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Abstract

Conformal mappings serve as useful tools for the determination of universal properties of
critical models. Typical applications are subject to a major restriction, namely that the pertinent
conformal mapping should lead to a geometry that can be investigated by means of numerical
methods such as Monte Carlo simulations. Since conformal mappings of 3-D systems usually
lead to curved geometries which are di3cult to investigate numerically, most applications have
thus far been restricted to 2-D systems. We present a solution of this problem for discrete
spin models, by taking the anisotropic or Hamiltonian limit which renders one of the lattice
directions continuous, such that the dimensionality in e4ect reduces by one. Applications to
the 3-D Ising and percolation models con6rm the predictions obtained from the assumption of
conformal invariance, and lead to accurate numerical results for the scaling dimensions.
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1. Introduction

The theory of conformal invariance has provided considerable fundamental insight
in critical phenomena by predicting spectra of critical exponents in two-dimensional
models [1–3]. Other interesting theoretical results follow from conformal mappings of
correlation functions between models de6ned in di4erent geometries. A well-known,
and particularly useful example is Cardy’s mapping [4] between an in6nite plane and
the surface of a cylinder. This conformal mapping relates the power of the algebraic
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decay of correlations in the in6nite plane to the characteristic length of the exponentially
decaying correlation functions along a cylinder. On this basis one can obtain in a,
from a technical point of view, relatively simple way the scaling dimensions from the
eigenvalues of the transfer matrix of the model wrapped on the cylinder, or in other
words, on a Hat strip with periodic boundary conditions.

The conformal mapping between the in6nite plane and the surface of a cylinder can
be generalized to more dimensions [5]. We recall the mapping for the case of three
dimensions. As a 6rst step the Cartesian coordinates (x; y; z) are rewritten as spherical
coordinates (r; �; ’). While these coordinates still describe a Hat space, the nonlinearity
of the transformation modi6es the metric tensor, as expressed by the invariant line
element which reads

ds2 = dx2 + dy2 + dz2 ; (1)

in Cartesian coordinates and

ds2 = dr2 + r2 (d� 2 + sin2 � d’2) (2)

in spherical coordinates. We specify the conformal mapping by

(r; �; ’) → (u; �; ’) with u = R log r : (3)

Expressed in the new coordinates, the line element Eq. (2) becomes

ds2 = R−2e2u=R[du2 + R2 (d� 2 + sin2 � d’2)] ; (4)

where R is a free parameter of the transformation. But here we adopt instead a metric
described by a line element ds′ according to

ds′2 = [du2 + R2 (d� 2 + sin2 � d’2)] : (5)

The mapping is conformal because the line elements ds and ds′ di4er only by a
position-dependent factor. The new metric describes a 3-D space in which two coordi-
nates (�; ’) parametrize the surface of a sphere while the third coordinate u speci6es
a direction perpendicular to the surface of the sphere: the contributions of du to the
line element are independent of � and ’, and those of d� and d’ are independent
of u. Since the range −∞¡u¡∞ is unbounded, while � and ’ are restricted to
a 6nite range, the new space is 6nite in two directions and in6nite in the third. The
analogy with a 2-D cylinder is obvious; the cylindrical geometry can be algebraically
characterized as S1 ×R1, where S1 represents a cyclic number (circle) and R the real
numbers (in6nite line). The 3-D geometry described by Eq. (5) can be characterized
as S2 ×R1: the di4erence with the 2-D case is that the circle (S1) is now replaced by
a sphere (S2). Thus one can refer to the space S2 ×R1 as a ‘spherocylinder’. There is
however an important di4erence between the 2-D and 3-D cases. Unlike the 2-D case,
where the net curvature is zero, the spherocylinder has a net curvature as implied by
Eq. (5).

