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Abstract

My course at the 2005 Les Houches summer school was based on the course

“Monte Carlo Methods in Statistical Mechanics: Foundations and New Algo-
rithms” that I gave at the 1996 Cargese summer school and which was published
in that school’s proceedings [1]. The basic ideas have not changed radically in
the past ten years, though many new applications have been made and some

new algorithms have been invented. In these notes, I have added some updated
information concerning the Swendsen—Wang algorithm.



1 Overview

The goal of these lectures is to give an introduction to the use of Monte Carlo
methods in statistical mechanics and quantum field theory, with an emphasis on:

1) the conceptual foundations of the method, including the possible dangers and
misuses, and the correct use of statistical error analysis; and

2) new (collective-mode) Monte Carlo algorithms for problems in critical phenom-
ena and quantum field theory, aimed at reducing or eliminating the “critical
slowing-down” found in conventional (local) algorithms.

These lectures are aimed at a mixed audience of theoretical, computational and math-
ematical physicists — some of whom are currently doing or want to do Monte Carlo
studies themselves, others of whom want to be able to evaluate the reliability of
published Monte Carlo work, and still others of whom might want to contribute to
the mathematical analysis of Markov-chain Monte Carlo algorithms (currently a very
lively branch of probability theory).

The principal topics to be covered are the following:

1. Introduction: Dangers of Monte Carlo methods

2. Dynamic (Markov-chain) Monte Carlo methods: General theory
3. Statistical analysis of dynamic Monte Carlo data

4. Conventional (local) Monte Carlo algorithms for spin models

5. Cluster algorithms (Swendsen—Wang and related algorithms)

6. Rigorous analysis of Markov-chain Monte Carlo methods

Details on all these topics can be found in [1]. Here I would simply like to give some
updated information concerning the Swendsen-Wang algorithm.

2 The Swendsen—Wang algorithm: Some recent
progress

The Swendsen-Wang [2] algorithm for simulating the ferromagnetic g-state Potts
model [3-5] is the prototype for many other collective-mode Monte Carlo algorithms
in statistical mechanics that are generically termed cluster algorithms or auziliary-
variable algorithms. The basic idea behind all algorithms of Swendsen-Wang type is
to augment the given model by means of auxiliary variables, and then to simulate
this augmented model.



Here I shall begin by reviewing the theory underlying the Swendsen—Wang algo-
rithm. Next I shall present the most recent numerical data on its dynamic critical
behavior, and discuss some of the things that remain to be understood.

2.1 Fortuin—Kasteleyn representation and Swendsen—Wang
algorithm

The g-state Potts model [3-5] is a generalization of the Ising model in which each

spin o; can take ¢ distinct values rather than just two; here ¢ is an integer > 2. At each

site ¢ we therefore have a “spin” o; taking values in the set {1,2,...,¢}. Neighboring

spins prefer to be in the same state (here I am considering the ferromagnetic case),
and pay an energy price if they are not. The Hamiltonian is therefore

H(U) = Z Jij (1 - 60’i70'j) (2'1)
(4)

with J;; > 0 for all 7, j, and the partition function is

Z = Y exp[-Ho)

{o}
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where we have defined p;; = 1 —exp(—J;;). The Gibbs measure ppots(0) is, of course,

ppotts(0) = Z 7 exp {Z Jij (01,0, — 1)}
(13)

= Z ' [J1Q = pi) + pisbos] - (2.3)
(45)
We now use the deep identity
1
a+ b = Z [adn,o -+ b5n,1] (24)
n=0

on each bond (ij); that is, we introduce on each bond (ij) an auxiliary variable n;;
taking the values 0 and 1, and obtain

zZ = Z Z H [(1 _pij) 5nij70 + pij5n¢j,15ai,aj] . (25)

{o} {n} (@)



Let us now take seriously the {n} as dynamical variables: we can think of n;; as an
occupation variable for the bond (ij) (1 = occupied, 0 = empty). We therefore define
the Fortuin-Kasteleyn-Swendsen—Wang (FKSW) model to be a joint model having
g-state Potts spins o; at the sites and occupation variables n;; on the bonds, with
joint probability distribution

NFKSW(O-a n) =2z H [(1 _pij) 6"1’3';0 + pijénijyléo'iﬁ'j] . (2'6)
(i5)

Finally, let us see what happens if we sum over the {¢} at fixed {n}. Each occupied
bond (ij) imposes a constraint that the spins o; and o; must be in the same state, but
otherwise the spins are unconstrained. We therefore group the sites into connected
clusters (two sites are in the same cluster if they can be joined by a path of occupied
bonds); then all the spins within a cluster must be in the same state (all g values are
equally probable), and distinct clusters are independent. It follows that

Z=> 1 11 »rs I[I a-py))a™, (2.7)

