, and test whether the answers are consistent.
For example, near a first-order phase transition, most Monte Carlo methods suffer from
metastability associated with transitions between configurations typical of the distinct
pure phases. We can try initial conditions typical of each of these phases (e.g. for many
models, a “hot” start and a “cold” start). Consistency between these runs does not
guarantee that metastability is absent, but it does give increased confidence. Plots of
observables as a function of time are also useful indicators of possible metastability.

But when all is said and done, no purely empirical estimate of 7 from a run of
length n can be guaranteed to be even approximately correct. What we can say is that
if Testimated <K 1, then either T & Testimated OF €lse T 2 n.

Once we know (or guess) the time needed to attain “equilibrium”, what do we do
with it? The answer is clear: we discard the data from the initial transient, up to some
time ng;s., and include only the subsequent data in our averages. In principle, this is
(asymptotically) unnecessary, because the systematic errors from this initial transient
will be of order 7/n, while the statistical errors will be of order (7/n)Y2. But in
practice, the coefficient of 7/n in the systematic error may be fairly large, if the initial
distribution is very far from equilibrium. By throwing away the data from the initial
transient, we lose nothing, and avoid a potentially large systematic error.

Autocorrelation in equilibrium. As explained in the preceding lecture, the variance
of the sample mean f in a dynamic Monte Carlo method is a factor 27, ; higher than
it would be in independent sampling. Otherwise put, a run of length n contains only

12



n/2Tin,; “effectively independent data points”.

This has several implications for Monte Carlo work. On the one hand, it means
that the the computational efficiency of the algorithm is determined principally by its
autocorrelation time. More precisely, if one wishes to compare two alternative Monte
Carlo algorithms for the same problem, then the better algorithm is the one that has
the smaller autocorrelation time, when time is measured in units of computer (CPU)
time. [In general there may arise tradeoffs between “physical” autocorrelation time (i.e.
T measured in iterations) and computational complexity per iteration.] So accurate
measurements of the autocorrelation time are essential to evaluating the computational
efficiency of competing algorithms.

On the other hand, even for a fixed algorithm, knowledge of 7, ¢ is essential for
determining run lengths — is a run of 100000 sweeps long enough? — and for setting
error bars on estimates of (f). Roughly speaking, error bars will be of order (7/n)!/?;
so if we want 1% accuracy, then we need a run of length ~ 100007, and so on. Above
all, there is a basic self-consistency requirement: the run length n must be > than the
estimates of 7 produced by that same run, otherwise none of the results from that run
should be believed. Of course, while self-consistency is a necessary condition for the
trustworthiness of Monte Carlo data, it is not a sufficient condition; there is always the
danger of metastability.

Already we can draw a conclusion about the relative importance of initialization
bias and autocorrelation as difficulties in dynamic Monte Carlo work. Let us assume
that the time for initial convergence to equilibrium is comparable to (or at least not too
much larger than) the equilibrium autocorrelation time 7;,; s (for the observables f of
interest) — this is often but not always the case. Then initialization bias is a relatively
trivial problem compared to autocorrelation in equilibrium. To eliminate initialization
bias, it suffices to discard =~ 207 of the data at the beginning of the run; but to achieve
a reasonably small statistical error, it is necessary to make a run of length ~ 10007 or
more. So the data that must be discarded at the beginning, ng;,., is a negligible fraction
of the total run length n. This estimate also shows that the exact value of ng,. is not
particularly delicate: anything between & 207 and ~ n/5 will eliminate essentially all
initialization bias while paying less than a 10% price in the final error bars.

In this remainder of this lecture I would like to discuss in more detail the statistical
analysis of dynamic Monte Carlo data (assumed to be already “in equilibrium”), with
emphasis on how to estimate the autocorrelation time 7;,; y and how to compute valid
error bars. What is involved here is a branch of mathematical statistics called time-
series analysis. An excellent exposition can be found in the books of of Priestley [14]
and Anderson [15].

Let {f;} be a real-valued stationary stochastic process with mean

u = <ft>7 (31)

unnormalized autocorrelation function
C(t) = <fs fs+t> - ,U'2 ) (32)
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normalized autocorrelation function

p(t) = C()/C(0), (3-3)
and integrated autocorrelation time
1 o
T = 5 >, p1)- (3.4)
t=—0o0

Our goal is to estimate p, C(t), p(t) and 7;,,; based on a finite (but large) sample
fi, ---, fa from this stochastic process.
The “natural” estimator of y is the sample mean

__1"
F=oX 5 (35

This estimator is unbiased (i.e. (f) = u) and has variance

var(f) = % T - %) c) (3.6)
t=—(n-1)
~ % (27Tine) C(0) forn>> 71 (3.7)

Thus, even if we are interested only in the static quantity u, it is necessary to estimate
the dynamic quantity 7;,; in order to determine valid error bars for u.
The “natural” estimator of C(t) is

~ n
Cl) = g X U Wi~ w 39

if the mean p is known, and

o~ n |t _ _
€ = o= & (= Dlfiv = P (3.9

if the mean 4 is unknown. We emphasize the conceptual distinction between the au-
tocorrelation function C(t), which for each ¢ is a number, and the estimator C(t) or

C (t), which for each t is a random wvariable. As will become clear, this distinction is

also of practical importance. C(t) is an unbiased estimator of C(t), and C(¢) is almost
unbiased (the bias is of order 1/n) [15, p. 463]. Their variances and covariances are [15,
pp. 464-471] [14, pp. 324-328]

1 o

var(C(t)) = - mzz_oo [C(m)? + C(m+1)C(m — t) + K(t, m, m +1)]
+o (%) (3.10)
cov(C(t), C(u)) = % m_oooo[(](m)C(m +u— 1)+ C(m+u)C(m—1)
+ Rt m, m +u)] + 0 (%) (3.11)



where t,u > 0 and & is the connected 4-point autocorrelation function

’{(Tv 5, t) = <(fz - :“)(fi-l—r - :u)(fi+s - :u)(fi-l—t - M))
—C(r)C(t—s)—C(s)C(t—r)—=C@{)C(s—r). (3.12)

To leading order in 1/n, the behavior of C is identical to that of C.
The “natural” estimator of p(t) is

plt) = C(1)/C(0) (3.13)
if the mean p is known, and R R
p(t) = C(1)/C(0) (3.14)

if the mean g is unknown. The variances and covariances of p(t) and p(t) can be
computed (for large n) from (3.11); we omit the detailed formulae.
The “natural” estimator of 7;,; would seem to be

p(t) (3.15)

(or the analogous thing with p), but this is wrong! The estimator defined in (3.15)
has a variance that does not go to zero as the sample size n goes to infinity [14, pp.
420-431], so it is clearly a very bad estimator of 7;,;. Roughly speaking, this is because
the sample autocorrelations p(t) for |t| > 7 contain much “noise” but little “signal”;
and there are so many of them (order n) that the noise adds up to a total variance
of order 1. (For a more detailed discussion, see [14, pp. 432-437].) The solution is to
cut off the sum in (3.15) using a “window” A(¢) which is ~ 1 for |t| < 7 but ~ 0 for

it] > T
1

Y. A B() - (3.16)

t=—(n—1)

3

N | =

Tint =

This retains most of the “signal” but discards most of the “noise”. A good choice is

the rectangular window
1 it <M
Alt) = { 0 if [t| > M (3.17)

where M is a suitably chosen cutoff. This cutoff introduces a bias

bias(Tin) = —% > p(t)—i—o(l) : (3.18)

[t|>M n

On the other hand, the variance of 7;,; can be computed from (3.11); after some algebra,

one obtains 2(2M + 1)
~ +
var(Tint) = — T2 (3.19)
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where we have made the approximation 7 < M < n. The choice of M is thus a
tradeoff between bias and variance: the bias can be made small by taking M large
enough so that p(t) is negligible for |t| > M (e.g. M = a few times 7 usually suffices),
while the variance is kept small by taking M to be no larger than necessary consistent
with this constraint. We have found the following “automatic windowing” algorithm
[16] to be convenient: choose M to be the smallest integer such that M > ¢ 7 (M).
If p(t) were roughly a pure exponential, then it would suffice to take ¢ ~ 4 (since
et < 2%). However, in many cases p(t) is expected to have an asymptotic or pre-
asymptotic decay slower than exponential, so it is usually prudent to take c at least 6,
and possibly as large as 10.

We have found this automatic windowing procedure to work well in practice, pro-
vided that a sufficient quantity of data is available (n 2 10007). However, at present we
have very little understanding of the conditions under which this windowing algorithm
may produce biased estimates of 7;,; or of its own error bars. Further theoretical and
experimental study of the windowing algorithm — e.g. experiments on various exactly-
known stochastic processes, with various run lengths — would be highly desirable.

4 Conventional Monte Carlo Algorithms for
Spin Models

In this lecture we describe the construction of dynamic Monte Carlo algorithms for
models in statistical mechanics and quantum field theory. Recall our goal: given a
probability measure 7 on the state space S, we wish to construct a transition matrix
P = {pyy} satisfying:

(A) Irreducibility. For each pair z,y € S, there exists an n > 0 for which p;(g) > 0.

(B) Stationarity of m. For each y € S,

wapxy = Ty. (4.1)

A sufficient condition for (B), which is often more convenient to verify, is:
(B') Detailed balance for w. For each pair z,y € S, Typpy = TyDys-

A very general method for constructing transition matrices satisfying detailed bal-
ance for a given distribution 7 was introduced in 1953 by Metropolis et al. [17], with
a slight extension two decades later by Hastings [18]. The idea is the following: Let

We have also assumed that the only strong peaks in the Fourier transform of C(t) are at zero
frequency. This assumption is valid if C(t) > 0, but could fail if there are strong anticorrelations.
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PO = {p{} be an arbitrary irreducible transition matrix on S. We call P the
proposal matriz; we shall use it to generate proposed moves x — y that will then be
accepted or rejected with probabilities a,, and 1 —a,,, respectively. If a proposed move
is rejected, then we make a “null transition” x — x. Therefore, the transition matrix
P = {pgy} of the full algorithm is

Pey = 1055(;,) Agy for x 7é Yy

Poe = PO+ 2P0 (1 - agy) (4.2)
y#z

where of course we must have 0 < a,, <1 for all z,y. It is easy to see that P satisfies
detailed balance for 7 if and only if

(0)
am 7T p €T
- ?(/0) (4.3)
Oya Tz Py
for all pairs = # y. But this is easily arranged: just set
(0)
Ty Dy
Uy = F (%) : (4.4)
Tz Pxy
where F: [0, +00] — [0, 1] is any function satisfying
F(z)
= for all z. 4.5
F1/2) z or all z (4.5)
The choice suggested by Metropolis et al. is
F(z) = min(z,1); (4.6)
this is the mazimal function satisfying (4.5). Another choice sometimes used is
z
F(z) = : 4.7
() = — (4.7

Of course, it is still necessary to check that P is irreducible; this is usually done on a
case-by-case basis.

Note that if the proposal matrix P() happens to already satisfy detailed balance
for 7, then we have 7, pg; /T p(;;) =1, so that a,, =1 (if we use the Metropolis choice
of F) and P = PO, On the other hand, no matter what P() is, we obtain a matrix
P that satisfies detailed balance for m. So the Metropolis-Hastings procedure can be
thought of as a prescription for minimally modifying a given transition matrix P® so
that it satisfies detailed balance for .

Many textbooks and articles describe the Metropolis-Hastings procedure only in the
special case in which the proposal matrix P is symmetric, namely p{3) = p{%). In this
case (4.4) reduces to

Uy = F(@> . (4.8)

Ty
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In statistical mechanics we have

_ﬂEw _,BEac
e e
ﬂ—:p = Ee‘ﬂE@ = Z Y (49)
y
and hence
Ty _ oBEy—E) (4.10)
Ty

Note that the partition function Z has disappeared from this expression; this is crucial,
as Z is almost never explicitly computable! Using the Metropolis acceptance probability
F(z) = min(z, 1), we obtain the following rules for acceptance or rejection:

o f AE=E,— E, <0, then we accept the proposal always (i.e. with probability

1).

e If AE > 0, then we accept the proposal with probability e #2% (< 1). That is,
we choose a random number r uniformly distributed on [0, 1], and we accept the
proposal if r < e AAF,

But there is nothing special about P being symmetric; any proposal matrix P is
perfectly legitimate, and the Metropolis-Hastings procedure is defined quite generally
by (4.4).

Let us emphasize once more that the Metropolis-Hastings procedure is a general
technique; it produces an infinite family of different algorithms depending on the choice
of the proposal matrix P, In the literature the term “Metropolis algorithm” is often
used to denote the algorithm resulting from some particular commonly-used choice of
PO but it is important not to be misled.

To see the Metropolis-Hastings procedure in action, let us consider a typical statistical-
mechanical model, the Ising model: On each site ¢ of some finite d-dimensional lattice,
we place a random variable o; taking the values £1. The Hamiltonian is

H(o) = —; 00} , (4.11)

where the sum runs over all nearest-neighbor pairs. The corresponding Gibbs measure
is
m(0) = Z7" exp[-BH(0)] (4.12)

where Z is a normalization constant (the partition function). Two different proposal
matrices are in common use:

1) Single-spin-flip (Glauber) dynamics. Fix some site i. The proposal is to flip o;,
hence

(0) ny {1 if 0] = —0; and o}, = o for all j # i
) — = ? J 4.13
pi({o} = {o}) 0 otherwise (4.13)
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Here Pi(o) is symmetric, so the acceptance probability is

a;({o} = {0’}) = min(e P2F 1), (4.14)
where
AE = E({0'}) — E{o}) = 20; . Zf ;- (4.15)

So AF is easily computed by comparing the status of o; and its neighbors.

This defines a transition matrix P; in which only the spin at site ¢ is touched. The
full “single-spin-flip Metropolis algorithm” involves sweeping through the entire lattice
in either a random or periodic fashion, i.e. either

1
P = v Y P (random site updating) (4.16)

or
P = PP, ---F, (sequential site updating) (4.17)

(here V' is the volume). In the former case, the transition matrix P satisfies detailed
balance for 7. In the latter case, P does not in general satisfy detailed balance for =,
but it does satisfy stationarity for 7, which is all that really matters.

It is easy to check that P is irreducible, except in the case of sequential site updating
with 8 =0.1°

2) Pair-interchange (Kawasaki) dynamics. Fix a pair of sites 4, j. The proposal is
to interchange o; and o, hence

pE?J))({U} S o)) = {é if o} = %, o; = 0; and oy, = oy for all k # i, j (4.18)
otherwise

The rest of the formulae are analogous to those for single-spin-flip dynamics. The

overall algorithm is again constructed by a random or periodic sweep over a suitable

set of pairs 4, j, usually taken to be nearest-neighbor pairs. It should be noted that this

algorithm is not irreducible, as it conserves the total magnetization M = 3", 0;. But it

is irreducible on subspaces of fixed M (except for sequential updating with § = 0).

A very different approach to constructing transition matrices satisfying detailed
balance for 7 is the heat-bath method. This is best illustrated in a specific example.
Consider again the Ising model (4.12), and focus on a single site ¢. Then the conditional
probability distribution of o;, given all the other spins {0}, is

PF(O'i ‘ {Uj}j;éi) = const ({Uj}jii) X exp [ﬂO’z Z O'j] . (419)

j nn. of ¢

10Note Added 1996: This statement is wrong!!! For the Metropolis acceptance probability F(z) =
min(z, 1), one may construct examples of nonergodicity for sequential site updating at any 3 [104, 105]:
the idea is to construct configurations for which every proposed update (working sequentially) has
AFE = 0 and is thus accepted. Of course, the ergodicity can be restored by taking any F'(z) < 1, such
as the choice F(z) = z/(1 + 2).
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(Note that this conditional distribution is precisely that of a single Ising spin o; in
an “effective magnetic field” produced by the fixed neighboring spins ¢;.) The heat-
bath algorithm updates o; by choosing a new spin value o}, independent of the old
value o;, from the conditional distribution (4.19); all the other spins {o,};£; remain
unchanged.!’ As in the Metropolis algorithm, this operation is carried out over the
whole lattice, either randomly or sequentially.

