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Cluster Monte Carlo simulation of the transverse Ising model
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We formulate a cluster Monte Carlo method for the anisotropic limit of Ising models rlj-dimensional
lattices, which in effect, are equivalent witlfrdimensional quantum transverse Ising models. Using this
technique, we investigate the transverse Ising models on the square, triangular, Kagome, honeycomb, and
simple-cubic lattices. The Monte Carlo data are analyzed by finite-size scaling. In each case we find, as
expected, that the critical behavior fits well in the{1)-dimensional Ising universality class. For the trans-
verse Ising model on the square lattice, we determine the Binder cumulant of the classical counterpart for a
range of aspect ratios between the system sizes in the third or “classical” direction and that in the other two
directions. Matching this universal function with the case of the isotropic Ising model yields the length ratio
relating the isotropic Ising model with the anisotropic limit. The efficiency of the present algorithm is reflected
by the precision of its results, which improves significantly on earlier analyses.
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I. INTRODUCTION Thus, there is an infinite number of spins per physical length
unit along the strong-coupling direction. In this continuous
It is well known that thed-dimensional quantum trans- limit, cluster algorithms can be formulat¢&] whose effi-
verse Ising mode(TIM) is equivalent with the anisotropic ciencies are comparable to the conventional cluster methods
limit of (d+ 1)-dimensional lattice Ising model. As early as for the isotropic case.
in 1964, Schultz and Mattigl] displayed this equivalence by The precision of the results obtained by this continuous
mappmg the classical |Sing model on a qguantum model th@'gorlthm indicates that it is efficient in comparison with
reduces to the TIM. The reverse path, i.e., from quantum spifther methods that have been used to investigate transverse
models to anisotropic lattice models, was shown by Suzukising models. These results are in agreement with the expec-
[2,3], by using the Trotter formulf4]. tation that quantum transverse Ising models belong to the
This equiva]ence enables one to exp|0re the properties djniversality class of the classical Ising model with one more
the TIM by the study of its classical counterpart. In this way,dimension. An interesting property of this continuous cluster
one can take advantage of the insight and results that hagorithm is that it can be applied to systems in curved ge-
been obtained from the theory of classical critical phenomometries[9].
ena, including the renormalization theory. For instance, one The outline of this work is as follows. In Sec. II, we
can study the TIM in any number of dimensions, by meandeview the anisotropic limit of thed+ 1)-dimensional Ising
of the discretized path integral approd&h6], or by applying ~model and its equivalence to tledimensional TIM, while
standard Monte Carlo techniques to its classical counterpak€eping track of the divergent length scale tht(1)st direc-

[7]. tion. Section Il describes the continuous cluster algorithm.
However, these numerical techniques lead to practical difln Sec. IV, we investigate thé=1 TIM as a test case, and
ficulties due to singular behavior in the anisotropic limit of address the efficiency of the algorithm. Section V presents

the classical Ising model. When this Hamiltonian limit is applications to several=2 TIM's, and to thed=3 TIM on
approached, the coupling strengths and the correlation lengthe simple-cubic lattice.
in one of the directions in the classical model diverge, while
the couplings in the other directions approach zero. Possibili- ||. THE ANISOTROPIC LIMIT OF THE ISING MODEL
ties to deal with this problem are to approximate the aniso- ) ) )
tropic limit by a properly strong anisotropy, or extrapolate by ~Usingd=1 as an example, we briefly recall the relation
taking the anisotropy stronger and stronfjgl: Such simu- ~ between the ¢+ 1)-dimensional classical Ising model and
lations tend to be difficult as a consequence of the considethe d-dimensional TIM. In view of its relevance for Monte
able requirements of computer time and memory. Carlo analyses, we put some emphasis on the behavior of the
In this paper, we tackle this pr0b|em by means of thelength scale in the({-i- 1)St direction. The Hamiltonian of a
direct application of a continuous cluster algorithm in theclassical two-dimensional Ising model onNaxM square
anisotropic limit of the Ising model. As the correlation length lattice with periodic boundary conditions is defined by
in the strong-coupling direction diverges when the Hamil-
tonian limit is approached, we increase the number of spins
in this direction and meanwhile rescale it by a divergent
number such that the physical size of the system remains
constant. This rescaling renders the strong-coupling dimenwhere the integer coordinatesandy, which are defined
sion continuous, while the other dimensions remain discretenoduloN andM, respectively, label the lattice sites, akd,