{n} \(@5): niy=1 (3): mi5=0

where C(n) is the number of connected components (including one-site components)
in the graph whose edges are the bonds having n;; = 1. The corresponding probability
distribution,

pro(n) = 27| T] pu I a-py|e™, (2.8)

(i5): nij=1 (i5): mij=0

is called the random-cluster model with parameter q. This is a generalized bond-
percolation model, with non-local correlations coming from the factor ¢¢™; for ¢ = 1
it reduces to ordinary bond percolation. Note, by the way, that in the random-cluster
model (unlike the Potts and FKSW models), g is merely a parameter; it can take any
positive real value, not just 2,3,.... So the random-cluster model defines, in some
sense, an analytic continuation of the Potts model to non-integer ¢; ordinary bond
percolation corresponds to the “one-state Potts model”.
We have already verified the following facts about the FKSW model:

a) Zpotts = ZFKSW = ZRC-

b) The marginal distribution of urxsw on the Potts variables {o} (integrating out
the {n}) is precisely the Potts model ppots(o).

¢) The marginal distribution of prksw on the bond occupation variables {n} (in-
tegrating out the {o}) is precisely the random-cluster model pgc(n).



The conditional distributions of ppksw are also simple:

d) The conditional distribution of the {n} given the {c} is as follows: indepen-
dently for each bond (ij), one sets n;; = 0 in case 0; # o;, and sets n;; = 0,1
with probability 1 — p;;, pij, respectively, in case o; = 0.

e) The conditional distribution of the {o} given the {n} is as follows: indepen-
dently for each connected cluster, one sets all the spins o; in the cluster to the
same value, chosen equiprobably from {1,2,...,¢}.

These facts can be used for both analytic and numerical purposes. For example,
by using facts (b), (c) and (e) we can prove an identity relating expectations in the
Potts model to connection probabilities in the random-cluster model:

<5ai,gj>Pott5,q = <50'1,,0']>FKSVV,q [by (b)]
(E(00i,0; | {n})) FrcsW,4

- (et 1>FK5W,q by (¢)]
(e

— 1)y +1
q >Rc,q by ()] (2.9)

Here

1 if ¢ is connected to j
W = ) = { (2.10)

0 if 7 is not connected to j

and E( - | {n}) denotes conditional expectation given {n}.! For the Ising model with
the usual convention o = +1, (2.9) can be written more simply as

(0i0) 1sing = (Vij)rRC\q=2 - (2.11)

Similar identities can be proven for higher-order correlation functions, and can be
employed to prove Griffiths-type correlation inequalities for the Potts model [7,8].
On the other hand, Swendsen and Wang [2] exploited facts (b)—(e) to devise a
radically new type of Monte Carlo algorithm. The Swendsen-Wang algorithm (SW)
simulates the joint model (2.6) by alternately applying the conditional distributions
(d) and (e) — that is, by alternately generating new bond occupation variables (in-
dependent of the old ones) given the spins, and new spin variables (independent of
the old ones) given the bonds. Each of these operations can be carried out in a com-
puter time of order volume: for generating the bond variables this is trivial, and for

!For an excellent introduction to conditional expectations, see [6].



generating the spin variable it relies on efficient (linear-time) algorithms for comput-
ing the connected clusters.? It is trivial that the SW algorithm leaves invariant the
Gibbs measure (2.6), since any product of conditional probability operators has this
property. It is also easy to see that the algorithm is ergodic, in the sense that every
configuration {o,n} having nonzero ppksw-measure is accessible from every other.
So the SW algorithm is at least a correct algorithm for simulating the FKSW model.
It is also an algorithm for simulating the Potts and random-cluster models, since

expectations in these two models are equal to the corresponding expectations in the
FKSW model.

Historical remark. The random-cluster model was introduced in 1969 by Fortuin
and Kasteleyn [12]; they derived the identity Zpoys = Zrc, along with the correlation-
function identity (2.9) and some generalizations. These relations were rediscovered
several times during the subsequent two decades [13]. Surprisingly, however, no one
seems to have noticed the joint probability distribution ppksw that underlay all these
identities; this was discovered implicitly by Swendsen and Wang (2], and was made
explicit by Edwards and Sokal [14].

2.2 Dynamic critical behavior: Numerical results

It is certainly plausible that the SW algorithm might have less critical slowing-
down than the conventional (single-spin-update) algorithms: the reason is that a
local move in one set of variables can have highly nonlocal effects in the other. In
particular, setting n;; = 0 on a single bond may disconnect a cluster, dividing it into
two big pieces; and then, in the next half-step of the algorithm, the spins in these two
pieces may be flipped simultaneously but independently. In some sense, therefore,
the SW algorithm is a collective-mode algorithm in which the collective modes are
chosen by the system rather than imposed from the outside as in multi-grid [15-21]
or Fourier acceleration [22]. The miracle is that this is done in a way that preserves
the correct Gibbs measure.

