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Magnetic and backbone exponents of the percolation and Ising models in three dimensions
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We investigate random-cluster representations ofjth&- and 2-state Potts models in three dimensions, i.e.,
the bond-percolation and the Ising model, respectively. Using a recently developed sampling technique, we
determine the probabilitie§;(r) andC,(r) that a pair of lattice sites at a distancare connected by at least
one and two mutually independent paths, respectively. The scaling behavioy afid C, at criticality is
governed by the magnetic and the backbone scaling dimengjand X, respectively. From a finite-size
analysis of the numerical data, we determidg=0.47687) and X,=1.1253) for the percolation and,
=0.51787) and X,=0.8294) for the Ising model.
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I. INTRODUCTION In addition to the thermal and magnetic scaling dimen-

The Ising model and the percolation problem have forsionsXt andX,, there are still a number of critical exponents

manv vears been of qreat interest to physicists and mathemHlat characterize structural properties of critical KF clusters
vy g Phy In Eg. (2) and do not have a thermodynamic analog. Among

ticians. While the Ising model presents a very simple theo- . .
9 b y b them there are fractal dimensiof§ of “backbones” and of

retical descriptiorj1] for thermodynamic phase transitionsin , ~ ) ) e
magnetic systems, the percolation provides a fascinating ”_red bonds. Here, we shall briefly review definitions of

lustration[2] of many important concepts of critical phenom- thezel qu?nutlgs in t.he Iaggua_gde OL,:(hE bond-ptlartctplanon
ena in terms of geometric properties. Both models can pg'0del In two dimensions. Lonsider arx L square fattice
exactly mapped onto the random-cluster md@glin which W.'th penodlc and f|xed poundary conditions in theandy
thermodynamic singularities of the Ising model can also bjilrectl?[ns,t_r?sdpgctlvely, 1.€., th? :csjot-catlrl]ed“gus-ggr gedometry.
represented in terms of percolation clusters. For an introduc- a potential difference 1S applied to the "barg=0 andy

tion, we start with the Hamiltonian of thepstate Potts model =L gndt.the af_ct)rert?]engonlfg bontﬂ vanablgst are} {r(]agardsd gs
[4] on the square lattice conducting units, the backbone then consists of those bonds

that would carry a current and the so-called “Wheatstone
HikgT = -K> 5, , (0=1,2...,09), (1) bridges.” The current vanishes on these “bridges” acciden-

Q" tally because of zero potential difference between their ends.
If a bond carries all the current and thus becomes “hot” after

where the sum is over nearest-neightiiN) spins and is gome time, this bond is then named a red bf#idAt criti-

the coupling strength. The random-cluster model is obtaine
as follows. Between each pair of NN sites, a bond is place
with the probabilityp=1-exd-K), so that the whole lattice
is decomposed into connected clusters, i.e., the well-know
Kasteleyn-FortuinKF) clusters[3]. The statistical weight of
each bond-variable configuration is given by the partition
function of the random-cluster model

ality, the massthe total number of bong®f red bonds and
hat of the backbone scale &k L9 and Ny« L%, re-
spectively. Hered=2 is the lattice dimension, arX} andX,
Qre termed the red-bond and the backbone scaling dimension,
respectively. Apparently, all the red bonds are on the back-
bone, and the backbone is only a part of the KF cluster which
connects the barg=0 andy=L. This yields the inequality
Zq:K) =D ohgle (p=ek-1). (2) Xa=Xp=X. ForaKF cluster with one or more red bonds, it
b will, if any of the red bonds is eliminated, split into discon-
) ) ) ) nected subclusters. Therefore, the magnitudex,odnd X;
Here, the sum is over all bond-variable configurations, anqefiect the “compactness” of a critical KF cluster.
n, andn. are the total numbers of bonds and KF clusters,  gqr the generai-state Potts model in two dimensions, the
respectively. It can be showi3-9| that the partition sum of  haryre of thermodynamic singularities is now well estab-
the Potts mode(l) is equivalent taZ in Eq. (2). The Ising |ished. For instance, the thermal and magnetic dimensipns
and percolation models are the special cases @itk and  5nqx. can be obtained exactly from the Coulomb gas theory
q—1, respectively. Near the critical poift(q), the scaling (7 g "A large amount of information is also available for
properties of KF clusters in Eq2) are governed by the geometric exponents. For instance, the red-bond dimension
thermal and magnetic scaling fields. X, has already been identified with the expongk¢1]] that
governs the renormalization flow of the bond probabifity
As a result, exact values of, can be included in the predic-
*Present address: Laboratory for Material Science, Delft Univertion of the conformal field theory12,13. However, except
sity of Technology, Rotterdamseweg 137, 2628 AL Delft, The Neth-for some special cases, e.g., the uniform spanning (mee
erlands. —0) [4], the backbone dimensioX, has not been exactly
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obtained. Numerous theoretical attempts have been carridthckbone dimension was reported35] as X,

