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Cluster Monte Carlo simulation of the transverse Ising model
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We formulate a cluster Monte Carlo method for the anisotropic limit of Ising models on (d11)-dimensional
lattices, which in effect, are equivalent withd-dimensional quantum transverse Ising models. Using this
technique, we investigate the transverse Ising models on the square, triangular, Kagome, honeycomb, and
simple-cubic lattices. The Monte Carlo data are analyzed by finite-size scaling. In each case we find, as
expected, that the critical behavior fits well in the (d11)-dimensional Ising universality class. For the trans-
verse Ising model on the square lattice, we determine the Binder cumulant of the classical counterpart for a
range of aspect ratios between the system sizes in the third or ‘‘classical’’ direction and that in the other two
directions. Matching this universal function with the case of the isotropic Ising model yields the length ratio
relating the isotropic Ising model with the anisotropic limit. The efficiency of the present algorithm is reflected
by the precision of its results, which improves significantly on earlier analyses.
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I. INTRODUCTION

It is well known that thed-dimensional quantum trans
verse Ising model~TIM ! is equivalent with the anisotropi
limit of ( d11)-dimensional lattice Ising model. As early a
in 1964, Schultz and Mattis@1# displayed this equivalence b
mapping the classical Ising model on a quantum model
reduces to the TIM. The reverse path, i.e., from quantum s
models to anisotropic lattice models, was shown by Suz
@2,3#, by using the Trotter formula@4#.

This equivalence enables one to explore the propertie
the TIM by the study of its classical counterpart. In this wa
one can take advantage of the insight and results that h
been obtained from the theory of classical critical pheno
ena, including the renormalization theory. For instance,
can study the TIM in any number of dimensions, by mea
of the discretized path integral approach@5,6#, or by applying
standard Monte Carlo techniques to its classical counter
@7#.

However, these numerical techniques lead to practical
ficulties due to singular behavior in the anisotropic limit
the classical Ising model. When this Hamiltonian limit
approached, the coupling strengths and the correlation le
in one of the directions in the classical model diverge, wh
the couplings in the other directions approach zero. Possi
ties to deal with this problem are to approximate the ani
tropic limit by a properly strong anisotropy, or extrapolate
taking the anisotropy stronger and stronger@7#. Such simu-
lations tend to be difficult as a consequence of the consi
able requirements of computer time and memory.

In this paper, we tackle this problem by means of t
direct application of a continuous cluster algorithm in t
anisotropic limit of the Ising model. As the correlation leng
in the strong-coupling direction diverges when the Ham
tonian limit is approached, we increase the number of sp
in this direction and meanwhile rescale it by a diverge
number such that the physical size of the system rem
constant. This rescaling renders the strong-coupling dim
sion continuous, while the other dimensions remain discr
1063-651X/2002/66~6!/066110~8!/$20.00 66 0661
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Thus, there is an infinite number of spins per physical len
unit along the strong-coupling direction. In this continuo
limit, cluster algorithms can be formulated@8# whose effi-
ciencies are comparable to the conventional cluster meth
for the isotropic case.

The precision of the results obtained by this continuo
algorithm indicates that it is efficient in comparison wi
other methods that have been used to investigate transv
Ising models. These results are in agreement with the ex
tation that quantum transverse Ising models belong to
universality class of the classical Ising model with one mo
dimension. An interesting property of this continuous clus
algorithm is that it can be applied to systems in curved
ometries@9#.

The outline of this work is as follows. In Sec. II, w
review the anisotropic limit of the (d11)-dimensional Ising
model and its equivalence to thed-dimensional TIM, while
keeping track of the divergent length scale in (d11)st direc-
tion. Section III describes the continuous cluster algorith
In Sec. IV, we investigate thed51 TIM as a test case, an
address the efficiency of the algorithm. Section V prese
applications to severald52 TIM’s, and to thed53 TIM on
the simple-cubic lattice.