Analogous algorithms can be developed for more complicated models, e.g. P(y)
models, o-models and lattice gauge theories. In each case, we focus on a single field
variable (holding all the other variables fixed), and give it a new value, independent
of the old value, chosen from the appropriate conditional distribution. Of course, the
feasibility of this algorithm depends on our ability to construct an efficient subroutine
for generating the required single-site (or single-link) random variables. But even if this
algorithm is not always the most efficient one in practice, it serves as a clear standard
of comparison, which is useful in the development of more sophisticated algorithms.

A more general version of the heat-bath idea is called partial resampling: here
we focus on a set of variables rather than only one, and the new values need not
be independent of the old values. That is, we divide the variables of the system,
call them {¢}, into two subsets, call them {¢} and {0}. For fixed values of the {6}
variables, 7 induces a conditional probability distribution of {¢} given {f}, call it
P™({¢)} | {0}). Then any algorithm for updating {+} with {6} fized that leaves invariant
all of the distributions P7( - | {#}) will also leave invariant 7. One possibility is to use an
independent resampling of {1}: we throw away the old values {¢}, and take {¢'} to be a
new random variable chosen from the probability distribution P7( - | {#}), independent
of the old values. Independent resampling might also called block heat-bath updating.
On the other hand, if {1} is a large set of variables, independent resampling is probably
unfeasible, but we are free to use any updating that leaves invariant the appropriate
conditional distributions. Of course, in this generality “partial resampling” includes all
dynamic Monte Carlo algorithms — we could just take {1} to be the entire system
— but it is in many cases conceptually useful to focus on some subset of variables.
The partial-resampling idea will be at the heart of the multi-grid Monte Carlo method
(Section 5) and the embedding algorithms (Section 6).

We have now defined a rather large class of dynamic Monte Carlo algorithms: the
single-spin-flip Metropolis algorithm, the single-site heat-bath algorithm, and so on.
How well do these algorithms perform? Away from phase transitions, they perform
rather well. However, near a phase transition, the autocorrelation time grows rapidly.
In particular, near a critical point (second-order phase transition), the autocorrelation

time typically diverges as
T ~ min(L,§)*, (4.20)

1 The alert reader will note that in the Ising case the heat-bath algorithm is equivalent to the
single-spin-flip Metropolis algorithm with the choice F'(z) = z/(1+ z) of acceptance function. But this
correspondence does not hold for more complicated models.
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where L is the linear size of the system, & is the correlation length of an infinite-
volume system at the same temperature, and z is a dynamic critical exponent. This
phenomenon is called critical slowing-down; it severely hampers the study of critical
phenomena by Monte Carlo methods. Most of the remainder of these lectures will be de-
voted, therefore, to describing recent progress in inventing new Monte Carlo algorithms
with radically reduced critical slowing-down.

The critical slowing-down of the conventional algorithms arises fundamentally from
the fact that their updates are local: in a single step of the algorithm, “information” is
transmitted from a given site only to its nearest neighbors. Crudely one might guess that
this “information” executes a random walk around the lattice. In order for the system to
evolve to an “essentially new” configuration, the “information” has to travel a distance
of order &, the (static) correlation length. One would guess, therefore, that 7 ~ £2 near
criticality, i.e. that the dynamic critical exponent z equals 2. This guess is correct for the
Gaussian model (free field).'? For other models, we have a situation analogous to theory
of static critical phenomena: the dynamic critical exponent is a nontrivial number
that characterizes a rather large class of algorithms (a so-called “dynamic universality
class”). In any case, for most models of interest, the dynamic critical exponent for
local algorithms is close to 2 (usually somewhat higher) [21]. Accurate measurements
of dynamic critical exponents are, however, very difficult — even more difficult than
measurements of static critical exponents — and require enormous quantities of Monte
Carlo data: run lengths of &~ 100007, when 7 is itself getting large!

We can now make a rough estimate of the computer time needed to study the
Ising model near its critical point, or quantum chromodynamics near the continuum
limit. Each sweep of the lattice takes a time of order L% where d is the spatial (or
space-“time”) dimensionality of the model. And we need ~ 27 sweeps in order to
get one “effectively independent” sample. So this means a computer time of order
LAg? 2 ¢3+% 13 For high-precision statistics one might want 10® “independent” samples.
The reader is invited to plug in & = 100, d = 3 (or d = 4 if you’re an elementary-particle
physicist) and get depressed. It should be emphasized that the factor £¢ is inherent
in all Monte Carlo algorithms for spin models and field theories (but not for self-
avoiding walks, see Section 7). The factor £% could, however, conceivably be reduced

12Tndeed, for the Gaussian model this random-walk picture can be made rigorous: see [19] combined
with [20, Section §].

13Clearly one must take L 2> £ in order to avoid severe finite-size effects. Typically one approaches
the critical point with L & ¢, where ¢ & 2—4, and then uses finite-size scaling [22, 23] to extrapolate to
the infinite-volume limit. Note Added 1996: Recently, radical advances have been made in applying
finite-size scaling to Monte Carlo simulations (see [97, 98] and especially [99, 100, 101, 102, 103));
the preceding two sentences can now be seen to be far too pessimistic. For reliable extrapolation
to the infinite-volume limit, L and £ must both be > 1, but the ratio L/{ can in some cases be as
small as 1072 or even smaller (depending on the model and on the quality of the data). However,
reliable extrapolation requires careful attention to systematic errors arising from correction-to-scaling
terms. In practice, reliable infinite-volume values (with both statistical and systematic errors of order
a few percent) can be obtained at ¢ ~ 10° from lattices of size L ~ 102, at least in some models
[101, 102, 103].
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or eliminated by a more clever algorithm.

What is to be done? Our knowledge of the physics of critical slowing-down tells
us that the slow modes are the long-wavelength modes, if the updating is purely local.
The natural solution is therefore to speed up those modes by some sort of collective-
mode (nonlocal) updating. It is necessary, then, to identify physically the appropri-
ate collective modes, and to devise an efficient computational algorithm for speeding
up those modes. These two goals are unfortunately in conflict; it is very difficult to
devise collective-mode algorithms that are not so nonlocal that their computational
cost outweighs the reduction in critical slowing-down. Specific implementations of the
collective-mode idea are thus highly model-dependent. At least three such algorithms
have been invented so far:

e Fourier acceleration [24]
e Multi-grid Monte Carlo (MGMC) [25, 20, 26]
e The Swendsen-Wang algorithm [27] and its generalizations

Fourier acceleration and MGMC are very similar in spirit (though quite different tech-
nically). Their performance is thus probably qualitatively similar, in the sense that
they probably work well for the same models and work badly for the same models. In
the next lecture we give an introduction to the MGMC method; in the following lecture
we discuss algorithms of Swendsen-Wang type.

5 Multi-Grid Algorithms

The phenomenon of critical slowing-down is not confined to Monte Carlo simula-
tions: very similar difficulties were encountered long ago by numerical analysts con-
cerned with the numerical solution of partial differential equations. An ingenious so-
lution, now called the multi-grid (MG) method, was proposed in 1964 by the Soviet
numerical analyst Fedorenko [28]: the idea is to consider, in addition to the original
(“fine-grid”) problem, a sequence of auxiliary “coarse-grid” problems that approximate
the behavior of the original problem for excitations at successively longer length scales
(a sort of “coarse-graining” procedure). The local updates of the traditional algorithms
are then supplemented by coarse-grid updates. To a present-day physicist, this philos-
ophy is remarkably reminiscent of the renormalization group — so it is all the more
remarkable that it was invented two years before the work of Kadanoff [29] and seven
years before the work of Wilson [30]! After a decade of dormancy, multi-grid was re-
vived in the mid-1970’s [31], and was shown to be an extremely efficient computational
method. In the 1980’s, multi-grid methods have become an active area of research in
numerical analysis, and have been applied to a wide variety of problems in classical
physics [32, 33]. Very recently [25] it was shown how a stochastic generalization of the
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multi-grid method — multi-grid Monte Carlo (MGMC) — can be applied to problems
in statistical, and hence also Euclidean quantum, physics.

In this lecture we begin by giving a brief introduction to the deterministic multi-
grid method; we then explain the stochastic analogue.'* But it is worth indicating
now the basic idea behind this generalization. There is a strong analogy between
solving lattice systems of equations (such as the discrete Laplace equation) and making
Monte Carlo simulations of lattice random fields. Indeed, given a Hamiltonian H (p),
the deterministic problem is that of minimizing H(y), while the stochastic problem is
that of generating random samples from the Boltzmann-Gibbs probability distribution
e BH(¥)  The statistical-mechanical problem reduces to the deterministic one in the
zero-temperature limit f — +oo.

Many (but not all) of the deterministic iterative algorithms for minimizing H (y)
can be generalized to stochastic iterative algorithms — that is, dynamic Monte Carlo
methods — for generating random samples from e ##(¥)_ For example, the Gauss-
Seidel algorithm for minimizing H and the heat-bath algorithm for random sampling
from e P# are very closely related. Both algorithms sweep successively through the
lattice, working on one site = at a time. The Gauss-Seidel algorithm updates ¢, so as
to minimize the Hamiltonian H(¢) = H (¢, {¢y}y2s) when all the other fields {¢y } 424
are held fixed at their current values. The heat-bath algorithm gives ¢, a new random
value chosen from the probability distribution exp[—H (¢4, {¢y }y22)], with all the fields
{¢y}y2c again held fixed. As f — 400 the heat-bath algorithm approaches Gauss-
Seidel. A similar correspondence holds between MG and MGMC.

Before entering into details, let us emphasize that although the multi-grid method
and the block-spin renormalization group (RG) are based on very similar philosophies
— dealing with a single length scale at a time — they are in fact very different. In
particular, the conditional coarse-grid Hamiltonian employed in the MGMC method is
not the same as the renormalized Hamiltonian given by a block-spin RG transformation.
The RG transformation computes the marginal, not the conditional, distribution of the
block means — that is, it integrates over the complementary degrees of freedom, while
the MGMC method fizes these degrees of freedom at their current (random) values. The
conditional Hamiltonian employed in MGMC is given by an explicit finite expression,
while the marginal (RG) Hamiltonian cannot be computed in closed form. The failure to
appreciate these distinctions has unfortunately led to much confusion in the literature.'®

5.1 Deterministic Multi-Grid

In this section we give a pedagogical introduction to multi-grid methods in the sim-
plest case, namely the solution of deterministic linear or nonlinear systems of equations.

1For an excellent introduction to the deterministic multi-grid method, see Briggs [34]; more ad-
vanced topics are covered in the book of Hackbusch [32]. Both MG and MGMC are discussed in detail
in [20].

15For further discussion, see [20, Section 10.1].
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Consider, for purposes of exposition, the lattice Poisson equation —Ap = fin a
region Q) C Z% with zero Dirichlet data. Thus, the equation is

(_A(P)sc = ngpw - Z P = fw (51)

z': jz—a'|=1

for z € Q, with ¢, = 0 for x ¢ Q. This problem is equivalent to minimizing the
quadratic Hamiltonian

H(p) = S (es =) = D fo (5.2

More generally, we may wish to solve a linear system

Ap = f, (5-3)

where for simplicity we shall assume A to be symmetric and positive-definite. This
problem is equivalent to minimizing

H(g) = {0, A) —{f.0) (5.4)
Later we shall consider also non-quadratic Hamiltonians.

Our goal is to devise a rapidly convergent iterative method for solving numerically
the linear system (5.3). We shall restrict attention to first-order stationary linear iter-
ations of the general form

o™ = Mp™ L Nf | (5.5)

where ¢(© is an arbitrary initial guess for the solution. Obviously, we must demand at
the very least that the true solution ¢ = A™!f be a fixed point of (5.5); imposing this
condition for all f, we conclude that

N = (T-MA". (5.6)

The iteration (5.5) is thus completely specified by its iteration matriz M. Moreover,
(5.5)-(5.6) imply that the error e™ = (™ — ¢ satisfies

et = pe™ (5.7)

That is, the iteration matrix is the amplification matrix for the error. It follows easily
that the iteration (5.5) is convergent for all initial vectors ¢ if and only if the spectral
radius p(M) = lim,_,o || M™||'/™ is < 1; and in this case the convergence is exponential
with asymptotic rate at least p(M), i.e.

o™ — || < KnPp(M)" (5.8)

for some K,p < oo (K depends on ¢(®).
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Now let us return to the specific system (5.1). One simple iterative algorithm arises
by solving (5.1) repeatedly for ¢,:

1
(n+1) _ (n)
o 2d[ S e

z': |z—z'|=1

(5.9)

(5.9) is called the Jacobi iteration. It is convenient to consider also a slight generalization
of (5.9): let 0 <w < 1, and define

n n w
Pt = (1-w)pl + =

(n)

z': |z—a'|=1

(5.10)

(5.10) is called the damped Jacobi iteration with damping parameter w; for w = 1 it
reduces to the ordinary Jacobi iteration.

It can be shown [35] that the spectral radius p(Mp,,,) of the damped Jacobi iteration
matrix is less than 1, so that the iteration (5.10) converges exponentially to the solution
. This would appear to be a happy situation. Unfortunately, however, the convergence
factor p(Mpy,) is usually very close to 1, so that many iterations are required in order
to reduce the error ||¢™ — ¢|| to a small fraction of its initial value. Insight into
this phenomenon can be gained by considering the simple model problem in which the
domain € is a square {1,..., L} x {1,...,L}. In this case we can solve exactly for the
eigenvectors and eigenvalues of Mp;,: they are

¢®) = sinpya; sin pozs (5.11)
w
A = (1—w)+ E(cospl + cos po) (5.12)
s 27 Lm

where p1,p2 = 75, 7475 -+ -5 147 Lhe spectral radius of Mp,,, is the eigenvalue of

largest magnitude, namely

™
M = Azxr ~ = 1- 1—
PMps) = A w[ COSL+1]
= 1-0(L™). (5.13)

It follows that O(L?) iterations are needed for the damped Jacobi iteration to converge
adequately. This represents an enormous computational labor when L is large.

It is easy to see what is going on here: the slow modes (A, ~ 1) are the long-
wavelength modes (p1,ps < 1). [If w & 1, then some modes with wavenumber p =
(p1,p2) &~ (m,m) have eigenvalue A\, ~ —1 and so also are slow. This phenomenon
can be avoided by taking w significantly less than 1; for simplicity we shall henceforth
take w = %, which makes A\, > 0 for all p.] It is also easy to see physically why the
long-wavelength modes are slow. The key fact is that the (damped) Jacobi iteration
is local: in a single step of the algorithm, “information” is transmitted only to nearest

neighbors. One might guess that this “information” executes a random walk around the
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lattice; and for the true solution to be reached, “information” must propagate from the
boundaries to the interior (and back and forth until “equilibrium” is attained). This
takes a time of order L?, in agreement with (5.13). In fact, this random-walk picture
can be made rigorous [19].

This is an example of a critical phenomenon, in precisely the same sense that the
term is used in statistical mechanics. The Laplace operator A = —A is critical,
inasmuch as its Green function A~! has long-range correlations (power-law decay in
dimension d > 2, or growth in d < 2). This means that the solution of Poisson’s
equation in one region of the lattice depends strongly on the solution in distant regions
of the lattice; “information” must propagate globally in order for “equilibrium” to
be reached. Put another way, excitations at many length scales are significant, from
one lattice spacing at the smallest to the entire lattice at the largest. The situation
would be very different if we were to consider instead the Helmholtz-Yukawa equation
(—A +m?)p = f with m > 0: its Green function has exponential decay with
characteristic length m™!, so that regions of the lattice separated by distances > m™!
are essentially decoupled. In this case, “information” need only propagate a distance
of order min(m~!, L) in order for “equilibrium” to be reached. This takes a time of
order min(m ™2, L?), an estimate which can be confirmed rigorously by computing the
obvious generalization of (5.12)—(5.13). On the other hand, as m — 0 we recover the
Laplace operator with its attendant difficulties: m = 0 is a critical point. We have here
an example of critical slowing-down in classical physics.