out. It was conjecture14,15 that X,=7/16 for theperco- =1.14515). From quantities such as the mean cluster size,

lation model, which, however, has been falsified by numerithe thermal and magnetic scaling dimensions were estimated

cal tests. More recently,, is related/16] to the solution of a  [2,25-27 asX;=1.8593) andX;,=0.477%3), respectively. By

partial differential equation, which appears to be intractableneans of conformal invariance and simulations of the aniso-

even numerically. tropic limit of the bond-percolation model defined on a
In parallel with these theoretical attempts, several numerispherocylinder, it was recently reported th§{=0.4791)

cal determinations ofX, have been reported, including [36]. For the Ising model, there is also some consensus

Monte Carlo[17-2Q and transfer-matrif21] analyses. One [28-34 that the values o, and X;, are 0.413 and 0.518,

of the Monte Carlo methods uses the so-called burning algaespectively, with differences only in the last decimal place.

rithm and evaluates the mass of the backbdfein the  However, it seems that so far little attention has been given

aforementioned bus-bar geometry. From the scaling behaviag the geometric exponents of the Ising model, suctXas
of N, Grassbergefl8] determined thaiX,=0.35698) for andX,.

the two-dimensional percolation model. For the2- and In this paper, we present, using the technique developed
3-state Potts models in two dimensions, it was estimgt8fl  in Ref. [20], a numerical study of the backbone problem for
that X,=0.251) and 0.2%2), respectively. the percolation and the Ising model in three dimensions. The

Recently, another Monte Carlo approach was propose¢hodels and the Monte Carlo procedures are briefly reviewed
[20] which makes use of a different formulation of the back-in Sec. Il. Section Ill presents the finite-size analysis, and
bone problem. It has been shoi2R—24 that the backbone thus the results fok,, and X, for both models. A brief dis-
problem can be related to so-callégconnected clusters, cussion is given in Sec. IV.
wherek=1 is an integer. A cluster i& connected if, by

eliminating anyk—1 sites, no separation into disconnected Il. MODELS AND METHODS
subclusters is possible. Thus, any two sites in such a cluster
are connected viat least k independergaths without any A. Dilute Ising model

bond in common. Near criticality, the scaling behavior of the  \ne start with the Hamiltonian of a dilute Ising model on
mass of thes&-connected clusters is dominated by a family i, simple-cubic lattice

of critical exponent¥,. It is obvious that the aforementioned

KF clusters defined in Eq(2) are just one type of one- HiksT = - K> S5 +D2§ (s=0, £1). (3)
connected cluster, so th&y is just the magnetic dimension ) k

Xp. Moreover, it can be showfR4] that X, is equal to the . .

backbone dimensioK,,. In the bus-bar geometry, this can be The spins assume thg values £1 and 0. Those in are
understood as follows. According to the definition of the referred to as vacancies. The. abundance of vacancies Is con-
backbone mentioned earlier, a site on the backbone must Eolled by the chemical potentiél, and nonzero couplings

connected to both bars by at least two mutually independencf.Ccur only between NN Ising spins. FDr— —, the“vacap- .
ps are excluded, and the model reduces to the “pure” Ising

paths, where “independence” means that these paths do no

have any bond in common. For an infinite system, if onemodel, i.e., the spir%—model[l]. This model has been inves-