II. THE ANISOTROPIC LIMIT OF THE ISING MODEL

Using d51 as an example, we briefly recall the relatio
between the (d11)-dimensional classical Ising model an
the d-dimensional TIM. In view of its relevance for Mont
Carlo analyses, we put some emphasis on the behavior o
length scale in the (d11)st direction. The Hamiltonian of a
classical two-dimensional Ising model on aN3M square
lattice with periodic boundary conditions is defined by

H/kBT52(
x,y

@Kxsx,ysx11,y1Kysx,ysx,y11#, ~1!

where the integer coordinatesx and y, which are defined
moduloN andM, respectively, label the lattice sites, andKx ,
©2002 The American Physical Society10-1
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Ky are the coupling strengths in thex and y directions, re-
spectively. The spins can assume the valuessx,y561. The
critical line of this model is given by@10#

sinh~2Kx!sinh~2Ky!51. ~2!

Therefore, in the anisotropic limite→0, the couplings can
be written as

Kx5e/t, exp~22Ky!5e, ~3!

wheret parametrizes the temperature; the critical point istc
51.

The evaluation of the partition functionZ(M ,N) of this
model by means of the transfer matrixT is expressed by

Z~M ,N!5 (
sW1 ,sW2 , . . . ,sWM

^sW1uTusW2&^sW2uTusW3&•••^sWMuTusW1&,

~4!

where the transfer direction is taken along the strong bo
Ky , and the elements ofT are

^sWkuTusWk11&5)
i

exp@Kxsx,ysx11,y1Kysx,ysx,y11#. ~5!

HeresWk andsWk11 are the spin configurations in two adjace
rows, respectively. Equation~4! is just the trace ofTM, so
that the partition function is the sum over theM th powers of
the eigenvalues ofT. For largeM, the contribution from the
largest eigenvalue dominates. Since every different spin c
tributes a factore, sWk and sWk11 must be nearly identical
Thus, up to ordere we may represent the transfer matrix

^sWkuTusWk11&5^sWkuexpS 2
e

t
HqmD usWk11&exp~NKy!, ~6!

in which Hqm is the one-dimensional quantum Hamiltonia

Hqm52(
x

~sx
zsx11

z 1tsx
x!, ~7!

wheresz and sx are Pauli matrices.Hqm contains noncom-
muting operators and represents a quantum system with I
interactions between the nearest-neighboring spins along
chain, and a transverse fieldt in the x direction. This estab-
lishes the relation between the two-dimensional Ising mo
and the one-dimensional TIM.

As mentioned earlier, one can also derive this equivale
by using the Trotter formula@4#, which can be written as

exp@2bHqm#5 lim
M→`

H expF2
b

M
HqmG J M

, ~8!

whereb is the inverse temperature of the quantum syste
A comparison of Eqs.~6! and ~8! yields the relation be-

tween the inverse temperatureb of the TIM and the lattice
sizeM for the classical Ising model as

M5bt/e. ~9!
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The equivalence of the TIM and the classical model th
requires thatM diverges as 1/e even at nonzero temperature
This is a serious complication for simulations, especially
low quantum temperaturesb→`.

For d>2, we use the example of the Ising model on t
simple-cubic lattice. Its Hamiltonian is

H/kBT52 (
x51

N

(
y51

N

(
z51

Mp

@Kxysx,y,z~sx11,y,z1sx,y11,z!

1Kzsx,y,zsx,y,z11#, ~10!

where 1<x,y<N, and 1<z<M p label the lattice sites. The
label p emphasizes thatM p refers to thephysical system
size; its ratio withN defines the aspect ratio of the thre
dimensional system. Periodic boundary conditions ap
The coupling strengthsKxy andKz in thexy plane and in the
z direction, respectively, are initially chosen to be of order
The behavior of the length scales in the Hamiltonian lim
whereKz diverges whileKxy approaches zero, is illustrate
by means of a Migdal-type renormalization@11# in the z
direction, without rescaling thex andy directions. We expect
that this procedure, although only valid as an approximati
will yield a qualitatively correct picture. Each bond in thez
direction is decorated withn21 Ising spins and the bond
strengthKxy is distributed accordingly among the newly in
serted spins. This leads to a model with a lattice spac
along thez direction which is smaller by a factorn. It is
described by the same Hamiltonian Eq.~10! but with new
couplingsKxy

(n) andKz
(n) , and thez coordinate is represente

by integersz85nz which run from 1 toM 85nMp ,

H8/kBT52 (
x51

N

(
y51

N

(
z851

M8

@Kxy
(n)sx,y,z8~sx11,y,z81sx,y11,z8!

