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Constrained tricritical Blume-Capel model in three dimensions
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Using the Wolff and geometric cluster Monte Carlo methods, we investigate the tricritical Blume-Capel
model in three dimensions. Since these simulations conserve the number of vacancies and thus effectively
introduce a constraint, we generalize the Fisher renormalization for constrained critical behavior to tricritical
systems. We observe that, indeed, the tricritical behavior is significantly modified under this constraint. For
instance, at tricriticality, the specific heat has only a finite cusp and the Binder ratio assumes a different value
from that in unconstrained systems. Since 3 is the upper tricritical dimensionality of Ising systems, we expect
that the mean-field theory correctly predicts a number of universal parameters in three dimensions. Therefore,
we calculate the partition sum of the mean-field tricritical Blume-Capel model, and accordingly obtain the
exact value of the Binder ratio. Under the constraint, we show that this mearnriieltical system reduces to
the mean-fieldcritical Ising model. However, our three-dimensional data do not agree with this mean-field
prediction. Instead, they are successfully explained by the generalized Fisher renormalization mechanism.

DOI: 10.1103/PhysReVvE.70.046111 PACS nunier05.50:+q, 64.60.Cn, 64.60.Fr, 75.10.Hk

I. INTRODUCTION spectively, and the magnetic ones a4g=77/40 andy,

- =9/8, respectively.
In the development of the theory of critical phenomena = ", o0 dimensions, exact results are absent for the BC

g?d phgse trg?:sitiong, Iah spinl—l I:(sjing T“Ode't kr;ovvln "’_‘rsh.thﬂwodel along the critical line&k(D), and investigations of
u;n?- apet_ .) To.et gs pgys §|n |mpor§nc ro'e. IS ritical behavior have to depend on approximations such as
model was originally introduced by Blume and Capkl], series ande expansions, and Monte Carlo simulations

and the reduced Hamiltonian reads [13-14. However, the tricritical Ising model is somewhat
- _ ‘ _ special, in the sense that it is one of the rare cases in three
HlksT K% 55+ DEK‘, S(8=%10, @ dimensions that exact information is available about critical
) ) ) ~singularities[4]. This is possible becausis the upper tri-
where the sung ) is over all nearest-neighbor pairs of lattice ¢ritical dimensionality of Ising systems. As a consequence,
sites. The spins assume values =1 and 0, and those in statefiical exponents can be exactly obtained from renormaliza-
are referred to as vacancies. The abundance of vacanciestign calculations [17] of the Landau-Ginzburg-Wilson
governed by the chemical potential which is also termed Hamiltonian. The thermal and magnetic tricritical exponents
the crystal field parameter. The phase diagram is sketched @] arey,; =2 andy,,=1, andy,;=5/2 andy,=3/2, respec-
Fig. 1. ForD—-=, the vacancies are excluded, and thetjvely.
model(1) reduces to Onsager’s sp@model[?,]. The critical An experimental example of tricritical phenomena in
couping K¢(D) is an increasing function ob. For suffi-  three dimensions is the superfluid transitiortite-*He mix-
ciently large chemical potential, the transition then becomesures[4], which is sketched in Fig. 2. The transition at the
first order, separating the vacancy-dominated phase fronricritical point is known as tha transition. In fact, the order
those dominated by plué+1) or minus(-1) spins. At the parameter in théHe-*He mixtures is a vector of two com-
joint point, these three coexisting phasésultaneouslype-  ponents, so that the superfluid transition should in principle
come identical, and this point is then callgt] the tricritical
point, denoted a¢K;,D,) in Fig. 1. 1/K
In two dimensions, the nature of critical singularities of
the BC model is now well established. For instance, as early
as in 1942, the exact expression of the free energy was ob-
tained by Onsag€i3,5] for the spin% model. The universal trigritical
ferromagnet /
]

A
paramagnet

thermal and magnetic exponents ge1 andy,=15/8, re-
spectively. At the tricritical pointK;,D,), exact values of the

universal exponents follow from Baxter's exact results for ' vacancies

the hard-square lattice gd$6,7], in the same universality ] -
class as the tricritical Blume-Capel model; further, these ex- Pk

ponents can be calculated from the Coulomb gas thg 8y

and are also included in predictions of the conformal field FIG. 1. Sketch of the phase diagram of the BC model. The solid

theory [10,17]. The leading and subleading thermal expo-line represents the critical line, which separates the para- and ferro-

nents at tricriticality ard6-12 y;;=9/5 andy,,=4/5, re- magnetic phases; and the first-order transition is shown as a dashed
line. The two lines join at a tricritical pointblack circle.
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T two dimensions,C of the spin—% model is divergent in a
normal fluid logarithmic scale since=0. For this marginal cas€; of the
Syozi model reaches a finite cusp, also of a logarithmic na-
ture. Later, this was discussed in a more general context by
Essam and GarelicR2] and by Fishef23]. It was pointed
out that relationg2) are not specific to the Syozi model, but
are more generally satisfied by equilibrium models with a

f s divergent specific heata>0). Since then, the so-called
Fisher renormalization of constrained critical systems has
gained considerable acceptarjied—217.