HIkgT= — XEy [szx,ysx+ 1yt KyS><,yS><,y+ 1], ()]
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K, are the coupling strengths in theandy directions, re- The equivalence of the TIM and the classical model thus
spectively. The spins can assume the valsigs= = 1. The requires thaM diverges as ¥ even at nonzero temperatures.

critical line of this model is given by10] This is a serious complication for simulations, especially at
low quantum temperaturg@— .
sinh(2K,)sinh(2K,)=1. (2 Ford=2, we use the example of the Ising model on the

) . o ) simple-cubic lattice. Its Hamiltonian is
Therefore, in the anisotropic limié—0, the couplings can

be written as N N M,
wheret parametrizes the temperature; the critical point;is +KSxy,2Sxy.z+ 115 (10
=1.
The evaluation of the partition functiad(M,N) of this  where 1=<x,y<N, and I=z=<M, label the lattice sites. The
model by means of the transfer matiixis expressed by label p emphasizes thaM, refers to thephysical system
size; its ratio withN defines the aspect ratio of the three-
ZM,N)= > (S1] TIS(So| T[S3) - - - (Sl TISw), dimensional system. Periodic boundary conditions apply.
S1.59 ... Sy The coupling strengthk,, andK, in thexy plane and in the

4) z direction, respectively, are initially chosen to be of order 1.
o The behavior of the length scales in the Hamiltonian limit,
where the transfer direction is taken along the strong bo”dﬁlhereKz diverges whileK,, approaches zero, is illustrated
Ky, and the elements of are by means of a Migdal-type renormalizatigal] in the z
direction, without rescaling theandy directions. We expect
<§k|-r|§k+1>= H exf KySxySx+ 1y KySxySxy+1l- (5) th_at this procedgre_, although only valid as an approximation,
i will yield a qualitatively correct picture. Each bond in the
R R direction is decorated witln—1 Ising spins and the bond
Heres, andsy , are the spin configurations in two adjacent srengthK,, is distributed accordingly among the newly in-
rows, respectively. Equatiof¥) is just the trace off™, S0 serted spins. This leads to a model with a lattice spacing
that the partition function is the sum over theth powers of  zlong thez direction which is smaller by a factar. It is
the eigenvalues of . For largeM, the contribution from the  described by the same Hamiltonian EG0) but with new
largest eigenvalue olomlnatfzs. Since every different spin CorbouplingsKQ;) andK{™ , and thez coordinate is represented
tributes a factore, s, and sy, must be nearly identical. by integersz’ =nz which run from 1 toM'=nM,,
Thus, up to ordee we may represent the transfer matrix as

N N M
> > - € - ,
<sk|T|sk+1>=<sk|exp( - ;qu) S DexpNKy), (©)  HkaT== 2 2 2 (KPS (Siaya + Scyena)

in which H,p, is the one-dimensional quantum Hamiltonian + KIS,y 1Se gz 41 (11)
Hom= _EX: ($S2, | +15)), @) The new couplings satisfy

KV=K,/n and tanK{"=[tanhK,]*". (12
wheres? ands* are Pauli matricesH,,, contains noncom- Xy 2=l d 12

muting operators and represents a quantum system with Isin ) (M _ ]
interactions between the nearest-neighboring spins along tHe®" Ia(g;e_n, one may write exp{2K;”)=¢ and substitute
chain, and a transverse fieldn the x direction. This estab- tanhKz” in Eq. (12 accordingly. One finds b/~a[ln(1
lishes the relation between the two-dimensional Ising modef- € —In(1—€)]=ag2+0(e)],  where a=—1/In(tanhK,).
and the one-dimensional TIM. This leads to

As mentioned earlier, one can also derive this equivalence

by using the Trotter formul§4], which can be written as
M
] . ® ,
which has a same form as E@). It also suggests that for
nonzeroe the critical pointt(e) deviates fromt,(0) ase?.