1Kz
(n)sx,y,z8sx,y,z811#. ~11!

The new couplings satisfy

Kxy
(n)5Kxy /n and tanhKz

(n)5@ tanhKz#
1/n. ~12!

For largen, one may write exp(22Kz
(n))5e, and substitute

tanhKz
(n) in Eq. ~12! accordingly. One finds 1/n5a @ ln(1

1e)2ln(12e)#.ae@21O(e2)#, where a521/ln(tanhKz).
This leads to

Kxy
(`)5

e

t
@11O~e2!#, exp@22Kz

(`)#5e, ~13!

which has a same form as Eq.~3!. It also suggests that fo
nonzeroe the critical pointtc(e) deviates fromtc(0) ase2.

This model is equivalent with the TIM on the square la
tice with Hamiltonian

Hqm52(
x,y

@sx,y
z ~sx11,y

z 1sx,y11
z !1tsx,y

x #. ~14!
0-2
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The inverse proportionality ofn ande, together with Eq.~9!,
shows that the physical sizeM p5M 8/n is proportional to the
inverse quantum temperatureb.

III. ALGORITHM

As mentioned earlier, a Monte Carlo method for t
Hamiltonian limit will have to deal with singular aspec
such as the divergent coupling strengthKz , the vanishing
coupling strengthKxy , and the divergence of the system si
M. Using ideas from existing cluster methods@12–14#, we
introduce procedures to improve the efficiency for the s
tem described by Eqs.~1! and~3! with small but nonzeroe.
Then we discuss how to deal with the divergence of
system sizeM in the y direction, and finally describe th
continuous Wolff algorithm~CWA! for the limit e50.

Now, let us recall the cluster algorithm for the isotrop
lattice Ising model with nearest-neighbor interactions. If tw
nearest-neighboring spins on sitesm and n, coupled with
strength Kmn , have the same sign the algorithm w
‘‘freeze’’ the bond betweenm and n with a probabilitypmn
5@12exp(22Kmn)#, or ‘‘break’’ the bond with the probabil-
ity 12pmn . Sites connected by ‘‘frozen’’ bonds are include
in the same cluster. One can introduce bond variablesbmn
50 or 1; frozen bonds havebmn51 and broken bonds hav
bmn50. A pair of opposite spins always hasbmn50. The
conventional way to simulate this is to draw a uniform
distributed random numberr (0,r ,1) for each bondbmn ,
setbmn51 if the spins on sitesm andn have the same sign
and r ,pmn .

For the anisotropic model defined by Eqs.~1! and ~3!,
there are two types of bond variablesbmn . For smalle, the
bond probability between a pair of equal spins in they di-
rection is py512exp(22Ky)}12e, so one has to draw o
order 1/e random numbersr before finding a bond variable
by50. For the weak bonds in thex direction, the probability
px512exp(22Kx)}e that a pair of equal neighbors is con
nected by a frozen bond is small, and many random num
are needed before such a ‘‘bridge’’ is found.

A more efficient procedure follows. We first writebmn

5b̃mndsmsn
, where theb̃mn are independent random variabl

equal to 0 or 1; b̃mn51 with probability px512exp
(22Kx) or py512exp(22Ky) for bonds in thex or y direc-
tion, respectively. Counting the bond variables sequenti
in they direction, the distributionPy(ky)[(12py)py

ky21 ex-
presses the probability that (ky21) subsequent bond var
ablesb̃mn are equal to 1, while thekyth variable is zero: a
break occurs at thekyth position. Thus the cumulative distr
bution is

Cy~ky!5 (
k51

ky

Py~k!512~py!ky, ~15!

and by mapping the probability distributionCy(ky) on the
uniform distribution of the random numberr, one can trans-
form r into an integerky ,

ky511@ ln~r !/ ln~py!#, ~16!
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where 0,r ,1 and the square brackets denote the inte
part. In contrast, in thex direction, one uses the distributio
Px(kx)[p(12px)

kx21 to express the probability that (kx

21) subsequent variablesb̃mn are zero, while thekxth bond
variable is 1. Also in this case, one transforms a uniform
distributed random numberr into an integerkx ,

kx511@ ln~r !/ ln~12px!#. ~17!