FIG. 2. The schematic phase diagram die-*He mixture in A description of constrainetficritical behavior was for-
the plane of temperatur® and mole fractiorx of *He. The tem- ~Mmulated by Imry and his co-workef28] in the context of
perature can be understood as the inverse coupling constérinl/ the renormalization groupRG) technique. Using the ex-

superfluid

Eg. (1). pansion and a generalized Landau-Ginzburg-Wilson Hamil-
tonian, they found four distinct fixed points: the tricritical
be described by th©(2) model, the so-calleXY model. Ising (TI), critical Ising (Cl), renormalizedtricritical Ising

Nevertheless, the renormalization calculations yield the sam T, a“‘?' feﬂmma"zedc“.“c?' Ising (RCI) fixed points.
critical exponents for th@(n) model withn= 1, apart from Renormalization flows deviating from Tl can move into the

logarithmic corrections. Thus, in this sense, the BC modef'xfad point C.' or RTl, and those from CTI can e'nd at the RCI
(1) is still qualitatively applicableg4] at the A point. One point. The critical exponents at these fixed points are related
would then simply expect that the tricritical specific heas 85 @rci=~aci/ (1~ac) and agn=—ar/(1-ar), in agiee-
divergent with a critical indexa=2-d/y,;=1/2. However, me_nt with Eq. (2). For the spatial dl_men3|onalltyi_/3, .
this expectation does not agree with the existing experimerpo'”ts Tl and RTI correspond to Gaussian and spherical fixed

tal results:C was observed18] to have only afinite cusp ~ POINtS, respectively. Thus, one has the critical indiogs
with @=-0.91) at the\ point. =1/2 and agy=—aq/(l-aq)=-1 in three dimensions. If

This lack of agreement is the result of an important dif-One assumes that constrained behavior of an annealed tric-

ference between the systems in the aforementioned theoreff:[i(.:allsysﬁrn is gove_rned. byhthe fixed deim RTI, the therg) i
cal and experimental contexts. This is reflected by the dis[ﬁtlca pre |ct|0n|aRT|——l Is then In good agreement wit
tinction between Figs. 1 and 2, of which the first deals withne experimenta .O.bservlatlcmE.S] a—_—O.SXl). .

models in the spacé,D). In contrast, Fig. 2 uses the mole At the upper critical dimensionality, the mean-field theory
fractionx of *He as an independent paramejte]. The frac- is generally believed to correctly describe some universal
tion x plays a similar role as the vacancy denéity in £ aspects of phase transitions. Indeed, for the tricritical BC
Therefore, a correct theoretical description of xheansition .modell in three dimensions, a numper of universal quantities,
in Fig. 2 should be based on a restricted partition sum with énclugmg thel therlmall ar;j ][nagneUc expfc_)nlem and yf;l'
conserved number of vacancies. In other words, an externgf" P¢€ exactly calculated] from a mean-fieldMF) analy-

constraint is imposed on the systém. This constraint is of ~ S'S: In the present paper, we also perform some_exact calcu-
the “annealed"ptype[19] sincey vgn(?ancies are allowed to lations for the MF BC model. Under the constraint that the
move freely over the lattice according to the Boltzmann dis0t&! number of vacancies is fixed, we show that tiiriti-
tribution. cal MF BC model reduces to theritical MF Ising model.

Constrained critical behavior has already been studied folF|.owever, this MF result is not what one would expect for the

decades. As earlier as 1965, Sy20] introduced a deco- tricritical BC model in three dimensions, since the constraint
rated Ising model on al-dimensional lattice, which was should not change the universality class. Thus, the present

shown[21] to be intimately connected with annealed sys-PaPer also takes another approach: following the basic ideas
tems. The Syozi model can be exactly transformed into thd? Ref. [23], we generalize the Fisher renormalization

spin—% model, and critical exponents of these two systems ar echanism fp r constrame;ﬂnmal _behgwor to .tr|cr|t|cal Sys-
ems. In particular, we derive finite-size scaling results based

related as . . ;
on this generalized mechanism.
a.=-al(1-a) =BI(1-a) In addition to these theoretical analyses, we perform a
s s ’ Monte Carlo study of the constrained three-dimensi¢aB)
and vs=vl(l-a), ... (20 BC model. For systems with a conserved number of vacan-

cies, efficient simulations have become possible only after
wherea and B are the standard critical indices for the spe-the introduction of the geometric cluster methf2p—31.
cific heatC and the magnetization density for the spin3  This algorithm was developed on the basis of spatial sym-
model, respectively, and=1/y; is the inversion of the ther- metries, such as Hamiltonian invariance under spatial inver-
mal exponent; those with the subscript “s” are for the Syozisions and rotations. It moves groups of magnetic spins and
model. It can be shown that the hyperscaling relations stilliacancies over the lattice in accordance with Boltzmann dis-
hold among the critical indicess, B, etc. In three dimen- tribution, while the global magnetization and vacancy densi-
sions, the spin}- model has > a>0, so that the specific ties are conserved. Then, the aforementioned constraint can
heatC of the Syozi model does not diverge at criticality. In be realized by a combination of the geometric method and
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the Wolff algorithm[32], which acts only on nonzero spins N N-Ny K [N=N. -2N.\2
and thus allows magnetization fluctuations. Z=> > c(Nd,Nv)exp{—N<”—d)
The outline of the remaining part of this paper is as fol- Ng=0 N,=0 2 N
lows. Section Il presents exact calculations of the tricritical K
MF BC model, and the Fisher renormalization mechanism is - (D + ﬁ)(N - Nv)} , (7)

generalized to constrained tricritical systems in Sec. lll. Sec-

tion IV presents our Monte Carlo results for the 3D BC where the combinatorial factor(Ng,N,) counts the total

model, and a short discussion is given in Sec. V. number of configurations witNy minus spins and\, vacan-
cies

Il. MEAN-FIELD BLUME-CAPEL MODEL NI

Ng! N, ' (N=Ng=N,)!’

