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We investigate random-cluster representations of theq=1- and 2-state Potts models in three dimensions, i.e.,
the bond-percolation and the Ising model, respectively. Using a recently developed sampling technique, we
determine the probabilitiesC1srd andC2srd that a pair of lattice sites at a distancer are connected by at least
one and two mutually independent paths, respectively. The scaling behavior ofC1 and C2 at criticality is
governed by the magnetic and the backbone scaling dimensionXh and Xb, respectively. From a finite-size
analysis of the numerical data, we determineXh=0.4768s7d and Xb=1.125s3d for the percolation andXh

=0.5178s7d andXb=0.829s4d for the Ising model.
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I. INTRODUCTION

The Ising model and the percolation problem have for
many years been of great interest to physicists and mathema-
ticians. While the Ising model presents a very simple theo-
retical description[1] for thermodynamic phase transitions in
magnetic systems, the percolation provides a fascinating il-
lustration[2] of many important concepts of critical phenom-
ena in terms of geometric properties. Both models can be
exactly mapped onto the random-cluster model[3], in which
thermodynamic singularities of the Ising model can also be
represented in terms of percolation clusters. For an introduc-
tion, we start with the Hamiltonian of theq-state Potts model
[4] on the square lattice

H/kBT = − Ko
ki,jl

dsi,s j
ss = 1,2,…,qd, s1d

where the sum is over nearest-neighbor(NN) spins andK is
the coupling strength. The random-cluster model is obtained
as follows. Between each pair of NN sites, a bond is placed
with the probabilityp=1−exps−Kd, so that the whole lattice
is decomposed into connected clusters, i.e., the well-known
Kasteleyn-Fortuin(KF) clusters[3]. The statistical weight of
each bond-variable configuration is given by the partition
function of the random-cluster model

Zrcsq;Kd = o
b

vnbqnc sv = eK − 1d. s2d

Here, the sum is over all bond-variable configurations, and
nb and nc are the total numbers of bonds and KF clusters,
respectively. It can be shown[3–5] that the partition sum of
the Potts model(1) is equivalent toZrc in Eq. (2). The Ising
and percolation models are the special cases withq=2 and
q→1, respectively. Near the critical pointKcsqd, the scaling
properties of KF clusters in Eq.(2) are governed by the
thermal and magnetic scaling fields.

In addition to the thermal and magnetic scaling dimen-
sionsXt andXh, there are still a number of critical exponents
that characterize structural properties of critical KF clusters
in Eq. (2) and do not have a thermodynamic analog. Among
them there are fractal dimensions[6] of “backbones” and of
“red” bonds. Here, we shall briefly review definitions of
these quantities in the language of the bond-percolation
model in two dimensions. Consider anL3L square lattice
with periodic and fixed boundary conditions in thex and y
directions, respectively, i.e., the so-called bus-bar geometry.
If a potential difference is applied to the “bars”y=0 andy
=L and the aforementioned bond variables are regarded as
conducting units, the backbone then consists of those bonds
that would carry a current and the so-called “Wheatstone
bridges.” The current vanishes on these “bridges” acciden-
tally because of zero potential difference between their ends.
If a bond carries all the current and thus becomes “hot” after
some time, this bond is then named a red bond[6]. At criti-
cality, the mass(the total number of bonds) of red bonds and
that of the backbone scale asNr ~Ld−Xr and Nb~Ld−Xb, re-
spectively. Here,d=2 is the lattice dimension, andXr andXb
are termed the red-bond and the backbone scaling dimension,
respectively. Apparently, all the red bonds are on the back-
bone, and the backbone is only a part of the KF cluster which
connects the barsy=0 andy=L. This yields the inequality
XhøXbøXr. For a KF cluster with one or more red bonds, it
will, if any of the red bonds is eliminated, split into discon-
nected subclusters. Therefore, the magnitudes ofXb and Xr
reflect the “compactness” of a critical KF cluster.

For the generalq-state Potts model in two dimensions, the
nature of thermodynamic singularities is now well estab-
lished. For instance, the thermal and magnetic dimensionsXt
andXh can be obtained exactly from the Coulomb gas theory
[7,8]. A large amount of information is also available for
geometric exponents. For instance, the red-bond dimension
Xr has already been identified with the exponent[9–11] that
governs the renormalization flow of the bond probabilityp.
As a result, exact values ofXr can be included in the predic-
tion of the conformal field theory[12,13]. However, except
for some special cases, e.g., the uniform spanning treesq
→0d [4], the backbone dimensionXb has not been exactly
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obtained. Numerous theoretical attempts have been carried
out. It was conjectured[14,15] that Xb=7/16 for theperco-
lation model, which, however, has been falsified by numeri-
cal tests. More recently,Xb is related[16] to the solution of a
partial differential equation, which appears to be intractable
even numerically.