where g is the inverse temperature of the quantum system.  This model is equivalent with the TIM on the square lat-
A comparison of Eqs(6) and (8) yields the relation be- tjce with Hamiltonian

tween the inverse temperatugeof the TIM and the lattice
sizeM for the classical Ising model as

=)_€ 2 ok ()=
Ky =7[1+0(e9)], exd —2K"]=e, (13)

exd — BHgml= lim [exr{ - qum
M—oc

M= Bt/e. (9) Ham=— Xzy [S>Z<vy( S+ 1yt s>Z<,y+ )+ tsi,y]- (14)
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The inverse proportionality af ande, together with Eq(9), N® e e O O e e e O

shows that the physical sia¢,=M'/n is proportional to the

inverse quantum temperatufge x O O e e e e o o O
Y-a ¥»-1 ¥ ysl Y+b

IIl. ALGORITHM ¢ ¢ ¢ & ¢ O O O ©

As mentioned earlier, a Monte Carlo method for the 1 @ ‘K_y. e e e e O O
Hamiltonian limit will have to deal with singular aspects 1 2 y M
such as the divergent coupling strendggh, the vanishing _ _ o
coupling strengtiK,, , and the divergence of the system size FIG. 1. IIIustratlon of the anisotropic lIsing model on Birx M
M. Using ideas from existing cluster method<—14, we lattice. The vert.lcal dashed line represents the weak coupling
introduce procedures to improve the efficiency for the systhe horizontal line represents the strong couplitig. The black
tem described by Eqé1) and (3) with small but nonzer@. ~ Sircles are+ spins, and the open circles arepins.
Then we discuss how to deal with the divergence of the _
system sizeM in the y direction, and finally describe the Where 0<r<1 and the square brackets denote the integer
continuous Wolff algorithmCWA) for the limit e=0. part. In contrast, in th& direction, one uses the distribution

Now, let us recall the cluster algorithm for the isotropic Px(Kd=p(1—p,)** to express the probability thatk(
lattice Ising model with nearest-neighbor interactions. If two— 1) subsequent variablés,, are zero, while thé,th bond
nearest-neighboring spins on sitesand n, coupled with  variable is 1. Also in this case, one transforms a uniformly
strength K,,, have the same sign the algorithm will distributed random numberinto an integek,,
“freeze” the bond betweem andn with a probabilityp,,,
_=[1—exp(—2_Kmn)], or “break” the bond with the prt_)babil— ky=1+[In(r)/In(1—p,)]. (17)
ity 1 —pnn- Sites connected by “frozen” bonds are included

in the same cluster. One can introduce bond variablges  his method avoids the problem that many random numbers
=0 or 1; frozen bonds have,,=1 and broken bonds have 5,6 15 he drawn before adding a new bridge or a new break.
bmn=0. A pair of opposite spins always hig,,=0. The For purpose of clarity, we describe in detail the steps in
conventional way to simulate this is to draw a uniformly yhe formation of a Wolff cluster according to the description
distributed random number(0<r<1) for each bond,,, above.
setbp,,=1 if the spins on sitesn andn have the same sign (1) Choose the originX,y) of the cluster randomlysee
andr<ppn. , _ Fig. 1), denote its sigrs=s, .

For the anisotropic model defined by Eds) and (3), (2) Count the neighboring sites on the left-hand side as
there are two types of bond variableg,. For smalle, the (x,y—1), (x,y—2), ..., x,y—a) till the nearest interface

bond probability between a pair of equal spins in thdi- Sey_a_1=—S (see Fig. 1 Draw a random number and

rection is py=1—exp(~2K)x1-¢, so one has to draw of computek, according to Eq(16). Definel _ as the smaller
order 1€ random numbers before finding a bond variable number ofa andk,—1, and flip the spins fromx(y—|

a : e < y—1, _
by=0. For the weak bonds in thedirection, the probability 1y 45 (x v). Do the same for the right-hand side such that

px=1—exp(—2K,)xe that a pair of equal neighbors is con- the spins from +1) to (x.v+1.) are flioped. Thus. a
nected by a frozen bond is small, and many random numberI%‘ngep ofl ,+I+)€s,¥rong)ly co(u,r};ed +s)pins onptphuaﬁ row is

are needed b‘?fF’fe such a *bridge” is found. ' _ included in the cluster and flipped.