This method avoids the problem that many random numb
have to be drawn before adding a new bridge or a new bre

For purpose of clarity, we describe in detail the steps
the formation of a Wolff cluster according to the descripti
above.

~1! Choose the origin (x,y) of the cluster randomly~see
Fig. 1!, denote its signs[sx,y .

~2! Count the neighboring sites on the left-hand side
(x,y21), (x,y22), . . . , (x,y2a) till the nearest interface
sx,y2a2152s ~see Fig. 1!. Draw a random numberr and
computeky according to Eq.~16!. Define l 2 as the smaller
number ofa and ky21, and flip the spins from (x,y2 l 2

11) to (x,y). Do the same for the right-hand side such th
the spins from (x,y11) to (x,y1 l 1) are flipped. Thus, a
range of l 21 l 1 strongly coupled spins on thexth row is
included in the cluster and flipped.

~3! Include into the cluster spins on (x21)th and (x
11)th rows connected to the above range by bridges in
weak-coupling direction. Computekx according to Eq.~17!.
If kx. l 21 l 1 , go to ~4!. Otherwise, ifsx21,y2 l 21kx

5s, in-
clude this spin in the cluster and store its position in t
‘‘stack’’ memory. Find a new random valuekx till all the
l 21 l 1 bonds betweenxth and (x21)th rows are accounted
for. Do the same for the neighboring sites on the (x11)th
row.

~4! If the stack is empty, go to~5!. Otherwise, read a site
(x,y) from the stack and erase it from the stack. Go to~2!.

~5! The cluster is completed and flipped.
Although the above procedures can improve the e

ciency of the conventional Wolff algorithm, we still have t
solve the problem of the divergence of the expectation val
of kx andky in parallel with that ofM ase→0,

^ky&5
21

ln~py!
}

1

e
, ^kx&5

21

ln~12px!
}

1

e
. ~18!

FIG. 1. Illustration of the anisotropic Ising model on anN3M
lattice. The vertical dashed line represents the weak couplingKx ;
the horizontal line represents the strong couplingKy . The black
circles are1 spins, and the open circles are2pins.
0-3
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H. W. J. BLÖTE AND Y. DENG PHYSICAL REVIEW E66, 066110 ~2002!
^ky& and^kx& can be recognized as the average distance
they direction, of the breaks and of the bridges, respectiv

To deal with the divergence of the system sizeM one can
rescale they direction asyp5ey, so that the total physica
size M p5eM and the correlation length in this directio
remain approximately constant~see Fig. 2!. In the limit e
50, the strong-coupling dimension becomes continuous,
there are infinite number of spins per physical length u
and the1/2 spins are replaced by ranges of sign1/2.
Thus, theN3M square lattice reduces toN lines of physical
lengthM p5eM ~see Fig. 2!, and Eqs.~16! and~17! change
into

l y5eky52 ln~r ! ~19!

and

l x5ekx52 ln~r !t/2, ~20!

which indicate that the breaks and the bridges occur o
length scale of 1 so that the numbers of these breaks
bridges are finite in this continuous limit. These breaks c
be recognized as interfaces separating the ranges of1 and
2 spins, and the bridges serve as the connections betw
nearest-neighboring lines. Instead of the individual spins
may use the locations of these interfaces as the dynam
variables, and define a CWA on this basis.

In the conventional Wolff algorithm, the spins are simp
stored in an array. Since this information is no longer av
able, one has to determine the sign of a particular posi
(x,y) from the positions of the interfaces, supplemented w
additional information on the sign at a given position on ea
continuous line, e.g., at the originy50. The sign at position
(x,y) is given bysx(21)n, wheren is the number of inter-
faces between the origin and positiony on thexth line, and
sx is the sign at the origin of this line.

