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Simultaneous analysis of several models in the three-dimensional Ising universality class
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We investigate several three-dimensional lattice models believed to be in the Ising universality class by
means of Monte Carlo methods and finite-size scaling. These models include spin-1

2 models with nearest-
neighbor interactions on the simple-cubic and on the diamond lattice. For the simple cubic lattice, we also
include models with third-neighbor interactions of varying strength, and some ‘‘equivalent-neighbor’’ models.
Also included are a spin-1 model and a hard-core lattice gas. Separate analyses of the numerical data confirm
the Ising-like critical behavior of these systems. On this basis, we analyze all these data simultaneously such
that the universal parameters occur only once. This leads to an improved accuracy. The thermal, magnetic, and
irrelevant exponents are determined asyt51.5868(3), yh52.4816(1), andyi520.821(5), respectively. The
Binder ratio is estimated asQ5^m2&2/^m4&50.62 341(4).

DOI: 10.1103/PhysRevE.68.036125 PACS number~s!: 05.50.1q, 64.60.Cn, 64.60.Fr, 75.10.Hk
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I. INTRODUCTION

The Ising model has been investigated extensively,
thus serves as a testing ground for theories of phase tra
tions. Many physical systems can be described by this sim
but nontrivial model. It is believed that continuous pha
transitions in systems with short-range interactions an
scalar order parameter belong to the Ising universality cl
These include a variety of magnetic systems, alloys, g
liquid systems, and liquid mixtures. For instance, magne
systems can be described by a spin-1

2 or spin-1 Ising model
depending on the nature of the elementary magnetic
ments; gas-liquid systems can be modeled by means of h
core particles, which exclude one another within a nonz
range. Furthermore, the particle coordinates may be
stricted to the vertices of regular lattices.

In two dimensions, the evidence supporting the univers
ity hypothesis is rather solid. One underlying reason is t
exact results are available. For instance, exact analysi
Onsager’s spin-12 model @1# and related models yields th
thermal and magnetic scaling exponents asyt51 and yh
515/8 @2#, respectively. In three dimensions, however, su
exact results are absent. Therefore, investigation of crit
behavior has to depend on approximations. These inc
techniques such ase and series expansions, the cohere
anomaly method, and Monte Carlo methods, etc. Exten
studies have been carried out@3–14#, and there is some con
sensus that the values ofyt and yh are, respectively, 1.587
and 2.482, with differences only in the last decimal pla
Compared to the case of two dimensions, the thr
dimensional results are indeed less satisfactory. Apart f
the limited accuracy, the absence of exact results leave
least in principle, some room for severe disagreements.
instance, a very recent investigation by Garcı´a and co-
workers@15# claims thatyt51.600(2) andyh52.501(5).

Many factors are responsible for this unsatisfactory sit
tion. First, due to the restriction of current computer capac
one can only explore rather limited system sizes in th
dimensions. Second, corrections to scaling are much m
serious than that in two dimensions. For the two-dimensio
1063-651X/2003/68~3!/036125~9!/$20.00 68 0361
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Ising model, the exponent of the leading irrelevant therm
field is yi522, while in three dimensionsyi.20.82.
Moreover, the determination ofyi is not very accurate so far
A better estimation ofyi thus seems justified and is one
the purposes of the present paper.

In the language of renormalization group technique,
critical behavior of systems within a universality class
governed by a common fixed point. In terms of scali
fields, the function of the free energy, and thus of physi
observables, is universal near the critical points. By mean
finite-size scaling, such universal functions are extended
finite systems. As an example, we concern the dimension
ratio Q5^m2&2/^m4&, wherem is the profile of order param
eter. The quantityQ is related to Binder cumulant@16#, and
has been reported@11# to be a good choice to estimateyi and
locate criticality. Near the critical pointsQ behaves as

Q~ t,v,L !5Q~ tLyt,vLyi,1!1•••, ~1!

where L is the linear system size,t is the thermal scaling
field, and the irrelevant fieldv reflects the distance of criti
cality of corresponding systems and the fixed point. Here,
have not yet specified contributions due to the analytic p
of the free energy. Taylor expansion of the right-hand side
Eq. ~1! yields

Q~ t,v,L !5Q(0)1Q(1,0)tLyt1Q(2,0)t2L2yt1Q(0,1)vLyi

1•••, ~2!

where the derivatives of the universal functionQ with re-
spect tot andv are denoted asQ( i , j ). Apart from the scaling
exponentsyt and yi , the amplitudes ofQ(0) and Q( i , j ) are
equal for systems in the same universality class.

However, from the Monte Carlo data of a single mod
only, the estimation ofyi is rather difficult. The reason is a
follows. In Eq. ~2!, the amplitudev is coupled to the expo-
nentyi , and thus a reasonable estimation ofyi requires sys-
tems with a large value ofv. However, the large value ofv
excludes an accurate determination ofQ(0), so that the accu-
racy of yi is also limited. On the other hand, although
©2003 The American Physical Society25-1
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TABLE I. Definitions of the models.