In parallel with these theoretical attempts, several numeri-
cal determinations ofXb have been reported, including
Monte Carlo[17–20] and transfer-matrix[21] analyses. One
of the Monte Carlo methods uses the so-called burning algo-
rithm and evaluates the mass of the backboneNb in the
aforementioned bus-bar geometry. From the scaling behavior
of Nb, Grassberger[18] determined thatXb=0.3569s8d for
the two-dimensional percolation model. For theq=2- and
3-state Potts models in two dimensions, it was estimated[19]
that Xb=0.25s1d and 0.25(2), respectively.

Recently, another Monte Carlo approach was proposed
[20] which makes use of a different formulation of the back-
bone problem. It has been shown[22–24] that the backbone
problem can be related to so-calledk-connected clusters,
where kù1 is an integer. A cluster isk connected if, by
eliminating anyk−1 sites, no separation into disconnected
subclusters is possible. Thus, any two sites in such a cluster
are connected viaat least k independentpaths without any
bond in common. Near criticality, the scaling behavior of the
mass of thesek-connected clusters is dominated by a family
of critical exponentsXk. It is obvious that the aforementioned
KF clusters defined in Eq.(2) are just one type of one-
connected cluster, so thatX1 is just the magnetic dimension
Xh. Moreover, it can be shown[24] that X2 is equal to the
backbone dimensionXb. In the bus-bar geometry, this can be
understood as follows. According to the definition of the
backbone mentioned earlier, a site on the backbone must be
connected to both bars by at least two mutually independent
paths, where “independence” means that these paths do not
have any bond in common. For an infinite system, if one
replaces the bars simply by a point, the backbone is then
related to the problem concerning two mutually independent
paths. On the basis of the relationX2=Xb, an efficient sam-
pling technique was developed[20] to investigate the prob-
ability C2srd that a pair of sites at a distancer are connected
via at least two independent paths. The quantityC2 was re-
ferred [20] to as the “backbone correlation function,” and
moreover the backbone dimensionXb has been determined
for several critical Potts models in two dimensions, including
q=2−Î3, 1, 2, 3, and 4. Moreover, it was argued[20] that,
for the whole tricritical branch of the two-dimensional Potts
model, the backbone dimensionXb is equal to the magnetic
dimensionXh. Numerical confirmation of this equivalence
was also provided[20]. This is due to the fact that, in this
case, the red-bond scaling field is irrelevantsXr .2d.

In comparison with the two-dimensional case, exact re-
sults are scarce for critical behavior in three dimensions.
Therefore, investigations have to depend on approximations
such ase and series expansions, and Monte Carlo techniques.
Extensive studies have been carried out and significant re-
sults have been achieved[2,25–34]. For instance, the perco-
lation threshold of the bond percolation on the simple-cubic
lattice was determined[26] as pc=0.248 821 6s5d, and the

backbone dimension was reported[35] as Xb
=1.145s15d. From quantities such as the mean cluster size,
the thermal and magnetic scaling dimensions were estimated
[2,25–27] asXt=1.859s3d andXh=0.477s3d, respectively. By
means of conformal invariance and simulations of the aniso-
tropic limit of the bond-percolation model defined on a
spherocylinder, it was recently reported thatXh=0.479s1d
[36]. For the Ising model, there is also some consensus
[28–34] that the values ofXt and Xh are 0.413 and 0.518,
respectively, with differences only in the last decimal place.
However, it seems that so far little attention has been given
to the geometric exponents of the Ising model, such asXb
andXr.

In this paper, we present, using the technique developed
in Ref. [20], a numerical study of the backbone problem for
the percolation and the Ising model in three dimensions. The
models and the Monte Carlo procedures are briefly reviewed
in Sec. II. Section III presents the finite-size analysis, and
thus the results forXh and Xb for both models. A brief dis-
cussion is given in Sec. IV.