The steps involved in the CWA can now be expressed
follows:

FIG. 2. Illustration of the procedure leading to the Hamiltoni
limit of the classical Ising model. The physical length scale is
proximately conserved by reducing the horizontal size ofN3M /e
spins with a factore. This leads toN continuous lines of lengthM
in the Hamiltonian limit. The left figure shows an anisotropic Isi
model with small but nonzeroe, and the right one illustrates th
e50 case.
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~1! Choose a random position (x,y) randomly, which
means it is atxth line and itsy coordinate isy, and obtain its
sign s according to the directions given above.

~2! Determine the distancedl from y to the first interface
on the left-hand side ofy, and similarly the distancedr on the
right-hand side.

~3! Include a range around (x,y) into the cluster as fol-
lows. Draw a random numberr and obtainl y from Eq. ~19!.
If l y,dl , create an interface at position (x,y2 l y); other-
wise, annihilate the interface at (x,y2dl). So the left-hand
end of the range to be flipped is set at (x,y2cl), wherecl is
the smaller number ofdl andl y@cl5min(dl ,ly)#. Find another
number from Eq.~19! and obtain the right-hand end of th
range (x,y1cr) analogously. Thus, the range from (x,y
2cl) to (x,y1cr) is included in the cluster and flipped.

~4! Create bridges between this range and its near
neighboring lines. For the (x21)th line, draw a random
number and computel x by Eq.~20!. If l x.cl1cr , go to~5!.
Otherwise, if the sign at position (x21,y2cl1 l x) is equal to
s, store the position into the stack. Repeat this procedure
the whole range has been visited. Do the same for thex
11)th line.

~5! If the stack is empty, go to 6. Otherwise, read (x,y)
from the stack, and erase it from the stack. Go to~2!.

~6! The cluster is completed and flipped.
In the CWA a spin range is flipped by the creation

annihilation of interfaces. When a range is flipped, there
three possibilities: two interfaces are created, two interfa
are annihilated, or one new interface is created and an e
ing one is annihilated. In all these cases, the number of
terfaces per line remains even. One detail to be mentione
that, if a flipped range includes the origin of that line, t
corresponding array element containing the signs at the
gins, should be changed.

It is straightforward to generalize the CWA for applic
tions tod-dimensional TIM’s withd>2. Related continuous
cluster algorithms, such as the Swendsen-Wang variety,
also trivially be formulated on the basis of the above desc
tion.

IV. TEST OF THE ALGORITHM

To test the CWA, we investigated the anisotropic limit
the two-dimensional Ising model defined by Eqs.~1! and~3!,
since it has been solved exactly@10#. The CWA was applied
to simulate such systems withL lines of lengthL and with
periodic boundary conditions, whereL58,12,16,22, and 24
During the simulations, the dimensionless quantityQL ,
which is related to the Binder cumulant@15#, was sampled,

QL~ t !5
^m2&L

2

^m4&L

, ~21!

wherem is the magnetization density.
According to universality of the Binder cumulant, th

asymptotic value ofQ in such a system is equal to that fo
the lattice Ising model, with isotropic couplingsKx5Ky and
system sizesL3aL, where a5 lim

e→0
1/(e sinh 2Ky)52

@10,16#.

-
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TABLE I. Results of the least-squares fits ofQL(t) for the TIM’s defined on the triangular, Kagome
honeycomb, square, and cubic lattices.

Triangular Kagome Honeycomb Square Cubic

Lmin 6 8 10 2 7
Lmax 20 20 20 48 14
Q 0.6238~7! 0.6041~4! 0.6149~7! 0.6206~2! 0.456947~fixed!

tc 4.76811~9! 2.95265~4! 2.13250~4! 3.04438~2! 5.15813~6!

a1 0.03138~5! 0.0894~1! 0.1027~8! 0.0497~2! 0.0235~2!

a2 0.0010~1! 0.0082~2! 0.0088~2! 0.00207~2! 0.0020~4!

a3 20.00023(7) 20.0035(5) 20.0040(2) 20.00043(6) 20.0024(6)
b1 0.061~5! 0.066~2! 0.097~4! 0.093~2! 0.205~2!

b2 0.14~2! 0.018~6! 20.118(3)
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In the language of renormalization, the finite-size dep
dence of the singular part of the free energy densityf is
formulated as

f ~ t,h,v, . . . ;L !5L2df ~ tLyt,hLyh,vLyi, . . . ;1!, ~22!

wheret is the transverse field,h is the magnetic field,v is the
irrelevant field;yt ,yh , and yi are the corresponding expo
nents, andd is the dimensionality. Therefore, one expects
following finite-size behavior ofQL(t) near critical point
@17#,

QL~ t !5Q1a1~ t2tc!L
yt1a2~ t2tc!

