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Simultaneous analysis of several models in the three-dimensional Ising universality class
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We investigate several three-dimensional lattice models believed to be in the Ising universality class by
means of Monte Carlo methods and finite-size scaling. These models includé apaatels with nearest-
neighbor interactions on the simple-cubic and on the diamond lattice. For the simple cubic lattice, we also
include models with third-neighbor interactions of varying strength, and some “equivalent-neighbor” models.
Also included are a spin-1 model and a hard-core lattice gas. Separate analyses of the numerical data confirm
the Ising-like critical behavior of these systems. On this basis, we analyze all these data simultaneously such
that the universal parameters occur only once. This leads to an improved accuracy. The thermal, magnetic, and
irrelevant exponents are determinedyas 1.586&3), y,=2.481§1), andy;= —0.8215), respectively. The
Binder ratio is estimated a@=(m?)2/(m*=0.62 3414).
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[. INTRODUCTION Ising model, the exponent of the leading irrelevant thermal
field is y;=—2, while in three dimensiony;=—0.82.
The Ising model has been investigated extensively, antloreover, the determination ¢f is not very accurate so far.

thus serves as a testing ground for theories of phase trangk better estimation ofy; thus seems justified and is one of
tions. Many physical systems can be described by this simplthe purposes of the present paper.
but nontrivial model. It is believed that continuous phase In the language of renormalization group technique, the
transitions in systems with short-range interactions and aritical behavior of systems within a universality class is
scalar order parameter belong to the Ising universality clasgjoverned by a common fixed point. In terms of scaling
These include a variety of magnetic systems, alloys, gadields, the function of the free energy, and thus of physical
liguid systems, and liquid mixtures. For instance, magneti®bservables, is universal near the critical points. By means of
systems can be described by a spior spin-1 Ising model finite-size scaling, such universal functions are extended to
depending on the nature of the elementary magnetic mdinite systems. As an example, we concern the dimensionless
ments; gas-liquid systems can be modeled by means of hareatio Q=(m?)?/(m*), wheremis the profile of order param-
core particles, which exclude one another within a nonzereter. The quantity is related to Binder cumulai6], and
range. Furthermore, the particle coordinates may be rehas been reportdd1] to be a good choice to estimateand

stricted to the vertices of regular lattices. locate criticality. Near the critical point® behaves as
In two dimensions, the evidence supporting the universal- _
ity hypothesis is rather solid. One underlying reason is that Q(tw,L)=Q(tLY vy 1)+, @

exact results are available. For instance, exact analysis of . . o .
Onsager’s spirr- model [1] and related models yields the vyhereL IS the_ linear system sizé, is the thermal Sca"r.‘Q
thermal and magnetic scaling exponentsyas 1 andy;, f|elq, and the |rreIe\_/ant field reflects the.d|stanc'e of criti-
=15/8[2], respectively. In three dimensions, however, suctﬁa“ty of tcorrtesponilmg systfrgstgnd tge f|>t<eq[hpomt. '['f.re’ W?
exact results are absent. Therefore, investigation of critical ?Vr? I’;O ye speC|_||_e Icon rioutions fui 0 he ﬁma dy Ipdparf
behavior has to depend on approximations. These includ the free energy. Taylor expansion of the right-hand side o

techniques such as and series expansions, the coherent- 9. (1) yields

anomaly method, and Monte Carlo methods, etc. Extensive — 000 (1,04 Vi (2,012 2y, (0.1, 1 i

studies have been carried §@t-14], and there is some con- Qtv, L)=QT QAL+ QL2 QT ol

sensus that the values gf andy,, are, respectively, 1.587 +oeey 2

and 2.482, with differences only in the last decimal place.

Compared to the case of two dimensions, the threewhere the derivatives of the universal functiiwith re-

dimensional results are indeed less satisfactory. Apart fromspect tot andv are denoted aQ"). Apart from the scaling

the limited accuracy, the absence of exact results leaves, axkponentsy, andy;, the amplitudes oR(® and Q() are

least in principle, some room for severe disagreements. F&@qual for systems in the same universality class.

instance, a very recent investigation by Garand co- However, from the Monte Carlo data of a single model

workers[15] claims thaty,=1.600(2) andy,=2.501(5). only, the estimation of; is rather difficult. The reason is as
Many factors are responsible for this unsatisfactory situafollows. In Eq.(2), the amplitudev is coupled to the expo-

tion. First, due to the restriction of current computer capacitynenty;, and thus a reasonable estimatiorypfequires sys-

one can only explore rather limited system sizes in threédems with a large value af. However, the large value af

dimensions. Second, corrections to scaling are much morexcludes an accurate determinatiorQ@f’, so that the accu-

serious than that in two dimensions. For the two-dimensionatacy of y; is also limited. On the other hand, although a
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TABLE I. Definitions of the models.