Therefore, it is not surprising that applications of the conformal mapping Eqs. (3)
and (5) are very scarce. A numerical 6nite-size analysis of a model on a spherocylinder
might be achieved by placing a sequence of regular lattices in this geometry, but this is
obviously a di3cult problem. The linear u-direction can simply be discretized, so that
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the problem reduces to placing regular 2-dimensional lattices on a sphere. However,
the spherical coordinates � and ’ seem to defy any acceptable discretizations. Cardy
[5] avoided this problem for the special case of the spherical model, thereby disposing
of the discrete lattice structure. Weigel and Janke [6] approximated the surface S2 of
the sphere by that of a cube. They numerically investigated Ising models in this 3-D
geometry by means of Monte Carlo simulations, and concluded that the above-mentioned
relation between scaling dimensions and correlation lengths is still satis6ed, provided
a constant factor is included. Apparently this factor accounts for the di4erent shapes
of the sphere and the cube.

We have developed a technique that enables the simulation of discrete spin models in
curved spaces. This technique involves two steps; the 6rst one is to take the anisotropic,
or Hamiltonian limit of the lattice model. This in e4ect eliminates the lattice structure
in one direction; arrays of spins are replaced by continuous lines of spins. The dimen-
sionality, in a sense, decreases by 1. This solves a part of the problem of the de6nition
of a model in a curved space. The remaining part of the problem may be solved by a
suitable choice of the coordinate system of the anisotropic model in the curved space.
For instance, on the surface of a sphere we may represent the lattice structure by a
series of coaxial circles. The second step of our technique involves the formulation
of a cluster Monte Carlo algorithm for the Hamiltonian limit. The algorithm is of the
Wol4 cluster type and thus suppresses critical-slowing down. It has an e3ciency of
the same order as the Wol4 algorithm for a model with equal couplings in the three
spatial directions. In Section 2 we review the anisotropic limit of the Ising model and
its relation with the transverse Ising model. Section 3 describes the cluster algorithm
for the anisotropic limit, using the language of the Ising model. It thus applies to the
transverse Ising model. Trivial modi6cations generalize it to the Hamiltonian limit of
Potts models, including the percolation model. Section 4 illustrates the use of the al-
gorithm by means of brieHy summarized applications to the 3-D Ising and percolation
models on a spherocylinder. A short conclusion is given in Section 5.

2. The anisotropic limit of the Ising model

The 3-D Ising model with anisotropic couplings is described by the Hamiltonian

H=kBT = −
∑

x; y; z

[Kxysx;y; z(sx+1;y; z + sx; y+1; z) + Kzsx;y; zsx;y; z+1] ; (6)

where the integers 16 x6L, 16y6L and 16 z6L′ label the sites of a cubic
lattice. Kxy and Kz are the coupling strengths along bonds perpendicular and parallel
to the z direction, respectively. The spins can assume the values sx;y; z = ±1. Periodic
boundary conditions apply. For simplicity we have de6ned the model such that the
x and y directions are equivalent but we allow di4erences with respect to the z direc-
tion. In particular we are interested in the limit that the couplings in the z direction
become strong and those in the x and y directions weak. We shall attempt to follow the
ratio of the length scales of the correlations in the inequivalent directions, at least in an
approximate sense. This can be done by application of the Migdal [7] renormalization
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procedure in the z direction, without rescaling the x and y directions. Each bond in
the z direction is thus decorated with n − 1 Ising spins and the bond strength Kxy is
distributed accordingly between the newly inserted spins. This leads to a new model
with a lattice spacing in the z direction that is smaller by a factor n. The approximate
renormalization equations imply that if the new couplings satisfy

K (n)
xy = Kxy=n and tanhK (n)

z = [tanhKz]1=n ; (7)

it is roughly equivalent with the original system. These considerations do not only
yield the approximate locus of the critical line in the (Kxy; Kz) plane, they also show
that, along the critical line, the lattice spacing in the z direction should be chosen as
1=n in order to maintain approximate isotropy of the correlation functions. We thus
describe our system by

