Development and Application of worm-type algorithm in classical and quantum lattice models

Youjin Deng

Professor of USTC Adjunct assistant professor of UMass Amherst

2011.04.25

Worm algorithm

- What is worm?
- Application in classical lattice models.
- Application in Bose systems.
- Application in quantum spin systems.
- Application in Fermi systems.
- Other applications.

What is worm?

A cartoon picture of a worm

Worm in worm algorithm

Worm state space (A,I,M)

Application in classical lattice models

Consider the Ising model on G

Ising model

$$Z_{\text{Ising}} = \sum_{\sigma \in \{-1,+1\}^V} \prod_{ij \in E} e^{\beta \sigma_i \sigma_j}$$

The high-temperature expansion is

$$Z_{\text{Ising}} = \left(2^{|V|} \cosh^{|E|} \beta
ight) \sum_{A \in \mathcal{C}(G)} (anh eta)^{|A|}$$

Worm partition sum: $Z_{worm} = \sum_{\{(A,I,M)\}} \tanh \beta^{|A|}$ Standard worm update

- i) Start in configuration (A, I, M)
 - ii) Pick I or M, say I
 - iii) Choose one of I's neighbor, say L
- iv) Propose $(A, I, M) \rightarrow (A \Delta IL, L, M)$
- v) Accept the propose with probability p

Demonstration

- Efficiency
 - Near a critical point the autocorrelation times typically diverge like $\tau \Box \xi^z$
 - D= 2 Ising model
 - Glauber (Metropolis) algorithm $z \approx 2$
 - Swendsen-Wang algorithm $z \approx 0.2$
 - Worm algorithm $z_{\text{int},|A|} \approx 0.379$
 - D=3 Ising model
 - Worm algorithm $z_{\text{int},|A|} \approx 0.174$
 - Swendsen-Wang algorithm $z \approx 0.46$

- XY model on Square lattice
 - Reduced Hamiltonian $H = -J \sum_{\langle i, i \rangle} \vec{S}_i \vec{S}_j$

$$\vec{S}_i = (S_i^x, S_i^y)$$
 and $\vec{S}_i^2 = 1$

Partition sum

• Spin representation

$$Z_{spin} = \int \prod_{\langle i,j \rangle} \exp(J\overrightarrow{S_i}\overrightarrow{S_j}) \prod_k d\overrightarrow{S_k}$$

• Graph representation

$$Z_{XY} = \prod_{\langle i,j \rangle} \sum_{l_{i,j}} 'I_{l_{i,j}}(\beta)$$

and the second second

• N-component loop model on honeycomb lattice

– Partition sum

Spin representation

$$Z_{spin} = \int \prod_{\langle i,j \rangle} (1 + J \overrightarrow{S_i} \cdot \overrightarrow{S_j}) \prod_k d \overrightarrow{S_k}$$

• Graph representation

• Standard worm need non-local connectivity check

• Coloring technique

Induced subgraph interpretation

$$Z_{loop} = \sum_{\{b\}} \prod_{k=1}^{c} nJ^{b(k)} = \sum_{\{b\}} \prod_{k=1}^{c} [1 + (n-1)]J^{b(k)}$$

-Introduce a color variable

$$Z_{loop} = \sum_{\{b\}} \prod_{k=1}^{c} \sum_{t_k=0}^{1} J^{b(k)t_k} [(n-1)J^{b(k)}]^{1-t_k}$$

-Classify vertices to be "active" and "inactive"

Define active subgraph, using standard worm

• FPL branch of loop model

Standard worm will be frozen in the non-Eulerian configuration.

 Since we don't sample in the non-Eulerian configurations, force move.

• FPL branch of loop model

- Rejection-free technique comes!
- Original probability

$$p_{oa}, p_{ob}, p_{oc}, p_{oo}$$

- Modified probability $p'_{oa}, p'_{ob}, p'_{oc}, p'_{oo}$

- Rule
$$\frac{p'_{oa}}{p_{oa}} = \frac{p'_{ob}}{p_{ob}} = \frac{p'_{oc}}{p_{oc}}$$
$$p'_{oo} = 0$$
$$p'_{oa} + p'_{ob} + p'_{oc} = 1$$

- FPL branch of loop model
 - Demonstration

- Ergodicity is mathematically proved!
- First valid algorithm for FPL.

- Mapping to the O(2) FPL model
 - Zero temperature 3-state antiferromagnetic Potts model on the kagome lattice

- Mapping to the O(2) FPL mode
 - Zero temperature 4-state antiferromagnetic Potts model on the triangular lattice

- WSK algorithm Non-ergodic for zero temperature
- Provide the first valid algorithm for these zero temperature antiferromagnetic Potts models

- High-dimensional loop models
- Other applications
 - $| \varphi |^4$ model
 - Extended J-current model
 - Spin glass ???

