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We investigate the anisotropic limit of the bond-percolation model ind dimensions, which is equivalent to
a sd−1d-dimensional quantumq→1 Potts model. We formulate an efficient Monte Carlo method for this
model. Its application shows that the anisotropic model fits well with the percolation universality class ind
dimensions. For three-dimensional rectangular geometry, we determine the critical point astc=8.6429s4d, and
determine the length ratio asa0=1.5844s3d, which relates the anisotropic limit of the percolation model and its
isotropic version. On this basis, we simulate critical systems in several curved geometries including a spheroid
and a spherocylinder. Using finite-size scaling and the assumption of conformal invariance, we determine the
bulk and surface magnetic exponents in two and three dimensions. They are in good agreement with the
existing results.
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I. INTRODUCTION

Since their original introduction in 1957[1], percolation
problems have been studied extensively, and a variety of
applications has also been reported(see, e.g., Refs.[2,3]).
Percolation provides a simple picture of a second-order
phase transition, and remains an active research subject
[4–6]. We illustrate the problem of the bond percolation on a
regular lattice. Between each pair of lattice sites, a bond is
occupied or empty with a probabilityp or 1−p, respectively.
Two sites connected through a chain of occupied bonds are
said to be in the same cluster. Then, various questions can be
asked concerning the critical cluster distribution and the per-
colation probability, etc. Such percolation problems are now
rather well understood; this can at least partly be attributed to
the well-known relationship[7] between the bond percola-
tion and the Potts model(for a review of the Potts model, see
Ref. [8]). In this way, the phase transition that occurs in
percolation problems can be described in the language of
critical phenomena in statistical physics. As a consequence, a
considerable number of critical exponents is now exactly ob-
tained in two dimensions. For instance, the thermal and mag-
netic scaling exponents areyt=3/4 and yh=91/48. These
exponents can be calculated from the Coulomb gas theory
[9,10] and are also predicted by the conformal field theory
[11–13].

Besides the above isotropic percolation model, it is of
interest to understand the behavior of anisotropic systems in
the percolation theory. For instance, an anisotropic random
percolation model was demonstrated to be governed by new,
random fixed points[14]. In the present paper, we shall con-
sider the anisotropic bond-percolation model, which is de-
fined on ad-dimensional rectangular lattice with a bond
probability p' within sd−1d-dimensional layers perpendicu-
lar to thez direction, and with the probabilitypi=Rp' par-
allel to z. For R=0, the system decouples into independent
sd−1d-dimensional layers, so that the percolation problem
reduces tosd−1d dimensions. Models with a finite and non-
zeroR have already received some attention[15], and it was

shown that they are within the same universality class as the
isotropic percolation model ind dimensions. In the present
paper, we shall focus on the limitR→`. In this anisotropic
limit of the bond-percolation model, the probabilityp' in the
sd−1d-dimensional layers approaches 0 near criticality, and
thus one can expressp' andpi as

pispzd = 1 −e, and p' = e/t se → 0d, s1d

wheret is a temperaturelike parameter. Whene is precisely
zero, the system becomes one-dimensional and this percola-
tion problem is trivial. However, as we shall argue later, the
anisotropic percolation model defined by Eq.(1) is equiva-
lent with a quantumq→1 Potts model insd−1d dimensions,
which fits in thed-dimensional percolation universality class.

For the anisotropic model defined by Eq.(1), the correla-
tion length in thez direction is of the order of 1/e. In order
to maintain thed-dimensional character of the system, the
lattice size in this direction must also diverge as 1/e. Thus,
we apply a rescalingz8=ze, so that the correlation length in
the new unit and the physical size remain approximately con-
stant. Ase→0, the z8 dimension becomes continuous, and
we refer to the resulting continuous percolation problem as
the transverse percolation model. A detailed description of
the above procedure will be given in Sec. II.

Next, we formulate a Monte Carlo method for the trans-
verse percolation model. The numerical results confirm that
the transverse percolation model belongs to the same univer-
sality class as the conventional percolation problem on a
discrete lattice.