H′=kBT = −
∑

x;y; z′
[K (n)

xy sx;y; z′(sx+1;y; z′ + sx;y+1; z′) + K (n)
z sx;y; z′sx;y; z′+1] ; (8)

where x and y are, as above, integers running from 1 to L but the coordinate z′

now assumes the values 1=n; 2=n; 3=n; : : : ; L′. For large n it is clear that tanhK (n)
z must

be close to 1, so that 1 − tanhK (n)
z ˙ 1=n, with a proportionality constant that, while

dependent on Kz, is unknown except that it is of order 1. Therefore, for moderate
values of Kxy and Kz, we may, without loss of generality take

K (n)
xy = 1=(tn) and e2K (n)

z = n ; (9)

where t is a temperature-like variable that depends on Kxy and Kz. In contrast with the
isotropic Hamiltonian (6) with Kxy = Kz = K , we expect that Eq. (8) will, in general,
not lead to isotropic decay of correlations. However, we purport to restore isotropy
asymptotically (at large distances) by an additional rescaling

z′ → z = z′=a (10)

of the z direction by a factor a which remains to be determined (its value at the critical
point is listed in Section 3).

It is known that for n→∞ model (8) is directly related with the 2-D transverse Ising
model. This model consists of quantum spins on the square lattice, with nearest-neighbor
couplings and an external 6eld:

HQM = −
∑

x

[s zx;y(s
z
x+1;y + s zx;y+1) + ts xx;y] ; (11)

where the s z and s x are Pauli matrices. By application of the Trotter–Suzuki formula
[8,9] to the partition function of Eq. (11) one indeed 6nds model (8) with couplings
as in Eq. (9) where n is the ‘Trotter number’ which has, strictly speaking, to be taken
in6nitely large; and L′ is to be identi6ed with the inverse temperature of the transverse
Ising model.

3. The cluster algorithm

In the construction of a Monte Carlo algorithm for the anisotropic limit we will have
to deal with the divergence of n. Since the number of spins is proportional to n, and
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the available computer memory is 6nite, the spin con6guration cannot be stored in the
usual way. Fortunately, the number of interfaces between ranges of + and − spins
along the z direction remains 6nite when n→∞. It is su3cient to store the location
of these interfaces; the determination of the sign of the spins at an arbitrary location
z′ then only requires the additional information of the sign of the spins at a given
location, say at z′ = 0.

Our cluster algorithm is based on earlier work and ideas of Swendsen and Wang
[10], Wol4 [11] and others [12]. In cluster algorithms one distinguishes between ‘rigid’
and ‘Hexible’ bonds. These two cases are represented by means of a bond variable
having the values b = 1 and 0, respectively. These bond variables are precisely those
occurring in the Kasteleyn–Fortuin [13] random-cluster model. Thus, a bond variable
bij associated with the coupling K between Ising spins si and sj, is equal to 1 (rigid)
with a probability pr = �sisj (1− e−2K). In a simulation, one would normally need one
random number per bond to decide whether a bond is rigid. Since the number of bonds
is proportional to the divergent Trotter number n, a di4erent approach is necessary.

Thus we write bij = �sisj cij where the cij are ‘provisional’ bond variables equal to
0 or 1. They are independent random variables and the probability that cij = 1 is
(1− e−2K). First we consider the case that K = Kz so that this probability is almost 1
when n is large. The probability that m− 1 consecutive provisional bond variables are
equal to 1, while the mth variable is equal to 0, is pz(m) = (1− e−2Kz)m−1e−2Kz . Thus
the cumulative distribution is

Pz(m) =
m∑

k=1

pz(k) = 1 − (1 − e−2Kz)m (12)

and a stochastic implementation of this process is the following choice for m

Pz(m− 1)6X ¡Pz(m) ; (13)

where X is a uniformly distributed random number in the range 0¡X ¡ 1. Equiva-
lently we may replace X by 1 − X which leads to

m− 16
logX

log(1 − e−2Kz)
¡m : (14)

We choose Kz according to Eq. (9) and express the number m of bonds along the
z direction in the corresponding physical length Oz′ = m=n:

Oz′ − 1=n6− logX ¡Oz′ (15)

and in the limiting case we simply have Oz′ = −logX .
In the construction of a Wol4 cluster, this means that a range Oz′ will be included

in the cluster, unless an interface occurs within this range; since we then have �sisj =0
we also have bij = 0, even if cij = 1.