C(Ndv Nv) = (8)

In this section, we perform an asymptotic analysis of the
finite mean-field BC model. On this basis, we hope to obtain o o )
some exact results for universal parameters describing cor¥fter the substitution of the magnetization density=(N
strained behavior of the tricritical BC model in three dimen-—N,~2Ng)/N and the vacancy densify,=N,/N in Egs.(7)

sions. and(8), one has
The mean-field version of a finite BC modgd) is ex- 1 1 K
pressed by the Hamiltonian 7= 2N2f dmf dpvc(m,pv)exp<—Nmz— DN(1 ‘Pv))
NN 0 0 2
K
H/kBT:—NZ Y s5+DX s (=10, (3) X[1+O(LN)], (9)
i=1 j=i+1 k

where we have replaced the sums in Ef.by integrals over
whereN is the total number of spins, and each spin is inter-the magnetization and vacancy densityand p,, and ne-
acting with each other spin. Then, the local Hamiltonian ofglected correction terms of order [/ Substitution of the
the ith spin, i.e., the terms in Eq3) involving that spin, tricritical values ofK and D, application of the Stirling’s
reads formula Ir(N!):(N+%)In N-N, and Taylor expansion of

" In c(m,p,) yield

K
. = - . — i = 3 9 81 27
kT =~Ksm+ DS+ (S WINMN= 28 ) 1 oim ) = - SN, + 172 - SN~ N,
wherem is the global magnetization density. The last term in 9 ;3 81 82k
Eq. (4) vanishes as N, and will be neglected. The tricritical B gN(‘SPv) - EN”‘G +NO[m*"*(6p,)"]
point [4] of this MF system can be calculated as follows.

According to the Boltzmann distribution, E¢t) determines +-- (k=0,1,2,3,4 (10

the statistical probabilityv of the local spins as where 8p,=p, - p,: represents fluctuations of the vacancies.

On this basis, the partition su(®) can be written as
1 Km 1 D
w§=1)=-€" w§=0)=-¢", w -
V4 4 7= szf dm e—(gl/lQNrrF[l + NO(mg)]J df) e—(9/4)N;,2

1 0
andw(s = - 1) = =e’km, (5 o3
z X (1 +2NnP + NO(mP))
with a normalization factoz=eX™+eP +e M, Thus, the local * *
1 YINY) +(9/40NnP —(9/4)Np?
magnetizations;) and the global onen are related as =f'N fo dm €49 f_ dp NP

(s;) = 2 sinHKm)/[exp(D) + 2 costiKm)]. (6) X[1+O(1/N)], (11

At tricriticality, the stability criterion requires thatn  wheref andf’ are constants and we have introduced a new
=0, o(s)/om=1, andd¥s)/om*=0. From Eq.(6), solution variable’p=dp,+m?. The integration boundaries have been
of these requirements yields the tricritical pointgs3 and ~ €xtended to infinity, and this can be shoy&8,34 to intro-

D,=2In2, and the corresponding vacancy densitypas duce only an error decaying exponentially with Equation
=p,i=21/3. (12) indicates that the tricritical fluctuations of the MF BC

model (3) consist of two parts: Gaussignormal) fluctua-
tions of a combined variablg and those of the magnetiza-
tion described by a weight ekpONnF/40). The absence of

The Hamiltonian(3) depends only the numbers of down m? andm® in Eq. (11) is an essential characteristic of tié
spins and vacancies, which are denotetlgandN,, respec- theory and the mean-field description of tricritical phenom-
tively. Expression of the partition suz in these variables ena. For later convenience, we rewrite Etfl) in the vari-
leads to ablesx,,=9NmP/40 andx,=9Np?/4 as

A. Unconstrained systems
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i o 0.8
zZ= B(N)f Ay X2/ e'me dx, x;2e%[1 + O(1/3N)], 075 |
0 0 07 |
(12) 0.65 |
s 06
whereB(N) is a function ofN. Then, substitution of thé’ ©  ossf
functionT'(2) = f5u? e %dz yields the partition suntll) as 051
045 |

z=BN)[($)T(3). (13 04

0.35

In the study critical phenomena, several universal ratios 296 2.97 298 299 3 301 3.02 3.03 3.04
of finite-size scaling amplitudes, closely related to the quan- K
tity originally introduced by Bindef35], play an important . .
role. Particularly, these dimensionless ratios are very useful FIG. 3. The Binder ratioQy, of the MF BC_model atby
. L " . =21In2 for 2.96sK=<3.04. The data points ard=100(+),200
in Monte Carlo determinations of critical points. Here, we

consider two such ratios, which are defined on the basis

fluctuations of the magnetizatiom and vacancy density,
as

PP (o
0= Gy T

with 8p,=p,—p,t, s mentioned earlier.

ndQ, (14

From the probability distribution implied by the partition

o)

(). 400(T1), 600(O), 800(2), and 1000().

((8p,)*%) = @% = AB>(mP) + 652N (M) — 4@pNm) + ().
17

At the tricritical point, one ha$dp,)=0, so that(p)=(n?). A
detailed calculation then yields

Q_1:<_3+p<m4> ) <m8>> (<m4> _1>2
sum(12), the expectation values of the moments of the mag- " A2 (mAd T (R (mP)? ’

netization densityn are then obtained as
B(N) [~ *
<m2> — (Z )fo de mZX;]5/6e—me‘0 dXU X;l/2 e

_ ( 4_0)1’3F(%)

-2/
N/ T(3) +OINH),

. ﬂ)ZB]“(%) 5
<m>—<9N F(%)+O(N ),
6 _ @)F@
and
o _ @)“’WG)
<m>—<9N r(§)+O(N 3. (15)

Therefore, the dimensionless ra@, is
Qn=T%(3)/T(§)T(5) + OIN¥9 =3+ O(N™), (16)

where we have used the formul®(Z+2T(3-2)=m/
cogm2), so thatl3)=7 and"(})T'(2) =27

The exact value of), can be obtained as follows. From

the definitionp=dp,+m?, one has

<6pv> = <'ﬁ> - <m2>,

((8p,)?) = (%) = 2(p)(mP) +(m),

and

(18

so that

—

D=
~—

—

3
lezg-g[ E ] ~ 3.8348, (19)
andQ,=0.2608.. .