Model

K2N

KNN

K3N

KNN

K4N

KNN D Lattice Description of models

1 0 0 0 2` d Spin-12 with NN couplings
2 0 0 0 2` sc Spin-12 with NN couplings
3 0 0.1 0 2` sc Spin-12 with NN and 3N couplings
4 0 0.2 0 2` sc Spin-12 with NN and 3N couplings
5 0 0.3 0 2` sc Spin-12 with NN and 3N couplings
6 0 0.4 0 2` sc Spin-12 with NN and 3N couplings
7 1 0 0 2` sc Equivalent neighbor of order 2
8 1 1 0 2` sc Equivalent neighbor of order 3
9 1 1 1 2` sc Equivalent neighbor of order 4
10 0 0 0 ln 2 sc Spin-1 with NN couplings
11 sc Lattice gas with NN exclusion

ad diamond lattice; sc simple-cubic lattice.
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system with a small amplitudev helps to estimateQ(0), it
does not allow a good determination ofyi either. This is one
of the reasons why, in many numerical investigations,
exponentyi is fixed at a constant taken from other source

This problem can be avoided by a simultaneous anal
of several systems with a diversity of the irrelevant fieldsv.
Given a reasonable value ofyi , Monte Carlo data of system
with a small irrelevant fieldv determineQ(0) with a narrow
margin; this information, together with models with a signi
cant amplitudev, greatly helps the estimation ofyi , which
in return improves the determination ofQ(0).

In the present paper, we investigate 11 Ising-like latt
models in three dimensions, of which the amplitudesv have
a wide range of values. These models include the sp1

2

Ising model with nearest-neighbor interactionsKNN on the
simple cubic and on the diamond lattice. On the simple-cu
lattice, models with further-neighbor interactions are also
vestigated. In particular, third-neighbor interactionsK3N are
included in several models with various ratiosK3N /KNN .
Further, we study some ‘‘equivalent-neighbor’’ mode
originally introduced by Domb and Dalton@17–19#. In such
systems, each spin interacts equally strongly with all
neighbors within a certain distance. The model with the
teractions till ther th shell of neighbors is referred to as th
equivalent-neighbor model of the order ofr. Also included
are a spin-1 model and a hard-core lattice gas with nea
neighbor exclusion@20,21#.

For these models, we analyze the numerical data b
separately and simultaneously. The separate analyses ar
good agreement with the Ising universality hypothesis for
these systems. This provides the basis of the simultane
analysis, in which we assume that universality isexactlysat-
isfied so that universal parameters occur only once. This
ture of the simultaneous analysis, combined with the afo
mentioned discussion in Sec. I, leads to a significan
improved estimation of the critical points of these syste
and the universal quantities including scaling exponents
the Binder ratioQ(0).

A difficulty is that such a simultaneous analysis require
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large amount of accurate Monte Carlo data. Fortunat
some numerical data are already available and were p
lished elsewhere@9–11,22–25#. The data generated by th
Cluster Processor@11# are not included and will be publishe
elsewhere. Our Monte Carlo simulations mainly focus
larger system sizes, and were performed on a cluster
PCs with a frequency of 2100 MHz.

The outline of this paper is as follows. Section II summ
rizes the definitions of the aforementioned 11 models, a
describes the Monte Carlo techniques involved. Sections
and IV present numerical analyses of the universal ratioQ
and of some other quantities, respectively. A discussion
given in Sec. V.

II. MODELS AND ALGORITHMS

As mentioned earlier, the present Monte Carlo analy
include eleven Ising-like models. Except the hard-core latt
gas, these models can be represented in terms of a sp
Hamiltonian

H/kBT52KNN (
^NN&

s is j2K2N(
(2N)

s is j2K3N(
[3N]

s is j

2K4N(
$4N%

s is j1D(
i

s i
2 , ~3!

where the sumŝNN&, (2N), @3N#, and $4N% are, respec-
tively, over nearest-, second-, third-, and fourth-neighb
pairs, and the associated couplings are denoted asKNN ,
K2N , K3N , and K4N , respectively. The spins can assum
three discrete valuessi50,61, where spinss50 may be
referred to as vacancies. The detailed definitions are sp
fied in Table I, where ten models are defined on the simp
cubic lattice, and one on the diamond lattice. We define
finite-size parameterL by its relation with the total numberN
of lattice sites asN5L3. Thus, the linear size of the eigh
site elementary cell of the diamond lattice is taken to beL
5-2
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TABLE II. Number of samples~in 107) and simulation steps per sample. We use the notationM3N to
indicate that 107M samples have been taken at intervals ofM Monte Carlo steps. Smaller system sizesL
,20 are also included in the analysis. For the lattice gas, simulations steps include one Metropolis sw
each sample.