~A more efficient plrocedure follows. We first write,,, (3 Include into the cluster spins omx¢ 1)th and
=Dbmnds s, Where theéby,, are independent random variables + 1)th rows connected to the above range by bridges in the
equal to 0 or 1;b,,=1 with probability p,=1—exp Weak-coupling direction. Compgte( a_lccording to Eq(1_7).
(—2K,) or py=1—exp(~2K,) for bonds in thex or y direc-  If kx>I_+1,, go to(4). Otherwise, ifs, 1y | 4 =S, in-
tion, respectively. Counting the bond variables sequentiallyclude this spin in the cluster and store its position in the
in they direction, the distributioP (k,)=(1-p,) p)'jy‘l ex- “stack” memory. Find a new random valuk, till all the

presses the probability thak(—1) subsequent bond vari- |-+ bonds betweenth and &—1)th rows are accounted
ablesb,,, are equal to 1, while thé,th variable is zero: a for. Do the same for the neighboring sites on ther@)th

. i L TOW.
gLetia(\)I;cichurs at thie,th position. Thus the cumulative distri (4) If the stack is empty, go t65). Otherwise, read a site

(x,y) from the stack and erase it from the stack. Gd2p
ky (5) The cluster is completed and flipped.
Cy(ky)= E Py(k)= ]_—(py)ky' (15) Although the above procedures can improve the effi-
k=1 ciency of the conventional Wolff algorithm, we still have to
_ . o solve the problem of the divergence of the expectation values
and by mapping the probability distributiod,(k,) on the ¢ k, andk, in parallel with that ofM ase—0,
uniform distribution of the random numbeyone can trans- Y

formr into an integek,, -1 1 -1 1
k)=t “ ¢ 0 ha—py © €

in(p,) 18

ky=21+[In(r)/In(py)], (16
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eeeee00000000eee e — (1) Choose a random positionx,fy) randomly, which
means it is akth line and itsy coordinate is/, and obtain its
sign s according to the directions given above.
eee0e000000000e T (2) Determine the distancg, from y to the first interface
- on the left-hand side of, and similarly the distancg, on the
right-hand side.
(3) Include a range aroundk{y) into the cluster as fol-
lows. Draw a random numberand obtainl, from Eq.(19).

LA N N 1N NN N N NeleNeNeNe]

000666866668 86000 e — If 1,<d,, create an interface at positiox,—1,); other-
wise, annihilate the interface ax,/—d,). So the left-hand
spin+1 @ spin-1 O range of sign =1 - - Tange of sign +1 === end of the range to be flipped is set aty(—c,), wherec, is

the smaller number af; andl[c,=min(d, l,)]. Find another
number from Eq(19) and obtain the right-hand end of the
range K,y+c,) analogously. Thus, the range fronx,y

FIG. 2. lllustration of the procedure leading to the Hamiltonian
limit of the classical Ising model. The physical length scale is ap-
proximately conserved by reducing the horizontal siz&NofM/e

spins with a factofe. This leads ta\ continuous lines of lengtv —c) to (x,y+cr)_ is included in thg cluster and fllpped.
in the Hamiltonian limit. The left figure shows an anisotropic Ising (4) Create bridges between this range and its nearest-

model with small but nonzere, and the right one illustrates the Neighboring lines. For thex(-1)th line, draw a random
=0 case. number and computeg by Eq.(20). If I,>c,+c,, go to(5).
Otherwise, if the sign at positiox(- 1,y—c,+1,) is equal to

store the position into the stack. Repeat this procedure till
e whole range has been visited. Do the same for e (
1)th line.
(5) If the stack is empty, go to 6. Otherwise, ready)
from the stack, and erase it from the stack. G@Zp

(6) The cluster is completed and flipped.