: : ; jgated extensively, and the critical point was determined
replaces the bars simply by a point, the backbone is thef]92 a nt wa
related to the problem concerning two mutually independent>4 @s Kc=0.221 654 583). Along the critical lineK(D),
paths. On the basis of the relatidg=X,, an efficient sam- the amplitude of the_lrrelevant sca_lllng field with the expo-
pling technique was developd#(] to investigate the prob- Nenty;=-0.8215) varies as a function d.
ability C,(r) that a pair of sites at a distancere connected It was reported 28,34 that this amplitude is very small
via at least two independent paths. The quar@ifywas re- nearD_=In 2, and thu; the present paper mvestlgate_s_ the di-
ferred [20] to as the “backbone correlation function,” and lute Ising model(3) with D=In 2. At this point, the critical
moreover the backbone dimensiog has been determined

for sevgral critical Potts models in two dimensions, including X A
q=2-V3, 1, 2, 3, and 4. Moreover, it was argugzl] that, “t 1

for the whole tricritical branch of the two-dimensional Potts — p
model, the backbone dimensidfy is equal to the magnetic e o b -
dimensionX;. Numerical confirmation of this equivalence _I I . dlc

p—¢

was also provided20]. This is due to the fact that, in this
case, the red-bond scaling field is irrelevéXt>2). ._I

In comparison with the two-dimensional case, exact re-
sults are scarce for critical behavior in three dimensions. g
Therefore, investigations have to depend on approximations 4_7__1._. :I_._
such as and series expansions, and Monte Carlo techniques.
Extensive studies have been carried out and significant re- FiG. 1. An illustration of the KF cluster and the pathfor the
sults have been achievéd,25-34. For instance, the perco- case ofw=2. The system size it=8, and the occupied bonds

lation threshold of the bond percolation on the simple-cubiccrossing the periodic boundaries are shown at both sides as half the
lattice was determine@26] as p.=0.248 821 ), and the length of the whole bond.
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r’ X A many independenpaths exist betweeA and B. We intro-
i tt 9 duce a variablev=0, 1, and 2, representing the cases that
—42 — there is no path, precisely one path, and at least two mutually
y . o FI - independent paths. For this purpose, one grows a KF cluster
_I I . dlc from site A. This is done similarly as in the standard Wolff
e [40] steps for the Ising model. However, since we are inter-
ested in the backbone problem, one has to store the bond
variables. For system siZze=8 and the bond probabilitp
:I_. =1/2, Figs. 1 and 2 illustrate two typical and similar KF
| clusters, where the occupied bonds are represented by solid
| . lines.

After completeness of the KF cluster, if sBas not in the
cluster, thenA and B are not connected. Thus, one has
=0, and the current sampling procedure is completed; other-
wise, one continues as follows.

) ) . A path P is formed fromA to B, and this is don¢20] by
co_upllng and the corresponding vacancy density were detel «gmart ant” which walks fromA via the occupied bonds
mined  [28,34 as K=0.393422285) and p.c  hat are already stored in computer memory. The ant can
=0.400 6941), respe.ctlvely. During the smqlatlons, W€ always arrive at its destinatid®, since it is in the KF cluster.
fixed the global density of vacancies at the critical vade  \ve ijllustrate the path® in Figs. 1 and 2 as thick lines.
while they are still allowed to move freely over the lattice |t only one independent path can be formed, at least one
according to the Boltzmann distribution. This means that aneq hond occurs betweehandB and, moreover, it must be
external constraint is imposed. For such a constrained sygyy the pathP. Therefore, the remaining task is to check
tem, it is known [37] that the thermal exponeny:  \yhether there is any red bond dh This can be done as
=1.58683) [34] is renormalized tg; =X;=1.41323). Thus,  follows. Temporarily eliminate all the bonds on the path
Fhe constra.ined specific heat has only a finite cusp at pritica|and let the ant restart its journey. In the case of Fig. 1, the ant
ity [37,39 instead of being divergent. Large-scale simula-can still arrive at its destinatioB via the periodic bound-
tions of the mode(3) under the constraint are now possible aries. Thus, no red bond exists &n and one hasv=2. In
because of the so-called geometric cluster mef88§l This  Fjg. 2, after the elimination of path, the ant cannot readh
algorithm is developed on the basis of geometric symmetriegyt it can still arrive at siteR. This means that the bonds
such as the spatial-inversion symmetry, and has been e p .., andf are not red bonds, and thus they can be re-
plained in Ref.[39]. The geometric cluster simulations of stored. With the restoration of these bonds, the ant can con-
these constrained systems suffer little from critical slowingtinye its journey, but it cannot go beyond sk because
down. This may be related to the fact that the constraine¢hondg is a red bond. In this case, the variabte 1.
critical specific heat takes a finite value. It was shown[20] that the computer time cost by this
sampling procedure is in the same order of that by a standard
_ Wolff step [40]. Moreover, for the Ising model, it occupies
B. Sampling procedure only a relatively small fraction of the total time since addi-