Model K Knn K D Lattice Description of models

1 0 0 0 — d Spin- with NN couplings

2 0 0 0 — oo sc Spin4 with NN couplings

3 0 0.1 0 — o sc Spin4 with NN and 3N couplings
4 0 0.2 0 —o sc Spin4 with NN and 3N couplings
5 0 0.3 0 — o sc Spin4 with NN and 3N couplings
6 0 0.4 0 — o sc Spin4 with NN and 3N couplings
7 1 0 0 —0 sc Equivalent neighbor of order 2
8 1 1 0 — sc Equivalent neighbor of order 3
9 1 1 1 — sc Equivalent neighbor of order 4
10 0 0 0 In2 sc Spin-1 with NN couplings
11 sc Lattice gas with NN exclusion

& diamond lattice; sc simple-cubic lattice.

system with a small amplitude helps to estimat®(©, it  large amount of accurate Monte Carlo data. Fortunately,
does not allow a good determinationygfeither. This is one some numerical data are already available and were pub-
of the reasons why, in many numerical investigations, thdished elsewher¢9-11,22-2% The data generated by the
exponenty; is fixed at a constant taken from other sources. Cluster Processdd 1] are not included and will be published

This problem can be avoided by a simultaneous analysiglsewhere. Our Monte Carlo simulations mainly focus on
of several systems with a diversity of the irrelevant fialds larger system sizes, and were performed on a cluster of 6
Given a reasonable value pf, Monte Carlo data of systems PCs with a frequency of 2100 MHz.
with a small irrelevant field determineQ(® with a narrow The outline of this paper is as follows. Section Il summa-
margin; this information, together with models with a signifi- rizes the definitions of the aforementioned 11 models, and
cant amplitudev, greatly helps the estimation gf, which ~ describes the Monte Carlo techniques involved. Sections IlI
in return improves the determination @(%. and IV present numerical analyses of the universal r@io

In the present paper, we investigate 11 Ising-like latticeand of some other quantities, respectively. A discussion is
models in three dimensions, of which the amplituddsave ~ given in Sec. V.
a wide range of values. These models include the $pin-
Ising model with nearest-neighbor interactioigy on the
simple cubic and on the diamond lattice. On the simple-cubic
lattice, models with further-neighbor interactions are also in- As mentioned earlier, the present Monte Carlo analyses
vestigated. In particular, third-neighbor interactidtgy are  include eleven Ising-like models. Except the hard-core lattice
included in several models with various ratiésy/Kyy - gas, these models can be represented in terms of a spin-1
Further, we study some “equivalent-neighbor” models, Hamiltonian
originally introduced by Domb and Daltdi7-19. In such
systems, each spin interacts equally strongly with all its
neighbors within a certain distance. The model with the in- H/kgT=— KNNZ oTort KZNZ Tio|— KSNE uty
teractions till therth shell of neighbors is referred to as the
equivalent-neighbor model of the order 10fAlso included
are a spin-1 model and a hard-core lattice gas with nearest- —Kan cricT,-+DZ o?, ©)
neighbor exclusioi20,21]. (4N !

For these models, we analyze the numerical data both
separately and simultaneously. The separate analyses are invhere the sumgNN), (2N), [3N], and{4N} are, respec-
good agreement with the Ising universality hypothesis for altively, over nearest-, second-, third-, and fourth-neighbor
these systems. This provides the basis of the simultaneoymirs, and the associated couplings are denoted,as,
analysis, in which we assume that universalitgxactlysat-  K,y, Kzy, and K4y, respectively. The spins can assume
isfied so that universal parameters occur only once. This fedhree discrete values;=0,£1, where spinss=0 may be
ture of the simultaneous analysis, combined with the aforereferred to as vacancies. The detailed definitions are speci-
mentioned discussion in Sec. |, leads to a significantlyfied in Table I, where ten models are defined on the simple-
improved estimation of the critical points of these systemscubic lattice, and one on the diamond lattice. We define the
and the universal quantities including scaling exponents antinite-size parametdr by its relation with the total numbéy
the Binder ratioQ(®, of lattice sites adN=L2. Thus, the linear size of the eight-

A difficulty is that such a simultaneous analysis requires asite elementary cell of the diamond lattice is taken tolLbe

II. MODELS AND ALGORITHMS
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TABLE Il. Number of samplegin 107) and simulation steps per sample. We use the nota#ionN to
indicate that 1M samples have been taken at intervalsvbMonte Carlo steps. Smaller system sites
<20 are also included in the analysis. For the lattice gas, simulations steps include one Metropolis sweep for
each sample.