Another purpose of the present paper is the application of
conformal mappings in curved geometries. In two dimen-
sions, the theory of conformal invariance has yielded sub-
stantial results[11–13]. Conformal mappings yield relations
between critical systems in different geometries, and thus
provide useful tools for the determination of universal prop-
erties of critical models. A well-known example is Cardy’s
mapping between an infinite plane and the surface of an in-
finitely long cylinder [16]. Since a cylinder is pseudo-one-
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dimensional, its numerical investigation is simpler than that
of a two-dimensional plane. Cardy’s mapping can be gener-
alized to any number of spatial dimensions, and in three
dimensions it transforms an infinite spaceR3 into a pseudo-
one-dimensional geometryS23R. However, the nonzero
curvature of the geometryS23R poses a serious obstacle for
numerical simulations.

In applications to the Ising model, this problem was
solved recently in Refs.[17–19]. The solution makes use of
the Hamiltonian limit of the lattice Ising model, which ren-
ders one of the lattice directions continuous. Thus, one can
perform Monte Carlo simulations in curved geometries, such
as the surface of a sphereS13S1 in two dimensions and the
cylinderlike geometryS23R1 in three dimensions. It was
reported[17,18] that, in three dimensions, the Ising model is
conformally invariant and the corresponding estimations of
critical exponents are compatible with existing results. In
Ref. [17] the three-dimensional geometryS23R1 was named
a spherocylinder. Here, we simulate the transverse percola-
tion model in curved geometries, which provides another ap-
plication of conformal mappings to investigate bulk and sur-
face critical phenomena.

The outline of this paper is as follows. Section II explores
the relationship of the anisotropic limit of the percolation
model defined by Eq.(1) and the quantumq→1 system in
sd−1d dimensions, and moreover a Monte Carlo method is
formulated for this anisotropic percolation model. In Sec. III,
Monte Carlo simulations in the two- and three-dimensional
rectangular geometries are presented. Section IV summarizes
the conformal mappings involved in the present paper; appli-
cations of these mappings are reported in Sec. V. We give a
short discussion in Sec. VI.

II. MODELS AND ALGORITHMS

A. Quantum transverseq-state Potts model

The partition sum of theq=1 Potts model is just a con-
stant, so that its equivalence to the bond-percolation model
has to be formulated[7] in terms of geometric properties of
the random-cluster representation of the Potts model in the
limit q→1. To explore the anisotropic limit of the bond-
percolation model defined by Eq.(1), we start with the
Hamiltonian limit of an Ising model on anN3M rectangular
lattice with periodic boundary conditions

H/kBT = − o
i,j

fKx si,j si+1,j + Ky si,j si,j+1g. s2d

The spins can assume the valuessi,j = ±1, the integer coordi-
natesi and j label the lattice sites, andKx and Ky are the
coupling strengths in thex andy directions, respectively. The
critical line of this model is given by[20]

sinhs2Kxdsinhs2Kyd = 1. s3d

Thus, in the anisotropic limite→0, the couplings can be
written as

Kx = e/t, and exps− 2Kyd = e se → 0d, s4d

wheret parametrizes the temperature; the critical point istc
=1.

The Hamiltonian limit of the lattice Ising model defined
by Eqs. (2) and (4) can be exactly mapped onto theone-
dimensional quantum Ising model[21]. This equivalence
was formulated in the reverse direction by Suzuki[22], using
the Trotter formula[23]. The Hamiltonian of the quantum
Ising chain reads

Hqm = − o
i

ss i
zs i+1

z + t s i
xd, s5d

wheres z ands x are the Pauli matrices for thez andx spin
components, respectively. The HamiltonianHqm contains
noncommuting operators and represents a quantum system
with nearest-neighbor Ising interactions, and the tempera-
turelike parametert acts as a transverse field in thex direc-
tion.