II. MODELS AND METHODS

A. Dilute Ising model

We start with the Hamiltonian of a dilute Ising model on
the simple-cubic lattice

H/kBT = − Ko
ki,jl

sisj + Do
k

sk
2 ss= 0, ±1d. s3d

The spins assume the values ±1 and 0. Those in states=0 are
referred to as vacancies. The abundance of vacancies is con-
trolled by the chemical potentialD, and nonzero couplingsK
occur only between NN Ising spins. ForD→−`, the vacan-
cies are excluded, and the model reduces to the “pure” Ising
model, i.e., the spin-12 model[1]. This model has been inves-
tigated extensively, and the critical point was determined
[34] as Kc=0.221 654 55s3d. Along the critical lineKcsDd,
the amplitude of the irrelevant scaling field with the expo-
nentyi =−0.821s5d varies as a function ofD.

It was reported[28,34] that this amplitude is very small
nearD=ln 2, and thus the present paper investigates the di-
lute Ising model(3) with D=ln 2. At this point, the critical

FIG. 1. An illustration of the KF cluster and the pathP for the
case ofw=2. The system size isL=8, and the occupied bonds
crossing the periodic boundaries are shown at both sides as half the
length of the whole bond.
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coupling and the corresponding vacancy density were deter-
mined [28,34] as Kc=0.393 422 25s5d and rvc

=0.400 694s1d, respectively. During the simulations, we
fixed the global density of vacancies at the critical valuervc,
while they are still allowed to move freely over the lattice
according to the Boltzmann distribution. This means that an
external constraint is imposed. For such a constrained sys-
tem, it is known [37] that the thermal exponentyt
=1.5868s3d [34] is renormalized toyt8=Xt=1.4132s3d. Thus,
the constrained specific heat has only a finite cusp at critical-
ity [37,38] instead of being divergent. Large-scale simula-
tions of the model(3) under the constraint are now possible
because of the so-called geometric cluster method[39]. This
algorithm is developed on the basis of geometric symmetries
such as the spatial-inversion symmetry, and has been ex-
plained in Ref.[39]. The geometric cluster simulations of
these constrained systems suffer little from critical slowing
down. This may be related to the fact that the constrained
critical specific heat takes a finite value.

B. Sampling procedure

The sampling procedure for the backbone correlation
function C2srd has already been described in detail in Ref.
[20]. For completeness, it will be briefly recalled as follows.

For simplicity, we consider a bond percolation on theL
3L square lattice with periodic boundary conditions. Then, a
siteA is randomly chosen, and the site at a distanceL /2 from
A in the x direction is denoted asB. According to the afore-
mentioned definition ofC2, the task is then to determine how

many independentpaths exist betweenA and B. We intro-
duce a variablew=0, 1, and 2, representing the cases that
there is no path, precisely one path, and at least two mutually
independent paths. For this purpose, one grows a KF cluster
from siteA. This is done similarly as in the standard Wolff
[40] steps for the Ising model. However, since we are inter-
ested in the backbone problem, one has to store the bond
variables. For system sizeL=8 and the bond probabilityp
=1/2, Figs. 1 and 2 illustrate two typical and similar KF
clusters, where the occupied bonds are represented by solid
lines.

After completeness of the KF cluster, if siteB is not in the
cluster, thenA and B are not connected. Thus, one hasw
=0, and the current sampling procedure is completed; other-
wise, one continues as follows.

A pathP is formed fromA to B, and this is done[20] by
a “smart ant” which walks fromA via the occupied bonds
that are already stored in computer memory. The ant can
always arrive at its destinationB, since it is in the KF cluster.
We illustrate the pathsP in Figs. 1 and 2 as thick lines.

If only one independent path can be formed, at least one
red bond occurs betweenA andB and, moreover, it must be
on the pathP. Therefore, the remaining task is to check
whether there is any red bond onP. This can be done as
follows. Temporarily eliminate all the bonds on the pathP,
and let the ant restart its journey. In the case of Fig. 1, the ant
can still arrive at its destinationB via the periodic bound-
aries. Thus, no red bond exists onP, and one hasw=2. In
Fig. 2, after the elimination of pathP, the ant cannot reachB
but it can still arrive at siteR. This means that the bonds
a,b,…, and f are not red bonds, and thus they can be re-
stored. With the restoration of these bonds, the ant can con-
tinue its journey, but it cannot go beyond siteR, because
bondg is a red bond. In this case, the variablew=1.