The aforementioned calculations implicitly yield the
mean-field thermal and magnetic exponents. Equaddim-
dicates that the mean-field quantity?) can be regarded as a
type of energy density. From the definition of the magnetic
susceptibilityy=N(m?), one has then the scaling behavior at
tricriticality (m?) o NV1=N%=2, Here, we have introduced
the mean-field critical exponenysandy;, which are related
to the standard leading thermal and magnetic exponents in
finite dimensions ag;; =dy; andy;,; =dy;, with d= 3, respec-
tively. The above scaling formula gives the mean-field rela-
tion ¥,=2y,—1, which generally holds for mean-field sys-
tems. On this basis, E¢15) yieldsy,=2/3 andy,=5/6 for
the tricritical MF BC model, so that one hgg=2 andy;;
=5/2 inthree dimensions, in agreement with the existing RG
results[4].

NI
~—

B. Monte Carlo simulations

The mean-field calculations in the above subsection rely
on the limit N—oc, and thus we have performed numerical
tests for finiteN. Using the standard Metropolis method,
which is adequate for this purpose, we simulated the uncon-
strained mode(3) for D=D;=21n 2 in the range 2.96 K
<3.04. The system sizes were takenNes100, 200, 400,
600, 800, and 1000. The MF result for the tricritical point is
confirmed by the clear intersection of tkgg, versusK data,
shown in Fig. 3 aK=3. Then we simulated precisely at the
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TABLE I. Monte Carlo data forp,,Q,, andQ, for the MF BC model at the tricritical poir;=3 and
D;=2In 2. The numbers in parentheses represent the error margins in the last decimal place.

N 10 20 40 60 100 200 300

p,  0.533643) 0.543143) 0.557563) 0.566662) 0.578042) 0.592512) 0.600272)
Qm 0451595 0.4581%6) 0.463526) 0.466446) 0.469926) 0.474497) 0.476948)
Q, 0401325 0.369886) 0.345467) 0.333887) 0.321298) 0.30748) 0.300999)
N 400 600 1000 2000 4000 8000 16000

p,  0.605412) 0.612112) 0.619701) 0.628521) 0.635871) 0.641831) 0.646782)
Qn 0.478538) 0.48061)  0.48311)  0.48621)  0.488G1)  0.491@2)  0.49272)
Q, 0.296839) 0.291§1) 0.286%1)  0.28071) 0.27631)  0.27322)  0.270G2)

tricritical point (K;,D,), with system sizes 18 N<16 000. C. Constrained systems
The sampled quantities include the magnetic susceptibility 0. o ME BC model3) with a conserved number of

x=N(n?), the vacancy density,, and the Binder ratioQ  \acancies, the reduced partition sum is obtained from®q.
and Q,. Here, the quantityQ, is defined by Eq(14), but  py excluding the integration over vacancy fluctuations:
Sp,=p,—pyt IS replaced bysp,=p,—(p,) for finite systems.

The latter definition 0ofQ, is more natural in the sense that, K

for finite-dimensional systems, the exact valuegfis gen- Z' = sz dm 5pv,2/3C(m,Pv)eXD(ENmz -DN(1 —Pv))
erally unknown. Further, at tricriticality, since the quantity

(p,) approacheg,; as N—», these two definitions do not X[1+O(1/N)]. (21)

have qualitative difference. The data fay, Q. andQ, are o )
shown in Table I. According to the least-squares criterion, wet can be shown that, at the tricritical poiti,, Dy), Eq. (21)

fitted the Monte Carlo data by reduces to
- - i % -
X(N) =Xo +N Yh 1(X0 + X]_Nyl + X2N Yi + X3N3§/l)' 7/ = NZJ dm e_(9/4)Nm4[1 + O(NmG)], (22)
po(N) = pye + NV (g + pyNYi + poNi + pNH), which characterizes theritical mean-field Ising model
[17,33,34.
N) = O+ g NVi + g NDi + g NFi The reduction to theritical MF Ising model can be fur-
QN) = Quy + Gna N + G Gma™ ther understood as follows. In mean-field systems, each spin
and interacts with each other spin. Only the number of vacancies,
not their positions, matters. One can then rearrange the labels
Q,(N) :Qvt+qle7i +qU2NZ>7i +qU3N3?i_ (20) of the Ising spins and those of the vacancies, such that all

_ 5 - Ising spins are counted from 1 t§/3 and vacancies from
The terms with the exponefif account for finite-size cor- N/3+1 toN. Then, the constrained Hamiltonian reads
rections, withy;=-1/3, as indicated from Eq16). Results

are given in Table I, where the estimationypfvas obtained K’ N’ N’

from the fit of Qy with Qp fixed at 1/2. The theoretical H/kBT:__,E +2DN' >, ss(s=+1), (23

predictions and the numerical determinations are in fine N"is1 jmi+l

agreement. For clarity, the data f@, is shown in Fig. 4 as

Q,—0,2N"23 versusN™3, with q,, taken from the fit. where the sum is now only oved’=N/3 Ising spins, and
These exact results are not only theoretically interestingk’ =K/3 is the coupling constant in Eq23). For K=K;=3,

but also practically useful. For instance, the exact values oEq. (23) describes a MF critical Ising model with’ spins,

Qi andQ,; are very helpful in a Monte Carlo determination and the critical point is a’ =K =1. In this case, the Binder

[36] of the tricritical point of BC models in three dimensions. ratio Q,, assumes 1212(%)/1’2(%1):0.4569.. [(33) and(34)].