ModehL 20 22 24 28 32 40 48 64 128
1 5010 50x10 50x<10 50x10 40<10 40x10 20x20 10x20 5X 40
2 1010 1010 1010 1210 2010 1010 5X20 5X 32 1.8x64
3 1010 10x10 10x10 10x10 1010 1010 5x20 5X32 2X 64
4 1010 10x10 10x10 10x10 1010 1010 5x20 5X32 2X64
5 10x10 10x10 10x10 10x10 1010 1010 5x20 5X32 2X64
6 10x10 10x10 10x10 10x10 1010 1010 5x20 5X32 2X 64
7 20x20 15x22 17x24 1528 12x32 8X40 6x48 5X 64 3x128
8 2020 1522 12x24 10x28 8X32 6X40  4X48 3X 64 2X128
9 2020 17x22 12x24 10x28 7X32 6X40  4X48 3X64  1.5x128

10 128<6  92X6 92X 6 92X 6 87x8 5510 22x12 2X16 5.4x25
11 1507  20x8 52x10 5010 30x12 1514 1216 15X64 4.4<128

=2. Periodic boundary conditions are applied. The systemthis procedure is almost independent of the range of the in-
sizes were taken in the ranges4d <128. teractions. An example was shown in Re&f2] by simulating

For D=—, the vacancies are excluded, so that thethe mean-field Ising model, in which each spin is interacting
model reduces to the spihmodel. This applies to the first with every other spin.
nine models in Table I. Models 1 and 2 have nearest- We also include a spin-1 model with =In2, which is
neighbor interaction& y, only. Models 3—6 include, in ad- important to our purposes due to its very small amplitude of
dition, third-neighbor interaction&sy. Various ratios are v [9]. However, for a general spin-1 model, it is not obvious
applied:K 3y /Kyw=0.1,0.2,0.3, and 0.4. Models 7-9 are the how cluster algorithms can produce transitions between va-
equivalent-neighbor modelsl7-19 of order 2, 3, and 4, cancies and nonvacancies. One can in principle follow a hy-
respectively. We choose these models because they covebed algorithm in which Metropolis sweeps alternate with
wide range of amplitudes of the irrelevant fieldn Eqg. (2). cluster steps. As long as the spin-1 model is not close to the
In particular,v is positive for models 1—-4 and negative for tricritical point where the ordered Ising phases meet the
models 5-9. This reflects that the critical points of thesephase dominated by vacancies, serious critical slowing down
systems lie on opposite sides of the Ising fixed point in thds not expected.
direction ofv on the critical surface. Moreover, the absolute  Here, due to the special choi®e=1In 2 (model 10, a full
value ofuv is relatively large for models 1, 2, 8, and 9, and cluster algorithm[9,11,23 becomes possible. First, the
relatively small for models 4, 5, and 7. This will be shown spin-1 model is mapped onto a spinmodel with two vari-
later in the numerical analysis. ables, of which the Hamiltonian is

During the Monte Carlo simulations, one can in principle
apply the standard form of the Swendsen-Wang or of the
Wolff cluster algorithm. However, the efficiency of these HikgT=—M>, (ti+ui)(tj+uj)_M22 tlm, (5
methods decreases rapidly as the number of interacting ) m
neighbors increases. This difficulty is avoided by an algo-
rithm described in Ref9]. Here, we summarize the essential Where twos= 3 spinst;=+1 andu;=*1 sit on each sité
points. During the formation of a cluster, a bond betweerof the simple-cubic lattice. Using the transformatioas
equal spins coupled with strengihis frozen with probabil- = (t;+u;)/2 andv;=(1+t;)(1—u;)/4, it has been showi9]
ity p=1—exp(—2K), or broken with probability + p. Sites that the partition function is, up to a constant factor,
connected by frozen bonds belong to the same cluster. The
distribution P(k)=p(1—p)*~ ! expresses the probability
that (k— 1) subsequent bonds are broken while kite bond z=> ex;{4M 1Y, 010+ (2M,—In2)>, o2 |. (6)
is frozen. The algorithm generates this distribution from a 7k ) m
uniformly distributed random number<Or <1 as follows:
This is precisely the partition function of the spin-1 model.
The special choic® =In2 leads toM,=0 so that there are
no interactions between variables on the same site. On this
basis, the Wolff algorithm is applied to flip the variablgs
where the square brackets denote the integer part. By r@nd/oru;. This costs a little price, i.e., two arrays have to be
peated evaluation of, one may set up a complete list of stored in computer memory for the variabteandu; . In the
frozen bonds, and thus a cluster is formed. The efficiency opresent paper, we improve this algorithm by using one vari-

k=1+[In(r)/In(1—p)], (4
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TABLE lll. Separate fits of the dimensionless ra@owith y, fixed.