The sampling procedure for the backbone correlatiortional simulations are needed. With the variatlgone can
function C,(r) has already been described in detail in Ref.then define
[20]. For completeness, it will be briefly recalled as follows. _ _

For simplicity, we consider a bond percolation on the C1= (Gt duz) ANACo= (A2, @

X L square lattice with periodic boundary conditions. Then, awvhere() means the statistical average. The quar@itys the
site A is randomly chosen, and the site at a distant2from  probability that siteA is connected t@B, and represents the
A in the x direction is denoted aB. According to the afore- magnetic correlation function. The quanti€, is just the
mentioned definition o€,, the task is then to determine how aforementioned backbone correlation function.

FIG. 2. An illustration of the KF cluster and the pdthfor the
case ofw=1. The system size is=8. The bondg andh are red
bonds.

TABLE |. The data forC,; andC, X 10 for the critical bond-percolation model in three dimensions. The numbers in parentheses are the
statistical errors in the last decimal place.

6 8 10 12 14 16 18 20

C, 0.207473) 0.154962)  0.124112)  0.103782)  0.089261)  0.078391)  0.069961)  0.063211)
C, 0.138996)  0.068894)  0.040493)  0.026412)  0.018462)  0.013592)  0.010392)  0.0081%1)

24 28 32 36 40 48 60 80

C, 0.053011) 0.0457199) 0.0402009) 0.03590§9)  0.03246%9)  0.02726@8)  0.0220318)  0.0167238)
C, 0.005371) 0.0038018) 0.0028088)  0.0021497) 0.0016947)  0.0011176)  0.0006765)  0.0003545)
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FIG. 4. lllustration of finite-size corrections in the backbone
correlationC, for the bond-percolation model. This is shown as
C,L%b—hy vs LY, where the values oK, by, andy;, are taken
from the numerical fit: X,=1.1253), by=0.68813), and vy;,
=-2.005).

0.012 0.016

FIG. 3. The backbone correlation functid@, for the bond-
percolation model, shown as Gy(L) vs InL.

Ill. RESULTS

A. Bond-percolation model
mate linearity indicates that corrections to scaling are not
very significant.

If the exponenty; is left free during the fit for the mag-
netic correlation C;, we have X,=0.47696) and vy,
=-1.53), where the quoted error margins are two standard
of points in thex,y, andz directions, respectively, and the deviations, as obtained from the statistical analysis. The es-

average values were calculated. The system sizes were chination ofy; is consistent withy;=-1.1415) [26]. The fit

sen as 16 values in the range=& <80, and a number of with y; fixed at -1.14 y_|elds thaxh:0.476_£{4). Taking into
2.1x 10" samples was taken for each system size. The nu@ccount the uncertainties of the percolation thresipg)dve
merical data foiC,(L/2) are listed in Table I. In comparison conclude thatx,=0.47688) is a reasonable estimation,
with the magnetic correlation,(L/2), the backbone corre- Which is in good agreement with existing resul,
lations C,(L/2) are relatively small, which indicates that =0-4713) [25-27. In the fit for the backbone correlatidy,
critical KF clusters are rather “ramified.” According to the it S€éms unnecessary to include all correction terms de-

least-squares criterion, we fitted the data @y(L/2) and ~ Scribed by Eq(6), because not all of them can be well de-
C,(L/2) by termined, and moreover results do not depend on whether

they are present or not. After excluding the terms aittand
Cy(L/2) = L %n(ag+ ay LY + a,L 2 + a5l ™) (5) &, we obtainX,=1.1253) andy;,=-2.0(5), which improves
significantly over the existing estimatiofy=1.14515) [35].
The fit to the data foC, is illustrated by Fig. 4.

We mention that, in Eqg5) and(6), the analytic correc-
tions with exponents -2 and —3 are included just because the
where g and b; are unknown parameters. The correctiondata fits indicate the existence of corrections decaying faster
terms with exponery; arise from the irrelevant scaling field, than the term witly,. In these equations, the corrections with
of which the exponeny; has been determingf@6] asy,=  exponentsmy,—n can occur, in principle, wherei>0 and
—1.1415). For the backbone correlatiad,, new finite-size  n>0 are integers. Therefore, in the analysis of the numerical
corrections could appear, and thus we include the term witllata, we made several tries by using different combinations
the exponeny;, in Eq. (6). Figure 3 shows the data f@, on  of correction exponents. We find that the results Xgrand
a logarithmic scale, i.e., 18,(L/2) versus IrL. The approxi- X, do not sensitively depend on these combinations.