In the CWA a spin range is flipped by the creation or
annihilation of interfaces. When a range is flipped, there are
three possibilities: two interfaces are created, two interfaces

Thus. theN > M latii d Mol f ohvsical are annihilated, or one new interface is created and an exist-
us, square lattice reduces tolines ot physica ing one is annihilated. In all these cases, the number of in-

!engthMpz €M (see Fig. 2 and Eqs(16) and(17) change terfaces per line remains even. One detail to be mentioned is
into that, if a flipped range includes the origin of that line, the
corresponding array element containing the signs at the ori-
ly=eky=—In(r) (199 gins, should be changed.
It is straightforward to generalize the CWA for applica-
tions tod-dimensional TIM’s withd=2. Related continuous

(ky) and(k,) can be recognized as the average distances, i
they direction, of the breaks and of the bridges, respectively.+
To deal with the divergence of the system dizene can

rescale they direction asy,= ey, so that the total physical
size M,=€eM and the correlation length in this direction
remain approximately constasee Fig. 2 In the limit e
=0, the strong-coupling dimension becomes continuous, i.e
there are infinite number of spins per physical length unit
and the+/— spins are replaced by ranges of sigil—.

and
cluster algorithms, such as the Swendsen-Wang variety, can
I, = ek, = — In(r)t/2, (20) Slosr? trivially be formulated on the basis of the above descrip-
which indicate that the breaks and the bridges occur on a IV. TEST OF THE ALGORITHM

length scale of 1 so that the numbers of these breaks and ] ) ) o
bridges are finite in this continuous limit. These breaks can To test the CWA, we investigated the anisotropic limit of

be recognized as interfaces separating the ranges ahd  the two-dimensional Ising model defined by Ef.and(3),
— spins, and the bridges serve as the connections betwe8HCe it has been solved exactio]. The CWA was applied
nearest-neighboring lines. Instead of the individual spins on& Simulate such systems withlines of lengthL and with
may use the locations of these interfaces as the dynamicRgriodic boundary conditions, wheke=8,12,16,22, and 24.
variables, and define a CWA on this basis. During the simulations, the dimensionless quant@y ,
In the conventional Wolff algorithm, the spins are simply Which is related to the Binder cumulafit5], was sampled,

stored in an array. Since this information is no longer avail- <m2>2
able, one has to determine the sign of a particular position Q. (t)= L (21)
(x,y) from the positions of the interfaces, supplemented with (m*,

additional information on the sign at a given position on each

continuous line, e.g., at the origjn=0. The sign at position Wheremis the magnetization density. -
(x,y) is given bys,(—1)", wheren is the number of inter- According to universality of the Binder cumulant, the

faces between the origin and positigron thexth line, and ~ @Symptotic value o in such a system is equal to that for
s, is the sign at the origin of this line. the lattice Ising model, with isotropic couplings=K, and

The steps involved in the CWA can now be expressed a8yStém sizesLXal, where a=lim__ 1/(esinhX)=2
follows: [10,18.
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TABLE I. Results of the least-squares fits Qf (t) for the TIM's defined on the triangular, Kagome,

honeycomb, square, and cubic lattices.

Triangular Kagome Honeycomb Square Cubic
L min 6 8 10 2 7
L max 20 20 20 48 14
Q 0.62387) 0.60414) 0.61497) 0.62062) 0.456947(fixed)
te 4.768119) 2.9526%4) 2.132504) 3.044382) 5.158136)
a; 0.031385) 0.08941) 0.102718) 0.04972) 0.02352)
a, 0.001Q1) 0.00822) 0.00882) 0.002072) 0.002@4)
ajz —0.00023(7) —0.0035(5) —0.0040(2) —0.00043(6) —0.0024(6)
b, 0.0615) 0.0662) 0.0974) 0.0932) 0.2052)
b, 0.142) 0.0186) —0.118(3)