It was shown[20] that the computer time cost by this
sampling procedure is in the same order of that by a standard
Wolff step [40]. Moreover, for the Ising model, it occupies
only a relatively small fraction of the total time since addi-
tional simulations are needed. With the variablew, one can
then define

C1 = kdw,1 + dw,2l andC2 = kdw,2l, s4d

wherek l means the statistical average. The quantityC1 is the
probability that siteA is connected toB, and represents the
magnetic correlation function. The quantityC2 is just the
aforementioned backbone correlation function.

TABLE I. The data forC1 andC2310 for the critical bond-percolation model in three dimensions. The numbers in parentheses are the
statistical errors in the last decimal place.

6 8 10 12 14 16 18 20

C1 0.20747(3) 0.15496(2) 0.12411(2) 0.10378(2) 0.08926(1) 0.07839(1) 0.06996(1) 0.06321(1)

C2 0.13899(6) 0.06889(4) 0.04049(3) 0.02641(2) 0.01846(2) 0.01359(2) 0.01039(2) 0.00815(1)

24 28 32 36 40 48 60 80

C1 0.05301(1) 0.045719(9) 0.040200(9) 0.035905(9) 0.032465(9) 0.027260(8) 0.022031(8) 0.016723(8)

C2 0.00537(1) 0.003801(8) 0.002803(8) 0.002149(7) 0.001694(7) 0.001117(6) 0.000676(5) 0.000354(5)

FIG. 2. An illustration of the KF cluster and the pathP for the
case ofw=1. The system size isL=8. The bondsg andh are red
bonds.
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III. RESULTS

A. Bond-percolation model

The bond-percolation model was investigated onL3L
3L simple-cubic lattices with periodic boundary conditions,
and the bond probabilityp was set at the critical value[26]
pc=0.248 821 6s5d. The magnetic and backbone correlation
functionsC1sL /2d andC2sL /2d were sampled for three pairs
of points in thex,y, and z directions, respectively, and the
average values were calculated. The system sizes were cho-
sen as 16 values in the range 6øLø80, and a number of
2.13107 samples was taken for each system size. The nu-
merical data forC2sL /2d are listed in Table I. In comparison
with the magnetic correlationsC1sL /2d, the backbone corre-
lations C2sL /2d are relatively small, which indicates that
critical KF clusters are rather “ramified.” According to the
least-squares criterion, we fitted the data forC1sL /2d and
C2sL /2d by

C1sL/2d = L−2Xhsa0 + a1L
yi + a2L

−2 + a3L
−3d s5d

and

C2sL/2d = L−2Xbsb0 + b1L
yi + b2L

−2 + b3L
−3 + b4L

yibd, s6d

where ai and bi are unknown parameters. The correction
terms with exponentyi arise from the irrelevant scaling field,
of which the exponentyi has been determined[26] as yi =
−1.14s15d. For the backbone correlationC2, new finite-size
corrections could appear, and thus we include the term with
the exponentyib in Eq. (6). Figure 3 shows the data forC2 on
a logarithmic scale, i.e., lnC2sL /2d versus lnL. The approxi-

mate linearity indicates that corrections to scaling are not
very significant.

If the exponentyi is left free during the fit for the mag-
netic correlation C1, we have Xh=0.4769s6d and yi

=−1.5s3d, where the quoted error margins are two standard
deviations, as obtained from the statistical analysis. The es-
timation of yi is consistent withyi =−1.14s15d [26]. The fit
with yi fixed at −1.14 yields thatXh=0.4768s4d. Taking into
account the uncertainties of the percolation thresholdpc, we
conclude thatXh=0.4768s8d is a reasonable estimation,
which is in good agreement with existing resultsXh
=0.477s3d [25–27]. In the fit for the backbone correlationC2,
it seems unnecessary to include all correction terms de-
scribed by Eq.(6), because not all of them can be well de-
termined, and moreover results do not depend on whether
they are present or not. After excluding the terms witha1 and
a2, we obtainXb=1.125s3d andyib=−2.0s5d, which improves
significantly over the existing estimationXb=1.145s15d [35].
The fit to the data forC2 is illustrated by Fig. 4.

We mention that, in Eqs.(5) and (6), the analytic correc-
tions with exponents −2 and −3 are included just because the
data fits indicate the existence of corrections decaying faster
than the term withyi. In these equations, the corrections with
exponentsmyi −n can occur, in principle, wherem.0 and
n.0 are integers. Therefore, in the analysis of the numerical
data, we made several tries by using different combinations
of correction exponents. We find that the results forXh and
Xb do not sensitively depend on these combinations.