Model\L 20 22 24 28 32 40 48 64 128

1 50310 50310 50310 50310 40310 40310 20320 10320 5340
2 10310 10310 10310 12310 20310 10310 5320 5332 1.8364
3 10310 10310 10310 10310 10310 10310 5320 5332 2364
4 10310 10310 10310 10310 10310 10310 5320 5332 2364
5 10310 10310 10310 10310 10310 10310 5320 5332 2364
6 10310 10310 10310 10310 10310 10310 5320 5332 2364
7 20320 15322 17324 15328 12332 8340 6348 5364 33128
8 20320 15322 12324 10328 8332 6340 4348 3364 23128
9 20320 17322 12324 10328 7332 6340 4348 3364 1.53128

10 12836 9236 9236 9236 8738 55310 22312 2316 5.4325
11 15037 2038 52310 50310 30312 15314 12316 15364 4.43128
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52. Periodic boundary conditions are applied. The syste
sizes were taken in the range 4<L<128.

For D52`, the vacancies are excluded, so that
model reduces to the spin-1

2 model. This applies to the firs
nine models in Table I. Models 1 and 2 have neare
neighbor interactionsKNN only. Models 3–6 include, in ad
dition, third-neighbor interactionsK3N . Various ratios are
applied:K3N /KNN50.1,0.2,0.3, and 0.4. Models 7–9 are t
equivalent-neighbor models@17–19# of order 2, 3, and 4,
respectively. We choose these models because they co
wide range of amplitudes of the irrelevant fieldv in Eq. ~2!.
In particular,v is positive for models 1–4 and negative f
models 5–9. This reflects that the critical points of the
systems lie on opposite sides of the Ising fixed point in
direction ofv on the critical surface. Moreover, the absolu
value ofv is relatively large for models 1, 2, 8, and 9, an
relatively small for models 4, 5, and 7. This will be show
later in the numerical analysis.

During the Monte Carlo simulations, one can in princip
apply the standard form of the Swendsen-Wang or of
Wolff cluster algorithm. However, the efficiency of thes
methods decreases rapidly as the number of interac
neighbors increases. This difficulty is avoided by an alg
rithm described in Ref.@9#. Here, we summarize the essent
points. During the formation of a cluster, a bond betwe
equal spins coupled with strengthK is frozen with probabil-
ity p512exp(22K), or broken with probability 12p. Sites
connected by frozen bonds belong to the same cluster.
distribution P(k)5p(12p)k21 expresses the probabilit
that (k21) subsequent bonds are broken while thekth bond
is frozen. The algorithm generates this distribution from
uniformly distributed random number 0,r ,1 as follows:

k511@ ln~r !/ ln~12p!#, ~4!

where the square brackets denote the integer part. By
peated evaluation ofk, one may set up a complete list o
frozen bonds, and thus a cluster is formed. The efficiency
03612
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this procedure is almost independent of the range of the
teractions. An example was shown in Ref.@22# by simulating
the mean-field Ising model, in which each spin is interact
with every other spin.

We also include a spin-1 model withD5 ln2, which is
important to our purposes due to its very small amplitude
v @9#. However, for a general spin-1 model, it is not obvio
how cluster algorithms can produce transitions between
cancies and nonvacancies. One can in principle follow a
brid algorithm in which Metropolis sweeps alternate wi
cluster steps. As long as the spin-1 model is not close to
tricritical point where the ordered Ising phases meet
phase dominated by vacancies, serious critical slowing do
is not expected.

Here, due to the special choiceD5 ln 2 ~model 10!, a full
cluster algorithm @9,11,22# becomes possible. First, th
spin-1 model is mapped onto a spin-1

2 model with two vari-
ables, of which the Hamiltonian is

H/kBT52M1(̂
i j &

~ t i1ui !~ t j1uj !2M2(
m

tmum , ~5!

where twos5 1
2 spinst i561 andui561 sit on each sitei

of the simple-cubic lattice. Using the transformationss i
5(t i1ui)/2 andv i5(11t i)(12ui)/4, it has been shown@9#
that the partition function is, up to a constant factor,

Z5(
sk

expF4M1(̂
i j &

s is j1~2M22 ln 2!(
m

sm
2 G . ~6!

This is precisely the partition function of the spin-1 mod
The special choiceD5 ln 2 leads toM250 so that there are
no interactions between variables on the same site. On
basis, the Wolff algorithm is applied to flip the variablest i
and/orui . This costs a little price, i.e., two arrays have to
stored in computer memory for the variablest i andui . In the
present paper, we improve this algorithm by using one v
5-3
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Y. DENG AND H. W. J. BLÖTE PHYSICAL REVIEW E68, 036125 ~2003!
TABLE III. Separate fits of the dimensionless ratioQ with y1 fixed.