TABLE Il. Results of a least-squares analysis of the Monte Carlo data for the MF BC model at the
tricritical point K;=3 andD;=21In2. The numbers in parentheses represent the error margins in the last
decimal place.

Vi Vi Yi Put Qmt Qut
Theory 5/6 2/3 -1/3 2/3 1/2 0.2608
Fit 0.8332) 0.6672) -0.3321) 0.666646) 0.49983) 0.26093)
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033 = scripts(i, j) represent differentiations with respect t and
032t /;/ K j differentiations with respect tt,. Here, we mention that,
031 | e for finite systemd., the conjugate quantity dD is the ex-
S,z 03 | // pectation value of the vacancy dens{py(t;,t,)) instead of
& 02.9 ! pd py(t1,to) itself. Under the constraingp,(t;,t2))=(p,(0,0),
S 0'28 //' Taylor expansion of Eq25) near the tricritical point leads to
021} ~ 0 =b, L%, + bLYu™Ye %, + bt + b,t,, (26)
0.26 : : : : whereb,,b,,bs, andb, are constants, andnly the leading
0 005 01 015 02 025 03

FIG. 4. The Binder rati®@, of the MF BC model at tricriticality.

N3

The dataQ, —q,,N"?" are shown v&\™'3, whereq,,=0.262) was

taken from the fit.

Ill. GENERALIZATION OF FISHER'’S

terms are kept in the expansionsfgfandf,. The constraint
equation(26) describes the approach of the constrained BC
model to the tricritical point in the parameter spdtgty).
However, the analytic form of the path still depends on the
relative values o/, Y;», andd, and so do the critical expo-
nents describing the constrained critical singularities for
t;,t,—0. It follows from Egq.(26) that, near the tricritical

point, the thermal fields; andt, are related as follows.

(1) For 2y;—d>0 andy; +y;,—d>0, the first two terms

As mentioned earlier, constrained critical phenomena caim the right-hand side of Eq26) dominate ag — o, so that
be successfully explained by the Fisher renormalizatiorone hasLYut, «LYet,, i.e., t,>t; and K-K,~t,. Thus, the
mechanism[23—-27. The basic idea of this mechanism is leading thermal exponent of the constrained system is equal
straight-forward and fundamental. It is based on the thermoto the subleading exponewb.
dynamic relation that, in the language of the BC model, the (2) For 2y,-d>0 but y;+y;,—d<0, one hasLYut;
vacancy density, and the chemical potenti@ are conju-  «L%Yut,, The leading exponent is renormalized yas— d
gate parameters. Let be the reduced free energy of the —y,. This case was already correctly included as one of the
unconstrained critical model as a functionkfandD. The  possible outcomes of Imry’'s renormalization calculations
constraint equation is then expressedpgs—df/dD=const. ~ [28], as mentioned in Sec. I.
This yields the path of the constrained system in the param- (3) For 2y,,-d<0, i.e., the unconstrained specific heat
eter spacé€K,D), which appears to be singular at the critical does not diverge at tricriticality; is linearly related td, as
point. In this section, we follow a similar procedure and gen-t; *t,, and no exponent renormalization occurs.
eralize the Fisher renormalization mechanism such that it can In short, for a system with a divergent specific heat at
describe constrained tricritical phenomena. In particularfricriticality, critical exponents are renormalized under the
since the Monte Carlo simulations, which will be describedconstraint; otherwise, no renormalization occurs. However,
in Sec. IV, have to take place at finite systems, we shall firsgince tricritical systems have two relevant thermal figlds
focus on the finite-size scaling behavior of constrained tricandt,, the tricritical renormalizations can appear in different

RENORMALIZATION

ritical systems.

ways, depending on whether or ng{+y;,>d.

As a first step, we express the finite-size scaling formula Then the expression of the reduced free endrgygf the
of the reduced free energyof an unconstrained systep]

near the tricritical point as

constrained tricritical BC model can be obtained by substi-
tution of the above renormalization in E@4), which yields

f(tl,tz,l_) = L_dfs(tlLytl,tzLytz) + fa(tl,tz) . (24)

Here,L is the linear system size, and it can also be recog-

. . : o ol - +Ypp >
nized as a scaling factor in the context of the renormahzatlorivce;eg%ﬁ g;luiléoﬁéad@ yi'dar;gggegirv)éﬁly Y=, Yu
t2 t1 ’ t1 y .

?;?éft tgigrty'rghrzslgﬁﬂﬂg (?QSar?cuebltiatilg?r'th?m?l s.c?lnlg Next, we consider the effect of the constraint in an infinite
'_ 1 2 Tepre ! : icritical point & system. We interpret the paramelein Eq. (24) as a rescal-
t,=1,=0. The functionds andf, are singular and analytical ing factor that can be arbitrarily chosen. Thus, we may set
parts of the free energy, respectively. We have neglected . -1l o -1i(dyn)
: S f . the rescaling factob=t,~"2 for case 1 and.=t for
irrelevant scaling fields and also suppressed magnetic scallr%g!‘se 5> o that the thérmal fieltisand t, are r2elated as,
fields in Eq.(24). For the BC model described b , the ' - . 2o

a.24) y EQ) oty andt o<t YW respectively. Substitution of these

thermal fieldst; andt, are analytic functions oK andD. . “ . .
Thus, differentiation of Eq(24) with respect tdD yields relation in Eq.(27) yields the constrained reduced free en-
ergy f’ of an infinite system as

f'(ty,tp,L) = L_dfé(tlLY{lytzLytz, D+ 1tut),  (27)