The general structure of a remedy should now be obvious to physicists reared on
the renormalization group: don’t try to deal with all length scales at once, but define
instead a sequence of problems in which each length scale, beginning with the smallest
and working towards the largest, can be dealt with separately. An algorithm of precisely
this form was proposed in 1964 by the Soviet numerical analyst Fedorenko [28], and is
now called the multi-grid method.

Note first that the only slow modes in the damped Jacobi iteration are the long-
wavelength modes (provided that w is not near 1): as long as, say, max(p;,pz) > 7, we

have 0 < A, < 3 (forw = 1), independent of L. Tt follows that the short-wavelength
components of the error e = o™ — ¢ can be effectively killed by a few (say, five or
ten) damped Jacobi iterations. The remaining error has primarily long-wavelength
components, and so is slowly varying in z-space. But a slowly varying function can
be well represented on a coarser grid: if, for example, we were told eg”) only at even
values of =, we could nevertheless reconstruct with high accuracy the function efcn) at all
x by, say, linear interpolation. This suggests an improved algorithm for solving (5.1):
perform a few damped Jacobi iterations on the original grid, until the (unknown) error
is smooth in z-space; then set up an auxiliary coarse-grid problem whose solution will
be approximately this error (this problem will turn out to be a Poisson equation on the
coarser grid); perform a few damped Jacobi iterations on the coarser grid; and then
transfer (interpolate) the result back to the original (fine) grid and add it in to the
current approximate solution.

There are two advantages to performing the damped Jacobi iterations on the coarse
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grid. Firstly, the iterations take less work, because there are fewer lattice points on the
coarse grid (27% times as many for a factor-of-2 coarsening in d dimensions). Secondly,
with respect to the coarse grid the long-wavelength modes no longer have such long
wavelength: their wavelength has been halved (i.e. their wavenumber has been doubled).
This suggests that those modes with, say, max(p:1,p2) > 7§ can be effectively killed
by a few damped Jacobi iterations on the coarse grid. And then we can transfer the
remaining (smooth) error to a yet coarser grid, and so on recursively. These are the
essential ideas of the multi-grid method.

Let us now give a precise definition of the multi-grid algorithm. For simplicity
we shall restrict attention to problems defined in variational form': thus, the goal
is to minimize a real-valued function (“Hamiltonian”) H(y), where ¢ runs over some
N-dimensional real vector space U. We shall treat quadratic and non-quadratic Hamil-
tonians on an equal footing. In order to specify the algorithm we must specify the

following ingredients:

1) A sequence of coarse-grid spaces Uy = U, Upr—1, Uy, - .., Uy. Here dimU; =
Nyand N = Ny > Npyj—1 > Npp—g > --- > No.

2) Prolongation (or “interpolation”) operators p;;—1: Uy — U, for 1 <1 < M.

3) Basic (or “smoothing”) iterations S;: Uy x H; — U, for 0 < I < M. Here H,; is
a space of “possible Hamiltonians” defined on U;; we discuss this in more detail
below. The role of §; is to take an approximate minimizer ¢; of the Hamiltonian
H,; and compute a new (hopefully better) approximate minimizer ¢} = S;(y}, H;).
[For the present we can imagine that S; consists of a few iterations of damped
Jacobi for the Hamiltonian H;.]| Most generally, we shall use two smoothing
iterations, S”"¢ and SP**; they may be the same, but need not be.

4) Cycle control parameters (integers) v > 1 for 1 < [ < M, which control the
number of times that the coarse grids are visited.

We discuss these ingredients in more detail below.
The multi-grid algorithm is then defined recursively as follows:
procedure mgm(l, ¢, H))

comment This algorithm takes an approximate minimizer ¢ of the Hamil-
tonian H;, and overwrites it with a better approximate minimizer.

@ <+ 8" (¢, Hy)
if [ > 0 then

16In fact, the multi-grid method can be applied to the solution of linear or nonlinear systems of
equations, whether or not these equations come from a variational principle. See, for example, [32]
and [20, Section 2].
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compute Hi_1(-) = Hi(¢ + pri—1-)
P 0
for j =1 until v do mgm(l — 1,4, H;_1)
Q=@ +pua
endif
o 87" (0, Hi)

end

Here is what is going on: We wish to solve the minimize the Hamiltonian H;, and are
given as input an approximate minimizer . The algorithm consists of three steps:

1) Pre-smoothing. We apply the basic iteration (e.g. a few sweeps of damped Jacobi)
to the given approximate minimizer. This produces a better approximate minimizer in
which the high-frequency (short-wavelength) components of the error have been reduced
significantly. Therefore, the error, although still large, is smooth in z-space (whence the
name “smoothing iteration”).

2) Coarse-grid correction. We want to move rapidly towards the minimizer ¢* of Hj,
using coarse-grid updates. Because of the pre-smoothing, the error ¢ — * is a smooth
function in z-space, so it should be well approximated by fields in the range of the
prolongation operator p;;_;. We will therefore carry out a coarse-grid update in which
¢ is replaced by ¢ + p;;_11), where 9 lies in the coarse-grid subspace U;_;. A sensible
goal is to attempt to choose 9 so as to minimize H;; that is, we attempt to minimize

H_1(v) = H(p+p—1v) . (5.14)

To carry out this approximate minimization, we use a few (7;) iterations of the best
algorithm we know — namely, multi-grid itself! And we start at the best approximate
minimizer we know, namely ¥ = 0! The goal of this coarse-grid correction step is to
reduce significantly the low-frequency components of the error in ¢ (hopefully without
creating large new high-frequency error components).

3) Post-smoothing. We apply, for good measure, a few more sweeps of the basic
smoother. (This would protect against any high-frequency error components which
may inadvertently have been created by the coarse-grid correction step.)

The foregoing constitutes, of course, a single step of the multi-grid algorithm. In
practice this step would be repeated several times, as in any other iteration, until the
error has been reduced to an acceptably small value. The advantage of multi-grid over
the traditional (e.g. damped Jacobi) iterative methods is that, with a suitable choice
of the ingredients p;;_;, & and so on, only a few (maybe five or ten) iterations are
needed to reduce the error to a small value, independent of the lattice size L. This
contrasts favorably with the behavior (5.13) of the damped Jacobi method, in which
O(L?) iterations are needed.

The multi-grid algorithm is thus a general framework; the user has considerable
freedom in choosing the specific ingredients, which must be adapted to the specific
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Figure 1: Standard coarsening (factor-of-2) in dimension d = 2. Dots are fine-grid sites
and crosses are coarse-grid sites.

problem. We now discuss briefly each of these ingredients; more details can be found
in Chapter 3 of the book of Hackbusch [32].

Coarse grids. Most commonly one uses a uniform factor-of-2 coarsening between
each grid €2; and the next coarser grid €2;_;. The coarse-grid points could be either a
subset of the fine-grid points (Fig. 1) or a subset of the dual lattice (Fig. 2). These
schemes have obvious generalizations to higher-dimensional cubic lattices. In dimension
d = 2, another possibility is a uniform factor-of-v/2 coarsening (Fig. 3); note that the
coarse grid is again a square lattice, rotated by 45°. Figs. 1-3 are often referred to as
“standard coarsening”, “staggered coarsening”, and “red-black (or checkerboard) coars-

[ J [ J [ J [ J
X X
[ ] [ ] [ ] [ ]
[ J [ J [ J [ J
X X
[ J [ J [ J [ J

Figure 2: Staggered coarsening (factor-of-2) in dimension d = 2.
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Figure 3: Red-black coarsening (factor-of-v/2) in dimension d = 2.

ening”, respectively. Coarsenings by a larger factor (e.g. 3) could also be considered,
but are generally disadvantageous. Note that each of the above schemes works also for
periodic boundary conditions provided that the linear size L; of the grid €2; is even. For
this reason it is most convenient to take the linear size L = L, of the original (finest)
grid €2 = Q;, to be a power of 2, or at least a power of 2 times a small integer. Other
definitions of coarse grids (e.g. anisotropic coarsening) are occasionally appropriate.

Prolongation operators. For a coarse grid as in Fig. 2, a natural choice of prolonga-
tion operator is piecewise-constant injection:

(PLi-191-1) gy 1 gpl = (P1-1)arey  forallz e Qi (5.15)

(illustrated here for d = 2). It can be represented in an obvious shorthand notation by

the stencil
11
1) 619

For a coarse grid as in Fig. 1, a natural choice is piecewise-linear interpolation, one
example of which is the nine-point prolongation

1 1 1
4 2 1
11l (5.17)
1 1 1
4 2 4

Higher-order interpolations (e.g. quadratic or cubic) can also be considered. All these
prolongation operators can easily be generalized to higher dimensions.
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We have ignored here some important subtleties concerning the treatment of the
boundaries in defining the prolongation operator. Fortunately we shall not have to
worry much about this problem, since most applications in statistical mechanics and
quantum field theory use periodic boundary conditions.

Coarse-grid Hamiltonians. What does the coarse-grid Hamiltonian H; | look like?
If the fine-grid Hamiltonian H; is quadratic,

Hp) = 3o Ag) — () (518)

then so is the coarse-grid Hamiltonian H; i:

Hi 1Y) = Hi(p+puav) (5.19)
- %(w,Al_1w>—(d,w>+const, (5.20)
where
A = le—lAlpl,l—l (5.21)
d = pra(f—Ap) (5.22)

The coarse-grid problem is thus also a linear equation whose right-hand side is just
the “coarse-graining” of the residual r = f — A;y; this coarse-graining is performed
using the adjoint of the interpolation operator p;;—;. The exact form of the coarse-grid
operator A; 1 depends on the fine-grid operator A; and on the choice of interpola-
tion operator p;;_;. For example, if A, is the nearest-neighbor Laplacian and p;; ; is
piecewise-constant injection, then it is easily checked that A; 1 is also a nearest-neighbor
Laplacian (multiplied by an extra 2¢71). On the other hand, if p;;_; is piecewise-linear
interpolation, then A;_; will have nearest-neighbor and next-nearest-neighbor terms (but
nothing worse than that).

Clearly, the point is to choose classes of Hamiltonians ,; with the property that if
H, € H; and ¢ € Uy, then the coarse-grid Hamiltonian H;_; defined by (5.14) necessarily
lies in H;—;. In particular, it is convenient (though not in principle necessary) to choose
all the Hamiltonians to have the same “functional form”; this functional form must be
one which is stable under the coarsening operation (5.14). For example, suppose that
the Hamiltonian H; is a ¢* theory with nearest-neighbor gradient term and possibly
site-dependent coefficients:

«
Hl((ﬂ) = 5 Z (Qow - Qow')2 + Z Vw(@w)’ (523)
|lz—2'|=1 T
where
Velpz) = )\goi + limQDi + Axgoi + hypg. (5.24)
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Suppose, further, that the prolongation operator p;;_; is piecewise-constant injection
(5.15). Then the coarse-grid Hamiltonian H; () = H;(¢ + piy—1%) can easily be
computed: it is

!

« !
Hi () = 5 | ZI (1hy — Py )? + DV, (1hy) + const, (5.25)
y—y'|=1 Yy
where
V, () = )\’w; + /@;1/);’ + A;wj + hy by (5.26)
and
o = 29ta (5.27)
No= 24\ (5.28)
Ky = Y (4Xpr + Ky) (5.29)
TEBy
A = > (6Ap) 4 3kos + Ag) (5.30)
TEBy
hy = Y (4A) + 3ka} + 2450, + hy) (5.31)
TEBy

Here B, is the block consisting of those 2¢ sites of grid ; which are affected by inter-
polation from the coarse-grid site y € ;_; (see Figure 2). Note that the coarse-grid
Hamiltonian H;_; has the same functional form as the “fine-grid” Hamiltonian H;: it
is specified by the coefficients o', ', &, A} and h;. The step “compute H, ,” therefore
means to compute these coefficients. Note also the importance of allowing in (5.23)
for ¢® and ¢ terms and for site-dependent coefficients: even if these are not present in
the original Hamiltonian H = Hj,, they will be generated on coarser grids. Finally,
we emphasize that the coarse-grid Hamiltonian H; ; depends implicitly on the current
value of the fine-lattice field ¢ € Uj; although our notation suppresses this dependence,
it should be kept in mind.

Basic (smoothing) iterations. We have already discussed the damped Jacobi itera-
tion as one possible smoother. Note that in this method only the “old” values o™ are
used on the right-hand side of (5.9)/(5.10), even though for some of the terms the “new”
value o™*tY) may already have been computed. An alternative algorithm is to use at
each stage on the right-hand side the “newest” available value. This algorithm is called
the Gauss-Seidel iteration.'” Note that the Gauss-Seidel algorithm, unlike the Jacobi
algorithm, depends on the ordering of the grid points. For example, if a 2-dimensional
grid is swept in lexicographic order (1,1), (2,1), ..., (L,1), (1,2), (2,2), ..., (L,2), ...,
(1,L), (2,L), ..., (L, L), then the Gauss-Seidel iteration becomes

1 1 1
QO;TZ? - Z[(pg:)-l—l,m + (pc(trlltl),mz + Soa(v?),zz—f—l + (pg::;)—l + f$17$2]' (532)

17Tt is amusing to note that “Gauss did not use a cyclic order of relaxation, and . .. Seidel specifically
recommended against using it” [36, p. 44n]. See also [37].
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Another convenient ordering is the red-black (or checkerboard) ordering, in which the
“red” sublattice Q" = {x € 0 21 4+ --- + 24 is even} is swept first, followed by the
“black” sublattice Q° = {z € Q: x; + --- + 24 is odd}. Note that the ordering of the
grid points within each sublattice is irrelevant [for the usual nearest-neighbor Laplacian
(5.1)], since the matrix A does not couple sites of the same color. This means that red-
black Gauss-Seidel is particularly well suited to vector or parallel computation. Note
that the red-black ordering makes sense with periodic boundary conditions only if the
linear size L; of the grid € is even.

It turns out that Gauss-Seidel is a better smoother than damped Jacobi (even if the
latter is given its optimal w). Moreover, Gauss-Seidel is easier to program and requires
only half the storage space (no need for separate storage of “old” and “new” values).
The only reason we introduced damped Jacobi at all is that it is easier to understand
and to analyze.

Many other smoothing iterations can be considered, and can be advantageous in
anisotropic or otherwise singular problems [32, Section 3.3 and Chapters 10-11]. But
we shall stick to ordinary Gauss-Seidel, usually with red-black ordering.

Thus, S/ and S will consist, respectively, of m; and ms iterations of the Gauss-
Seidel algorithm. The balance between pre-smoothing and post-smoothing is usually
not very crucial; only the total m; + my seems to matter much. Indeed, one (but not
both!) of m; or my could be zero, i.e. either the pre-smoothing or the post-smoothing
could be omitted entirely. Increasing m; and my improves the convergence rate of the
multi-grid iteration, but at the expense of increased computational labor per iteration.
The optimal tradeoff seems to be achieved in most cases with m; + my between about 2
and 4. The coarsest grid () is a special case: it usually has so few grid points (perhaps
only one!) that Sy can be an exact solver.