2L2yt1•••

1b1Lyi1b2Ly21c1Ly3~ t2tc!1•••, ~23!

where y25d22yh , y35yi1yt , and a1 ,a2 ,b1 ,b2, and c1
are unknown parameters. The Monte Carlo data were fi
on the basis of this formula, according to the least-squa
criterion. The exponentsyt , yh , andyi were set to the exac
Ising values 1,15/8, and22, respectively. Soy25d22yh
527/4 and y35yi1yt521. A fit including corrections
with amplitudes a1 ,a2 ,a3 ,a4 ,b1, and c1 shows that tc
50.999 98(6) andQ50.809 76(22), in a good agreeme
with the known resultstc51 and Q50.809 678(3) @16#.
When we settc51 and Q50.809 678, and leaveyt to be
fitted, we obtainyt51.01(1), in agreement with the known
universal properties of the isotropic Ising model.

In order to compare the efficiency of the CWA with th
conventional Wolff method, we investigated thed52 TIM
on aL3L square lattice with periodic boundary condition
The CWA was applied to simulate for the model defined
Eqs.~10! and ~13! at the continuous limite50. The length
of the third direction is taken asL. The conventional Wolff
algorithm was used to study such anisotropic lattice mod
with small but nonzeroe(1/150<e<1/6). The lattice size in
thez direction is taken asL/e, and the couplingsKxy andKz
are obtained by substitutinge in Eq. ~13!. The transverse
field was set ast53.044 40, which is very close to the crit
cal point tc ~see Table I!, and the system size atL54.

For several values ofe, the computer time needed for
3106 conventional Wolff steps, was compared to the tim
needed by the CWA for the same number of steps~see Fig.
3!. As expected, the efficiency of the conventional Wo
06611
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method decreases proportionally fore→0. The efficiency of
the CWA is lower than but still comparable to that of th
conventional Wolff method for the isotropic Ising mode
The reasons are as follows: first, floating-point operations
necessary in the anisotropic limit since the third dimension
continuous; and second, to find the sign at a particular p
tion, one has to find the number of interfaces between
position and the origin of the line where it is located. T
time consumption to find the signs is however still acce
able for the system sizes used in this work.

During these simulations, also the quantityQL(e) was
sampled as a function ofe. The results obtained by the con
ventional Wolff method ase→0, display satisfactory con
vergence toQL(0) as obtained by the CWA~see Fig. 4!. The
convergence takes place approximately ase2. The data for
QL(e) were fitted according to the least-squares criterion
the formula

QL~e!5QL~0!1q1e1q2e21q3e31•••, ~24!

whereq1 , q2, andq3 are unknown parameters. The largese
included in the fit is 0.4, and we also letQL(0) to be fitted.
The resulting fit satisfied thex2 criterion (x2518 for 17
degrees of freedom!; we obtain q1520.0006(8), q25
20.1322(5), q3520.0076(10), andQL(0)50.651 94(7),
which is consistent with the Monte Carlo data obtained

FIG. 3. Ratio between the time used by the conventional W
algorithm and that by the present continuous algorithm, as a fu
tion of 1/e. 53106 Wolff steps are taken for every simulation. Th
system size and the transverse field areL54 andt53.044 40, re-
spectively.
0-5
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the CWA QL(0)50.651 88(6). This fit suggests that the
term with the amplitudeq1 vanishes.

This can be explained by Eq.~13!. Since the critical
points tc(e) for nonzeroe is expected to deviate fromtc(0)
as e2, while the transverse field was always set astc(0)
during the simulations, it is not surprising thatQL(e)
2QL(0)}e2.