How well does the SW algorithm perform? In at least some cases, the performance
is nothing short of extraordinary. Table 1 shows the latest data [23] on the two-
dimensional Ising model at the bulk critical temperature, together with comparison
data for a single-site Metropolis algorithm [24]. These data are consistent with a
behavior Tsw ~ L¥"?2; but they are also consistent with Tsw ~ log” L [23]. (Alas,
it is extremely difficult to distinguish numerically a small power from a logarithm.)

2Determining the connected components of an undirected graph is a classic problem of computer
science. The depth-first-search and breadth-first-search algorithms [9] have a running time of order
V', while the Fischer-Galler-Hoshen-Kopelman algorithm (in one of its variants) [10] has a worst-case
running time of order V'log V', and an observed mean running time of order V in percolation-type
problems [11].



Swendsen—Wang Metropolis
L X Tint,S Texp,M

4 12.183 + 0.007 2.027 +0.010

8 41.396 + 0.008 2.590 4 0.004

16 139.584 + 0.039 3.253 + 0.008 285.6 £ 4.3
32 470.022 £ 0.140 4.012£0.011 | 1258 + 28
64 | 1581.319+ 0.378 4.892 +0.011 | 5380 =+ 140
128 | 5320.644 + 1.680 5.875+ 0.018 | 23950 + 480

256 || 17899.581 + 5.846 6.928 + 0.022

512 || 60184.698 + 18.670 8.107 + 0.025

Table 1: Static and dynamic data for the two-dimensional Ising model at criticality
on an L X L periodic lattice. Susceptibility x and integrated autocorrelation time
Tint,e (€ = energy ~ slowest mode) using the Swendsen-Wang algorithm [23, Table 6];
and exponential autocorrelation time Texp pm (M = magnetization & slowest mode),
using the Metropolis algorithm [24]. Error bars are one standard deviation.

In either case, we can say that in practical terms, the critical slowing-down is almost
completely eliminated.

By contrast, the conventional local algorithms for the two-dimensional Ising model
have Tioeal ~ L¥*13 [24], as can be seen in the last column of Table 1. So the advan-
tage of Swendsen-Wang over conventional algorithms grows asymptotically (for this
model) like L¥? — an enormous factor. To be sure, one iteration of the Swendsen—
Wang algorithm may be a factor of ~ 10 more costly in CPU time than one iteration
of a conventional algorithm (the exact factor depends on the efficiency of the cluster-
finding subroutine). But the SW algorithm wins already for modest values of L.

For the other Potts models, the performance of the SW algorithm is less spectac-
ular than for the two-dimensional Ising model, but it is still very impressive. Table 2
shows the current best estimates of the dynamic critical exponent zgw for g¢-state
Potts ferromagnets in d dimensions, as a function of ¢ and d. All these exponents are
much lower than the z 2 2 observed in the local algorithms.

2.3 How much do we understand about the SW dynamics?

Although the SW algorithm performs impressively well, we understand very little
about why the dynamic critical exponents take the values they do. A few cases are
easy:

1) If ¢ = 1, then all spins are in the same state (the only state!), and all bonds are



Estimates of zgw
g=1] g=2 | g=3 | ¢=4
d=11] 0 0 0 0
d=21 0 |0.222+0.007 | 0.514=40.006 | 1 (xlog’)
d=31| 0 0.46 & 0.03 — —
d=4 0 1 (x1log™) — —

Table 2: Current best estimates of the dynamic critical exponent z for the Swendsen—
Wang algorithm. Estimates are taken from [23] for d = 2, ¢ = 2; [25] for d = 2,
q = 3; [26,27] for d = 2, ¢ = 4; [28] for d = 3, ¢ = 2; and [29-32] for d = 4, ¢ = 2.
Error bars are one standard deviation, and include statistical errors only.

thrown independently, so the autocorrelation time is zero. Here the SW algorithm
just reduces to the standard static algorithm for independent bond percolation.

2) If d = 1 (more generally, if the lattice is a tree), the SW dynamics is exactly
soluble: the behavior of each bond is independent of each other bond, and 7., —
—1/log(1 —1/q) < 0o as f — +o0.

But the remainder of our understanding of the SW algorithm is very murky, and
we are only beginning to understand its dynamic critical behavior.

One source of insight is an exact (non-rigorous but presumably rigorizable) cal-
culation yielding zsw = 1 for the Ising model on the complete graph (also called the
Curie-Weiss or mean-field model) [30,32]. This result suggests (but of course does
not prove) that zsw = 1 for Ising models (¢ = 2) in dimensions d > 4.