The variational point of view gives special insight into the Gauss-Seidel algorithm,
and shows how to generalize it to non-quadratic Hamiltonians. When updating site z,
the new value ¢, is chosen so as to minimize the Hamiltonian H(¢) = H(¢z, {0y }yzz)
when all the other fields {¢, },., are held fixed at their current values. The natural gen-
eralization of Gauss-Seidel to non-quadratic Hamiltonians is to adopt this variational
definition: ¢!, should be the absolute minimizer of H(¢) = H (s, {py}yzs). [ the
absolute minimizer is non-unique, then one such minimizer is chosen by some arbitrary
rule.] This algorithm is called nonlinear Gauss-Seidel with exact minimization (NL-
GSEM) [38]. This definition of the algorithm presupposes, of course, that it is feasible
to carry out the requisite exact one-dimensional minimizations. For example, for a ¢*
theory it would be necessary to compute the absolute minimum of a quartic polynomial
in one variable. In practice these one-dimensional minimizations might themselves be
carried out iteratively, e.g. by some variant of Newton’s method.

Cycle control parameters and computational labor. Usually the parameters ; are all
taken to be equal, i.e. y =y > 1 for 1 <[ < M. Then one iteration of the multi-grid
algorithm at level M comprises one visit to grid M, v visits to grid M — 1, ¥? visits
to grid M — 2, and so on. Thus, v determines the degree of emphasis placed on the
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coarse-grid updates. (7 = 0 would correspond to the pure Gauss-Seidel iteration on the
finest grid alone.)

We can now estimate the computational labor required for one iteration of the multi-
grid algorithm. Each visit to a given grid involves m; +my Gauss-Seidel sweeps on that
grid, plus some computation of the coarse-grid Hamiltonian and the prolongation. The
work involved is proportional to the number of lattice points on that grid. Let W; be
the work required for these operations on grid [. Then, for grids defined by a factor-of-2
coarsening in d dimensions, we have

W, ~ 279Dy, (5.33)

so that the total work for one multi-grid iteration is

0
work(MG) = > MW,
I=M

0
~ Wy Y (y2m )M

=M
< Wyl =297 ify <22, (5.34)

Thus, provided that v < 2¢, the work required for one entire multi-grid iteration is no
more than (1 — v27%)~! times the work required for m; + my Gauss-Seidel iterations
(plus a little auxiliary computation) on the finest grid alone — irrespective of the total
number of levels. The most common choices are v = 1 (which is called the V-cycle) and
v =2 (the W-cycle).

Convergence proofs. For certain classes of Hamiltonians H — primarily quadratic
ones — and suitable choices of the coarse grids, prolongations, smoothing iterations
and cycle control parameters, it can be proven rigorously'® that the multi-grid iteration
matrices M, satisfy a uniform bound

M| < C <1, (5.35)

valid irrespective of the total number of levels. Thus, a fixed number of multi-grid
iterations (maybe five or ten) are sufficient to reduce the error to a small value, inde-
pendent of the lattice size L. In other words, critical slowing-down has been completely
eliminated.

The rigorous convergence proofs are somewhat arcane, so we cannot describe them
here in any detail, but certain general features are worth noting. The convergence proofs
are most straightforward when linear or higher-order interpolation and restriction are
used, and v > 1 (e.g. the W-cycle). When either low-order interpolation (e.g. piecewise-
constant) or v = 1 (the V-cycle) is used, the convergence proofs become much more

18For a detailed exposition of multi-grid convergence proofs, see [32, Chapters 6-8, 10, 11], [40] and
the references cited therein. The additional work needed to handle the piecewise-constant interpolation
can be found in [41].
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delicate. Indeed, if both piecewise-constant interpolation and a V-cycle are used, then
the uniform bound (5.35) has not yet been proven, and it is most likely false! To
some extent these features may be artifacts of the current methods of proof, but we
suspect that they do also reflect real properties of the multi-grid method, and so the
convergence proofs may serve as guidance for practice. For example, in our work we have
used piecewise-constant interpolation (so as to preserve the simple nearest-neighbor
coupling on the coarse grids), and thus for safety we stick to the W-cycle. There is in
any case much room for further research, both theoretical and experimental.

To recapitulate, the extraordinary efficiency of the multi-grid method arises from
the combination of two key features:

1) The convergence estimate (5.35). This means that only O(1) iterations are needed,
independent of the lattice size L.

2) The work estimate (5.34). This means that each iteration requires only a compu-
tational labor of order L? (the fine-grid lattice volume).

It follows that the complete solution of the minimization problem, to any specified
accuracy &, requires a computational labor of order L.

Unigrid point of view. Let us look again at the multi-grid algorithm from the
variational standpoint. One natural class of iterative algorithms for minimizing H are
the so-called directional methods: let pg, p1, ... be a sequence of “direction vectors” in
U, and define (1) to be that vector of the form ¢™ + \p, which minimizes H. The
algorithm thus travels “downhill” from ¢(™ along the line ¢ + Ap, until reaching the
minimum of H, then switches to direction p,,; starting from this new point @™+,
and so on. For a suitable choice of the direction vectors pg, p1, ..., this method can be
proven to converge to the global minimum of H [38, pp. 513-520].

Now, some iterative algorithms for minimizing H(y) can be recognized as special
cases of the directional method. For example, the Gauss-Seidel iteration is a directional
method in which the direction vectors are chosen to be unit vectors ey, es, ..., ey (i.e.
vectors which take the value 1 at a single grid point and zero at all others), where
N = dimU. [One step of the Gauss-Seidel iteration corresponds to N steps of the
directional method.] Similarly, it is not hard to see [39] that the multi-grid iteration with
the variational choices of restriction and coarse-grid operators, and with Gauss-Seidel

smoothing at each( le)vel2 is) itself a(di)rectional method: some of the direction vectors are
M) (M M

the unit vectors e; ’, e; ’, ..., ey,  of the fine-grid space, but other direction vectors
are the images in the fine-grid space of the unit vectors of the coarse-grid spaces, i.e. they
are pu, egl), Pyl egl), ooy DMy eg\l,)l. The exact order in which these direction vectors are

interleaved depends on the parameters m;, mo and 7y which define the cycling structure
of the multi-grid algorithm. For example, if m; = 1, my = 0 and v = 1, the order

of the direction vectors is {M}, {M — 1}, ..., {0}, where {I} denotes the sequence
Py egl), Py egl), ooy DM es\l,)l. If my =0, my =1 and v = 1, the order is {0}, {1}, ...,

{M?}. The reader is invited to work out other cases.
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Thus, the multi-grid algorithm (for problems defined in variational form) is a direc-
tional method in which the direction vectors include both “single-site modes” {M} and
also “collective modes” {M —1}, {M —2}, ..., {0} on all length scales. For example, if
Pii-1 is piecewise-constant injection, then the direction vectors are characteristic func-
tions xp (i.e. functions which are 1 on the block B C € and zero outside B), where the
sets B are successively single sites, cubes of side 2, cubes of side 4, and so on. Similarly,
if p1;—1 is linear interpolation, then the direction vectors are triangular waves of various
widths.

The multi-grid algorithm has thus an alternative interpretation as a collective-mode
algorithm working solely in the fine-grid space U. We emphasize that this “unigrid”
viewpoint [39] is mathematically fully equivalent to the recursive definition given ear-
lier. But it gives, we think, an important additional insight into what the multi-grid
algorithm is really doing.

For example, for the simple model problem (Poisson equation in a square), we
know that the “correct” collective modes are sine waves, in the sense that these modes
diagonalize the Laplacian, so that in this basis the Jacobi or Gauss-Seidel algorithm
would give the exact solution in a single iteration (Mo = Mgs = 0). On the other
hand, the multi-grid method uses square-wave (or triangular-wave) updates, which are
not exactly the “correct” collective modes. Nevertheless, the multi-grid convergence
proofs [32, 40, 41] assure us that they are “close enough”: the norm of the multi-grid
iteration matrix M, is bounded away from 1, uniformly in the lattice size, so that an
accurate solution is reached in a very few MG iterations (in particular, critical slowing-
down is completely eliminated). This viewpoint also explains why MG convergence is
more delicate for piecewise-constant interpolation than for piecewise-linear: the point
is that a sine wave (or other slowly varying function) can be approximated to arbitrary
accuracy (in energy norm) by piecewise-linear functions but not by piecewise-constant
functions.

We remark that McCormick and Ruge [39] have advocated the “unigrid” idea not
just as an alternate point of view on the multi-grid algorithm, but as an alternate com-
putational procedure. To be sure, the unigrid method is somewhat simpler to program,
and this could have pedagogical advantages. But one of the key properties of the multi-
grid method, namely the O(L?) computational labor per iteration, is sacrificed in the
unigrid scheme. Instead of (5.33)—(5.34) one has

W, ~ Wy (5.36)

and hence

0
work(UG) =~ Wy Y M
1=
N {MWM ity =1

MW, iy > 1 (5.37)
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Since M =~ log, L and Wy, ~ L%, we obtain

LilogL ify=1

LAHhos2y if 4 > 1 (5.38)

work(UG) ~ {

For a V-cycle the additional factor of log L is perhaps not terribly harmful, but for a
W-cycle the additional factor of L is a severe drawback (though not as severe as the
O(L?) critical slowing-down of the traditional algorithms). Thus, we do not advocate
the use of unigrid as a computational method if there is a viable multi-grid alternative.
Unigrid could, however, be of interest in cases where true multi-grid is unfeasible, as
may occur for non-Abelian lattice gauge theories.

Multi-grid algorithms can also be devised for some models in which state space is a
nonlinear manifold, such as nonlinear o-models and lattice gauge theories [20, Sections
3-5]. The simplest case is the XY model: both the fine-grid and coarse-grid field
variables are angles, and the interpolation operator is piecewise-constant (with angles
added modulo 27). Thus, a coarse-grid variable 1), specifies the angle by which the
2% spins in the block B, are to be simultaneously rotated. A similar strategy can be
employed for nonlinear o-models taking values in a group G (the so-called “principal
chiral models”): the coarse-grid variable 1, simultaneously left-multiplies the 2¢ spins in
the block B,. For nonlinear o-models taking values in a nonlinear manifold M on which
a group G acts [e.g. the n-vector model with M = S,,_; and G = SO(n)], the coarse-
grid-correction moves are still simultaneous rotation; this means that while the fine-grid
fields lie in M, the coarse-grid fields all lie in G. Similar ideas can be applied to lattice
gauge theories; the key requirement is to respect the geometric (parallel-transport)
properties of the theory. Unfortunately, the resulting algorithms appear to be practical
only in the abelian case. (In the non-abelian case, the coarse-grid Hamiltonian becomes
too complicated.) Much more work needs to be done on devising good interpolation
operators for non-abelian lattice gauge theories.

5.2 Multi-Grid Monte Carlo

Classical equilibrium statistical mechanics is a natural generalization of classical
statics (for problems posed in variational form): in the latter we seek to minimize a
Hamiltonian H (), while in the former we seek to generate random samples from the
Boltzmann-Gibbs probability distribution e ##(#), The statistical-mechanical problem
reduces to the deterministic one in the zero-temperature limit § — +o0.

Likewise, many (but not all) of the deterministic iterative algorithms for minimiz-
ing H(p) can be generalized to stochastic iterative algorithms — that is, dynamic
Monte Carlo methods — for generating random samples from e ##(®) For example,
the stochastic generalization of the Gauss-Seidel algorithm (or more generally, nonlin-
ear Gauss-Seidel with exact minimization) is the single-site heat-bath algorithm; and
the stochastic generalization of multi-grid is multi-grid Monte Carlo.
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Let us explain these correspondences in more detail. In the Gauss-Seidel algorithm,
the grid points are swept in some order, and at each stage the Hamiltonian is minimized
as a function of a single variable ¢,, with all other variables {¢, },-, being held fixed.
The single-site heat-bath algorithm has the same general structure, but the new value
¢!, is chosen randomly from the conditional distribution of e ##) given {p,},s, i-e.
from the one-dimensional probability distribution

P(¢,) dy, = const x exp [—BH (¢}, {¢y}yza)] del, (5.39)

(where the normalizing constant depends on {¢y},.;). It is not difficult to see that
this operation leaves invariant the Gibbs distribution e ##(¥). As  — +o0 it reduces
to the Gauss-Seidel algorithm.

It is useful to visualize geometrically the action of the Gauss-Seidel and heat-bath
algorithms within the space U of all possible field configurations. Starting at the current
field configuration ¢, the Gauss-Seidel and heat-bath algorithms propose to move the
system along the line in U consisting of configurations of the form ¢’ = ¢ + td,
(—o00 < t < 00), where §, denotes the configuration which is 1 at site z and zero
elsewhere. In the Gauss-Seidel algorithm, ¢ is chosen so as to minimize the Hamiltonian
restricted to the given line; while in the heat-bath algorithm, ¢ is chosen randomly
from the the conditional distribution of e ##() restricted to the given line, namely
the one-dimensional distribution with probability density P.,na(t) ~ exp[—Hcona(t)] =
expl—H(p + 15,)].

The method of partial resampling generalizes the heat-bath algorithm in two ways:

1) The “fibers” used by the algorithm need not be lines, but can be higher-dimensional
linear or even nonlinear manifolds.

2) The new configuration ¢’ need not be chosen independently of the old configu-
ration ¢ (as in the heat-bath algorithm); rather, it can be selected by any updating
procedure which leaves invariant the conditional probability distribution of e ##(#) re-
stricted to the fiber.

The multi-grid Monte Carlo (MGMC) algorithm is a partial-resampling algorithm
in which the “fibers” are the sets of field configurations that can be obtained one from
another by a coarse-grid-correction step, i.e. the sets of fields ¢ + p;;_1% with ¢ fixed
and 1 varying over U;_;. These fibers form a family of parallel affine subspaces in U,
of dimension N;,_; = dimU;_;.

The ingredients of the MGMC algorithm are identical to those of the determin-
istic MG algorithm, with one exception: the deterministic smoothing iteration &; is
replaced by a stochastic smoothing iteration (for example, single-site heat-bath). That
is, §;( -, H;) is a stochastic updating procedure ¢; — ¢ that leaves invariant the Gibbs
distribution e=#:

[ din e Py (- ) = digje D (5.40)

The MGMC algorithm is then defined as follows:

procedure mgmc(l, ¢, H;)
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comment This algorithm updates the field ¢ in such a way as to leave
invariant the probability distribution e 8%,

@ S (p, Hy)
if [ > 0 then
compute Hy_1(-) = Hi(¢ + pri—1-)
P+ 0
for j =1 until v do mgme(l — 1,9, H_+)
@ = O+ P
endif
o S (o, H)

end

The alert reader will note that this algorithm is identical to the deterministic MG
algorithm presented earlier; only the meaning of §; is different.

The validity of the MGMC algorithm is proven inductively, starting at level 0 and
working upwards. That is, if mgmc(l — 1, -, H;_1) is a stochastic updating procedure
that leaves invariant the probability distribution e ##i-1, then mgmc(l, -, H;) leaves
invariant e ##:. Note that the coarse-grid-correction step of the MGMC algorithm
differs from the heat-bath algorithm in that the new configuration ¢’ is not chosen
independently of the old configuration ¢; to do so would be impractical, since the fiber
has such high dimension. Rather, ¢’ (or what is equivalent, 1) is chosen by a wvalid
updating procedure — namely, MGMC itself!

The MGMC algorithm has also an alternate interpretation — the unigrid viewpoint
— in which the fibers are one-dimensional and the resamplings are independent. More
precisely, the fibers are lines of the form ¢’ = ¢+ txp (w00 < t < o), where xp
denotes the function which is 1 for sites belonging to the block B and zero elsewhere.
The sets B are taken successively to be single sites, cubes of side 2, cubes of side 4, and so
on. (If linear interpolation were used, then the “direction vectors” x5 would be replaced
by triangular waves of various widths.) Just as the deterministic unigrid algorithm
chooses t so as to minimize the “conditional Hamiltonian” H,,4(t) = H (¢+txB), so the
stochastic unigrid algorithm chooses ¢ randomly from the one-dimensional distribution
with probability density P.,nq(t) ~ exp|—Hona(t)]. Conceptually this algorithm is no
more complicated than the single-site heat-bath algorithm. But physically it is of course
very different, as the direction vectors x g represent collective modes on all length scales.