£/ (ty,t,) o 27 W(t,tP).

of _ _
—(p,(t1,1p)) = Do ay LY df(sl'o)(tlLytl,tzLy‘Z) + @yl Ve Y (28)

X (LY, L) + 2, f 1Oty 1) + apf OV (ty,t,), Here, the critical index is given by’'=2-d/y,; and the
(25) crossover exponent szt;ytzly{l, \{vith yi; given earlier, and
W represents an analytical function. For the cgged—y,,
wherea;=dt;/dD anda,=dt,/JD are constants. The super- one hase’=-a/(1-a), in agreement with Eq.2).
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During the derivation of these scaling equations, we have

used Taylor expansions, for instance, of E2f), and kept

only the leading terms. Therefore, in addition to those from
irrelevant thermal fields, we expect that new corrections are

induced by the constraint.

Constrained tricritical behavior in three dimensions

As generally expected at the borderline dimensionality for
mean-field-like behavior, logarithmic corrections to scaling

occur in tricritical BC systemsgl) in three dimensions. This

has already been obtained in renormalization calculations of

the Landau-Ginzburg-Wilson Hamiltonian. Near the tricriti-

cal point, the reduced free energy of the 3D BC model readéc

(4]
f(ty,t5,hy,hy,0,L0)
= L3 (L2 oL L35 hy L52 hL 32,5110 5 )
+fa(tyto), (29

where the parameter, also an analytical function df and
D, describes the leading irrelevant thermal field. For com
pleteness, we have also included the leading and subleadi
magnetic field$, andh,. The amplitudd_o=1+2% InL ac-

counts for the aforementioned logarithmic corrections. Equa-
tion (29) indicates that these corrections occur not only in the

irrelevant fieldv but also in the subleading fields and h,.
It follows from Eg. (29) that the unconstrained specific
heatC in systemg1) is divergent(2y,;—3>0) at tricritical-

ity, and thus the critical exponents are renormalized undegi

the constraint. However, the 3D tricritical BC modg) is a
marginal case in the sense the critical expongntsy;,—3

=0, so that it is not immediately obvious how the renormal-

ization occurs. Taking into accouhf®® in Eq. (29) for the

subleading field,, we conclude that in constrained systems

the leading thermal exponent is renormalizedygs 3 -y,
=1.
IV. MONTE CARLO SIMULATIONS

A. Unconstrained BC models

The tricritical BC model1) has been investigated on sev-

eral three-dimensional lattices, and various techniques have
been developed, including the self-consistent Ornstein-

Zernike approximation37] and Monte Carlo simulations
[36,38.

In comparison with the well-known Swendsen-WdB§]
and Wolff [32] algorithms for the spir%— Ising model, no

PHYSICAL REVIEW E 70, 046111(2004)
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FIG. 5. The unconstrained magnetic susceptibijitpf the 3D
model at tricriticality, shown v&m=3, with y,,;=5/2.

lattice. In this way, critical slowing down is significantly sup-
pressed. Making use of the exact values@f and Q,, as
calculated in Sec. Il, we locatg@6] the tricritical point as
K;=0.71331) and D;=2.03134); the expectation value of
the tricritical vacancy density is,;=0.648%2), rather close

to the mean-field value 2/3. Consistency between these re-
sults and existing determinatiorj87,3g, K;=0.7063), D,

nqu.O](l), andp,;=0.6556), exists within a margin of about

twice the quoted errors. Here, we have applied other tech-
niques, including a simultaneous analysis of various quanti-
ties for different systems such that parameters in common
appear only onc¢l6]; the details of these numerical analy-
ses will be presented elsewhdB5].

For a comparison of constrained tricritical behavior, we
mulated the constrained BC model at the tricritical point
(K;,Dy), as determined earlier, with system sizes I6=< 32.

We sampled the magnetic susceptibilitythe energy density
(e), the specific hea€, and the Binder ratios, etc., respec-
tively. Here, the energy densite) was defined as nearest-
neighbor correlations, and the specific h€ateads

C=L3K4(e? - (e)?), (30

representing the strength of critical fluctuations(ef. At

tricriticality, the scaling behavior of these quantities can be

derived from Eq(29) as

X =Xo L¥m3= |_2' () — gy Lyu-3= L_l,
andC-cyo LYu3=, (31

where the termsg, €y, andc, arise from the analytical part

of the free energy. The Monte Carlo data fpr(e), andC

are shown in Figs. 5, 6, and 7, respectively. The approximate
linearity for largeL in these figures confirms the tricritical

cluster algorithm has so far been developed to efficiently fligfinite-size scaling behavior described by E81).

between Ising spins and vacancies near the tricritical point. Apart from the conventional specific he&®, we also
Thus, Monte Carlo simulations of the unconstrained triCI’iti-sampled a related quantitg, on the basis of the Fourier
cal BC model(1) suffer from critical slowing down. Using a components o&(x,y,z) for systems of sizé.:

combination of the Metropolis, Wolff, and aforementioned 1t
geometric clustef29-3] steps, we simulated the BC model - = ;

(1) on the simple-cubic lattice with periodic boundary con- Slesk, ™ |3 0 dx dy dz €y, )exp 2 (xk + i + ZIIL].
ditions. The fluctuations between vacancies and Ising spins (32)
are realized by the standard Metropolis method; the Wolff

algorithm flips between +1 and -1 Ising spins; and the geo©bviously, ey is just the global energy density; and
metric steps move groups of spins and vacancies over thquantitiesel%kyykz for ky# 0, k,# 0, ork,# O represent spatial
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FIG. 6. The unconstrained energy densfgy of the 3D BC
model at tricriticality, vsLY1173, with y,;=2.