Model Kc Q(0) q1 q2 b1 q1
2/q2

1 0.36973976(16) 0.62338(8) 0.4906(5) 0.19(1) 0.1150(10) 1.26
2 0.22165452(8) 0.62327(10) 0.885(10) 0.58(5) 0.097(2) 1.35(
3 0.18562459(10) 0.62351(10) 0.995(1) 0.80(3) 0.051(2) 1.24
4 0.16073242(15) 0.62364(15) 1.128(13) 1.07(4) 0.0118(20) 1.19
5 0.14230189(10) 0.62355(14) 1.250(13) 1.26(5) 20.0180(20) 1.24(5)
6 0.12800424(12) 0.62350(16) 1.385(30) 1.85(18) 20.0480(20) 1.03(15)
7 0.06442225(5) 0.62338(10) 2.854(40) 7.5(2) 20.0189(20) 1.08(19)
8 0.04303818(3) 0.62324(15) 4.02(30) 15.1(9) 20.1070(20) 1.07(16)
9 0.03432687(4) 0.62337(26) 4.99(40) 23.2(15) 20.2123(40) 1.08(23)

10 0.3934222(2) 0.62344(5) 0.6617(8) 0.360(2) 20.0015(7) 1.21(6)
11 0.0544853(20) 0.62316(20) 0.0593(1) 0.0027(4) 0.212(4) 1.29(
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able only. This improvement is based on the equivalence
the variablest i andui . Because of this symmetry, only th
sum of t i and ui on the same site needs to be stored. T
leads to a cluster algorithm forD5 ln 2, which allows flips
between nonzero and zero spins.

Another model~model 11! investigated in the present pa
per is the hard-core lattice gas on the simple-cubic lattice
which the Hamiltonian is

H/kBT52K (
^NN&

s is j2m(
m

sm . ~7!

Here, the variables i51,0 represents the presence and
absence of a particle, respectively. The nearest-neighbor
pling K→2` implies that no nearest-neighbor sites are
lowed to be occupied simultaneously. The chemical poten
of the particles is denoted asm. This lattice gas was Monte
Carlo simulated by means of a combination of the Metro
lis and a geometric cluster method. This cluster algorithm
based on geometric symmetries, such as the spatial inve
symmetry of the simple-cubic lattice. The full description
this algorithm is given in Refs.@23–25#.

As mentioned in Sec. I, the critical behavior of the ha
core lattice gas is expected to belong to the Ising universa
class. Surprisingly, significant differences have been
ported. The investigations by Yamagata@26,27# yielded criti-
cal exponentsb/g50.311(8) andg/y52.38(2), which
would imply yh52.689(8). These results, however, cou
not be confirmed by later investigations which did revea
relatively large irrelevant field, but no deviations from th
Ising universality class@23,24#.
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III. DIMENSIONLESS RATIO Q

For the aforementioned 11 systems, Monte Carlo simu
tions took place very close to critical points forL.20, while
ranges of temperaturelike parameters are wider for sma
systems. Table II presents the number of 107 of samples
taken per system size and the number of simulation swe
before taking each sample.

During the simulations, the universal ratioQ
5^m2&2/^m4& was sampled, wherem is the order parameter
For the spin systems~models 1–10! and the lattice gas
~model 11!, the magnetization density and the staggered p
ticle density assume this role, respectively. Near the crit
points, we analyzedQ both separately and simultaneously

A. Separate analyses

The finite-size behavior ofQ near the critical points is
described by Eq.~2!. Here, the thermal scaling fieldt de-
pends on temperaturelike parameters. For the spin-1

2 models
~models 1–9!, these are the spin-spin interactionsKNN ,
K2N , K3N , andK4N . Since fixed ratios apply between the
couplings, it is sufficient to selectKNN as the only tempera
ture parameterKi for the i th model. For the spin-1 mode
~model 10!, both the nearest-neighbor couplingsKNN and the
chemical potentialD are temperaturelike parameters. In th
work, D is fixed at ln 2 so thatKi is again represented b
KNN . For the hard-core lattice gas~model 11!, the chemical
potentialm of the particles assumes this role. For later co
venience, near the critical points, we express the depend
of the scaling fieldt on the physical temperature parame
Ki as t5ai(Ki2Kci)1bi(Ki2Kci)

21••• . The amplitudes
of the quantities with the subscripti depend on specific mod
els. On this basis, Eq.~2! becomes
Q5Q(0)1Q(1)ai~Ki2Kci!L
yt1Q(2)ai

2~Ki2Kci!
2t2L2yt1Q(3)ai

3~Ki2Kci!
3t3L3yt

1Q(4)ai
4~Ki2Kci!

4t4L4yt1ci~Ki2Kci!
2Lyt1b1iL

y11b2iL
y21b3iL

y31•••. ~8!
5-4
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SIMULTANEOUS ANALYSIS OF SEVERAL MODELS IN . . . PHYSICAL REVIEW E68, 036125 ~2003!
Here, we have writtenQ( i ,0) asQ( i ) for simplicity. The term
with the coefficientci reflects the nonlinear dependence ot
on Ki . The exponents of the correction terms, as obtaine
earlier analyses ofQ in Refs. @9,11#, are y15yi5
20.82(3), y25d22yh521.963(3), and y35yt22yh5
23.375(3). The correction with the exponenty2 is due to
the field dependence of the analytic part of the free ene
The last term arises from nonlinear dependence of the t
perature scaling field on the physical magnetic field. Fin
size scaling also predicts further contributions. For a sin
model, since both the quantitiesQ( i ) and other parameter
such asai andKci are unknown, we may simplify Eq.~8! as

Q5Q01q1i~Ki2Kci!L
yt1q2i~Ki2Kci!