The bond-percolation model was investigated lor L
X L simple-cubic lattices with periodic boundary conditions,
and the bond probabilitp was set at the critical valug6]
p.=0.248 821 €5). The magnetic and backbone correlation
functionsC;(L/2) andC,(L/2) were sampled for three pairs

and

Cy(L/2) = L™26(by + by LYi + byL ™2 + bl 3 + byLYi), (6)

TABLE Il. The data forC;, C,Xx 10, andC,,x 100 for the dilute Ising model in three dimensions. The numbers in parentheses are the
statistical errors in the last decimal place.

6 8 10 12 14 16 18
C 0.155983) 0.115713) 0.092142) 0.076562) 0.0655@2) 0.057222) 0.050812)
C, 0.317269) 0.189099) 0.128788) 0.094798) 0.073397) 0.058816) 0.0485@6)
Cay 0.46682) 0.21512) 0.12111) 0.076499) 0.052128) 0.037587) 0.028186)
20 24 28 32 40 48 64
c, 0.04565%1) 0.037941) 0.032431) 0.028321) 0.022571) 0.018731) 0.0139%1)
C, 0.040815) 0.0303@5) 0.023594) 0.018933) 0.013182) 0.009792) 0.006132)
Cas 0.0217@5) 0.013945) 0.009564) 0.006893) 0.004002) 0.002581) 0.0012%1)
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003 | o which was obtained from the magnetic susceptibility. For the
yd backbone problem, we simultaneously fitted E&$.and(7)
002 // by the data foiC, and C,,, respectively, such that the back-
5 7 bone dimensiorX,, appears only once. As in the case of the
/ bond-percolation model, we found no evidence that new cor-
oot r e rection terms withy,, exist. We obtairX,=0.8294), where
the quoted error is again twice the standard deviation. The
0 o001 ooz o0 o004 008 data for C, are shown in Fi_g. 5 versuk™2%, where X,
L% =0.829 was taken from the fit.

0

FIG. 5. The backbone correlation functid®, for the Ising

model, shown as I, vs L™2%, where X,=0.8295) is the back- V. DISCUSSION

bone scaling dimension. In conclusion, we have numerically determined the back-
bone dimensiorX,, for the bond-percolation and Ising mod-
B. Dilute Ising model els in three dimensions. As the thermal and magnetic dimen-

sions X; and X,, geometric critical exponents are also
ayniversal, and thus our results fo, should also apply to
é)_ther systems within the percolation and Ising universality
lass in three dimensions.

In addition to the backbone and red-bond dimensigps
a§\nd X;, there are other exponents characterizing geometric
properties of critical systems, e.g., the fractal dimen3gp
of “chemical” paths[17]. In percolation theory, these expo-
nents have received significant attention, and they are con-
sidered to be of some physical relevance. For instance, the
chemical-path dimensioX,,, is the analog in percolation of

The dilute Ising mode(3) on the simple-cubic lattice was
also investigated with periodic boundary conditions. Sever
Monte Carlo cluster steps were performed between subs
quent samples. The simulations took place at the critical
point [28,34 p,.=0.400 6941) andK.=0.393 422 265). As
mentioned earlier, the total number of vacancies is fixed
V.=L?p,, and thus a combination of the Wol#0] and the
geometric[39] cluster steps was used. For finite systdms
however,V, is not an integer. Thus, the actual simulations
were performed at two numbelr¥,] and[V,]+1, where the

brgckets[] denqte the Integer part. Numencal data at Criti-he dynamic scaling exponent of critical phenomégad].
cality were obtained by linear interpolation betwgs] and However, further explorations of the geometric exponents

[Vc]+1. System sizes were taken as 14 values in the rangg.q,, anpropriate for other critical systems in three dimen-
6<L=<64. Apart from the quantitie€; and C,, we also  gjyps.

sampled the probabilitZ,, that the randomly chosen sife

is simultaneouslyonnected td andD by at least two mu-

tually independent paths, wheBeandD are two points at a ACKNOWLEDGMENTS
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