In the language of renormalization, the finite-size depenmethod decreases proportionally for-0. The efficiency of

dence of the singular part of the free energy densitg
formulated as
f(t,h,v, ...;L)=L % (tLY,hholYi, .. .51, (22
wheret is the transverse fieldh is the magnetic fieldy is the
irrelevant field;y,,y,, andy; are the corresponding expo-

the CWA is lower than but still comparable to that of the
conventional Wolff method for the isotropic Ising model.
The reasons are as follows: first, floating-point operations are
necessary in the anisotropic limit since the third dimension is
continuous; and second, to find the sign at a particular posi-
tion, one has to find the number of interfaces between this
position and the origin of the line where it is located. The

nents, andl is the dimensionality. Therefore, one expects thetime consumption to find the signs is however still accept-

following finite-size behavior ofQ, (t) near critical point
[17],

Q ()=Q+ay(t—t)LYt+ay(t—t)2LVt+ ...
+bLYi+byLY2+¢qLY3(t—tg) + - - -, (23)

wherey,=d—2y,,, y3=V;+VY;, anda;,a,,b;,b,, andc;

able for the system sizes used in this work.

During these simulations, also the quant®(e) was
sampled as a function @f. The results obtained by the con-
ventional Wolff method as—0, display satisfactory con-
vergence td), (0) as obtained by the CWisee Fig. 4. The
convergence takes place approximatelyeasThe data for
Q. (e) were fitted according to the least-squares criterion by

are unknown parameters. The Monte Carlo data were fittel1® formula

on the basis of this formula, according to the least-squares

criterion. The exponentg , y;,, andy; were set to the exact
Ising values 1,15/8, ane-2, respectively. Sg,=d—2y,
=—7/4 andy;=y;+y;=—1. A fit including corrections
with amplitudesa;,a,,as,a4,b;, and c; shows thatt,
=0.99998(6) andQ=0.80976(22), in a good agreement
with the known results,=1 and Q=0.809678(3)[16].
When we set.=1 andQ=0.809678, and leavg, to be
fitted, we obtainy,=1.01(1), in agreement with the known

QuL(e)=Q(0)+qre+qre®+qze+-- -, (24
whereq,, g,, andqg; are unknown parameters. The largest
included in the fit is 0.4, and we also 1 (0) to be fitted.
The resulting fit satisfied thg? criterion (xy>=18 for 17
degrees of freedon we obtain q;=—0.000§8), g,=
—0.13225), gq3=—0.0076(10), andl, (0)=0.651947),

which is consistent with the Monte Carlo data obtained by

universal properties of the isotropic Ising model. 5 -
In order to compare the efficiency of the CWA with the 45 1
conventional Wolff method, we investigated tle=2 TIM 4r .
on aL XL square lattice with periodic boundary conditions. 351 o~
The CWA was applied to simulate for the model defined by g 2§ | g
Egs.(10) and(13) at the continuous limie=0. The length 2 1
of the third direction is taken as. The conventional Wolff 15k
algorithm was used to study such anisotropic lattice models 1t e
with small but nonzere(1/150< e<1/6). The lattice size in 05| J,/
thez direction is taken ak/e, and the coupling&,, andK, 0 —
0 5 10 15 20 25 30 35 40

are obtained by substituting in Eqg. (13). The transverse
field was set as=3.044 40, which is very close to the criti-
cal pointt. (see Table), and the system size at=4.

For several values of, the computer time needed for 5

FIG. 3. Ratio between the time used by the conventional Wolff
algorithm and that by the present continuous algorithm, as a func-

X 10° conventional Wolff steps, was compared to the timetion of 1/e. 5x 10° Wolff steps are taken for every simulation. The

needed by the CWA for the same number of stegee Fig.
3). As expected, the efficiency of the conventional Wolff

system size and the transverse field bre4 andt=3.044 40, re-
spectively.
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0.655 — and thus obtainegl,;=1.5836), which is in agreement with
o the known value 1.587. The corrections with amplitudes
065 1 ™, 1 a,, as, a,, by, andb, were included, and the smallest sys-
tem size used in the fit is=2.
g 05T S 1 For thed=3 TIM, we have to deal with the numerical
S . difficulties associated with the corrections due to the margin-
0.64 1 1 ally irrelevant field as occur in four-dimensional Ising-like
0635 | x | models[21,22. The anomalously slow renormalization flow
’ . near the fixed point translates into a similarly slow finite-size
0.63 e convergence of the Binder rati@, (t), and leads to correc-
0 002 0.04 006 008 0.1 0.2 0.14 tion factors including small powers of logarithms of the lin-
e ear system sizé. Under these circumstances it is not fea-