2L2yt

1q3i~Ki2Kci!
2L3yt1q4i~Ki2Kci!

2L4yt

1ci~Ki2Kci!
2Lyt1b1iL

y11b2iL
y21b3iL

y3, ~9!

whereqi j is the product ofQ( j ) andai
j .

According to the least-squares criterion, Eq.~9! was fitted
to the Monte Carlo data separately for the aforementioned
models. First, we fixedy1 , y2, andy3 at the aforementioned
values with the error margins neglected, andyt was taken as
1.587 @3–13#. We applied a cutoff for small system sizesL
,10 for model 8,L,12 for model 9, andL,8 for the rest.
For the equivalent-neighbor model of order 3 and 4,
Monte Carlo data for small system sizes may be affected
crossover effects due to the proximity of the mean-field fix
point @22#. This is the reason why we applied different cu
offs at small system sizes for models 8 and 9. The results
shown in Table III. The numerical uncertainties quoted b
tween parenthesis represent one standard deviation. Th
cellent agreement of the universal quantityQ(0) in the third
column confirms that these 11 systems belong to the Is
universality class. Furthermore, according to Eqs.~8! and
~9!, the quantityq1

2/q25@Q(1)#2/Q(2) is the same for all
Ising-like models. This is confirmed by the last column
Table III, which reveals that the valuesq1

2/q2 are consistent
with each other within two standard deviations.

The amplitudes of the irrelevant field for these models
shown, up to a constant factor, in the sixth column of Ta
III. As mentioned in Sec. I, they reflect the positions of t
critical points of these systems on the critical surface.
clarity, we start from the Landau-Ginzburg-Wilson descr
tion @28# of the Ising model:

2H~f!/kBT5E dr @rf2~r !1vf4~r !1¹2f~r !1hf~r !#,

~10!
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where the square-gradient term represents short-range i
actions,r andv together determine the temperaturelike a
irrelevant parameters, andh is the magnetic field. For spatia
dimensionalityd,4, a renormalization analysis@29# shows
that there are two fixed points, i.e., the mean-field (0,0) a
the Ising fixed points (r * ,v* ) ~Fig. 1!. The crossover behav
ior of the Binder ratioQ(0) is displayed by a data collapse i
Fig. 10 in Ref.@30#. This provides a scale for the irrelevan
Ising field v on the whole range from the Ising to the mea
field fixed point. Using this scale and the value ofb1i for the
i th model ~Table III!, we schematically illustrate the pos
tions of the critical point of the 11 systems in the prese
work ~Fig. 1!.

The results in Table III rely on the choice that the irre
evant exponentyi was fixed at20.82. As discussed in Sec.
without such an assumption of the value ofyi , the accuracy
of Q(0) and yi will be very limited. As a test, we left the
exponenty1 as a free parameter. We find that the uncerta
ties of y1 are then almost as big as the absolute value ofy1
itself for models with relatively small amplitudeb1. For the
rest, the results in Table III are also affected in the sense
the accuracy decreases significantly, as shown in Table

B. Simultaneous analysis

On the basis of the universality hypothesis, we analy
the Monte Carlo data of these systems simultaneously.
data were fitted, instead of to Eq.~9!, to Eq.~8!. As a result,
each of the amplitudesqji is decomposed in a universal fac
tor Q( j ) and a nonuniversal factorai . Since theQ( j ) are
shared by all the systems, the number of unknown par
eters decreases significantly, in comparison to the total n
ber in the separate fits. This decomposition also leads to
additional free parameter since numerical data can only
termine the product ofQ(1) and ai , so that one of the pa

FIG. 1. Schematic illustration of positions of models 1–11 in t
parameter space (r ,v), wherer is a temperaturelike parameter an
u reflects the amplitude of the irrelevant field. The mean-field a
Ising fixed points, denoted ass, sit at (0,0) and (r * ,v* ), respec-
tively.
(3)
)

TABLE IV. Some results of separate fits ofQ with y1 as a free parameter.

Model 1 2 8 9 11

Kc 0.3697399(4) 0.2216545(2) 0.0430382(7) 0.0343268(1) 0.05449
Q0 0.6238(7) 0.6231(8) 0.625(1) 0.623(2) 0.625(3
yi 20.87(6) 20.800(15) 20.68(16) 20.80(2) 21.0(3)
5-5
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TABLE V. Simultaneous fit of the ratioQ.