.....

Bosonic mixture on the triangular lattice

$$H = -t_{A} \sum_{\langle ij \rangle} a_{i}^{+} a_{j} - t_{B} \sum_{\langle ij \rangle} b_{i}^{+} b_{j}$$
$$+ V \sum_{\langle ij \rangle} (n_{i}^{a} n_{j}^{a} + n_{i}^{b} n_{j}^{b}) - \mu \sum_{i} (n_{i}^{a} + n_{i}^{b}) + U \sum_{i} n_{i}^{a} n_{i}^{b}$$

⁸⁷Rb-⁴¹K in an optical lattice; interactions could be tuned by Feshbach resonance

Exist frustration

May exist rich phase diagram

Supersolidity

(Broken lattice symmetries coexisting with superfluidity)

E. Kim and M.Chan, Science (2004)

Also: K. Shirahama, et al (APS 2006)

A.S.C. Rittner, J. Reppy, cond-mat/0604528

Supersolid should show nonclassical rotational inertia

due to superfluid component remaining at rest (Leggett, 1970)

- Supersolid?
- Microcrystallites? Superglass? (N. Prokofiev etc.)

$$H = H_{0} + H_{1}$$

$$H_{0} = V \sum_{\langle ij \rangle} (n_{i}^{a} n_{j}^{a} + n_{i}^{b} n_{j}^{b}) - \mu \sum_{i} (n_{i}^{a} + n_{i}^{b}) + U \sum_{i} n_{i}^{a} n_{i}^{b}$$

$$H_{1} = -t_{A} \sum_{\langle ij \rangle} a_{i}^{+} a_{j} - t_{B} \sum_{\langle ij \rangle} b_{i}^{+} b_{j}$$

 $H_{0:}$ diagonal

H_{1:} non-diagonal

$$Z = \operatorname{Tr} e^{-\beta H} \equiv \operatorname{Tr} e^{-\beta H_0} e^{-\int_0^\beta H_1(\tau) d\tau}$$
$$= \operatorname{Tr} e^{-\beta H_0} \left\{ 1 - \int_0^\beta H_1(\tau) d\tau + \int_0^\beta \int_0^\tau H_1(\tau) H_1(\tau') d\tau d\tau' + \dots \right\}$$

In the diagonal basis set (occupation number, or Fock, representation):

$$\left\langle \{n_i\} \right| = \left\langle \{n_1, n_2, n_3, \ldots\} \right|$$

$$Z = \sum_{\{n_i\}} \left\langle \{n_i\} \middle| e^{-\beta H_0} - \int_0^\beta e^{\tau H_0} H_1 e^{-\tau H_0} d\tau + \int_{0}^{\beta} \int_0^\tau e^{-(\beta - \tau)H_0} H_1 e^{-(\tau - \tau')H_0} H_1 e^{-\tau' H_0} d\tau d\tau' + \dots \left\{ \{n_i\} \right\} \right\rangle$$

Each term describes a particular evolution of $\{n_i\}$ as imaginary "time" increases

An example of the worldline configuration for the bosonic mixture

$$Z = \sum_{K=0}^{\infty} \iiint_{\tau_{K} > \dots > \tau_{1}} \sum_{\{n\}_{\tau}} e^{-\int_{0}^{\beta} H_{0}[\{n\}_{\tau}]d\tau} \prod_{k=1}^{K} \left\langle \{n\}_{\tau_{k} = 0} | (-H_{1} d\tau) | \{n\}_{\tau_{k} \neq 0} \right\rangle$$

Example: update worldline configuration for bosonic mixture

$\{(n_A, n_B)_{\tau=0}\}=\{(0, 2), (1, 0), (0, 0), (2, 0), (1, 0), (0, 1), (1, 0), (1, 0)\}$

create worm

space shift

time shift

create worm

space shift

time shift

space shift

delete worm

delete worm

New configuration generated

Phase diagram (U=V)

The J-Q model

• Hamiltonian:

$$\hat{H} = J \sum_{\langle i,j \rangle} \hat{\mathbf{S}}_i \cdot \hat{\mathbf{S}}_j - Q \sum_{\langle i,j,k,l \rangle} (1 - \hat{\mathbf{S}}_i \cdot \hat{\mathbf{S}}_j) (1 - \hat{\mathbf{S}}_k \cdot \hat{\mathbf{S}}_l)$$

$$\stackrel{i}{\longrightarrow} \stackrel{i}{\longrightarrow} \stackrel{j}{\longrightarrow} \stackrel{i}{\longrightarrow} \stackrel{j}{\longrightarrow} \stackrel{i}{\longrightarrow} \stackrel{i}{\longrightarrow} \stackrel{j}{\longrightarrow} \stackrel{i}{\longrightarrow} \stackrel{i$$

- Lattice: 2D square lattice
- No sign problems in QMC simulations

Phase diagram & DCP

- AF-VBS transition
- "deconfined" quantum critical: 1st or 2nd ?