We emphasize that the stochastic unigrid algorithm is mathematically and physically
equivalent to the multi-grid Monte Carlo algorithm described above. But it is useful,
we believe, to be able to look at MGMC from either of the two points of view: indepen-
dent resamplings in one-dimensional fibers, or non-independent resamplings (defined
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recursively) in higher-dimensional (coarse-grid) fibers. On the other hand, the two al-
gorithms are not computationally equivalent. One MGMC sweep requires a CPU time
of order volume (provided that y < 2¢), while the time for a unigrid sweep grows faster
than the volume [cf. the work estimates (5.34) and (5.38)]. Therefore, we advocate
unigrid only as a conceptual device, not as a computational algorithm.

How well does MGMC perform? The answer is highly model-dependent:

e For the Gaussian model, it can be proven rigorously [25, 20, 41] that 7 is bounded
as criticality is approached (empirically 7 & 1 — 2); therefore, critical slowing-down is
completely eliminated. The proof is a simple Fock-space argument, combined with the
convergence proof for deterministic MG; this will be discussed in Section 5.3.

e For the ¢* model, numerical experiments [25] show that 7 diverges with the
same dynamic critical exponent as in the heat-bath algorithm; the gain in efficiency
thus approaches a constant factor F'(\) near the critical point. This behavior can be
understood [20, Section 9.1] as due to the double-well nature of the p* potential, which
makes MGMC ineffective on large blocks. Thus, the correct collective modes at long
length scales are nonlinear excitations not well modelled by ¢ — ¢+ txp. (See Section
6 for an algorithm that appears to model these excitations well, at least for A not too
small.)

e For the d = 2 XY model, our numerical data [26] show a more complicated
behavior: As the critical temperature is approached from above, 7 diverges with a
dynamic critical exponent z = 1.4 + 0.3 for the MGMC algorithm (in either V-cycle
or W-cycle), compared to z = 2.1 4+ 0.3 for the heat-bath algorithm. Thus, critical
slowing-down is significantly reduced but is still very far from being eliminated. On the
other hand, below the critical temperature, 7 is very small (& 1—2), uniformly in L and
B (at least for the W-cycle); critical slowing-down appears to be completely eliminated.
This very different behavior in the two phases can be understood physically: in the
low-temperature phase the main excitations are spin waves, which are well handled by
MGMC (as in the Gaussian model); but near the critical temperature the important
excitations are widely separated vortex-antivortex pairs, which are apparently not easily
created by the MGMC updates.

e For the O(4) nonlinear o-model in two dimensions, which is asymptotically free,
preliminary data [42] show a very strong reduction, but not the total elimination, of
critical slowing-down. For a W-cycle we find that z &~ 0.6 (I emphasize that these
data are very preliminary!). Previously, Goodman and I had argued heuristically [20,
Section 9.3] that for asymptotically free theories with a continuous symmetry group,
MGMC (with a W-cycle) should completely eliminate critical slowing-down except for
a possible logarithm. But our reasoning may now need to be re-examined!"®

19Note Added 1996: For work on multi-grid Monte Carlo covering the period 1992-96, see [106,
107, 108, 103] and the references cited therein.
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5.3 Stochastic Linear Iterations for the Gaussian Model

In this section we analyze an important class of Markov chains, the stochastic linear
iterations for Gaussian models [20, Section 8].2° This class includes, among others, the
single-site heat-bath algorithm (with deterministic sweep of the sites), the stochastic
SOR algorithm [44, 45] and the multi-grid Monte Carlo algorithm — all, of course, in the
Gaussian case only. We show that the behavior of the stochastic algorithm is completely
determined by the behavior of the corresponding deterministic algorithm for solving
linear equations. In particular, we show that the exponential autocorrelation time 74,
of the stochastic linear iteration is equal to the relaxation time of the corresponding
linear iteration.

Consider any quadratic Hamiltonian

1

H(p) = 5(90,A<P) — (f,0), (5.41)

where A is a symmetric positive-definite matrix. The corresponding Gaussian measure
dr(yp) = const x e 2(0ARH(0) g (5.42)

has mean A~'f and covariance matrix A~!. Next consider any first-order stationary
linear stochastic iteration of the form

e = Me™ + Nf + Q¢™ (5.43)

where M, N and Q are fixed matrices and the £ are independent Gaussian random
vectors with mean zero and covariance matrix C. The iteration (5.43) has a unique
stationary distribution if and only if the spectral radius p(M) = lim, o [|[M"|'/" is
< 1; and in this case the stationary distribution is the desired Gaussian measure (5.42)
for all f if and only if

N = (I-MA™"! (5.44a)
QCQRT = At —mMATTMT (5.44b)

(here T denotes transpose).

The reader will note the close analogy with the deterministic linear problem (5.3)—
(5.6). Indeed, (5.44a) is identical with (5.6); and if we take the “zero-temperature
limit” in which H is replaced by 3H with § — +oo, then the Gaussian measure (5.42)
approaches a delta function concentrated at the unique minimum of H (namely, the
solution of the linear equation Ay = f), and the “noise” term disappears (Q — 0), so
that the stochastic iteration (5.43) turns into the deterministic iteration (5.5). That is:

(a) The linear deterministic problem is the zero-temperature limit of the Gaussian
stochastic problem; and the first-order stationary linear deterministic iteration is the

20Some of this material appears also in [43].
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zero-temperature limit of the first-order stationary linear stochastic iteration. There-
fore, any stochastic linear iteration for generating samples from the Gaussian measure
(5.42) gives rise to a deterministic linear iteration for solving the linear equation (5.3),
simply by setting @ = 0.

(b) Conversely, the stochastic problem and iteration are the nonzero-temperature
generalizations of the deterministic ones. In principle this means that a deterministic
linear iteration for solving (5.3) can be generalized to a stochastic linear iteration for
generating samples from (5.42), if and only if the matrix A= — MA~'M7 is positive-
semidefinite: just choose a matrix @ satisfying (5.44b). In practice, however, such
an algorithm is computationally tractable only if the matrix () has additional nice
properties such as sparsity (or triangularity with a sparse inverse).

Examples. 1. Single-site heat bath (with deterministic sweep of the sites) = stochastic
Gauss-Seidel. On each visit to site 7, ¢; is replaced by a new value ¢} chosen indepen-
dently from the conditional distribution of (5.42) with {¢,};+; fixed at their current
values: that is, ¢} is Gaussian with mean (f; —>,; ai;;)/a; and variance 1/a;;. When

updating ¢; at sweep n + 1, the variables ¢; with 7 < ¢ have already been visited on
(n+1)
J

not yet been visited on this sweep, and so have their “old” values gog-n). It follows that

Pt = ag;' (fi - Zaij90§n+1) - Zaij@gn)) + a5 g, (5.45)

j<i J>i

this sweep, hence have their “new” values ¢ , while the variables ¢; with j > ¢ have

where & has covariance matrix I. A little algebra brings this into the matrix form (5.43)
with

M = —(D+L)'L* (5.46a)
N = (D+L)™! (5.46b)
Q = (D+L)'D'V (5.46¢)

where D and L are the diagonal and lower-triangular parts of the matrix A, respectively.
It is straightforward to verify that (5.44a,b) are satisfied.? The single-site heat-bath
algorithm is clearly the stochastic generalization of the Gauss-Seidel algorithm.

2. Stochastic SOR. For models which are Gaussian (or more generally, “multi-
Gaussian”), Adler [44] and Whitmer [45] have shown that the successive over-relaxation
(SOR) iteration admits a stochastic generalization, namely

1/2
() _ (1 )o™ N ) N ) W2Z=w) " m
2 = ( w)p; ' + way | fi Zam@j Zam@j + &
j<i >i 7
(5.47)

2'We remark that this verification never uses the fact that D is diagonal or that L is lower triangular.
It is sufficient to have A = D + L + LT with D symmetric positive-definite and D + L nonsingular.
However, for the method to be practical, it is important that D'/2 and (D+L)~" be “easy” to compute
when applied to a vector.
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where 0 < w < 2. For w = 1 this reduces to the single-site heat-bath algorithm. This
is easily seen to be of the form (5.43) with

M = —(D+wLl)'|(w—-1)D+wL" (5.48a)
N = w(D+wl)™ (5.48b)
Q = [w2-w)]YD+wL)'DY? (5.48c)

where D and L are as before. It is straightforward to verify that (5.44a,b) are satisfied.?!

3. Multi-Grid Monte Carlo (MGMC). The multi-grid Monte Carlo algorithm mgme
(defined in Section 5.2) is identical to the corresponding deterministic multi-grid algo-
rithm mgm (defined in Section 5.1) except that S; is a stochastic rather than determinis-
tic updating. Consider, for example, the case in which & is a stochastic linear updating
(e.g. single-site heat-bath). Then the MGMC is also a stochastic linear updating of the
form (5.43): in fact, M equals Mg, the iteration matrix of the corresponding deter-
ministic MG method, and N equals Nyq; the matrix () is rather complicated, but since
the MGMC algorithm is correct, () must satisfy (5.44b). [The easiest way to see that
M = My is to imagine what would happen if all the random numbers €™ were zero.
Then the stochastic linear updating would reduce to the corresponding deterministic
updating, and hence the same would be true for the MGMC updating as a whole.]

4. Langevin equation with small time step. As far as I know, there does not exist
any useful stochastic generalization of the Jacobi iteration. However, let us discretize
the Langevin equation

do _ 1 Ap — 5.49

2= Solp-p) e, (549)
where ¢ is Gaussian white noise with covariance matrix C', using a small time step 9.
The result is an iteration of the form (5.43) with

M = I- gOA (5.50a)
N = gc (5.50b)
Q = &I (5.50¢c)

This satisfies (5.44a) exactly, but satisfies (5.44b) only up to an error of order §. If
C = D7}, these M, N correspond to a damped Jacobi iteration with w = §/2 < 1.

It is straightforward to analyze the dynamic behavior of the stochastic linear itera-
tion (5.43). Using (5.43) and (5.44) to express ¢(™ in terms of the independent random
variables @ ¢© ¢ ¢=1) we find after a bit of manipulation that

(™) = M) + (I -MMAT'f (5.51)

43



and

(A1 — MPAY(MTY|(MT) if s <t

COV((P(S), (P(t)) — M COV((P(O), <P(O))(MT)t + { Msft[Afl _ MtAfl(MT)t] ifs>t¢

(5.52)

Now let us either start the stochastic process in equilibrium
@) = A7'f (5.53a)
cov(p®, @) = A7! (5.53b)

or else let it relax to equilibrium by taking s,t — +oo with s — ¢t fixed. Either way,
we conclude that in equilibrium (5.43) defines a Gaussian stationary stochastic process
with mean A~ ! f and autocovariance matrix

AN (M) ifs <t

M—tA—t ifs> ¢ (5:54)

cov (!, o) = {
Moreover, since the stochastic process is Gaussian, all higher-order time-dependent
correlation functions are determined in terms of the mean and autocovariance. Thus,
the matrix M determines the autocorrelation functions of the Monte Carlo algorithm.
Another way to state these relationships is to recall [46, 47] that the Hilbert space
L?(7) is isomorphic to the bosonic Fock space F(U) built on the “energy Hilbert space”
(U, A): the “n-particle states” are the homogeneous Wick polynomials of degree n in
the shifted field = ¢ — A™'f. (If U is one-dimensional, these are just the Hermite
polynomials.) Then the transition probability P(¢™ — (1)) induces on the Fock
space an operator

P=TMH =IloM oM M )®--- (5.55)

that is the second quantization of the operator M” on the energy Hilbert space (see
[20, Section 8] for details). It follows from (5.55) that

IT(M)™ | 1 22 = [IM"||w,a) (5.56)

and hence that
p(D(M) ) 14) = p(M). (5.57)

Moreover, P is self-adjoint on L*(7) [i.e. satisfies detailed balance] if and only if M is
self-adjoint with respect to the energy inner product, i.e.

MA = AM™ ; (5.58)
and in this case
p(T(M) M 1Y) = D) ) 1Y [p2my = p(M) = || M||w,4) - (5.59)

In summary, we have shown that the dynamic behavior of any stochastic linear
iteration is completely determined by the behavior of the corresponding deterministic
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linear iteration. In particular, the exponential autocorrelation time 7.,, (slowest decay
rate of any autocorrelation function) is given by

exp(—1/Tezp) = p(M) , (5.60)

and this decay rate is achieved by at least one observable which is linear in the field
¢. In other words, the (worst-case) convergence rate of the Monte Carlo algorithm is
precisely equal to the (worst-case) convergence rate of the corresponding deterministic
iteration.

In particular, for Gaussian MGMC, the convergence proofs for deterministic multi-
grid [32, 40, 41] combined with the arguments of the present section prove rigorously
that critical slowing-down is completely eliminated (at least for a W-cycle). That is,
the autocorrelation time 7 of the MGMC method is bounded as criticality is approached
(empirically 7~ 1 — 2).

6 Swendsen-Wang Algorithms

A very different type of collective-mode algorithm was proposed two years ago??
by Swendsen and Wang [27] for Potts spin models. Since then, there has been an
explosion of work trying to understand why this algorithm works so well (and why it
does not work even better), and trying to improve or generalize it. The basic idea
behind all algorithms of Swendsen-Wang type is to augment the given model by means
of auziliary variables, and then to simulate this augmented model. In this lecture we
describe the Swendsen-Wang (SW) algorithm and review some of the proposed variants
and generalizations.

Let us first recall that the g-state Potts model [48, 49] is a generalization of the
Ising model in which each spin o; can take ¢ distinct values rather than just two (o; =
1,2,...,q); here ¢ is an integer > 2. Neighboring spins prefer to be in the same state,
and pay an energy price if they are not. The Hamiltonian is therefore

H(O) = % Jij (1 - 60’i;0’j) (61)

with J;; > 0 for all 4, j (“ferromagnetism”), and the partition function is

Z = ¥ expl-H(0)|
{o}

22Note Added 1996: Now nearly ten years ago! The great interest in algorithms of Swendsen-
Wang type (frequently called cluster algorithms) has not abated: see the references cited in the “Notes
Added” below, plus many others. See also [109, 110] for reviews that are slightly more up-to-date than
the present notes (1990 rather than 1989).
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= ) exp lz Jij (00,0, — 1)]

{o} (1)

= Z H [(1 - pij) + pijétfi,aj] (62)
{o} (i)

where we have defined p;; = 1 — exp(—J;;). The Gibbs measure ppous(0) is, of course,

> Jij Oi0; = 1)]

(%)

,U'Potts(o-) = Z_l €Xp

= Z 1A = py) + pijde, o] (6.3)
(i5)
We now use the deep identity
1
a+b = > [abno + boy1] (6.4)
n=0

on each bond (ij); that is, we introduce on each bond (ij) an auxiliary variable nj;
taking the values 0 and 1, and obtain

zZ = Z z H [(1 _pij) 5%]‘,0 + pij(snij,l(sdi,ffj] . (6'5)
{o} {n} (i5)

Let us now take seriously the {n} as dynamical variables: we can think of n;; as an
occupation variable for the bond (ij) (1 = occupied, 0 = empty). We therefore define
the Fortuin-Kasteleyn-Swendsen-Wang (FKSW) model to be a joint model having g-
state Potts spins o; at the sites and occupation variables n;; on the bonds, with joint
probability distribution

/*LFKSW(O-a TL) =7 H [(1 - pij) 5”1’]’;0 + pijénijaléo'i’a'j] : (66)

(i)
Finally, let us see what happens if we sum over the {o} at fixed {n}. Each occupied
bond (ij) imposes a constraint that the spins o; and o, must be in the same state,
but otherwise the spins are unconstrained. We therefore group the sites into connected
clusters (two sites are in the same cluster if they can be joined by a path of occupied

bonds); then all the spins within a cluster must be in the same state (all ¢ values are
equally probable), and distinct clusters are independent. It follows that

Z = Z( I1 pw) ( II (1—2%')) ‘™, (6.7)
{n} \(@j): niy;=1 (i4): ni;=0

where C(n) is the number of connected clusters (including one-site clusters) in the graph
whose edges are the bonds having n;; = 1. The corresponding probability distribution,

pre(n) = Z7 ( I1 Pz’j) ( I1 (1—Pij)) ¢“™, (6.8)
(25)

(ig): mij=1 1ng; =0
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is called the random-cluster model with parameter q. This is a generalized bond-
percolation model, with non-local correlations coming from the factor ¢°™); for ¢ = 1
it reduces to ordinary bond percolation. Note, by the way, that in the random-cluster
model (unlike the Potts and FKSW models), ¢ is merely a parameter; it can take any
positive real value, not just 2,3,... . So the random-cluster model defines, in some
sense, an analytic continuation of the Potts model to non-integer ¢; ordinary bond
percolation corresponds to the “one-state Potts model”.
We have already verified the following facts about the FKSW model:

a) Zpotts = Zrksw = Zgc-

b) The marginal distribution of ppxsw on the Potts variables {o} (integrating out
the {n}) is precisely the Potts model ppys(0).