This equivalence can be readily generalized to spatial di-
mensions d.2, i.e., the Hamiltonian limit of a
d-dimensional lattice Ising model is equivalent with the
transverse Ising model insd−1d dimensions.

Including the transverse Ising model as a special case, one
can define a general quantumq-state Potts model[24,25].
For instance, the Hamiltonian of a quantumq-state Potts
chain (with integerq) can be written as

Hqm = − o
i

o
k=0

q−1

sSk
i Si+1

q−k + t Ri
kd, s6d

whereS andR areq3q matrices satisfying theZsqd algebra

fSi,Sjg = fRi,Rjg = fSi,Rjg = 0, i Þ j ,

Sj Rj = expsi2p/qdRj Sj, and Rj
q = Sj

q = I . s7d

For the case ofq=2, the operatorsS and R reduce to the
Pauli matricess z ands x, respectively, and Eq.(6) simpli-
fies to Eq.(5). The eigenspectra of these critical quantum
q-state Potts chainss0,qø4d with free and periodic bound-
ary conditions have already been explored in Refs.[24,25],
and it was shown that, indeed, they share the same critical
exponents as the corresponding classicalq-state Potts models
in two dimensions.

For nonintegerq or the limiting caseq→1, Eqs.(6) and
(7) are not suitable to describe the Hamiltonian limit of the
q-state Potts model. In this case, one can instead apply the
transfer matrix of the random-cluster model[26]. The evalu-
ation of the partition function uses the transfer matrix as

Z = o
ss1d,ss2d,. . .

kss1duTuss2dl ¯ kssyduTussy+1dl ¯ , s8d

wheressyd is the bond configuration at theyth row and the
transfer is in the direction of the strong coupling. For the
anisotropic bond-percolation model described by Eq.(1), the
transfer matrix reads

kssyduTussy+1dl = I − eo
x
FBx

sy,y+1d −
1

t
Cx,x+1

syd G + Ose2d, s9d

where I is the unit matrix. The symbolBx
sy,y+1d represents

that, between theyth andsy+1d rows, a “broken” bond oc-
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curs at the sitex while the remaining bonds are occupied,
and Cx,x+1

syd means that onlyone bond exists betweenx and
x+1 at theyth row. Onceq is not precisely equal to 1, the
operatorsB and C do not commute, and thus are quantum
operators. Fort!1, most sites are connected so that the sys-
tem is in an “ordered” state; while fort@1, they are inde-
pendent of each other and the system is “disordered.” A
phase transition occurs att=1.

Therefore, we simply expect that the anisotropic limit of
the bond-percolation model by Eq.(1) is within the same
universality class with the corresponding isotropic version.
This will be demonstrated further by means of Monte Carlo
simulations.

B. Algorithms

We consider the anisotropic limit of the bond-percolation
model[Eq. (1)] on anN3M rectangular lattice with periodic
boundary conditions. The bond occupation probabilities in
the x andy directions arep' andpi in Eq. (1), respectively.
For such a system, the correlation length in they direction is
of order 1/e, as mentioned earlier. Thus, we have to take the
lattice sizeM proportional to 1/e while if N is kept constant.
Since computer memories are finite, it may not immediately
be obvious how a Monte Carlo algorithm can be formulated.

Let us start with the procedures commonly used for the
cluster decomposition of the isotropic version of the perco-
lation model with the bond probabilityp. First, one intro-
duces a bond variablebij for each bond between nearest-
neighboring sitesi and j . Occupied and empty bonds are
represented bybij =1 and 0, respectively. For each bond vari-
able bij , one draws a uniformly distributed random number
rs0ø r ,1d, and setsbij =1 if r ,p. The whole lattice is then
decomposed into clusters of connected sites through the oc-
cupied bonds. These percolation clusters are analogous to the
Swendsen-Wang clusters in the Potts model[27].