FIG. 8. The unconstrained structure factor of the specific Ggat
of the 3D BC model at tricriticality, v& 213, with y,;=2.

inhomogeneities o&(x,y,z). Then, the quantityCs can be =0.71331) andp,.=0.64852) [36], respectively. For a finite

defined in terms Oékx,ky,kz for the smallest wave numbers as system, however, the number of vacandigs=L3p,. is not
a2 an integer, so that the actual simulations took placeNa]

Cs=L"KXe_1,0,€1,00% €,-1,80,10% €0,0-1€00.2- (33 and[N,]+1, where the bracket§ denote the integer part.

The physical meaning of; can be gleaned in comparison The value of a sampled quantity B, was obtained by a
with the conventional specific he@t First, as indicated by linear interpolation betweefN,] and[N,]+1.
Egs. (30) and (33), both quantities represent fluctuation ~ The Monte Carlo data foy, (€), andC are shown in Figs.
strengths ofe i\, With k,=k,=k,=0 for C and |k|+|k| 9. 10, and 11, respectively. As illustrated by Figs. 5 and 9,
+|k,|=1 for Cs. Zecond, botlC and C, can be expressed in the magnetic exponent describing the divergence of the sus-
terms of a sum of energy-energy correlation functions. Thus¢eptibility x, i.e., y,;, remains unchanged under the con-
we expect thalC, behaves as a specific-heat-like quantity, straint, which indicates that the constraint on vacancies does
and we refer to it as the structure factor of the specific healfot qualitatively influence magnetic quantities. However, the
C. Then, the tricritical scaling behavior @, is also gov- critical behavior of energylike quantities is significantly
erned by Eq(31), and this is confirmed by Fig. 8. modified. In particular, the tricritical specific he& is
strongly suppressed so that it only takes a finite valué as

— o0, This constrained phenomenon is in agreement with the
generalized Fisher renormalization mechanism presented in

For the three-dimensional BC mod@) with a conserved  S€c. lll. Further, from Eqs(27) and (29), the quantitative
number of vacancies, we used a combination of the Wolffinite-size behavior ofe) and C at tricriticality is described
and geometric cluster steps only. The chemical poteBtial by
Eqg. (1) becomes implicit and does not play a role in con-
strained Monte Carlo simulations. One particular feature is
that these simulationdardly suffer from critical slowing
down even near the tricritical point. This may be attributed to

the fact that the constrained specific h€atioes not diverge wherey/, =3-y;;=1, as mentioned earlier. These theoretical
at tricriticality, as discussed later. Therefore, we extensivelyyredictions, i.e., Eq(34), are reflected by the approximate

simulated systems in the range<@ <128. The coupling |inearity displayed by the data in Figs. 9 and 10. We fitted the
constantK and the vacancy density, were set atKi  gata for(e) andC by

B. Constrained BC models

(&) -y LY 3=L2andC-cy = LAu3=L"1, (34

220 ; . . , . 4000 . , ,
200 | o P

180 | 1 -
160 t . 3000 |
140 | s ] 7
o 120¢ e 1 < 2000 | e
100 | 1 -
80 | 1 e
60 . 1000 + el

40 r o 1 <

20l _ e

5 10 15 20 25 30 35 0 4000 8000 12000 16000
L L2

FIG. 7. The unconstrained specific h&abf the 3D BC model
at tricriticality, vs L1173, with y;;=2.

FIG. 9. The constrained magnetic susceptibijtpf the 3D BC
model at tricriticality, vsL2h~3, with y,;=5/2.
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FIG. 10. The constrained energy densiy of the 3D BC model FIG. 12. The constrained Binder ratf@,, of the 3D BC model
at tricriticality, vsL™2. for K=0.71332), vs the vacancy density,. The data points are

L=16(+),20x, 24 (D), 28 (O), 32 (), and 36(0)

(@=ey+e (L +by/InL+by/L+byL?) (35 4

Qu(K,L) = Qi 2 (py = pu) LY + by/in L+ by/L + by/L2
and k=1

, - vt
Coco+ o1 +dy/inL+d,/L+dyL?),  (36) + Clpy = Pl 37

wherep,, is the tricritical vacancy density. The renormalized

respectively. The logarithmic corrections from the irrelevant

: ; ; ; thermal exponent was taken g5=1, and we obtairb
fields are described by the terms with amplitubesndd;. N . . T
The fits of (&) and C yield thaty/,=0.992) and 1.022), =0.0665) and Q,;=0.6876), with two standard deviations

respectively, with error margins of two standard deviations 29a!"- The value ol is in agreement neither witkQ,

This is consistent with the expectatio,=3-y,=1. We =1/2 for unconstrained systems nor with the mean-field

: : . critical Ising valueQ,=0.4567.. .
mention that Eqs(35) and(36) are in fact neither complete . ¢ . —
p " o : : The influence of the annealed constraint on tricritical spa-
nor “correct” in describing the scaling behavior(ef andC. tial fluctuations can be reflected by the constrained Monte

) . A VAl ot data forC, at the tricritical point, as shown in Fig. 13.
thermal fields,, which can in principle introduce terms with As in unconstrained system€, diverges asC.xL as L

LOZ/S n th_e parentheses of Eq5) and (3_6)' Second, the_ — o, S0 that the leading thermal exponest still governs
Iogarl_thm|c corrections should be Qes_crlbed by terms Wltr}he scaling behavior o€ This is rather different from the
/Lo mstead_ OI ylf,L' However, a§.|nd|cated by the fits of -, qtrained behavior of the conventional specific héat
(€) andC, this "bias” does not significantly affect the results \ iy, js suppressed to be convergent at tricriticality. We fit-
of y;; due to the following reasons. The replacement Ofioq the data foc by

1/InL by (InL)"?® does not significantly change the result s
for y{;. Even neglecting the 1/lb term does not produce a
large change. It appears that logarithmic corrections are not
very serious in constrained tricritical systems. This is also
illustrated by the clean intersection of tli@, data forK  which yieldsy,;=1.9958), in fine agreement with the exact
=K;=0.71331) and 0.645<p,<0.651, partly shown in Fig. valuey,;=2. Therefore, one can conclude that the tricritical
12. The data foQ,, in the range 6<L <128 were fitted by  spatial fluctuations remain unchanged under the constraint.