sible to determine many independent parameters in the fit.
We thus make use of the theoretical predictions for the uni-
versal valueQ at the critical point and the values of the
Yexponents of the scaling fields. Expanding the finite-size
scaling function foiQ, (t), we expect the following behavior
the CWA Q,(0)=0.651886). This fit suggests that the [22]:
term with the amplitudey, vanishes.

FIG. 4. Dependence dP, (¢) on e, as a function ofe?, for a
system with sizesLXL/e, with L=4. The transverse field
=3.044 40 is set near its critical value. Error bars are approximatel
equal to the thickness of the lines.

This can be explained by Ed13). Since the critical Ly K
pointst.(e) for nonzeroe is expected to deviate froma(0) QL(t):Q“LEk: ak{ LY(InL)%) t—teto (In L)2’3“
as €%, while the transverse field was always settg®)
during the simulations, it is not surprising th&, (e) XbyLY24+by(InL) " t+bg(InL) 2. .-, (25
—Qu(0)x €% _ _1 _ _4_ - _
where k=1,2,..., {;=3, ¥t=2, andy,=4-2y,=—2.
V. APPLICATIONS The “shift” term with amplitudev seems unimportant, and
- _ was taken to be zero. The universal val@es taken as the
A. Critical points of several TIM's analytical valueQ=0.456 94721,23. Results are shown in

By means of the CWA, we have investigated ihe2  Table I.

TIM’s on the square, triangular, honeycomb, and Kagome Thus, by applying the CWA to these two- or three-
lattices (see Fig. 5, and thed=3 TIM on the simple-cubic dimensional TIM's, we obtained the critical values of the
lattice. System sizes were chosenlds so that the physical transverse fields. (see Table )l Table Il compares these
lengtheM of the continuous direction is equal to Periodic ~ values to those obtained by other methods which include
boundary conditions were imposed. During the simulations€ffective-field approximatiorf24,25, effective-field renor-
the Binder parametd@l_(t) was Samp|ed_ malization grOUqEFRG) [26,2ﬂ, series eXpanSiOEQS,Zq,

For thed=2 TIM's, the finite-size behavior oD, (t) is and density-matrix renormalizatidiB1] results. The preci-
expected to follow the usual scaling behavior of three-sion of the present results indicates that our algorithm con-
dimensional Ising system as expressed by @8). More- tributes a useful tool for numerjcal studies of transverse Ising
over, we expect that thd=2 TIM's on different lattices Models. The total computer time consumed by the present
share the same exponents for the scaling fields andv, simulations is about 5 processor-months at 750 MHz.
although the unknown amplitudes can be different. The _ . L
Monte Carlo data for the systems on these different lattice>: 1€ Binder ratio and the determination of the length scale
were independently fitted on the basis of E28), according For the isotropic Ising model on the simple-cubic lattice,
to the least-squares criterion. The exponegptandy; are set  i.e.,K,,=K, in Eq.(10), the ratioQ defined by Eq(23) is a
to the known values 1.587(2) and0.8154), respectively, universal functiorQ(«) of the aspect ratiae= M/N. On the
as reported in the literature, for instance, R¢i8—20 and  basis of symmetry arguments it is plausible that an extremum
in papers referenced therein. Results of these fits are showatcurs ata=1.
in Table 1. For the corresponding anisotropic system, as obtained by

To test the universality of thel=2 TIM's, we setQ extending the TIM on the square lattice in the Trotter direc-
=0.6206 and.=3.044 38 as in Table | for the square lattice, tion, we expect a different dependence of the Binder ratio

FIG. 5. The two-dimensional lattices on which the TIM’s are investigated. From left to right: square, triangular, Kagome, and honeycomb
lattices with finite size X 2. The geometries of the corresponding anisotropic limit of the classical Ising models are parallel lines which
originate from these lattice sites and perpendicular to the planes.
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TABLE II. Comparison of the critical values of the transverse figld as obtained by several different
methods, for thel=2 TIM’s on the square, Kagome, honeycomb, and triangular lattices, art=BeTIM
in the simple-cubic lattice.