Q(0) Q(1) Q(2) Q(3) Q(4)

0.62342(3) 1~fixed! 0.826(6) 23.32(9) 29.4(14)

yi Kc
(1) Kc

(2) Kc
(3) Kc

(4) Kc
(5)

20.821(5) 0.36973981(8) 0.22165455(5) 0.18562452(6) 0.16073229(5) 0.142301
Kc

(6) Kc
(7) Kc

(8) Kc
(9) Kc

(10) Kc
(11)

0.12800417(5) 0.06442222(2) 0.04303821(2) 0.03432687(2) 0.39342225(9) 0.05448
a1 a2 a3 a4 a5 a6

0.5203(8) 0.853(1) 0.9930(12) 1.132(2) 1.261(3) 1.390(3)
a7 a8 a9 a10 a11 b11

2.77(3) 4.031(14) 4.92(3) 0.6603(3) 0.05944(4) 0.114(2)
b12 b13 b14 b15 b16 b17

0.094(2) 0.052(1) 0.0147(7) 20.016(1) 20.046(1) 20.014(1)
b18 b19 b110 b111

20.113(2) 20.219(4) 20.0012(5) 0.207(4)
y
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ce
rametersQ( j ) ( j Þ0) andai has to be fixed as an arbitrar
constant. Here, we simply setQ(1)51. Together with the
mechanism discussed in Sec. I, this effect leads to a sub
tially improved accuracy of the unknown parameters, des
that yi was left as a free parameter. This includes the de
mination of the critical points, the universal ratioQ(0), the
irrelevant exponentyi , and the amplitudesb1i . The results
are shown in Table V. The amplitude@Q(1)#2/Q(2)

51/0.826(6)51.211(9) is in good agreement with those
the separate fits~Table III!.

IV. OTHER QUANTITIES

The Monte Carlo simulations also yielded the suscepti
ity asx5L3^m2&. Furthermore, we sampled the energy de
sity and its cross products witĥm2& and ^m4&. Thus, we
obtained derivative ofQ, denoted asQp . Analysis ofx and
V
e

lt
s

er
-
ti

03612
n-
te
r-

l-
-

Qp yields an estimation of the magnetic and thermal ex
nentsyt andyh , respectively.

A. Simultaneous analysis ofx

According to finite-size scaling, the magnetic susceptib
ity x behaves as

x~ t,v,L !5x~ t !1L2yh2dS ]h

]H D 2

x~Lytt,Lyiv,1!, ~11!

where x(t) arises from the differentiation of the analytic
part of the free energy density,h is the magnetic scaling
field, andH is the physical magnetic field. The dependen
of h on H is not universal and is linearized ash5AwiH.
Taking into account thatt5ai(Ki2Kci)1bi(Ki2Kci)

2

1•••, Taylor expansion of Eq.~11! yields
x5xi1si~Ki2Kci!1L2yh2dwi@x (0)1x (1)ai~Ki2Kci!L
yt1x (2)ai

2~Ki2Kci!
2L2yt

1x (3)ai
3~Ki2Kci!

3L3yt#1x (4)ai
4~Ki2Kci!

4L4yt1biL
yi1ci~Ki2Kci!L

yt1yi]. ~12!
-

y
10:

r

Here, thej th thermal derivative ofx at criticality is denoted
asx ( j ). For thei th model, the amplitudeai is the same as in
Eq. ~8!. This will be confirmed later. Equation~12! was fitted
to the Monte Carlo data, and the result is shown in Table
According to similar arguments as mentioned above, th
are two extra free parameters in Eq.~12! during the fit. Here,
we simply fixed x (0) and x (1) equal to 1. The magnetic
renormalization exponent is estimated asyh52.4816(1).
This is in excellent agreement with most available resu
@3–7,8,9–13#, and its precision is comparable with the be
known valueyh52.481 80(15), obtained from a 25th-ord
high-temperature expansion@31#. The critical points are con
sistent with those in Table V. We also calculated the ra
r i5(ai)

(Q)/(ai)
(x), where the superscriptsQ andx represent
I.
re

s
t

o

that the value ofai is taken from Tables V and VI, respec
tively. The result is shown in Table VII. The consistency ofr i
among these 11 models confirms that the function oft of K is
independent of the type of physical observable.

B. Simultaneous analysis ofQp

During the Monte Carlo simulations, the energy densite
was sampled as the nearest-neighbor sum for models 1–

e5^SNN&5 (
^NN&

^s is j&. ~13!