Model Ke Q© o d2 b qi/ds
1 0.36973976(16) 0.62338(8) 0.4906(5) 0.19(1) 0.1150(10) 1.26(7)
2 0.22165452(8) 0.62327(10)  0.885(10) 0.58(5) 0.097(2) 1.35(15)
3 0.18562459(10)  0.62351(10) 0.995(1) 0.80(3) 0.051(2) 1.24(4)
4 0.16073242(15)  0.62364(15) 1.128(13) 1.07(4) 0.0118(20) 1.19(5)
5 0.14230189(10)  0.62355(14)  1.250(13) 1.26(5) —0.0180(20) 1.24(5)
6 0.12800424(12) 0.62350(16) 1.385(30) 1.85(18) —0.0480(20) 1.03(15)
7 0.06442225(5) 0.62338(10)  2.854(40) 7.5(2) —0.0189(20)  1.08(19)
8 0.04303818(3) 0.62324(15) 4.02(30) 15.1(9) —0.1070(20)  1.07(16)
9 0.03432687(4) 0.62337(26) 4.99(40) 23.2(15) —0.2123(40)  1.08(23)
10 0.3934222(2) 0.62344(5) 0.6617(8) 0.360(2) —0.0015(7) 1.21(6)
11 0.0544853(20) 0.62316(20)  0.0593(1)  0.0027(4) 0.212(4) 1.29(12)
able only. This improvement is based on the equivalence of [ll. DIMENSIONLESS RATIO Q

the variableg; andu;. Because of this symmetry, only the
sum oft; andu; on the same site needs to be stored. This,[iO
leads to a cluster algorithm fdd=1In2, which allows flips
between nonzero and zero spins.

Another modelmodel 11 investigated in the present pa-
per is the hard-core lattice gas on the simple-cubic lattice, o
which the Hamiltonian is

For the aforementioned 11 systems, Monte Carlo simula-

ns took place very close to critical points for-20, while

ranges of temperaturelike parameters are wider for smaller

systems. Table Il presents the number of Hd samples
ken per system size and the number of simulation sweeps
efore taking each sample.

During the simulations, the universal ratioQ
=(m?)2/(m*) was sampled, whena is the order parameter.
For the spin systemg$models 1-1D and the lattice gas
HikgT=—K >, Ui(Tj—,uE o (7)  (model 13, the magnetization density and the staggered par-

(NN) m ticle density assume this role, respectively. Near the critical
points, we analyze® both separately and simultaneously.

Here, the variabler;=1,0 represents the presence and the
absence of a patrticle, respectively. The nearest-neighbor cou-
pling K— —« implies that no nearest-neighbor sites are al- The finite-size behavior o@Q near the critical points is
lowed to be occupied simultaneously. The chemical potentiatiescribed by Eq(2). Here, the thermal scaling fietdde-
of the particles is denoted as. This lattice gas was Monte pends on temperaturelike parameters. For the spimadels
Carlo simulated by means of a combination of the Metropo{models 1-9 these are the spin-spin interactiosy,
lis and a geometric cluster method. This cluster algorithm iK,y, Ky, andKyy. Since fixed ratios apply between these
based on geometric symmetries, such as the spatial inversi@ouplings, it is sufficient to sele¢tyy as the only tempera-
symmetry of the simple-cubic lattice. The full description of ture parameteK; for the ith model. For the spin-1 model
this algorithm is given in Refd23-25. (model 10, both the nearest-neighbor couplinggy and the

As mentioned in Sec. |, the critical behavior of the hard-chemical potentiaD are temperaturelike parameters. In this
core lattice gas is expected to belong to the Ising universalityvork, D is fixed at In2 so thakK; is again represented by
class. Surprisingly, significant differences have been reKyy. For the hard-core lattice gé&model 11, the chemical
ported. The investigations by Yamagé®®,27 yielded criti-  potentialu of the particles assumes this role. For later con-
cal exponentsB/y=0.311(8) andy/v=2.382), which  venience, near the critical points, we express the dependence
would imply y,=2.6898). These results, however, could of the scaling fieldt on the physical temperature parameter

A. Separate analyses

not be confirmed by later investigations which did reveal aK; ast=a;(K;—Kg;) +b;j(K;—K¢)?+ - - - . The amplitudes
relatively large irrelevant field, but no deviations from the of the quantities with the subscriptiepend on specific mod-
Ising universality clas$23,24). els. On this basis, E42) becomes