Cs=Cq+ Cq L1 3(1 +dg/In L + do/L + dg/L?), (38)

0.56 . . . . . . 120 .
0341, ] 100 e
052 | ™ ] e
\\\‘ 50 L ////
05+ . 1 pd
v S U 60
048 | \\ 1 P
046 | . ] 0y o
0.44 + : \\\\ 4 20 + /'/
\\ ‘_‘p"‘ﬁ,
042 . . . : ‘ e 0 . : ‘ ‘ : .
0 002 004 006 008 0.1 012 0.14 0 20 40 60 80 100 120 140
1/L L
FIG. 11. The constrained specific h&bf the 3D BC model at FIG. 13. The structure factdg of the constrained specific heat
tricriticality, vs L™, of the 3D BC model at tricriticality, vé.
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V. DISCUSSION the whole line of phase transitions in the spd&keD), in-
cluding the tricritical point and the first-order transition, re-

Due to the geometric cluster algorithm, a fu”_CIUSterduces to meanfieldritical Ising-like under the constraint.

simulation becomes possible for the tricritical BC model _: . X . .
with a conserved number of vacancies. We have performeﬁ:nce this does not agree with the constrained behavior of

an extensive investigation of constrained tricritical behaviorwﬁa![n\slﬁft'ﬁ]g:]ed rser;?JrI?rtig?emrggr?-?il’el\évihirgrve degeg]iciodmg-
in three dimensions, and observe the following. P 9 Y

(1) The leading finite-size scaling behavior of magneticscribe the universal properties of the constrained tricritical

quantities remains unchanged under the constraint. This is 5203(:‘]' ?;;tsb;gze(r)fc?ﬁgal grlmn;re;;iszlggallilgher renormalization
expected: the vacancy densjtyis conjugate to the chemical 9

potential D, which contributes only to the thermal fields mechanis.m,. as outIine_d. in Sec. Ill, we finite-size analyz(_ad
andt ' several tricritical quantities of the constrained BC model in
2.

(2) The critical behavior of energylike quantities is renor- threg qllmensmns. The agreement betv_veen_ the t_heoret|cal
malized: particularly, the constrained specific h@dtas only predictions z_:md the Monte Carlo results is quite satlsfactory_.
a finite cusp at ftricriticality. The leading thermal exponentWe emphasize that, although the present annealed constraint

Jo~2 1 enormalzed o, =3y, =L whie e Second o (7203 6.3 e of he erile) exponerts Ldogs et modty
Vio=1 remains unchanged under the constraint. y ' ' '

(3) The constrained magnetic Binder ratio at tricriticality es?ehlwetlalélisuhseer cr)fe;[wr(])ernliglli\;eartisgg rg;?;;]rgﬁ:lszrﬁ“gnr:tﬁ%?nsipatus'ht-
is Qm=0.6876), apparently different from the unconstrained , 9
valueQ..=1/2. This is understandable because the univers orward and fundamental. Nevertheless, Imry’s renormaliza-

. mt™” ‘ L ion calculations[28] also give a correct prediction of the
ratio Q,, still depends on boundary conditions, and the aspec

. = . . ) ritical index « for tricritical O(n) systems(n=1) in three
ratios, etc., which influence magnetic correlation functlons.dimensions However we mention that the calculations in
The constraint also belongs to this category. ; '

Ref. [28] did not take into account the effect of the sublead-

(4) Structure factors such &S, accounting for spatial . . : g )
inhomogeneities of conventional quantities, display the sam%1g ther.mal f|eldyt'2. Itis then JUSt'T'Ed to ask the question
ow to includey;, in these calculations.

scaling behavior as in unconstrained systems. This indicates A final remark follows. In a finite system, the vacancy

that the divergence of the spatial correlation length, one esdensitypu need not be equal to its expectation valye),

sential characterization of critical phenomena, remains un- N .

changed under the constraint at least to a scale that is smzﬁ\though this d|ffere_nce vanishes ES%O' _In_ t_he generz_il- .
in comparison with system sizes. In this sense, one can Cc"hz_ed Fisher mechamsm for copstralned tricritical behavior, it
clude that the annealed constraint does not madify the uniS OnlY required thatp,(t;,t;)) is equal top,(0,0)). How-
versality class of a tricritical system. ever, the Montt_a Carlo ;lmulatlons take_ place with= p,t,

As discussed in Sec. II, the constrained version of the-€:» No fluctuation ofp, is allowed. In this sense, the con-
mean-field tricritical BC model displays a behavior which is Straint in our numerical studies is “stronger” than the one in
mean-field critical Ising-like. Apparently, this is different the geperallzed Fisher renormalization, although our present
from the three-dimensional constrained tricritical behaviorlumerical results do not reveal the consequences of this fact.
summarized above. This indicates that the mean-field theory
is not complete in des_qribing_ unive_rsal _critical phenomena ACKNOWLEDGMENTS
even at the upper critical dimensionality. For an uncon-
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