For the hard-core lattice gas~model 11!, the nearest-neighbo
5-6
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TABLE VI. Simultaneous fit of the magnetic susceptibilityx.

x (0) x (1) x (2) x (3) x (4)

1 ~fixed! 1 ~fixed! 0.409(2) 20.043(1) 20.075(2)

yh Kc
(1) Kc

(2) Kc
(3) Kc

(4) Kc
(5)

2.4816(1) 0.3697398(1) 0.22165457(3) 0.18562459(7) 0.16073233(6) 0.1423018
Kc

(6) Kc
(7) Kc

(8) Kc
(9) Kc

(10) Kc
(11)

0.12800422(5) 0.06442225(3) 0.04303821(2) 0.03432690(3) 0.3934221(1) 0.05448
w1 w2 w3 w4 w5 w6

1.75(2) 1.55(2) 1.38(2) 1.266(2) 1.187(2) 1.127(2)
w7 w8 w9 w10 w11

1.156(2) 0.989(2) 0.875(1) 0.933(1) 0.2192(4)
a1 a2 a3 a4 a5 a6

2.00(4) 3.32(2) 3.87(2) 4.45(4) 4.96(6) 5.63(6)
a7 a8 a9 a10 a11

10.64(4) 16.16(3) 19.7(2) 2.65(8) 0.2236(2)
hb

ity

n

h

be-
the

and
of

s

couplings are infinitely repulsive, and the quantitye is thus
defined, instead, as a sum over the next-nearest-neig
pairs. On this basis, we sampled a quantityQp which corre-
lates the magnetization distribution with the energy dens

Qp52
^m2SNN&

^m2&
2

^m4SNN&

^m4&
2^SNN&5

1

Q

]Q

]t

]t

]KNN
.

~14!

Little additional effort is required for this task sincem2 and
e are already sampled during the Monte Carlo simulatio
The quantityQp has been reported@9–11# to be a good
choice in determining the thermal scaling dimension. T
at

g,

f

)

6)

03612
or
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s.

e

reason will be discussed later on the basis of its scaling
havior. For models 3–10, apart from nearest neighbors,
spin-spin interactions occur between second-, third-,
fourth-neighbor pairs. In those cases, the amplitude
]t/]KNN is different from the value ofai in the functiont
5ai(Ki2Kci). According to Eq.~1!, near the critical point
the quantityQp behaves as

Qp~ t,v,L !5Lyt
]t

]KNN
Qp~Lytt,Lyiv,1!. ~15!

Taking into account contributions ofdiL
y2 due to the analytic

part of the free energy, we Taylor-expand this equation a
Qp5Lytpi@Qp
(0)1Qp

(1)ai~Ki2Kci!L
yt1Qp

(2)ai
2~Ki2Kci!

2L2yt1Qp
(3)ai

3~Ki2Kci!
3L3yt

1Qp
(4)ai

4~Ki2Kci!
4L4yt1biL

yi1diL
y21ci~Ki2Kci!#, ~16!
m
.

2)

1)
where the parametersQp
( j ) are universal, and]t/]KNN is de-

noted aspi for the i th model. Compared to the specific he
the divergence ofQp with respect to the system sizeL at
criticality is much stronger. According to finite-size scalin
the critical specific heatC behaves approximately asC
2C0}L2yt23, whereC0 arises from the analytical part o

TABLE VII. Results for the ratior i .

Model 1 2 3 4 5
r 0.259(5) 0.258(5) 0.257(6) 0.256(6) 0.254(7

6 7 8 9 10 11
0.253(8) 0.259(7) 0.252(8) 0.252(8) 0.259(6) 0.258(
,
free energy. The exponent 2yt23.0.174 is so small that the
term with this exponent is normally difficult to separate fro
the background contributionC0 in numerical analyses
Therefore, the quantityQp serves as a better choice thanC to
estimate the thermal exponentyt . We fitted Eq.~16! to the

TABLE VIII. Result of simultaneous fit ofQp .

Lmin Qp
(0) Qp

(1) Qp
(2) Qp

(3) Qp
(4)

8 1 ~fixed! 0.1 ~fixed! 24.4(5) 21.2(2) 9.3(23)

yt p1 p2 p3 p4 p5

1.58684(14) 0.825(5) 1.355(2) 1.335(2) 1.334(2) 1.343(
p6 p7 p8 p9 p10 p11

1.351(2) 1.422(1) 1.428(1) 1.441(2) 1.058(1) 0.662(
5-7
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Y. DENG AND H. W. J. BLÖTE PHYSICAL REVIEW E68, 036125 ~2003!
TABLE IX. Summary of results of the scaling exponents and the universal quantityQ(0) for the three-
dimensional Ising universality class. RG, renormalization off4 model; HTE, high-temperature series expa
sion; MC, Monte Carlo and finite-size scaling; MCRG, Monte Carlo renormalization; CAM, cohe
anomaly method.