Q=Q+QWay(K; — Kei) L1+ QPaf (K — Koi) 2L 21+ QPaP(K; — K o) 3L
+QWalt(K;— K ML Y+ (K — K 2LYt+ by LY1+ by LY2+ by L3+ - - - (8)
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Here, we have writte®9 asQ() for simplicity. The term .

with the coefficientc; reflects the nonlinear dependencet of 0 L v
onK;. The exponents of the correction terms, as obtained in MF

earlier analyses ofQ in Refs. [9,11], are y,=y;= 2 \

—0.823), y,=d—2y,=—1.9633), and ys=Yy,—2y,= 2.5 50 10

—3.3753). Thecorrection with the exponent, is due to I 5 {4 3

the field dependence of the analytic part of the free energy. I 2]

The last term arises from nonlinear dependence of the tem- . i1

perature scaling field on the physical magnetic field. Finite-

size scal!ng also predicts fur_ther(ic):ontrlbutlons. For a single FIG. 1. Schematic illustration of positions of models 1-11 in the
model, since both the quantitigd"”’ and o'ther. parameters parameter space (v), wherer is a temperaturelike parameter and
such as; andKg; are unknown, we may simplify Eq8) as | reflects the amplitude of the irrelevant field. The mean-field and
Ising fixed points, denoted &3, sit at (0,0) and I(* ,v™*), respec-
Q= Qo+ dzi(Kj— K¢ LYt+ 0 (K; — K ;) L2 tively.

2] 3 2| 4
0131 (Ki = Koi) "L+ G (K = Ki) L™ where the square-gradient term represents short-range inter-
+¢i(Ki—K¢)2LYt+ by LY1+byLY2+bgLYs, (9  actions,r andv together determine the temperaturelike and
irrelevant parameters, aris the magnetic field. For spatial
dimensionalityd<4, a renormalization analysj29] shows
that there are two fixed points, i.e., the mean-field (0,0) and
E_he Ising fixed pointsr(* ,v*) (Fig. 1). The crossover behav-
ior of the Binder ratioQ(® is displayed by a data collapse in
Fig. 10 in Ref.[30]. This provides a scale for the irrelevant
Ising fieldv on the whole range from the Ising to the mean-
field fixed point. Using this scale and the valuebgf for the

whereq;; is the product oQ® anda.

According to the least-squares criterion, E9). was fitted
to the Monte Carlo data separately for the aforementioned 1
models. First, we fixeg,, y,, andys at the aforementioned
values with the error margins neglected, andvas taken as
1.587[3-13. We applied a cutoff for small system sizes

<10 for model 8 <12 for model 9, and. <8 for the rest. ith model (Table 1ll), we schematically illustrate the posi-

For the equivalent-neighbor model .Of order 3 and 4, th jons of the critical point of the 11 systems in the present
Monte Carlo data for small system sizes may be affected b}fvork (Fig. 1)

crossover effects due to the proximity of the mean-field fixed The results in Table Ill rely on the choice that the irrel-

point [22]. This is the reason why we applied different cut- evant exponeny; was fixed at-0.82. As discussed in Sec. |,

offs at small system sizes for models 8 and 9. The results alithout such an assumption of the value f the accurac
shown in Table Ill. The numerical uncertainties quoted be- £ QO andy. will be v%r limited. As ay?est we left thye
tween parenthesis represent one standard deviation. The ex- Yi y i ' .
cellent agreement of the universal quan@{®) in the third exponenty, as a free parameter. We find that the uncertain-

column confirms that these 11 systems belong to the Isinaes ofy, are then .almost as big as the apsolute valug,of

universality class. Furthermore, according to E@. and self for models.wnh relatively small amphtu@l. For the

9), the quantityq/q —[Q(l)]zlb(z) is the same for all €St the results in Table IIl are also affected in the sense that
’ 1'42—

Ising-like models. This is confirmed by the last column of the accuracy decreases significantly, as shown in Table V.

Table 1, which reveals that the valuq§/q2 are consistent
with each other within two standard deviations. B. Simultaneous analysis

The amplitudes of the irrelevant field for these models are On the basis of the universality hypothesis, we analyze

shown, up to a constant factor, in the sixth column of Tabl§ne nonte Carlo data of these systems simultaneously. The

Ill. As mentioned in Sec. |, they reflect the positions of the (5 \were fitted. instead of to E€), to Eq.(8). As a result
critical points of these systems on the critical surface. For ' ' P X

. . , . ~each of the amplitudes;; is decomposed in a universal fac-
clarity, we start from the Landau-Ginzburg-Wilson descrip-; . QW and a %onui?\yersal fact(;. Since theQ() are
tion [28] of the Ising model: ;

shared by all the systems, the number of unknown param-
eters decreases significantly, in comparison to the total num-
ber in the separate fits. This decomposition also leads to an

_ — 2 4 2
H(¢)/kBT_f drr¢(r)+v ¢ () +V=h(r) +hé(r)], additional free parameter since numerical data can only de-

(100  termine the product o™ anda;, so that one of the pa-

TABLE IV. Some results of separate fits @ with y; as a free parameter.