V. APPLICATIONS

A. Critical points of several TIM’s

By means of the CWA, we have investigated thed52
TIM’s on the square, triangular, honeycomb, and Kago
lattices~see Fig. 5!, and thed53 TIM on the simple-cubic
lattice. System sizes were chosen asLd, so that the physica
lengtheM of the continuous direction is equal toL. Periodic
boundary conditions were imposed. During the simulatio
the Binder parameterQL(t) was sampled.

For thed52 TIM’s, the finite-size behavior ofQL(t) is
expected to follow the usual scaling behavior of thre
dimensional Ising system as expressed by Eq.~23!. More-
over, we expect that thed52 TIM’s on different lattices
share the same exponents for the scaling fieldst, h, andv,
although the unknown amplitudes can be different. T
Monte Carlo data for the systems on these different latti
were independently fitted on the basis of Eq.~23!, according
to the least-squares criterion. The exponentsyt andyi are set
to the known values 1.587(2) and20.815(4), respectively,
as reported in the literature, for instance, Refs.@18–20# and
in papers referenced therein. Results of these fits are sh
in Table I.

To test the universality of thed52 TIM’s, we set Q
50.6206 andtc53.044 38 as in Table I for the square lattic

FIG. 4. Dependence ofQL(e) on e, as a function ofe2, for a
system with sizesL3L/e, with L54. The transverse fieldt
53.044 40 is set near its critical value. Error bars are approxima
equal to the thickness of the lines.
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and thus obtainedyt51.583(6), which is in agreement with
the known value 1.587. The corrections with amplitudesa1 ,
a2 , a3 , a4 , b1, andb2 were included, and the smallest sy
tem size used in the fit isL52.

For thed53 TIM, we have to deal with the numerica
difficulties associated with the corrections due to the marg
ally irrelevant field as occur in four-dimensional Ising-lik
models@21,22#. The anomalously slow renormalization flo
near the fixed point translates into a similarly slow finite-s
convergence of the Binder ratioQL(t), and leads to correc
tion factors including small powers of logarithms of the li
ear system sizeL. Under these circumstances it is not fe
sible to determine many independent parameters in the
We thus make use of the theoretical predictions for the u
versal valueQ at the critical point and the values of th
exponents of the scaling fields. Expanding the finite-s
scaling function forQL(t), we expect the following behavio
@22#:

QL~ t !5Q1(
k

akH Lyt~ ln L !z tF t2tc1v
L2yt

~ ln L !2/3G J k

3b1Ly21b2~ ln L !211b3~ ln L !22
•••, ~25!

where k51,2, . . . , z t5
1
6 , yt52, and y25422yh522.

The ‘‘shift’’ term with amplitudev seems unimportant, an
was taken to be zero. The universal valueQ is taken as the
analytical value:Q50.456 947@21,23#. Results are shown in
Table I.

Thus, by applying the CWA to these two- or thre
dimensional TIM’s, we obtained the critical values of th
transverse fieldstc ~see Table I!. Table II compares these
values to those obtained by other methods which inclu
effective-field approximation@24,25#, effective-field renor-
malization group~EFRG! @26,27#, series expansion@28,29#,
and density-matrix renormalization@31# results. The preci-
sion of the present results indicates that our algorithm c
tributes a useful tool for numerical studies of transverse Is
models. The total computer time consumed by the pres
simulations is about 5 processor-months at 750 MHz.

B. The Binder ratio and the determination of the length scale

For the isotropic Ising model on the simple-cubic lattic
i.e., Kxy5Kz in Eq. ~10!, the ratioQ defined by Eq.~23! is a
universal functionQ(a) of the aspect ratioa5M /N. On the
basis of symmetry arguments it is plausible that an extrem
occurs ata51.