Year yt yh yi Q(0) Method

Le Guillou et al. @5# 1980 1.587(4) 2.485(2) 20.79(3) RG
Nickel and Rehr@32# 1990 1.587(4) 2.4821(4) 20.83(5) HTE
Nickel @33# 1991 1.587 2.4823 20.84 HTE
Baillie et al. @34# 1992 1.602(5) 2.4870(15) 20.8 to 20.85 MCRG
Landau@35# 1994 1.590(2) 2.482(7) MC
Kolesik and Suzuki@7# 1995 1.586(4) 2.482(4) CAM
Blöte et al. @9# 1995 1.587(2) 2.4815(15) 20.82(6) 0.6233(4) MC
Blöte et al. @11# 1996 1.585(2) 2.4810(10) MCRG
Guida and Zinn-Justin@14# 1998 1.586(3) 2.483(2) 20.799(11) HTE
Blöte et al. @10# 1999 1.5865(14) 2.4814(5) 20.82(3) 0.62358(15) MC
Campostriniet al. @31# 2002 1.5869(4) 2.48180(15) 20.82(5) HTE
Present 2003 1.5868(3) 2.4816(1) 20.821(5) 0.623412(25) MC
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Monte Carlo data, using the critical points as taken fro
Table V. This is in line with the relatively weak dependen
of Qp on the temperaturelike parametersK. The results are
shown in Table VIII. As possible alternatives, we have
cluded more terms such asLyt1yi(Ki2Kci) within the square
brackets of Eq.~16!. However, this does not improve th
residualx2 of the fit. The dependence on the cutoff at sm
system sizes in the fit was also determined. Taking into
count these dependences and the uncertainties of the cr
points, we estimate the thermal exponent asyt51.5868(3).

V. DISCUSSION

We have performed extensive Monte Carlo simulations
several Ising-like models in three dimensions. These mo
were selected such that they span a wide range of the i
evant field, as illustrated in Fig. 1. In order to enable a me
ingful test of universality, the models are also chosen acco
ing to quite different microscopic Hamiltonians. On the ba
of finite-size scaling, we analyze the Monte Carlo data b
separately and simultaneously. These systems are confi
to be within the Ising universality class. Compared to oth
methods, our simultaneous analyses yield more accurate
timations for the critical points, renormalization exponen
and the Binder cumulant. In particular, we determine
irrelevant exponent asyi520.821(5). Tables IX and X
show a comparison between some existing results and
estimations.

In order to interpret numerical data correctly, it is nece
sary to include appropriate corrections to scaling. We fi
that, normally, a single power-law correction is not sufficie
to account for all finite-size corrections. For instance, if o
neglects the termb3Ly3 in Eq. ~9!, which is decaying rela-
tively fast, one finds a considerable increase of the resid
x2 both in the separate and simultaneous fits. In three dim
sions, Monte Carlo simulations are restricted to linear sys
sizesL in the order of 100. Even forL'100, corrections to
scaling are still significant. For instance, we consider
03612
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contribution ofb1Lyi in Eq. ~9! for the spin-12 model on the
simple-cubic lattice~model 2!. From Table III (b1'0.094),
we find that the termb1Lyi contributes about 0.002 toQ for
L590. Compared to the accuracy 0.00003 ofQ(0) in Table
V, this contribution is huge and may not be neglected. A
other example of corrections due to the irrelevant field
provided in Ref.@8#, where the spontaneous magnetizati
densityM was analyzed asM (t)5 f (t)tb for the Ising model
on simple-cubic lattices with linear sizes up toL5256. Here,
t is the reduced temperaturet5(K2Kc)/Kc , the exponentb
is equal to (32yh)/yt , and f (t) is some function oft that
contains the corrections to scaling. It was found that, with
including a correction;tyi /yt due to the irrelevant field in
the function f (t), one cannot successfully describe the n
merical data (0.0005,t,0.26), even whenf (t) is defined
as f (t)5p01p1t1p2t21p3t3. Another analysis involving
the spontaneous magnetization density was recently ca
out by Garcı´a et al. @15#. Remarkably, they claimed that, fo
L.90 and t.0.004, corrections to scaling are invisibl
They did not comment on the nature of the discrepancy w
Ref. @8#, and did not provide details about their error es

TABLE X. Summary of results for the critical points.

Model Kc ~present! Kc Kc

1 0.36973980(9) 0.36978(4)@21# 0.3697(8)@36#

2 0.22165455(3) 0.221656(10)@9# 0.2216576(22)@35#

3 0.18562452(6) 0.18562466(52)@11#

4 0.16073229(5) 0.16073235(12)@11#

5 0.14230186(5) 0.14230187(12)@11#

6 0.12800417(5) 0.12800393(40)@11# 0.1280039(4)@9#

7 0.06442222(2) 0.0644220(5)@30# 0.06450@17–19#
8 0.04303821(2) 0.0430381(5)@30# 0.0432@17–19#
9 0.03432687(2) 0.03432685(15)@30#

10 0.39342225(5) 0.3934220(7)@9#

11 0.0544876(8) 0.05443(7)@24# 0.057136(8)@26#
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mation. Therefore, some doubt concerning the precision
their results@yt51.600(2) andyh52.501(5)] seems justi-
fied.

For the spin-1 model and the lattice gas, another quan
of interest is the density of vacanciesrv at the critical points.
Finite-size analysis yields rv50.400 694(1) and
0.789 516(1) for these two models, respectively.
l
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