A second source of insight is a rigorous lower bound on the Swendsen—Wang
autocorrelation time, proved more than 15 years ago by Li and Sokal [33] (see also
[25]):

Texp & Tt = Ty > const X Cy (2.12)

where £ is the energy, N is the bond density, and Cg is the specific heat. This
immediately implies the lower bound

zsw > afv (2.13)

for the SW dynamic critical exponent in terms of static exponents. The bound (2.13)
is fairly close to sharp — indeed, it may even be sharp modulo a logarithm — for the
g = 2,3, 4 Potts models in two dimensions.? But it is extremely far from sharp for the

3See [23,25-27] for numerical studies of the possible sharpness of the Li-Sokal bound for two-
dimensional Potts models with ¢ = 2,3,4. These data are consistent with sharpness modulo a



Ising models in dimensions 3 and 4, where zsw = 0.46 [28] and zsw = 1, respectively,
compared to a/v & 0.1756 [34] and o/v = 0 (x log'/?).

Clearly we are failing to grasp something extremely fundamental about the SW
dynamics. Physically, the bound (2.12) expresses the slow equilibration of the bond
density N, and more generally of “energy-like” observables — a fact that can be
captured mathematically in a Rayleigh—Ritz proof using NV as a trial vector [1,25,33].
The large discrepancy zsw — «/v for the 3- and 4-dimensional Ising models suggests
that in these cases the SW dynamics is dominated by a different (and much slower)
mechanism, possibly one having to do with “susceptibility-like” observables. Some
fairly wild speculations in this direction can be found in [28, Section 6]. But no one
has yet been able to find a trial vector that allows a useful bound other than (2.12)
to be proven. Nor has anyone found a plausible heuristic argument that would allow
zsw to be predicted, even roughly, in terms of static exponents.

One important recent contribution is the invention of a new SW-like algorithm
by Chayes and Machta [35]. Whereas the SW algorithm starts from the Potts model
(2.3) and introduces auxiliary variables n;; € {0,1} living on the bonds, the Chayes—
Machta algorithm starts from the random-cluster model (2.8) and introduces auxiliary
variables o; € {1,2,...,k} living on the sites; here k is an arbitrary positive integer
< ¢q. The Chayes-Machta algorithm thus applies to all random-cluster models with
parameter ¢ > 1, integer or noninteger. If ¢ is an integer and we choose k = g,
then the auxiliary variables o; are precisely the Potts spins, and the Chayes—Machta
algorithm is identical to the Swendsen-Wang algorithm. If ¢ is an integer and we
choose k < ¢, then the Chayes-Machta algorithm corresponds to a minor variant of
the Swendsen—Wang algorithm (which almost certainly has the same dynamic critical
exponent as the standard SW algorithm). But the key fact about the Chayes—Machta
algorithm is that it handles noninteger ¢ on an equal footing with integer ¢. Indeed,
the Chayes—Machta algorithm deserves to be thought of as the “natural” interpolation
of the Swendsen-Wang algorithm to noninteger ¢ (although unfortunately only for
g > 1). This is important, both conceptually and numerically, because it is difficult
to understand the SW dynamics based on only five nontrivial data points (d = 2,
g=2,3,4and d = 3,4, ¢ = 2). The Chayes-Machta algorithm allows us to study the
whole range 1 < ¢ < 4 for two-dimensional lattices, and the range 1 < ¢ < ¢.(£) for
three- and four-dimensional lattices |[here ¢.(L£) is the value of ¢ at which the phase
transition in the random-cluster model on lattice £ changes from second-order to first-
order; note that it can depend on the lattice and not only on the dimension|. Further
information about the Chayes—Machta algorithm, both theoretical and numerical, will
hopefully be available soon [36,37].

The Potts model with ¢ large behaves very differently. Instead of a critical point,

logarithm, i.e. 7sw/Cr ~ log L. But they are also consistent with a small difference in the exponents,
i.e. zsw — a/v of order 0.1. Once again, it is extremely difficult to distinguish numerically a small
power from a logarithm.



the model undergoes a first-order phase transition: on the standard two-dimensional
lattices, this occurs when ¢ > 4, while in three or more dimensions, it is believed
to occur already when ¢ > 3 [4]. At a first-order transition, both the conventional
algorithms and the Swendsen—Wang algorithm have an extremely severe slowing-down
(much more severe than the slowing-down at a critical point): right at the transition
temperature, we expect Tsw ~ exp(cL47!). This is because sets of configurations
typical of the ordered and disordered phases are separated by free-energy barriers
of order L% ! i.e. by sets of intermediate configurations that contain interfaces of
surface area ~ L% ! and therefore have an equilibrium probability ~ exp(—cL?41).
Indeed, a slightly weaker lower bound has been proven rigorously by Borgs et al. [38],
namely Tsw 2, exp[cL/(log L)?].*
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