For the anisotropic limit of the percolation model defined
by Eq. (1), the bond probability in they direction ispy=1
−e, so that one has to draw of order 1/e random numbersr
before finding an empty bondby=0. This indicates that
empty bonds are sparsely distributed in they direction. In the
x direction, the bond probabilitypx~e so that the task to find
the next occupied bondbx=1 again involves of order 1/e
random numbers.

A more efficient procedure follows[28]. Counting the
bond variables sequentially in they direction, the distribution
Pysmd;s1−pydpy

m−1 expresses the probability thatsm−1d
subsequent bond variablesbij are equal to 1, while themth
variable is zero, i.e., an empty bond occurs atmth position.
Thus, the cumulative distribution can be written as

Cysmd = o
j=1

m

Pys jd = 1 − py
m = 1 − s1 − edm, s10d

which represents the probability that an empty bondbj =0
occurs in the range 1ø j øm. Thus, by mapping the distri-
bution 0,Cysmd,1 on the uniform distribution of the ran-
dom numberr, one transformsr into an integerm,

m= 1 + flnsrd/lns1 − edg, s11d

where 0, r ,1 and the square brackets denote the integer
part of the number in between. The numberm represents the
distance of the current empty bond to the one to be gener-
ated. Thus, only one random number is needed to generate
the next empty bond in they direction.

In the x direction, one instead uses the distribution
Pxsnd;pxs1−pxdn−1 to express the probability thatsn−1d
subsequent variablesbij are zero, while thenth bond variable
is 1. We mention that, although the bond variables are now in
thex direction, they are still counted sequentially along they
direction. Analogously, one can transform a uniformly dis-
tributed random numberr into an integern,

n = 1 + flnsrd/lns1 − pxdg spx = e/td. s12d

The average number of they-dimensional empty bonds
and that of the occupied bonds in thex direction are

m; E
0

1

dr lnsrd/lns1 − ed ~
1

e
, and n ~

t

e
, s13d

respectively. Now, suppose theN3M square lattice repre-
sents a conducting network, and the occupied bonds act as
the elementary conducting units. According to Eq.(13), in
the y direction, the current is allowed to flow along the con-
ducting “lines” until it occasionally encounters an empty
bond, to which we shall refer as a barrier with an infinitely
large resistance. In thex direction, since most bonds are
empty, the areas between the neighboring conducting lines
can be considered to be filled with an insulating material, and
the electrical current has to rely on sparsely distributed
“bridges” (occupied bonds). If a potential difference is ap-
plied to the up and down sides of theN3M network, the
corresponding conductivity of this network then depends on
the relative abundance of the bridges and barriers. According
to Eq.(13), the average total numbers of the barriers and the
bonds areNMe andNMe / t, respectively, so that they remain
finite in the limit e→0. Thus, the conductivity of the net-
work depends only on the temperaturelike parametert. For
t@1, the sizes of conducting clusters are small, and the up
and down sides are disconnected, so that no current exists; if
the temperaturet is sufficiently low, a percolating cluster
which carries current may occur in the system.

Although one now needs only a finite number of random
numbers, one still has to solve the problem of the infinite
size M in the y direction, reflected by the divergence ofm
and n. This can be done by rescaling they direction asy8
=ey, so that the physical sizeM8=Me remains approxi-
mately a constant. In the limite→0, the y dimension be-
comes continuous, i.e., there is an infinite number of lattice
sites per physical length unit, and theN3M square lattice
reduces toN lines of physical lengthM8. Meanwhile, Eqs.
(11) and (12) change into

m8 = em= − lnsrd, and n8 = en = − t lnsrd se → 0d,

s14d

which indicates that the average distances of the barriers and
bridges,m8 and n8, are now of the order of 1. As a result,
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after the rescalingy8=ye, the anisotropic limit of the perco-
lation model defined by Eq.(1) reduces to a continuous per-
colation model, to which we shall refer as the transverse
percolation model. A typical configuration is shown in Fig. 1,
where the horizontal lines are the aforementioned conducting
lines and the vertical lines are the bridges in the transverse
direction. The black bars represent the barriers, through
which the current cannot penetrate. For clarity, in Fig. 1 we
have outlined a cluster by means of solid lines.