Model 1 2 8 9 11
Ke 0.3697399(4) 0.2216545(2) 0.0430382(7) 0.0343268(1) 0.05449(3)
Qo 0.6238(7) 0.6231(8) 0.625(1) 0.623(2) 0.625(3)

Vi —0.87(6) —0.800(15) —0.68(16) —0.80(2) —1.0(3)
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TABLE V. Simultaneous fit of the rati®.

Q(O) Q(l) Q(Z) Q(3) Q(4)
0.62342(3) 1(fixed) 0.826(6) —3.32(9) —9.4(14)

i K(cl) ng) K(Cs) K(c4) KgS)
—0.821(5) 0.36973981(8) 0.22165455(5) 0.18562452(6) 0.16073229(5) 0.14230186(5)
K(Ce) K(c7) KEB) Kgg) Kgm) Kgn)
0.12800417(5)  0.06442222(2) 0.04303821(2) 0.03432687(2) 0.39342225(9)  0.0544876(8)
0.5203(8) 0.853(1) 0.9930(12) 1.132(2) 1.261(3) 1.390(3)
a7 ag Qg a1 an b1y
2.77(3) 4.031(14) 4.92(3) 0.6603(3) 0.05944(4) 0.114(2)
by, b3 b4 bis bie b7
0.094(2) 0.052(1) 0.0147(7)  —0.016(1) —0.046(1) —0.014(1)
big big D110 b111
-0.113(2) —0.219(4) —0.0012(5) 0.207(4)

rametersQ{) (j#0) anda; has to be fixed as an arbitrary Qp Yields an estimation of the magnetic and thermal expo-
constant. Here, we simply sQ@®=1. Together with the nentsy, andy,,, respectively.

mechanism discussed in Sec. |, this effect leads to a substan-

tially improved accuracy of the unknown parameters, despite A. Simultaneous analysis ofy

thaty; was left as a free parameter. This includes the deter-
mination of the critical points, the universal rai@®®, the |
irrelevant exponeny;, and the amplitudeb,; . The results 1Y X behaves as

are shown in Table V. The amplitud¢Q®]%/Q® Jh\2
=1/0.826(6)=1.211(9) is in good agreement with those in X(t,v,L):x(t)+L2Yhd(—> x(LYt,LYiv,1), (11
the separate fitéTable I1I). dH

According to finite-size scaling, the magnetic susceptibil-

where x(t) arises from the differentiation of the analytical

part of the free energy densith is the magnetic scaling
The Monte Carlo simulations also yielded the susceptibilfield, andH is the physical magnetic field. The dependence

ity as y=L3%(m?). Furthermore, we sampled the energy den-of h on H is not universal and is linearized &= WH.

sity and its cross products wittm?) and (m*). Thus, we Taking into account thatt=a;(K;—K;)+b;(K;—K)?

obtained derivative 0@, denoted a®),. Analysis ofy and ~ +---, Taylor expansion of Eq(11) yields

IV. OTHER QUANTITIES

X=X+ Si(Ki—Ki) + L2~ O [ O+ yDay (K — Ko LY+ xPaZ(K; — K 2L

+ x®ad(K; = K PL + xWaf (K — K o) LY+ by LY+ ¢ (K — K g LY ] (12

Here, thejth thermal derivative of at criticality is denoted that the value of; is taken from Tables V and VI, respec-
asx). For theith model, the amplitude; is the same as in tively. The result is shown in Table VII. The consistency pf
Eq. (8). This will be confirmed later. Equatiaii2) was fitted among these 11 models confirms that the functiona$fK is
to the Monte Carlo data, and the result is shown in Table Vlindependent of the type of physical observable.
According to similar arguments as mentioned above, there
are two extra free parameters in Efj2) during the fit. Here,

we simply fixed y(® and y) equal to 1. The magnetic _ . . _
renormalization exponent is estimated ws=2.48161). During the Monte Carlo S|mul_at|ons, the energy density
This is in excellent agreement with most available resultvas sampled as the nearest-neighbor sum for models 1-10:
[3-7,8,9—-13 and its precision is comparable with the best

known valuey,=2.48180(15), obtained from a 25th-order e=(Sw)= > (o107). (13)
high-temperature expansi¢81]. The critical points are con- (NN)

sistent with those in Table V. We also calculated the ratio

ri=(a;)@/(a;)¥, where the superscrip@andy represent For the hard-core lattice gésiodel 11, the nearest-neighbor