TABLE II. The data forC1, C2310, andC223100 for the dilute Ising model in three dimensions. The numbers in parentheses are the
statistical errors in the last decimal place.

6 8 10 12 14 16 18

C1 0.15598(3) 0.11571(3) 0.09214(2) 0.07656(2) 0.06550(2) 0.05722(2) 0.05081(2)

C2 0.31726(9) 0.18909(9) 0.12878(8) 0.09479(8) 0.07339(7) 0.05881(6) 0.04850(6)

C22 0.4668(2) 0.2151(2) 0.1211(1) 0.07649(9) 0.05212(8) 0.03758(7) 0.02818(6)

20 24 28 32 40 48 64

C1 0.04565(1) 0.03794(1) 0.03243(1) 0.02832(1) 0.02257(1) 0.01873(1) 0.01395(1)

C2 0.04081(5) 0.03030(5) 0.02359(4) 0.01893(3) 0.01318(2) 0.00979(2) 0.00613(2)

C22 0.02170(5) 0.01394(5) 0.00956(4) 0.00689(3) 0.00400(2) 0.00258(1) 0.00125(1)

FIG. 3. The backbone correlation functionC2 for the bond-
percolation model, shown as lnC2sLd vs lnL.

FIG. 4. Illustration of finite-size corrections in the backbone
correlationC2 for the bond-percolation model. This is shown as
C2L

2Xb−b0 vs Lyib, where the values ofXb, b0, and yib are taken
from the numerical fit: Xb=1.125s3d , b0=0.688s13d, and yib

=−2.0s5d.
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B. Dilute Ising model

The dilute Ising model(3) on the simple-cubic lattice was
also investigated with periodic boundary conditions. Several
Monte Carlo cluster steps were performed between subse-
quent samples. The simulations took place at the critical
point [28,34] rvc=0.400 694s1d andKc=0.393 422 25s5d. As
mentioned earlier, the total number of vacancies is fixed at
Vc=L2rvc, and thus a combination of the Wolff[40] and the
geometric[39] cluster steps was used. For finite systemsL,
however,Vc is not an integer. Thus, the actual simulations
were performed at two numbersfVcg andfVcg+1, where the
brackets[ ] denote the integer part. Numerical data at criti-
cality were obtained by linear interpolation betweenfVcg and
fVcg+1. System sizes were taken as 14 values in the range
6øLø64. Apart from the quantitiesC1 and C2, we also
sampled the probabilityC22 that the randomly chosen siteA
is simultaneouslyconnected toB andD by at least two mu-
tually independent paths, whereB andD are two points at a
distanceL /2 in thex andy directions, respectively. The data
for C1,C2, andC22 are listed in Table II. The scaling behav-
ior of C22 is described by

C22sL/2d = L−3Xbsx0 + x1L
yi + x2L

−2 + x3L
−3 + x4L

yibd. s7d

The irrelevant exponentyi was set at −0.821s5d [34], and the
data forC1 were fitted by Eq.(5). We obtainXh=0.5178s7d,
in agreement with the earlier estimationXh=0.5184s1d [34],

which was obtained from the magnetic susceptibility. For the
backbone problem, we simultaneously fitted Eqs.(6) and(7)
by the data forC2 andC22, respectively, such that the back-
bone dimensionXb appears only once. As in the case of the
bond-percolation model, we found no evidence that new cor-
rection terms withyib exist. We obtainXb=0.829s4d, where
the quoted error is again twice the standard deviation. The
data for C2 are shown in Fig. 5 versusL−2Xb, where Xb
=0.829 was taken from the fit.

IV. DISCUSSION

In conclusion, we have numerically determined the back-
bone dimensionXb for the bond-percolation and Ising mod-
els in three dimensions. As the thermal and magnetic dimen-
sions Xt and Xh, geometric critical exponents are also
universal, and thus our results forXb should also apply to
other systems within the percolation and Ising universality
class in three dimensions.

In addition to the backbone and red-bond dimensionsXb
and Xr, there are other exponents characterizing geometric
properties of critical systems, e.g., the fractal dimensionXmin
of “chemical” paths[17]. In percolation theory, these expo-
nents have received significant attention, and they are con-
sidered to be of some physical relevance. For instance, the
chemical-path dimensionXmin is the analog in percolation of
the dynamic scaling exponent of critical phenomena[17].
However, further explorations of the geometric exponents
seem appropriate for other critical systems in three dimen-
sions.
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