1st : ← Landau theory
Kuklov et al, Ann. Phys 321, 1602 (2006);
Jiang et al., JSTAT, P02009 (2008);
Kuklov et al., PRL 101, 050405 (2008)

2nd:

Senthil et al., Science 303, 1490 (2004); Sandvik, PRL. 98, 227202 (2007), PRL, 104,177201(2010)

Worm algorithm for J-Q model

• Rewrite Hamiltonian as:

 $\hat{H} = \hat{H}_0 + \hat{H}_1 + \hat{H}_2$

 \hat{H}_1 :kink(two-site) interaction

 \hat{H}_2 : paired-kink(four-site) interaction

- Four types of operation are needed:
 - 1. create/annihilate a worm
 - 2. move(time shift)
 - 3. kink-creation and kink-annihilation(space shift)
 - 4. paired-kink-creation and paired-kink-destruction(space shift)
- A more efficient way to simulate J-Q model?
- Our goal: with flowgram method, try to determine the type of AF-VBS transition

More on Quantum spin systems

• 1D

Quantum spin chains(with external field).....

• 2D

>Heisenberg model (with external field)

➤Toric code model on square lattice

• Fermi Hubbard model

The **Fermi Hubbard model** was originally proposed (in 1963) to describe electrons in solids and has since been the focus of particular interest as a model for high-temperature superconductivity.

• Our ambiguous goal

Make a step forward of this 50-year-old problem with Diagrammatic Monte Carlo method.

• Fermi Hubbard model Hamiltonian

$$H = -t \sum_{\langle ij \rangle, \sigma} a_{i\sigma} a_{j\sigma}^{\dagger} + U \sum_{i} n_{i\uparrow} n_{i\downarrow} - \mu \sum_{i,\sigma} n_{i\sigma}$$

Momentum representation

$$H = \sum_{k,\sigma} (\varepsilon_k - \mu) a_{k\sigma}^{\dagger} a_{k\sigma} + \sum_{kpq,\sigma\sigma'} U_q a_{k-q\sigma}^{\dagger} a_{p+q\sigma'}^{\dagger} a_{p\sigma'} a_{k\sigma}$$

• The full Green's Function:

$$G_{\uparrow,\downarrow}(p,\tau_2-\tau_1) = -\mathrm{Tr}\left[a_{\uparrow,\downarrow p}(\tau_2) \ a_{\uparrow,\downarrow p}^+(\tau_1) \ e^{-H/T}\right]$$

• Diagrammatic expansion

• Sample the diagrams by Monte Carlo !

+

Cluster DMFT

- + universal
- cluster size extrapolation

Diagrammatic MC

- + universal
- diagram-order extrapolation

Diagrammatic MC $\xi = N$ diagram order Updates

Move worms: $\Sigma (p) += \begin{array}{c} k \\ q+\delta \\ p+q+\delta \end{array}$

Updates

Add a vertex:

Updates

• Advantages

- (1) Directly work in the thermodynamic limit
- (2) Sign problem is less serious.
- (3) Sign can be a blessing.

(4) All analytics developed in the past 50 years can be applied.

• Difficulties (at least for me):

(1) The coding is very heavy

- (2) Lack of solid mathematical background.
- (3) Lack of solid training in field theory

Unitary gas (BEC-BCS crossover)

• Experiment is done by the Harvard group led by Martin Zwierlein.

 Diagrammatic Monte Carlo is being carried out by the Amherst group led by Nikolay Prokofev and Boris Svistunov.

• Receive high praise at the DARPA-OLE meeting (07/12/2010, Miami).

Others

- polaron problem
- impurity solver
- polymer
- graphene
- •

Tim Garoni Univ. Melbourne

Nikolay Prokof'ev UMass, Amherst

Boris Svistunov UMass, Amherst

Felix Werner ENS, Paris

Qingquan Liu USTC

Jianping Lv Zhejiang Univ.

Kun Chen USTC

Yuan Huang USTC

Thank You!