¢) The marginal distribution of gpksw on the bond occupation variables {n} (inte-
grating out the {o}) is precisely the random-cluster model pgc(n).

The conditional distributions of purxsw are also simple:

d) The conditional distribution of the {n} given the {c} is as follows: independently
for each bond (ij), one sets n;; = 0 in case o; # 0;, and sets n;; = 0,1 with
probability 1 — p;;, pi;, respectively, in case o; = 0.

e) The conditional distribution of the {o} given the {n} is as follows: independently
for each connected cluster, one sets all the spins ¢; in the cluster to the same
value, chosen equiprobably from {1,2,...,q}.

These facts can be used for both analytic and numerical purposes. For example, by
using facts (b), (c¢) and (e) we can prove an identity relating expectations in the Potts
model to connection probabilities in the random-cluster model:

<5ai,aj>Potts,q = <Ul,UJ>FKSVV,q [by (b)]

al,a, [ {n})) Frswq

(5
- (=t 1>FKSW,q by ()]
(fo= st >R by (@) (69)

Here

(6.10)

. (1 if 4 is connected to j
Yij = 7ij(n) =

0 if 7 is not connected to j

and E( - |{n}) denotes conditional expectation given {n}.?* For the Ising model with
the usual convention o = +1, (6.9) can be written more simply as

(0i07)1sing = (Vij)RC,4=2 - (6.11)

Z3For an excellent introduction to conditional expectations, see [50].
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Similar identities can be proven for higher-order correlation functions, and can be em-
ployed to prove Griffiths-type correlation inequalities for the Potts model [51, 52].

On the other hand, Swendsen and Wang [27] exploited facts (b)—(e) to devise a
radically new type of Monte Carlo algorithm. The Swendsen-Wang algorithm (SW)
simulates the joint model (6.6) by alternately applying the conditional distributions (d)
and (e) — that is, by alternately generating new bond occupation variables (indepen-
dent of the old ones) given the spins, and new spin variables (independent of the old
ones) given the bonds. Each of these operations can be carried out in a computer time
of order volume: for generating the bond variables this is trivial, and for generating the
spin variable it relies on efficient (linear-time) algorithms for computing the connected
clusters.?* Tt is trivial that the SW algorithm leaves invariant the Gibbs measure (6.6),
since any product of conditional probability operators has this property. It is also easy
to see that the algorithm is ergodic, in the sense that every configuration {o, n} having
nonzero /g sw-measure is accessible from every other. So the SW algorithm is at least
a correct algorithm for simulating the FKSW model. It is also an algorithm for simu-
lating the Potts and random-cluster models, since expectations in these two models are
equal to the corresponding expectations in the FKSW model.

Historical remark. The random-cluster model was introduced in 1969 by Fortuin
and Kasteleyn [58]; they derived the identity Zpyus = Zrc, along with the correlation-
function identity (6.9) and some generalizations. These relations were rediscovered
several times during the subsequent two decades [59]. Surprisingly, however, no one
seems to have noticed the joint probability distribution ppgsw that underlay all these
identities; this was discovered implicitly by Swendsen and Wang [27], and was made
explicit by Edwards and Sokal [60].

It is certainly plausible that the SW algorithm might have less critical slowing-down
than the conventional (single-spin-update) algorithms: the reason is that a local move
in one set of variables can have highly nonlocal effects in the other. For example, setting
ny = 0 on a single bond may disconnect a cluster, causing a big subset of the spins in
that cluster to be flipped simultaneously. In some sense, therefore, the SW algorithm
is a collective-mode algorithm in which the collective modes are chosen by the system

24Determining the connected components of an undirected graph is a classic problem of computer
science. The depth-first-search and breadth-first-search algorithms [53] have a running time of order
V', while the Fischer-Galler-Hoshen-Kopelman algorithm (in one of its variants) [54] has a worst-case
running time of order VlogV, and an observed mean running time of order V in percolation-type
problems [55]. Both of these algorithms are non-vectorizable. Shiloach and Vishkin [56] have invented
a SIMD parallel algorithm, and we have very recently vectorized it for the Cyber 205, obtaining a
speedup of a factor of 11 over scalar mode. We are currently carrying out a comparative test of these
three algorithms, as a function of lattice size and bond density [57]. In view of the extraordinary
performance of the SW algorithm (see below) and the fact that virtually all its CPU time is spent
finding connected components, we feel that the desirability of finding improved algorithms for this
problem is self-evident.
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d = 2 Ising Model
L X Tint,E
64 | 1575 ( 10) | 5.25 (0.30)
128 | 5352 ( 53) | 7.05 (0.67)
256 | 17921 (109) | 6.83 (0.40)
512 | 59504 (632) | 7.99 (0.81)

Table 1: Susceptibility x and autocorrelation time 7;,; ¢ (€ = energy = slowest mode) for
two-dimensional Ising model at criticality, using Swendsen-Wang algorithm. Standard
error is shown in parentheses.

rather than imposed from the outside as in multi-grid. (The miracle is that this is done
in a way that preserves the correct Gibbs measure.)

How well does the SW algorithm perform? In at least some cases, the performance
is nothing short of extraordinary. Table 1 shows some preliminary data [61] on a two-
dimensional Ising model at the bulk critical temperature. These data are consistent
with the estimate 7oy ~ L~%3% [27].25 By contrast, the conventional single-spin-flip al-
gorithms for the two-dimensional Ising model have 7 pn, ~ L¥*! [21]. So the advantage
of Swendsen-Wang over conventional algorithms (for this model) grows asymptotically
like L¥!75. To be sure, one iteration of the Swendsen-Wang algorithm may be a factor
of ~ 10 more costly in CPU time than one iteration of a conventional algorithm (the
exact factor depends on the efficiency of the cluster-finding subroutine). But the SW
algorithm wins already for modest values of L.

For other Potts models, the performance of the SW algorithm is less spectacular
than for the two-dimensional Ising model, but it is still very impressive. In Table 2 we
give the current best estimates of the dynamic critical exponent zgy for ¢g-state Potts
models in d dimensions, as a function of ¢ and d.%¢

All these exponents are much lower than the z 2 2 observed in the single-spin-flip
algorithms.

Although the SW algorithm performs impressively well, we understand very little
about why these exponents take the values they do. Some cases are easy. If ¢ = 1, then

25But precisely because T rises so slowly with L, good estimates of the dynamic critical exponent
will require the use of extremely large lattices. Even with lattices up to L = 512, we are unable to
distinguish convincingly between z =~ 0.35 and z =~ 0. Note Added 1996: For more recent and
much more precise data, see [111, 112]. These data are consistent with sy ~ L~¥%-24 but they are
also consistent with gy ~ log® L [112]. Tt is extremely difficult to distinguish a small power from a
logarithm.

26Note Added 1996: For more recent data, see [111, 112] for d =2, ¢ = 2; [113] for d = 2, ¢ = 3;
and [112, 114] for d = 2, ¢ = 4. The situation for d = 3, ¢ = 2 is extremely unclear: exponent estimates
by different workers (using different methods) disagree wildly.
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Estimates of zgy
g=1] ¢=2 [ q¢=3 | q¢=4
d=1 0 0 0 0
d=2 0 ~ 0.35 |0.55+0.03 | =~ 1 (exact??)
d=3 0 ~ 0.75 — —
d=14 0 |1 (exact?) — —

Table 2: Current best estimates of the dynamic critical exponent z for the Swendsen-
Wang algorithm. Estimates are taken from [27] for d = 2,3, ¢ = 2; [62] for d = 2,
g = 3,4; and [63] for d =4, ¢ = 2. Error bar is a 95% confidence interval.

all spins are in the same state (the only state!), and all bonds are thrown independently,
so the autocorrelation time is zero. (Here the SW algorithm just reduces to the standard
static algorithm for independent bond percolation.) If d = 1 (more generally, if the
lattice is a tree), the SW dynamics is exactly soluble: the behavior of each bond is
independent of each other bond, and 7., — —1/log(l —1/¢) < 0o as f — +oo. But
the remainder of our understanding is very murky. Two principal insights have been
obtained so far:

a) A calculation yielding zsyy = 1 in a mean-field (Curie-Weiss) Ising model [64].
This suggests (but of course does not prove) that zgy = 1 for Ising models (¢ = 2)
in dimension d > 4.

b) A rigorous proof that zgw > a/v [62]. This bound, while valid for all d and ¢, is
extremely far from sharp for the Ising models in dimensions 3 and higher. But it
is reasonably good for the 3- and 4-state Potts models in two dimensions, and in
the latter case it may even be sharp.?”

But much remains to be understood!

The Potts model with q large behaves very differently. Instead of a critical point,
the model undergoes a first-order phase transition: in two dimensions, this occurs when
q > 4, while in three or more dimensions, it is believed to occur already when ¢ > 3
[49]. At a first-order transition, both the conventional algorithms and the Swendsen-
Wang algorithm have an extremely severe slowing-down (much more severe than the
slowing-down at a critical point): right at the transition temperature, we expect 7 ~
exp(cL?1). This is because sets of configurations typical of the ordered and disordered
phases are separated by free-energy barriers of order L4~!, i.e. by sets of intermediate

2"Note Added 1996: See [112, 113, 114] for more recent data on the possible sharpness of the
Li—Sokal bound for two-dimensional models with ¢ = 2, 3,4. These data appear to be consistent with
sharpness modulo a logarithm, i.e. Tsw [CH ~ log L.
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configurations that contain interfaces of surface area ~ L4~! and therefore have an
equilibrium probability ~ exp(—cL471).2

Wolff [65] has proposed a interesting modification of the SW algorithm, in which one
builds only a single cluster (starting at a randomly chosen site) and flips it. Clearly,
one step of the single-cluster SW algorithm makes less change in the system than
one step of the standard SW algorithm, but it also takes much less work. If one
enumerates the cluster using depth-first-search or breadth-first-search, then the CPU
time is proportional to the size of the cluster; and by the Fortuin-Kasteleyn identity
(6.9), the mean cluster size is equal to the susceptibility:

D vy = > <M> = x. (6.12)

qg—1

J J
So the relevant quantity in the single-cluster SW algorithm is the dynamic critical
exponent measured in CPU units:

21—cluster,CPU = R1—cluster — <d_ %) . (613)
The value of the single-cluster algorithm is that the probability of choosing a cluster
is proportional to its size (since we pick a random site), so the work is concentrated
preferentially on larger clusters — and we think that is these clusters which are most
important near the critical point. So it would not be surprising if 21 _yster,cPv Were
smaller than zgy. Preliminary measurements indicate that 2zi_cyster,cpy is about the
same as zgwy for the two-dimensional Ising model, but is significantly smaller for the
three- and four-dimensional Ising models [66]. But a convincing theoretical understand-
ing of this behavior is lacking.

Several other generalizations of the SW algorithm for Potts models have been
proposed.? One is a multi-grid extension of the SW algorithm: the idea is to carry
out only a partial FKSW transformation, but then to apply this concept recursively
[67]. This algorithm may have a dynamic critical exponent that is smaller than that of
standard SW (but the claims that z = 0 are in my opinion unconvincing).? A second

28Note Added 1996: Great progress has been made in recent years in Monte Carlo methods for
systems undergoing a first-order phase transition. The key idea is to simulate a suitably chosen non-
Boltzmann probability distribution (“umbrella”, “multicanonical”, ...) and then apply reweighting
methods. The exponential slowing-down 7 ~ exp(cL?~!) resulting from barrier penetration is replaced
by a power-law slowing-down 7 ~ LP resulting from diffusion, provided that the distribution to be
simulated is suitably chosen. See [115, 116, 117, 118, 119] for reviews.

2Note Added 1996: In addition to the generalizations discussed below, see [120, 112] for SW-type
algorithms for the Ashkin-Teller model; see [121] for a clever SW-type algorithm for the fully frustrated
Ising model; and see [122, 123, 124, 100] for a very interesting SW-type algorithm for antiferromagnetic
Potts models, based on the “embedding” idea to be described below.

30Note Added 1996: For at least some versions of the multi-grid SW algorithm, it can be proven
[125] that the bound zprgsw > a/v holds. Thus, the critical slowing-down is not completely eliminated
in any model in which the specific heat is divergent.
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generalization, which works only in two dimensions, augments the SW algorithm by
transformations to the dual lattice [68]. This algorithm appears to achieve a modest
improvement in critical slowing-down in the scaling region |8 — .| ~ L='/".

Finally, the SW algorithm can be generalized in a straightforward manner to Potts
lattice gauge theories (more precisely, lattice gauge theories with a finite abelian gauge
group G and Potts (§-function) action). Preliminary results for the three-dimensional
Zy gauge theory yield a dynamic critical exponent roughly equal to that of the ordinary
SW algorithm for the three-dimensional Ising model (to which the gauge theory is dual)
[69].

In the past year there has been a flurry of papers trying to generalize the SW
algorithm to non-Potts models. Interesting proposals for a direct generalization of the
SW algorithm were made by Edwards and Sokal [60] and by Niedermayer [70]. But
the most promising ideas at present seem to be the embedding algorithms proposed
by Brower and Tamayo [71] for one-component ¢* models and by Wolff [65, 72] for
multi-component O(n)-invariant models.

The idea of the embedding algorithms is to find Ising-like variables underlying a
general spin variable, and then to update the resulting Ising model using the ordinary
SW algorithm (or the single-cluster variant). For one-component spins, this embedding
is the obvious decomposition into magnitude and sign. Consider, therefore, a one-
component model with Hamiltonian

H(p) = =B sy + D> V(ea), (6.14)
(zy) z

where > 0 and V(¢) = V(—¢). We write
Yo = €z |¢al (6.15)

where the signs {¢} are Ising variables. For fized values of the magnitudes {|¢|},
the conditional probability distribution of the {e} is given by an Ising model with
ferromagnetic (though space-dependent) couplings Jy,,, = 3|¢s||¢y|- Therefore, the {e}
model can be updated by the Swendsen-Wang algorithm. (Heat-bath or MGMC sweeps
must also be performed, in order to update the magnitudes.) For the two-dimensional
¢* model, Brower and Tamayo [71] find a dynamic critical behavior identical to that
of the SW algorithm for the two-dimensional Ising model — just as one would expect
based on the idea that the “important” collective modes in the ¢* model are spin flips.