B. Simultaneous analysis oQ,
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TABLE VI. Simultaneous fit of the magnetic susceptibility

X(O) X(l) X(Z) X(3) X(4)
1 (fixed) 1 (fixed) 0.409(2) —0.043(1) —0.075(2)

Vi K& K& K& KLY K&
2.4816(1) 0.3697398(1) 0.22165457(3) 0.18562459(7) 0.16073233(6) 0.14230183(12)
K(®) K() K®) K K10 KD
0.12800422(5) 0.06442225(3) 0.04303821(2) 0.03432690(3) 0.3934221(1)  0.054487(1)
1.75(2) 1.55(2) 1.38(2) 1.266(2) 1.187(2) 1.127(2)
Wz Wg Wy Wio Wi
1.156(2) 0.989(2) 0.875(1) 0.933(1) 0.2192(4)
a, a, ag a, as ag
2.00(4) 3.32(2) 3.87(2) 4.45(4) 4.96(6) 5.63(6)
az ag Q9 10 an
10.64(4) 16.16(3) 19.7(2) 2.65(8) 0.2236(2)

couplings are infinitely repulsive, and the quantitys thus  reason will be discussed later on the basis of its scaling be-
defined, instead, as a sum over the next-nearest-neighbbavior. For models 3—10, apart from nearest neighbors, the
pairs. On this basis, we sampled a quan@y which corre-  spin-spin interactions occur between second-, third-, and
lates the magnetization distribution with the energy densityfourth-neighbor pairs. In those cases, the amplitude of
atl oKy is different from the value of; in the functiont
=a;(K;—Kqj). According to Eq.(1), near the critical point
_(m?Sy) _(m*Sw) s 10Q ot the quantityQ,, behaves as
T () (m* (SW=3 5t K
(14

Qu(t,v,L)= Lyt&zt
Little additional effort is required for this task since® and NN
e are already sampled during the Monte Carlo simulations.
The quantityQ, has been reportef@—11] to be a good Taking into account contributions dfLY2 due to the analytic
choice in determining the thermal scaling dimension. Thepart of the free energy, we Taylor-expand this equation as

Qp(LYt,LYiv,1). (15)

Qp=L"Pi[ QY+ QfMai(K; — K LY+ QEPaf (K — Kop) 2L+ Qa (K — K) L
+QWal(K;— K LY+ biLYi+dLY2+ (K — Kgp) ], (16)

where the parametetsg) are universal, andt/9Ky is de-  free energy. The exponeny2-3=0.174 is so small that the
noted ag; for theith model. Compared to the specific heat, term with this exponent is normally difficult to separate from
the divergence ofQ, with respect to the system size at the background cqntributiorCo in numerical. analyses.
criticality is much stronger. According to finite-size scaling, Therefore, the quantitQ, serves as a better choice tharo
the critical specific heaC behaves approximately ag  estimate the thermal exponeyyt. We fitted Eq.(16) to the

—CoxL®17 3, whereC, arises from the analytical part of _ _
TABLE VIII. Result of simultaneous fit oQ, .

TABLE VII. Results for the ratior; . L min QY QY Q¥ Q¥ QW
8 1 (fixed) 0.1 (fixed —4.4(5) —1.2(2) 9.3(23)
Model 1 2 3 4 5 y 0 0 0 0 0
0.259(5) 0.258(5) 0.257(6) 0.256(6) 0.254(7) 7! L 2 8 4 5
' () (5) (6) (6) () 1.58684(14) 0.825(5) 1.355(2) 1.335(2) 1.334(2) 1.343(2)
6 7 8 9 10 11 Pe p7 Ps P9 P10 P11

0.253(8) 0.259(7) 0.252(8) 0.252(8) 0.259(6) 0.258(6)1.351(2)  1.422(1) 1.428(1) 1.441(2) 1.058(1) 0.662(1)
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TABLE IX. Summary of results of the scaling exponents and the universal quapiityfor the three-
dimensional Ising universality class. RG, renormalizatiomsdfmodel; HTE, high-temperature series expan-
sion; MC, Monte Carlo and finite-size scaling; MCRG, Monte Carlo renormalization; CAM, coherent-

anomaly method.