The cluster growth in the other directions occurs in an analogous but complementary
way. We consider a range without an interface along a line of spins in the z direction,
and consider the array of bond variables coupling to a line of neighbors in the x or
y direction. As above they are decomposed as bij = �sisj cij, and we 6rst focus on
the determination of the cij. Given the weakness of Kxy most of the cij will be 0.
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The probability that m − 1 consecutive variables are 0 and that the mth one is 1 is
pxy(m) = (e−2Kxy)m−1(1 − e−2Kxy). Thus the cumulative distribution is

Pxy(m) =
m∑

k=1

pxy(k) = 1 − (e−2Kxy)m (16)

and a stochastic implementation of this process is to choose m according to

Pxy(m− 1)6X ¡Pxy(m) ; (17)

where, as before, we may replace X by 1 − X so that

m− 16− logX
2Kxy

¡m : (18)

We choose Kxy according to Eq. (9) and express the number m of bonds along the
z direction in the corresponding physical length Oz′ = m=n:

Oz′ − 1=n6− (t=2) logX ¡Oz′ (19)

and in the limit we have Oz′ =−(t=2) logX . For the construction of the Wol4 cluster,
this means that after a distance Oz′ a neighbor in the x or y direction will be included
in the cluster, unless the neighbor spin has the wrong sign, or an interface occurs
within the range Oz′.

Before starting actual applications of this algorithm, we still require a determination
of the critical point tc, and of the rescaling factor a to restore isotropy asymptotically.
This work was done by means of 6nite systems in a Hat space as implied by Eqs. (6)
and (8) and will be published elsewhere [15]. The results are tc = 3:04438 ± 0:00002
and a = 0:8881 ± 0:0002.

Since the model is now continuous in the z direction, application of the algorithm
in curved geometries become feasible. We consider the case of the spherocylinder.
The continuous z direction is chosen to correspond with the spherical coordinate ’.
The originally equivalent x and y directions are chosen to correspond with � and
u. The ‘lattice structure’ in each sphere is thus represented by L evenly distributed
circles. In spherical coordinates (�; ’) the kth circle is given by � = (k − 1

2 )�=L,
with k = 1; 2; : : : ; L. Each circle represents a continuous line of spins, as illustrated in
Fig. 1. The determination of the bond probabilities in the weak-coupling direction
requires a well-de6ned length scale. In the �-direction we face the complication that
the length scales along adjacent circles, although proportional to ’, have di4erent
prefactors. The prefactor was chosen as corresponding to the length as measured along
the circle halfway, that is the circle with � = k�=L for bonds between the circles with
� = k�=L and (k − 1)�=L. Note that the circles with k = 1 as well as with k = L
could, in principle, have self-interactions via weak bonds over the poles � = 0 and �.
But these interactions vanish because the circles at � = 0 and � have a zero length
scale. Alternatively the choice �= (k − 1

2 )�=L, with k = 1; 2; : : : ; L may be replaced by
� = k�=L with k = 0; 1; 2; : : : ; L. We have investigated both cases by means of Monte
Carlo determinations of the magnetic correlation function between opposite sites �; ’
and �−�; �+’. However, the latter choice revealed signi6cant deviations from isotropy,
which were not observed for the original choice � = (k − 1

2 )�=L.
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Fig. 1. Intersection S2 of a spherocylinder with a surface of constant u. It is a sphere, on which L=5 circles
represent continuous lines of spins in the strong-coupling direction. Weak couplings occur between adjacent
circles within spheres as well as between those adjacent in the third dimension (not shown). The full and
dash-dotted parts of the circles represent (arbitrarily chosen) ranges of spins with di4erent signs. The dashed
lines connecting neighboring circles represent possible random-cluster bonds in the weak-coupling direction.