Wolff’s embedding algorithm for n-component models (n > 2) is equally simple.
Consider an O(n)-invariant model with Hamiltonian

H(o) = —ﬂ(Z)aw oy + Y V(o) , (6.16)

with 8 > 0. Now fix a unit vector r € IR"; then any spin vector o, € IR" can be written
uniquely (except for a set of measure zero) in the form

o, = O +e,lo, 1T, (6.17)
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Figure 4: Action of the Wolff embedding algorithm on a long-wavelength spin wave. For
simplicity, both spin space (&) and physical space (x) are depicted as one-dimensional.

where
or = o,— (0,-1)r (6.18)

is the component of o, perpendicular to r, and
g; = sgn(oy-r) (6.19)

takes the values +1. Therefore, for fized values of the {o+} and {|o -r|}, the probability
distribution of the {e} is given by an Ising model with ferromagnetic couplings J,, =
Blos -r||oy - r|. The algorithm is then: Choose at random a unit vector r; fix the {o*}
and {|o - r|} at their current values, and update the {¢} by the standard Swendsen-
Wang algorithm (or the single-cluster variant). Flipping ¢, corresponds to reflecting
o, in the hyperplane perpendicular to r.

At first thought it may seem strange (and somehow “unphysical”) to try to find Ising-
like (i.e. discrete) variables in a model with a continuous symmetry group. However,
upon reflection (pardon the pun) one sees what is going on: if the spin configuration is
slowly varying (e.g. a long-wavelength spin wave), then the clusters tend to break along
the surfaces where J,, is small, hence where o -r ~ 0. Then flipping €, on some clusters
corresponds to a “soft” change near the cluster boundaries but a “hard” change in the
cluster interiors, i.e. a long-wavelength collective mode (Figure 4). So it is conceivable
that the algorithm could have very small (or even zero!) critical slowing-down in models
where the important large-scale collective modes are spin waves.

Even more strikingly, consider a two-dimensional XY -model configuration consist-
ing of a widely separated vortex-antivortex pair: in the continuum limit this is given
by

0(z) =Imlog(z — a) — Imlog(z + a) (6.20)
where z = 21+ iz and & = (cos 6§, sin ). Then the surface o-r = 0 is an ellipse passing
directly through the vortex and antivortex®'. Reflecting the spins inside this ellipse
produces a configuration {o e} that is a continuous map of the doubly punctured

31With r = (cos ¢, sin ¢), the equation of this ellipse is 22 + (x5 + atan ¢)? = a? sec? ¢.
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plane into the semicircle || = 1, o - r > 0. Such a map necessarily has zero winding
number around the points +a. So the Wolff update has destroyed the vorticity!32

Therefore, the key collective modes in the two-dimensional XY and O(n) models —
spin waves and (for the XY case) vortices — are well “encoded” by the Ising variables
{e}. So it is quite plausible that critical slowing-down could be eliminated or almost
eliminated. In fact, tests of this algorithm on the two-dimensional XY (n = 2), classical
Heisenberg (n = 3) and O(4) models are consistent with the complete absence of critical
slowing-down [72, 73].

In view of the extraordinary success of the Wolff algorithm for spin models, it is
tempting to try to extend it to lattice gauge theories with continuous gauge group [for
example, U(1), SU(N) or SO(N)]. But I have nothing to report at present!®?

7 Algorithms for the Self-Avoiding Walk?*

An N-step self-avoiding walk w on a lattice £ is a sequence of distinct points
W, W1, --., wy in L such that each point is a nearest neighbor of its predecessor. Let
cy [resp. cn(z)] be the number of N-step SAWs starting at the origin and ending
anywhere [resp. ending at z]. Let (w%) be the mean-square end-to-end distance of an
N-step SAW. These quantities are believed to have the asymptotic behavior

ey o~ pV N (7.1)
en(z) ~  plV Nosing=2 (z fixed #0)
(wy) ~ N*

as N — 00; here v, agpe and v are critical exponents, while y (the connective constant
of the lattice) is the analogue of a critical temperature. The SAW has direct application
in polymer physics [74], and is indirectly relevant to ferromagnetism and quantum field
theory by virtue of its equivalence with the n — 0 limit of the n-vector model [75].
The SAW has some advantages over spin systems for Monte Carlo work: Firstly, one
can work directly with SAWSs on an infinite lattice; there are no systematic errors due to

32This picture of the action of the Wolff algorithm on vortex-antivortex pairs was developed in
discussions with Richard Brower and Robert Swendsen.

33Note Added 1996: See [126] for a general theory of Wolff-type embedding algorithms as applied
to nonlinear o-models (spin models taking values in a Riemannian manifold M). Roughly speaking,
we argue that a Wolff-type embedding algorithm can work well — in the sense of having a dynamic
critical exponent z significantly less than 2 — only if M is a discrete quotient of a product of spheres:
for example, a sphere SV~! or a real projective space RPN 1 = SN-1/Z,. In particular, we do not
expect Wolfl-type embedding algorithms to work well for o-models taking values in SU(N) for N > 3.

34Note Added 1996: An extensive and up-to-date review of Monte Carlo algorithms for the self-
avoiding walk can be found in [127]. A briefer version is [128].
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finite-volume corrections. Secondly, there is no L¢ (or £4) factor in the computational
work, so one can go closer to criticality. Thus, the SAW is an exceptionally advantageous
“laboratory” for the numerical study of critical phenomena.

Different aspects of the SAW can be probed in three different ensembles?®:

e Free-endpoint grand canonical ensemble (variable NV, variable z)
e Fixed-endpoint grand canonical ensemble (variable N, fixed z)
e Canonical ensemble (fixed N, variable z)

In the remainder of this section we survey some typical Monte Carlo algorithms for
these ensembles.

Free-endpoint grand canonical ensemble. Here the configuration space S is the set
of all SAWs, of arbitrary length, starting at the origin and ending anywhere. The grand

partition function is
oo

EB) = Nen (7.4)
N=0
and the Gibbs measure is
m(w) =E2(8) " x g, (7.5)

The “monomer activity” 3 is a user-chosen parameter satisfying 0 < 8 < 8, = u*. As

(3 approaches the critical activity 5., the average walk length (V) tends to infinity. The
connective constant p and the critical exponent v can be estimated from the Monte
Carlo data, using the method of maximum likelihood [76].

A dynamic Monte Carlo algorithm for this ensemble was proposed by Berretti and
Sokal [76]. The algorithm’s elementary moves are as follows: either one attempts to
append a new step to the walk, with equal probability in each of the ¢ possible directions
(here ¢ is the coordination number of the lattice); or else one deletes the last step from
the walk. In the former case, one must check that the proposed new walk is self-
avoiding; if it isn’t, then the attempted move is rejected and the old configuration is
counted again in the sample (“null transition”). If an attempt is made to delete a
step from an already-empty walk, then a null transition is also made. The relative
probabilities of AN = 41 and AN = —1 attempts are chosen to be

_ _ 45
IP(AN = +1 attempt) = T+ a0 (7.6)
1
P(AN = —1 att t) = 7.7
( attempt) = 11— &

35The proper terminology for these ensembles is unclear to me. Perhaps the grand canonical and
canonical ensembles ought to be called “canonical” and “microcanonical”, respectively, reserving the
term “grand canonical” for ensembles of many SAWs. Note Added 1996: I now prefer calling these
the “variable-length” and “fixed-length” ensembles, respectively, and avoiding the “—canonical” terms
entirely; this avoids ambiguity.
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Therefore, the transition probability matrix is

ﬁXSAW(w’) if w =<
1

plw—w') =< mg ifw <worw=w =90 (7.8)
s AW) fw=uw =10
where 1 i SAW
' 1I W 1S a
_ 7.9
Xsaw () { 0 ifw' is not a SAW (7.9)

Here w < w' denotes that the walk w' is a one-step extension of w; and A(w) is the
number of non-self-avoiding walks w’ with w < w'. It is easily verified that this transition
matrix satisfies detailed balance for the Gibbs distribution , i.e.

7(w)plw = ') = 7(W')p(w = w) (7.10)

for all w,w’ € S. It is also easily verified that the algorithm is ergodic (= irreducible):
to get from a walk w to another walk ', it suffices to use AN = —1 moves to transform
w into the empty walk (), and then use AN = +1 moves to build up the walk «'.
Let us now analyze the critical slowing-down of the Berretti-Sokal algorithm. We
can argue heuristically that
7 ~ (N)%. (7.11)

To see this, consider the quantity N(¢) = |w|(¢), the number of steps in the walk
at time ¢. This quantity executes, crudely speaking, a random walk (with drift) on
the nonnegative integers; the average time to go from some point N to the point 0
(i.e. the empty walk) is of order N2. Now, each time the empty walk is reached, all
memory of the past is erased; future walks are then independent of past ones. Thus,
the autocorrelation time ought to be of order (N?), or equivalently (N)2.

This heuristic argument can be turned into a rigorous proof of a lower bound T >
const x (N)? [10]. However, as an argument for an upper bound of the same form, it is
not entirely convincing, as it assumes without proof that the slowest mode is the one
represented by N(¢). With considerably more work, it is possible to prove an upper
bound on 7 that is only slightly weaker than the heuristic prediction: 7 < const x (N )7
[10, 77].3% (Note that the critical exponent <y is believed to equal 43/32 in dimension
d=2,~1.16in d =3, and 1 in d > 4.) In fact, we suspect [78] that the true behavior
is 7 ~ (N)? for some exponent p strictly between 2 and 1+ . A deeper understanding
of the dynamic critical behavior of the Berretti-Sokal algorithm would be of definite
value.

It is worth comparing the computational work required for SAW versus Ising simula-
tions: (N)™? ~ E¥2/v = 334 for the d = 3 SAW, versus £%H% = 750 (resp.£~¥38) for the
d = 3 Ising model using the Metropolis (resp. Swendsen-Wang) algorithm. This vindi-
cates our assertion that the SAW is an advantageous model for Monte Carlo studies of
critical phenomena.

36 All these proofs are discussed in Section 8.
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Fized-endpoint grand canonical ensemble. The configuration space S is the set of
all SAWs, of arbitrary length, starting at the origin and ending at the fixed site x
(# 0). The ensemble is as in the free-endpoint case, with cy replaced by Ney(z). The
connective constant p and the critical exponent g, can be estimated from the Monte
Carlo data, using the method of maximum likelihood.

A dynamic Monte Carlo algorithm for this ensemble was proposed by Berg and
Foerster [79] and Aragdo de Carvalho, Caracciolo and Fréhlich (BFACF) [75, 80]. The
elementary moves are local deformations of the chain, with AN = 0,£2. The critical
slowing-down in the BFACF algorithm is quite subtle. On the one hand, Sokal and
Thomas [81] have proven the surprising result that 7.,, = +oc for all § # 0 (see Section
8). On the other hand, numerical experiments [12, 82] show that 7, x ~ (N)39£04 (in
d = 2). Clearly, the BFACF dynamics is not well understood at present: further work,
both theoretical and numerical, is needed.

In addition, Caracciolo, Pelissetto and Sokal [82] are studying a “hybrid” algorithm
that combines local (BFACF) moves with non-local (cut-and-paste) moves. The critical
slowing-down, measured in CPU units, appears to be reduced slightly compared to the
pure BFACF algorithm: 7 ~ (N)~?3 in d = 2.

Canonical ensemble. Algorithms for this ensemble, based on local deformations of
the chain, have been used by polymer physicists for more than 25 years [83, 84]. So the
recent proof [85] that all such algorithms are nonergodic (= not irreducible) comes as a
slight embarrassment. Fortunately, there does exist a non-local fixed-N algorithm which
is ergodic: the “pivot” algorithm, invented by Lal [86] and independently reinvented
by MacDonald et al. [87] and by Madras [16]. The elementary move is as follows:
choose at random a pivot point k£ along the walk (1 < k < N — 1); choose at random
a non-identity element of the symmetry group of the lattice (rotation or reflection);
then apply the symmetry-group element to wyi1, ..., wy using wy as a pivot. The
resulting walk is accepted if it is self-avoiding; otherwise it is rejected and the walk w is
counted once more in the sample. It can be proven [16] that this algorithm is ergodic
and preserves the equal-weight probability distribution.

At first thought the pivot algorithm sounds terrible (at least it did to me): for
N large, nearly all the proposed moves will get rejected. This is in fact true: the
acceptance fraction behaves N? as N — oo, where p &~ 0.19 in d = 2 [16]. On
the other hand, the pivot moves are very radical: after very few (5 or 10) accepted
moves the SAW will have reached an “essentially new” conformation. One conjectures,
therefore, that 7 ~ NP. Actually it is necessary to be a bit more careful: for global
observables f (such as the end-to-end distance w%) one expects Tin s ~ NP; but local
observables (such as the angle between the 17" and 18" bonds of the walk) are expected
to evolve a factor of N more slowly: T s ~ NP, Thus, the slowest mode is expected
to behave as Ty, ~ N'TP. For the pivot algorithm applied to ordinary random walk
one can calculate the dynamical behavior exactly [16]: for global observables f the
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autocorrelation function behaves roughly like

n 7, t
pr(t) ~ (1 = —) : (7.12)
i=1 n
from which it follows that
Tint,f ~ log N (7.13)
Te;cp,f ~ N (714)

— in agreement with our heuristic argument modulo logarithms. For the SAW, it is
found numerically [16] that 7;,,r ~ N in d = 2, also in close agreement with the
heuristic argument.

A careful analysis of the computational complexity of the pivot algorithm [36] shows
that one “effectively independent” sample (at least as regards global observables) can
be produced in a computer time of order N. This is a factor N more efficient than the
Berretti-Sokal algorithm, a fact which opens up exciting prospects for high-precision
Monte Carlo studies of critical phenomena in the SAW. Thus, with a modest computa-
tional effort (300 hours on a Cyber 170-730), Madras and I found v = 0.7496 + 0.0007
(95% confidence limits) for 2-dimensional SAWs of lengths 200 < N < 10000 [16].
We hope to carry out soon a convincing numerical test of hyperscaling in the three-
dimensional SAW .37

8 Rigorous Analysis of Dynamic Monte Carlo Al-
gorithms

In this final lecture, we discuss techniques for proving rigorous lower and upper
bounds on the autocorrelation times of dynamic Monte Carlo algorithms. This topic is
of primary interest, of course, to mathematical physicists: it constitutes the first steps
toward a rigorous theory of dynamic critical phenomena, along lines parallel to the well-
established rigorous theory of static critical phenomena. But these proofs are, I believe,
also of some importance for practical Monte Carlo work, as they give insight into the
physical basis of critical slowing-down and may point towards improved algorithms with
reduced critical slowing-down.

3"Note Added 1996: This study has now been carried out [129], and yields v = 0.5877 % 0.0006
(subjective 68% confidence limits), based on SAWs of length up to 80000 steps. Proper treatment of
corrections to scaling is crucial in obtaining this estimate. We also show that the interpenetration ratio
¥ approaches its limiting value ¥* = 0.2471 £ 0.0003 from above, contrary to the prediction of the
two-parameter renormalization-group theory. We have critically reexamined this theory and shown
where the error lies [130, 129].
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There is a big difference between the techniques used for proving lower and upper
bounds, and it is easy to understand this physically. To prove a lower bound on the
autocorrelation time, it suffices to find one physical reason why the dynamics should
be slow, i.e. to find one “slow mode”. This physical insight can often be converted
directly into a rigorous proof, using the variational method described below. On the
other hand, to prove an upper bound on the autocorrelation time, it is necessary to
understand all conceivable physical reasons for slowness, and to prove that none of
them cause too great a slowing-down. This is extremely difficult to do, and has been
carried to completion in very few cases.

We shall be obliged to restrict attention to reversible Markov chains [i.e. those satis-
fying the detailed-balance condition (2.27)], as these give rise to self-adjoint operators.
Non-reversible Markov chains, corresponding to non-self-adjoint operators, are much
more difficult to analyze rigorously.