Year Vi Vi Vi Q© Method
Le Guillou et al. [5] 1980 1.587(4)  2.485(2)  —0.79(3) RG
Nickel and Rehi32] 1990 1.587(4)  2.4821(4) —0.83(5) HTE
Nickel [33] 1991 1.587 2.4823 —-0.84 HTE
Baillie et al. [34] 1992 1.602(5) 2.4870(15) —0.8 to —0.85 MCRG
Landau[35] 1994 1.590(2)  2.482(7) MC
Kolesik and Suzukj7] 1995 1.586(4) 2.482(4) CAM
Blote et al. [9] 1995 1.587(2) 2.4815(15) —0.82(6) 0.6233(4) MC
BlGte et al. [11] 1996 1.585(2)  2.4810(10) MCRG
Guida and Zinn-Justifl4] 1998 1.586(3) 2.483(2) —0.799(11) HTE
Blote et al. [10] 1999 1.5865(14) 2.4814(5) —0.82(3) 0.62358(15)  MC
Campostriniet al. [31] 2002 1.5869(4) 2.48180(15) —0.82(5) HTE
Present 2003 1.5868(3) 2.4816(1) —0.821(5) 0.623412(25) MC

Monte Carlo data, using the critical points as taken fromcontribution ofb;LYi in Eq. (9) for the spin3 model on the
Table V. This is in line with the relatively weak dependencesimple-cubic latticmodel 3. From Table Il (;~0.094),
of Q, on the temperaturelike parametdfs The results are we find that the ternb; L1 contributes about 0.002 @Q for
shown in Table VIII. As possible alternatives, we have in-L=90. Compared to the accuracy 0.00003@f in Table
cluded more terms such a8"Yi(K;—Ky;) within the square V, this contribution is huge and may not be neglected. An-
brackets of Eq.16). However, this does not improve the other example of corrections due to the irrelevant field is
residualy? of the fit. The dependence on the cutoff at smallprovided in Ref.[8], where the spontaneous magnetization
system sizes in the fit was also determined. Taking into acdensityM was analyzed abl (t) = f(t)t# for the Ising model
count these dependences and the uncertainties of the criticah simple-cubic lattices with linear sizes uplte- 256. Here,
points, we estimate the thermal exponentyas 1.586§3). tis the reduced temperature (K—K.)/K., the exponens
is equal to (3-yn)/y;, andf(t) is some function ot that
contains the corrections to scaling. It was found that, without
including a correction~tYi"%t due to the irrelevant field in
We have performed extensive Monte Carlo simulations ofthe functionf(t), one cannot successfully describe the nu-
several Ising-like models in three dimensions. These modelgerical data (0.0005t<0.26), even wherf(t) is defined
were selected such that they span a wide range of the irreks f(t) =py+ p;t+ p,t?+ pst>. Another analysis involving
evant field, as illustrated in Fig. 1. In order to enable a meanthe spontaneous magnetization density was recently carried
ingful test of universality, the models are also chosen accordeut by Garca et al. [15]. Remarkably, they claimed that, for
ing to quite different microscopic Hamiltonians. On the basisL >90 andt>0.004, corrections to scaling are invisible.
of finite-size scaling, we analyze the Monte Carlo data bothThey did not comment on the nature of the discrepancy with
separately and simultaneously. These systems are confirmegf. [8], and did not provide details about their error esti-
to be within the Ising universality class. Compared to other
methods, our simultaneous analyses yield more accurate es-
timations for the critical points, renormalization exponents,

V. DISCUSSION

TABLE X. Summary of results for the critical points.

and the Binder cumulant. In particular, we determine themodel K, (present K, K,
irrelevant exponent ay;=—0.8215). Tables IX and X

show a comparison between some existing results and our 1~ 0.36973980(9)  0.36978(421] 0.3697(8)[36]
estimations. 2 0.22165455(3) 0.221656(109] 0.2216576(22)35]

In order to interpret numerical data correctly, it is neces- 3
sary to include appropriate corrections to scaling. We find 4
that, normally, a single power-law correction is not sufficient 5
to account for all finite-size corrections. For instance, if one 6
neglects the ternb;LY3 in Eq. (9), which is decaying rela- 7
tively fast, one finds a considerable increase of the residual 8
x? both in the separate and simultaneous fits. In three dimen- 9
sions, Monte Carlo simulations are restricted to linear system 10
sizesL in the order of 100. Even fdr~ 100, corrections to 11

0.18562452(6)
0.16073229(5)
0.14230186(5)
0.12800417(5)
0.06442222(2)
0.04303821(2)
0.03432687(2)
0.39342225(5)
0.0544876(8)

0.18562466(5p)1]
0.16073235(1P)1]
0.14230187(1)1]
0.12800393(4M)1]
0.0644220(530]
0.0430381(530]
0.03432685(150]
0.3934220(T19]
0.05443(724]

0.1280039(4) 9]
0.06450[17-19
0.0432[17-19

0.057136(8)[26]

scaling are still significant. For instance, we consider the
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mation. Therefore, some doubt concerning the precision of

their results[y;,=1.600(2) andy,=2.5015)] seems justi-
fied.
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