Lattice Present EFA  EFRQ SE° =18 S-We DMRG'
work [24,25 [27] [28,29 [6] [30] [31]

Square 3.04438) 2.742 3.021 3.08 3.225 3.044 3.046

Kagome 2.95264)) 2.742 2.333

Honeycomb 2.1325@)

Triangular 4.76811O) 4.704 4.200 4.118

Cubic 5.15818) 4.704 5.059 5.153

8ffective field approximation.
bEffective field renormalization group.
‘Series expansion.
dpath integral Monte Carlo simulation.
®Swendsen-Wang in continuous time.
Density matrix renormalization group.

Qa(a) on the aspect ratie=M,/N, whereM = €M is the
physical size in the continuous dimension. This can be attribwhich a finite-size correction with amplitude has been
uted to the spatial anisotropy of the Hamiltonian density atadded. This term describesLadependent shift of the maxi-
the fixed point of the anisotropic Ising model. However, themum of Q,. The value of Q.(0) is known to be

anisotropy of the fixed-point Hamiltonian can be suppresse
by an anisotropic rescaling in the strong-coupling direction

i.e., z—2z'= Bz so that 0<z'<pBM,. Thus we expect that

Qa(a) of the anisotropic Ising model follows the same uni- gnisotropy on the irrelevant finite-size correction.
versal function Q, but with « replaced by a'=pB«a
=BMp/N, ie., Qa(a)=Q(ap). Using instead the loga- clearly observable, we could not satisfactorily determine the

rithm of the aspect ratio as the independent variable, ongssociated exponeny,. We have assumed thgi=y; which
finds thatQ,(In a)=Q(In a+In B), which expresses a shift

on the Ina scale with respect to the isotropic case.

We determined,(In «) by means of Monte Carlo simu-
lations for system sizek XL X aL, with L=8, 12, 16, 20,
and 24, and several values @fin the range from 0.3 to 3.0.

These data were analyzed on the basis of the scaling formuigined from the spin-spin correlation function and quoted in

Qu(In a+InB)=Q..(0)+v;LYi+uv,LY2+ (1+dLY)

X >, a(In B+In a+clYa)k,
k=2

0.64
0.62
0.6 |
058
0.56 |
0.54
052
05 |
0.48
0.46

0.5

x°

0.5

(26)

FIG. 6. Data collapse of (In a+In B8) shown asQ’'=Q_
—vilYi—p Y1 vs x'=Ina—cl¥. The system sizes ard
=8(¢), L=12(d), andL=16(O). The solid line is the corre-

sponding fit.

obtained by Taylor expansion in the argument @f to

8.623 58(15)[19]. Corrections with amplitudes; and v,
'describe the finite-size dependence@hear its maximum.

The term with amplituded describes the influence of the

Although the finite-size correction with amplitudeis

is consistent with the data. First, we neglected the term with
amplituded and fixed the value of)..(0) at 0.62358. A
reasonable fit is obtained when we include terms ugk to
=7 in the expansion. We then finf=0.88(Q6), which is
slightly lower than the valugg=0.8881(2) which was ob-

Refs.[9,20. A reasonable data collapse of the numerical
finite-size data forQ is thus obtained in theQ=Q,
—v;LYi—v,LY2 versusx’ =In a—cL¥ diagram, shown in Fig.

6. However, when we include the term with amplitudién

Eqg. (26), we obtain a more satisfactofgn the basis of the
X2 criterion) fit yielding 8=0.88§7).

In conclusion, the precision of the present results shows
that the CWA is an efficient tool for the investigation of
quantum models such as the TIM. The results of the data
analysis agree with the general belief that the Hamiltonian
limit of the Ising model belongs to the same universality
class as the isotropic lattice Ising model. Furthermore, the
special feature that one of the dimensions is continuous,
makes the CWA suitable for applications to models defined
in curved geometrief9].
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