For the corresponding anisotropic system, as obtained
extending the TIM on the square lattice in the Trotter dire
tion, we expect a different dependence of the Binder ra

ly
eycomb
which
FIG. 5. The two-dimensional lattices on which the TIM’s are investigated. From left to right: square, triangular, Kagome, and hon
lattices with finite size 232. The geometries of the corresponding anisotropic limit of the classical Ising models are parallel lines
originate from these lattice sites and perpendicular to the planes.
0-6
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TABLE II. Comparison of the critical values of the transverse fieldtc , as obtained by several differen
methods, for thed52 TIM’s on the square, Kagome, honeycomb, and triangular lattices, and thed53 TIM
in the simple-cubic lattice.

Lattice Present EFAa EFRGb SEc PId S-We DMRGf

work @24,25# @27# @28,29# @6# @30# @31#

Square 3.04438~2! 2.742 3.021 3.08 3.225 3.044~1! 3.046
Kagome 2.95265~4! 2.742 2.333
Honeycomb 2.13250~4!

Triangular 4.76811~9! 4.704 4.200 4.118
Cubic 5.15813~6! 4.704 5.059 5.153

aEffective field approximation.
bEffective field renormalization group.
cSeries expansion.
dPath integral Monte Carlo simulation.
eSwendsen-Wang in continuous time.
fDensity matrix renormalization group.
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Qa(a) on the aspect ratioa5M p /N, whereM p5eM is the
physical size in the continuous dimension. This can be att
uted to the spatial anisotropy of the Hamiltonian density
the fixed point of the anisotropic Ising model. However, t
anisotropy of the fixed-point Hamiltonian can be suppres
by an anisotropic rescaling in the strong-coupling directi
i.e., z→z85bz so that 0,z8<bM p . Thus we expect tha
Qa(a) of the anisotropic Ising model follows the same un
versal function Q, but with a replaced by a85ba
5bM p /N, i.e., Qa(a)5Q(ab). Using instead the loga
rithm of the aspect ratio as the independent variable,
finds thatQa(ln a)5Q(ln a1ln b), which expresses a shif
on the lna scale with respect to the isotropic case.

We determinedQa(ln a) by means of Monte Carlo simu
lations for system sizesL3L3aL, with L58, 12, 16, 20,
and 24, and several values ofa in the range from 0.3 to 3.0
These data were analyzed on the basis of the scaling form

QL~ ln a1 ln b!5Q`~0!1v iL
yi1v2Ly21~11dLyi !

3 (
k>2

ak~ ln b1 ln a1cLya!k, ~26!

FIG. 6. Data collapse ofQL(ln a1ln b) shown asQ85QL

2v iL yi2v1Ly1 vs x85 ln a2cLyi. The system sizes areL
58(L), L512(h), and L516(s). The solid line is the corre-
sponding fit.
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obtained by Taylor expansion in the argument ofQL to
which a finite-size correction with amplitudec has been
added. This term describes aL-dependent shift of the maxi
mum of QL . The value of Q`(0) is known to be
0.623 58(15)@19#. Corrections with amplitudesv i and v2
describe the finite-size dependence ofQ near its maximum.
The term with amplituded describes the influence of th
anisotropy on the irrelevant finite-size correction.

Although the finite-size correction with amplitudec is
clearly observable, we could not satisfactorily determine
associated exponentya . We have assumed thatya5yi which
is consistent with the data. First, we neglected the term w
amplituded and fixed the value ofQ`(0) at 0.623 58. A
reasonable fit is obtained when we include terms up tok
57 in the expansion. We then findb50.880(6), which is
slightly lower than the valueb50.8881(2) which was ob-
tained from the spin-spin correlation function and quoted
Refs. @9,20#. A reasonable data collapse of the numeric
finite-size data forQ is thus obtained in theQL85QL

2v iL
yi2v2Ly2 versusx85 ln a2cLyi diagram, shown in Fig.

6. However, when we include the term with amplituded in
Eq. ~26!, we obtain a more satisfactory~on the basis of the
x2 criterion! fit yielding b50.886(7).

In conclusion, the precision of the present results sho
that the CWA is an efficient tool for the investigation o
quantum models such as the TIM. The results of the d
analysis agree with the general belief that the Hamilton
limit of the Ising model belongs to the same universal
class as the isotropic lattice Ising model. Furthermore,
special feature that one of the dimensions is continuo
makes the CWA suitable for applications to models defin
in curved geometries@9#.
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