The principal method for proving lower bounds on ., (and in fact on 7, f) is the
variational (or Rayleigh-Ritz) method. Let us recall some of the theory of reversible
Markov chains from Section 2: Let 7 be a probability measure, and let P = {p,,} be a
transition probability matrix that satisfies detailed balance with respect to 7. Now P
acts naturally on functions (observables) according to

(Pf)(@) = D pay f(y)- (8.1)

In particular, when acting on the space {?(7) of m-square-integrable functions, the op-
erator P is a self-adjoint contraction. Its spectrum therefore lies in the interval [—1, 1].
Moreover, P has an eigenvalue 1 with eigenvector equal to the constant function 1.
Let IT be the orthogonal projector in I%(7) onto the constant functions. Then, for each
real-valued observable f € [%(r), we have

Ci(t) = (f, (P —TI)f)
= (f, =PI -T10)f) (8.2)

where (g, h) = (g* h), denotes the inner product in [*(7). By the spectral theorem, this
can be written as

Crrtt) = [ Aldugs (), 8.9

where dvys is a positive measure. It follows that

1[0 75 dvgs())
2 fil def()\)
114 pp(1)
21— psp(1)

Tint, f

(8.4)
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by Jensen’s inequality (since the function A — (1 + \)/(1 — ) is convex).3®

Our method will be to compute explicitly a lower bound on the normalized auto-
correlation function at time lag 1,

prr(1) = g;;g(l)g : (8.5)

for a suitably chosen trial observable f. Equivalently, we compute an upper bound on
the Rayleigh quotient

(f, U=P)f) _ Cr(0) = Cps(1)

(f, I =10 f) Cys(0)
The crux of the matter is to pick a trial observable f that has a strong enough overlap
with the “slowest mode”. A useful formula is

. T—P)f) = = mepey 1 (@) — FW)P - (8.7)

= 1—psp(1). (8.6)

T2

That is, the numerator of the Rayleigh quotient is half the mean-square change in f in
a single time step.

Example 1. Single-site heat-bath algorithm. Let us consider, for simplicity, a translation-
invariant spin model in a periodic box of volume V. Let P; = {P;(¢ — ¢')} be the
transition probability matrix associated with applying the heat-bath operation at site
i.3% Then the operator P; has the following properties:

(a) P; is an orthogonal projection. (In particular, P> = P, and 0 < P, < I.)
(b) P, 1 =1. (In particular, ITP; = P,IT =11.)

(c) Pif = fif f depends only on {¢; },+.. (Infact a stronger property holds: P;(fg) =
fP,g if f depends only on {¢;};-;. But we shall not need this.)

For simplicity we consider only random site updating. Then the transition matrix of
the heat-bath algorithm is

1
P = V;Pi. (8.8)

We shall use the notation of the Ising model, but the same proof applies to much more
general models.

381t also follows from (8.3) that py(t) > pss(1) for even values of t. Moreover, this holds for odd
values of t if dvyy is supported on A > 0 (though not necessarily otherwise); this is the case for the
heat-bath and Swendsen-Wang algorithms, in which P > 0. Therefore, the decay as t — oo of pys(t)
is also bounded below in terms of psz(1).

39Probabilistically, P; is the conditional expectation E™( - | {¢;};£;). Analytically, P; is the orthog-
onal projection in [?(7) onto the linear subspace consisting of functions depending only on {p;};;.
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As explained in Section 4, the critical slowing-down of the local algorithms (such as
single-site heat-bath) arises from the fact that large regions in which the net magnetiza-
tion is positive or negative tend to move slowly. In particular, the total magnetization
of the lattice fluctuates slowly. So it is natural to expect that that the total magneti-
zation M = Y, 0; will be a “slow mode”. Indeed, let us compute an upper bound on
the Rayleigh quotient (8.6) with f = M. The denominator is

(M, (I =IHM) = (M*) = (M)* = Vx (8.9)

(since (M) = 0 by symmetry). The numerator is

M, (I=P)IM) = Y (0 (1= P)ow)

ik
1
= VZ(Uz’a (I — B)oi)
< X0
= V - O-Za UZ
1
= V;@Z)
= 1. (8.10)
Here we first used properties (a) and (c) to deduce that (o;, (I — Pj)ox) = 0 unless

i = j = k, and then used property (a) to bound (o;, (I — P;)o;). It follows from (8.9)
and (8.10) that

1
1-— 1) < — 8.11
PM,M( ) = Vy ( )

and hence that ]
Tint, M 2 VX—§- (8.12)

Note, however, that here time is measured in hits of a single site. If we measure time
in hits per site, then we conclude that

aps)y o 1 8.13
Tintm 2 X~ 5 A X (8.13)

This proves a lower bound [88, 89, 90] on the dynamic critical exponent z, namely
z > v/v. (Here v and v are the static critical exponents for the susceptibility and
correlation length, respectively. Note that by the usual static scaling law, v/v = 2 — n;
and for most models 7 is very close to zero. So this argument almost makes rigorous
(as a lower bound) the heuristic argument that z ~ 2.)

Virtually the same argument applies, in fact, to any reversible single-site algorithm
(e.g. Metropolis). The only difference is that the property 0 < P; < I is replaced by
—1 < P; < I, so the bound on the numerator is a factor of 2 larger. Hence

mps) o X 1 X
TZ'FLt,M — 2 2V 2 . (8.14)
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Example 2. Swendsen-Wang algorithm. Recall that the SW algorithm simulates the
joint model (6.6) by alternately applying the conditional distributions of {n} given {c},
and {o} given {n} — that is, by alternately generating new bond occupation variables
(independent of the old ones) given the spins, and new spin variables (independent of
the old ones) given the bonds. The transition matrix Psy = Psw ({o,n} — {o’,n'}) is
therefore a product

Psyw = PbondPspin ) (815)

where Py,pq is the conditional expectation operator E( - [{¢}), and Py, is E( - [{n}).
We shall use the variational method, with f chosen to be the bond density

(1)
To lighten the notation, let us write 0y, = d;,; for a bond b = (ij). We then have

E(ml{c}) = pdg, (8.17)
E(nyny|{c}) = Do Py 65, 5, for b # v/ (8.18)

It follows from (8.17) that

((t =0)ny(t =1)) = (ny E(E(ny[{c})|{n}))
= (m E(ny|{c}))
(E(mp|{c}) E(np[{c}))
= Db Py (05, 0o, - (8.19)

The corresponding truncated (connected) correlation function is clearly

(no(t = 0);nw (t =1)) = ooy (05, 500,) (8.20)

where (A; B) = (AB)—(A)(B). We have thus expressed a dynamic correlation function
of the SW algorithm in terms of a static correlation function of the Potts model.
Now let us compute the same quantity at time lag 0: by (8.18), for b # b’ we have

(nb(t == 0) Ty (t = O)) = Db Py <5gb 5gb,> (8.21)

and hence
(np(t = 0);ny(t =0)) = pspy (0o, ;95,) - (8.22)
On the other hand, for b = b’ we clearly have

(np(t = 0);np(t =0)) = (ny) — (np)”
= s (0s,) — 13 (0,)” - (8.23)
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Consider now the usual case in which

_ | p forbeB
by = { 0 otherwise (824)

for some family of bonds B. Combining (8.20), (8.22) and (8.23) and summing over
b, ', we obtain

NE=0);N(t=1)) = p*&;€) (8.25)
N@E=0);N(t=0)) = p(E;&) —p(l —p)(€) (8.26)
where £ = —37cp 05, < 0is the energy. Hence the normalized autocorrelation function

at time lag 1 is exactly

(t=0);N(E=1)) _ —(1-pE
t=0

W
o) = ez oNGE=0) ~ ! pon—G-pE’ 2

where E = V() is the mean energy and Cyg = V1€ ; ) is the specific heat (V is
the volume). At criticality, p — peie > 0 and E — Ezip < 0, 80

const

Cu

pan (1) = (8.28)

We now remark that although Psyw = PyonaPspin is not self-adjoint, the modified
transition matrix Py, = PapinPronaPspin s self-adjoint (and positive-semidefinite), and
N has the same autocorrelation function for both:

(N7 (PbondPspin)tN) = (N7 (PspinPbondPspin)tN) (829)
It follows that
o () > paa(D) > (1 — const/Cy)l* (8.30)
and hence
TintAr > const X Oy . (8.31)

This proves a lower bound [62] on the dynamic critical exponent zgw, namely zgy >
a/v. (Here a and v are the static critical exponents for the susceptibility and correlation
length, respectively.) For the two-dimensional Potts models with ¢ = 2,3,4, it is
known exactly (but non-rigorously!) that or/v = 0, 2, 1, with multiplicative logarithmic
corrections for ¢ = 4 [91]. The bound on zsy may be conceivably be sharp (or sharp
up to a logarithm) for ¢ = 4 [62].

Example 3. Berretti-Sokal algorithm for SAWs. Let us consider the observable

flw) = |wl (=N), (8.32)
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the total number of bonds in the walk. We have argued heuristically that 7 ~ (N)?;
we can now make this argument rigorous as a lower bound. Indeed, it suffices to use
(8.7): since the maximum change of |w| in a single time step is £1, it follows that

1

(f, (I=P)f) < 3. (8.33)

On the other hand, the denominator of the Rayleigh quotient is
(f, (I =1)f) = (N?) = (N)*. (8.34)
Assuming the usual scaling behavior (7.1) for the ¢y, we have

v

N) =~ 8.35
)~ (8.3)
+1)
vy~ B (8.36)
asymptotically as 81 8, = p~!, and hence
Tint,y > const x (N)?. (8.37)

A very different approach to proving lower bounds on the autocorrelation time 7.,
is the minimum hitting-time argument [81]. Consider a Markov chain with transition
matrix P satisfying detailed balance for some probability measure 7. If A and B are
subsets of the state space S, let T4 be the minimum time for getting from A to B
with nonzero probability, i.e.

Tap = min{n: pgg‘) > ( for some z € A, y € B} (8.38)

Then the theorem asserts that if Ty is large and this is not “justified” by the rarity of
A and/or B in the equilibrium distribution 7, then the autocorrelation time 7., must
be large. More precisely:

Theorem 2 Consider a Markov chain with transition matriz P satisfying detailed bal-
ance for the probability measure w. Let Typ be defined as in (8.38). Then

“ 2(Tap—1)
e 2 52 Tlog (r(A) (D) (539

PROOF. Let A, B C S, and let n < T4p. Then, by definition of T3,

(XAa PnXB)IQ(ﬂ) = Zﬂ-wp(xg) = 0. (840)
z€EA
yEB
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On the other hand, P1 = P*1 = 1. It follows that
(x4 = 7(A)L, P"(x5 = 7(B)1) sy = —(A)(B). (341
Now since P is a self-adjoint operator, we have
IP* M1t = ||P } 1" = R, (8.42)

where R = e~'/7e is the spectral radius (= norm) of P ) 11. Hence, by the Schwarz
inequality,

(xa = m(A)1, P"(x5 = 1) )
< R'lxa— m(A) e lIxs — 7(B)1]iag)
= R'm(4)"? (1= 7(4)"/?m(B)"* (1 - x(B))"/?
< R"n(A)Y?x(B)'/? (8.43)

Combining (8.41) with (8.43) and taking n = Tap — 1, we arrive after a little algebra
at (8.39). O

REMARK. Using Chebyshev polynomials, a stronger bound can be proven: roughly
speaking, T.,, is bounded below by the square of the RHS of (8.39). For details, see
[81, Theorem 3.1].

Let us apply this theorem to the BFACF algorithm for variable-length fixed-endpoint
SAWs. Let w* be a fixed short walk from 0 to z, and let w™ be a quasi-rectangular
walk from 0 to z of linear size & n. Then 7(w*) ~ 1 and 7(w") ~ B~ so that
—log(m(w*)m(w™)) ~ n. On the other hand — and this is the key point — the minimum
time required to get from w™ to w* (or vice versa) in the BFACF algorithm is of order
n?, since the surface area spanned by w™Uw* can change by at most one unit in a local
deformation. Applying the theorem with A = {w"} and B = {w*}, we obtain

N7’L2

Texp > sup = —+o0. (844)

n ~ TN

As noted at the beginning of this lecture, it is much more difficult to prove upper
bounds on the autocorrelation time — or even to prove that 7.;, < oo — and few
nontrivial results have been obtained so far.

The only general method (to my knowledge) for proving upper bounds on the auto-
correlation time is Cheeger’s inequality [77, 92, 93], the basic idea of which is to search
for “bottlenecks” in the state space.’® Consider first the rate of probability flow, in

ONote Added 1996: There is now an extensive literature (largely by probabilists and the-
oretical computer scientists) on upper bounds on the autocorrelation time for Markov chains,
based on inequalities of Cheeger, Poincaré, Nash and log-Sobolev types. For reviews, see e.g.
[131, 132, 133, 134, 135, 136].
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the stationary Markov chain, from a set A to its complement A€, normalized by the
invariant probabilities of A and A®:

7r$ X
K(4) = weA,zg;eAc Pay _ (xas Pxac)em (8.45)
-~ m(A)w(A°) m(A) w(A°) '
Now look for the worst such decomposition into A and A¢:
k = inf k(A) . (8.46)

A: 0<m(A)<1

If, for some set A, the flow from A to A¢is very small compared to the invariant proba-
bilities of A and A€, then intuitively the Markov chain must have very slow convergence
to equilibrium (the sets A and A¢ are “metastable”). For reversible Markov chains a
trivial variational argument makes this intuition rigorous: just take f = x4. What
is much more exciting is the converse: if there does not exist a set A for which the
flow from A to A¢is unduly small, then the Markov chain must have rapid convergence
to equilibrium, in the sense that the modified autocorrelation time 7,,, is small. The
precise statement is the following [77, Theorem 2.1]:

Theorem 3 Let P be a transition probability matriz satisfying detailed balance for ,
and let k be defined as above. Then

~1 , ~1

- < — 8.47
log(1—k) — Teap = log(1 — %2) ( )

The proof is not difficult, but enough is enough — the interested reader can look it
up in the original paper.
Since this is a {wo-sided bound, we see that 7., is finite if and only if k > 0.
So in principle Cheeger’s inequality can be used to prove exponential convergence to
equilibrium whenever it holds. But in practice it is almost impossible to control the
infimum (8.46) over all sets A. The most tractable case seems to be when the state
space is a tree: then A can always be chosen so that it is connected to A¢ by a single
bond. Using this fact, Lawler and Sokal [77] used Cheeger’s inequality to prove
7! < const x (N)*7 (8.48)

exp —

for the Berretti-Sokal algorithm for SAWs.

A very different proof of an upper bound on Témp in the Berretti-Sokal algorithm was
given by Sokal and Thomas [10]. Their method is to study in detail the exponential
moments of the hitting times from an arbitrary walk w to the empty walk. Using a
sequence of identities, they are able to write an algebraic inequality for such a moment
in terms of itself; this inequality says roughly that the moment is either small or huge
(where “huge” includes the possibility of +00) but cannot lie in-between (there is a

66



“forbidden interval”). Then, by a continuity argument, they are able to rule out the
possibility that the moment is huge. So it must be small. The final result is

7! < const x (N7, (8.49)

erp —

slightly better than the Lawler-Sokal bound.*!

For spin models and lattice field theories, almost nothing is known about upper
bounds on the autocorrelation time, except at high temperature. For the single-site
heat-bath dynamics, it is easy to show that 7.;, < co (uniformly in the volume) above
the Dobrushin uniqueness temperature; indeed, this is precisely what the standard proof
of the Dobrushin uniqueness theorem [94, 95] does. One expects the same result to hold
for all temperatures above critical, but this remains an open problem, despite recent
progress by Aizenman and Holley [96].
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