The presently de6ned system is rotationally invariant with respect to ’, but the
discretization in � leads to deviations from uniformity. For a 6nite-size parameter L
we may expect a deviation of order L−2 in the averaged coupling strength with respect
to a Hat geometry, in view of the analogy with applications of the trapezium rule.
Under renormalization this e4ect will increase by a factor Lyt where yt ≈ 1:587 is
the temperature renormalization exponent. Therefore, we expect that this discretization
error will lead to 6nite-size e4ects of order Lyt−2, which will naturally dominate over
the corrections proportional to Lyi where yi ≈ − 0:8 is the irrelevant exponent.

4. Numerical results

The simulations used the geometry of the spherocylinder described above. The system
sizes are taken as L for the number of circles on the sphere (thus the circumference
is 2L) and nL for the physical length in the u direction. To approximate the S2 × R1

geometry we take n as 8. Both periodic and 6xed boundary conditions are applied.

4.1. Ising model with periodic boundary conditions

We have simulated systems with periodic boundary conditions in the u direction, and
sampled the magnetic and energy–energy correlation functions along the same direction.
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Fig. 2. Data collapse illustrating the exponential decay of the magnetic correlation functions gm(r) versus
distance r. The Monte Carlo data are shown as ln[L1:037gm(r)] versus r=L (horizontal), for system sizes L=6
( ), L = 8 (◦), L = 10 (�) and L = 12 (�).

Under the conformal transformation (3), the theory of conformal invariance predicts
that the two-point correlation functions over a distance r in this direction behave as

〈!(0; �; ’)!(r; �; ’)〉S2×R1 ˙ L−2X e−r="L ; r�0 ; (20)

where ! is a scaling operator such as the magnetization density or the Huctuation of
the energy density, X is the corresponding scaling dimension, and "L 
 �X=L is the
correlation length in the u direction. Because of the periodic boundary conditions, the
correlation functions are built up over two distances r and 4L− r, and r6 4L.

For the magnetic correlation functions gm(r) = 〈m(0)m(r)〉, an example is shown
Fig. 2. Because the exponent of L is known to be −2X ≈ −1:037 (see e.g.
Ref. [14]), we achieve a data collapse by taking the vertical scale as ln[L1:037gm(r)].
The curvature at short distances signals the algebraic decay of the correlation functions
for r ¡L, and the upward trend on the right-hand side is due to the periodic image
at a distance 4L − r. The scattering of the data at large distances is due to the large
relative statistical uncertainties in this region.

By means of 6nite-size scaling on the basis of Eq. (20), we analyzed the magnetic-
and energy-like correlation lengths, in particular the 6nite-size amplitude "L=L 
 �X .
This yields the magnetic and temperature scaling dimensions as Xh = 0:5178 (12) and
Xt=1:423 (19); these numbers are in a good agreement with the existing results [14,15].
An account of a preliminary analysis, including details on the corrections to scaling
that were included, is already in the press [16].

4.2. Ising model with ?xed boundary conditions

Here we consider a di4erent conformal transformation. It can conveniently be de-
scribed in two steps, the 6rst of which is an inversion which maps the 3-D space onto
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Fig. 3. Exponential decay of the magnetization density m(u) of a system with 6xed boundary conditions at
u = 0, shown as lnm(u) versus u (horizontal). The system size is L = 20. Error bars show the statistical
uncertainty.

itself:

r′=r′2 = r=r2 + R̂′=2 ; (21)

where R̂
′
is an arbitrary 6xed unit vector at the origin of the primed coordinate system

[17]. Under this mapping, the semi-in6nite space R2 ×R+ transforms into the interior
of a unit sphere. We apply this mapping to a 3-D system with a surface subject to
an in6nite ordering 6eld. The conformal transformation of the pro6le of the scaling
operator ! in the semi-in6nite space leads to the pro6le of that operator in the unit
sphere with 6xed boundary conditions at the surface:

〈!(r′)〉sphere = A[1 − (r′)2]−Xh ; (22)

where Xh is the corresponding bulk scaling dimension [17]. Under the transformation
(3), the interior of this unit sphere is conformally mapped on a semi-in6nite sphero-
cylinder, with a surface at u = 0 where the sign of the Ising variables is 6xed. For
such a system, the pro6le of a scaling operator follows as [15]

〈!(u)〉˙ L−Xhe−u="L(1 − e−u�=2L)−Xh : (23)

The simulations of these systems used 6xed boundary conditions at u= 0 and 8L; the
magnetization and energy densities were sampled. Figs. 3 and 4 display examples of
these results. In comparison with the corresponding correlation functions, they decay
slower as a function of system size L, and the computer time requirements are consid-
erably less [15]. Thus, it seems a promising tool to determine the scaling dimensions.
We 6tted the Monte Carlo data by means of 6nite-size scaling on the basis of Eq.
(23) but including a correction for the discretization error. The expected deviations
at short distances were eliminated by introducing a cuto4 at small u. We obtain
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Fig. 4. Exponential decay of the energy density pro6le e(u)− e0 of a system with 6xed boundary conditions
at u = 0. The data are shown as ln|e(u) − e0| versus u (horizontal). The system size is L = 20. Error bars
show the statistical uncertainty.

Xh = 0:5186 (6) and Xt = 1:414 (7). The accuracy of the magnetic scaling dimen-
sion is comparable to that of the existing results.

4.3. Percolation model with ?xed boundary conditions

It is straightforward to apply the cluster algorithm described in Section 3 to Potts
models with q �= 2 states, including the bond percolation model with q = 1. In the
Hamiltonian limit, the bond probabilities are 1 − 1=n for the z direction and 2=(tn)
for the other directions. We used the same anisotropic 3-D geometry as described in
Section 3. Analysis of the Monte Carlo data for a Hat 3-D geometry leads to the
results [15] that the critical point is located at tc = 8:6429 (6), that a rescaling factor
a = 1:5844 (6) restores asymptotic isotropy of the correlation functions, and that the
magnetic critical dimension is Xh = 0:4783 (11), etc.

Next, we simulated the bond percolation model on the spherocylinder with 6xed
boundary conditions in the u direction. We de6ne the quantity P(u) as the probability
that a point at position u is connected to the 6xed surfaces by any percolating path. The
behavior of P(u) in this geometry is expected to be similar to that of the magnetization
density (see e.g. Ref. [18]) and thus to be described by Eq. (23), but with a value
of Xh that is di4erent from that of the Ising model. We 6tted the Monte Carlo data
accordingly by means of 6nite-size scaling, and thus obtained Xh = 0:4789 (16) [15],
which is in a good agreement with the number mentioned above Xh=0:4783 (11) [15],
and with the result of a recent study, namely Xh = 0:476 (5) [19].
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5. Conclusion

The cluster algorithm appears to be an e3cient tool for the investigation of the
Hamiltonian limit of discrete Potts models. Its results are in a reasonable qualitative
agreement with applications of a recursion of the Migdal type as described in Section 2,
which yield tc = 3:435 for the Ising case; shifting bond probabilities in the bond per-
colation case leads to tc = 11:18. This is in line with the fact that the rescaling factors
a are roughly equal to 1 as predicted by the approximation used.

Furthermore the algorithm proves to be suitable for applications in curved geometries
such as produced by conformal mappings of systems in a 3-D, Hat space. The algorithm
may also serve for the investigation of 2-D critical systems in special geometries such
as the surface of a sphere or on the interior of a circle.

Concerning the possibility of generalizations to other models, the description of
spin con6gurations by means of well-de6ned interfaces seems to exclude models with
continuous spin variables such as the XY and Heisenberg models. However, algorithms
for discretized versions of these models, such as clock models, may well be feasible.
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