Conventional Monte Carlo methods for discrete lattice
percolation problems store the lattice sites simply in an array.
For the transverse percolation, this is no longer applicable,
since one of the dimensions is now continuous. However, as
mentioned above, the total number of the barriers and
bridges still remains finite, so that one can make use of their
positions as the dynamical variables. On this basis, a proce-
dure for the cluster decomposition and the sampling is for-
mulated as follows.

First, randomly distribute barriers and bridges over the
N3M8 geometry.Starting from an arbitrarily chosen origin,
the positions of the barriers and the bridges are sequentially
generated by Eq.(14). For instance, suppose the current
Monte Carlo step arrives at theith barrier, whose position is
stored assxi ,yid. Here, the coordinatessxi ,yid represent that
the ith barrier sits at the positionyi of thexith line. Then, one
draws a random number 0, r ,1 and evaluatesm8 by Eq.
(14). If yi +m8øM8, thesi +1dth barrier is placed at the same
line as theith one, and thusxi+1=xi andyi+1=yi +m8; other-
wise if M8,yi +m8ø2M8, the si +1dth barrier is at sxi

+1,yi +m8−M8d; . . .. Repeat this procedure until the whole
N3M8 geometry is visited. The same procedure is applied to
the distribution of the bridges, and the total numbers of the
barriers and the bridges are denoted asBl and Br, respec-
tively.

Second,sample the sizes of the clusters.After the first
step, the geometry is now decomposed into clusters which

consists of conducting lines connected through the bridges.
The size of theith cluster is the sum of the lengths of the
conducting lines in it, which can be calculated from the po-
sitions of the barriers stored in the computer memory. If the
size of theith cluster is denoted asSi, a quantity resembling
the magnetic susceptibilityx and the corresponding Binder-
like ratio Q [29] can be defined as

x =
1

VKo
i

Si
2L ; Vkm2l, and Q =

koi
Si

2l2

kso Si
2d2l

, s15d

whereV;NM8 is the volume of the system.
During the first step of the above algorithm, the function,

ln r, has to be frequently carried out, which decreases some-
what the efficiency of the algorithm. A different procedure
can be applied as follows. From Eq.(14), the total number of
the barriers and bridges is askBll=V/ km8l=V and kBrl
=V/ kn8l=V/ t, respectively. Instead of allowing the fluctua-
tions of Bl andBr during Monte Carlo simulations, one may
fix them at their expectation valuesV andV/ t, respectively.
Since these barriers and bridges are uniformly distributed,
their positions can now beindependentlycalculated asl i
=rV with the random number 0, r ,1. Then, the coordi-
nates of theith barrier is given byxi =fl i /M8g+1 andyi = l i
−sxi −1dM8, where the square brackets represent the integer
part. Here, the word “independently” means that the position
of the si +1dth barrier does not depend on that of theith one.

However, in this way, since the fluctuations of the ener-
gylike quantitiesBl andBr are suppressed, an external con-
straint is effectively imposed on the system. A question arises
how this energylike constraint affects the critical behavior of
the system. For the percolation model, since the thermal scal-
ing exponent satisfies 2yt−d,0, it can be shown[30] that
the leading scaling behavior of the critical system is not
modified. But new corrections to scaling can arise due to this
constraint. To avoid this complication, we still use Eq.(14)
to generate positions of the barriers and bridges in the
present paper.

III. SIMULATIONS IN FLAT GEOMETRIES

A. Two dimensions

For the anisotropic limit of the percolation model in the
two-dimensional rectangular geometry, the duality argument
yields that the critical point istc=1, since the critical bond
probabilities satisfypxc+pyc=1. Furthermore, the thermal
and magnetic critical exponents are exactly known, as men-
tioned earlier. Thus, this model provides a good test case for
the Monte Carlo algorithm described in Sec. II and the uni-
versality of the transverse percolation model.

The simulations used a rectangular geometry ofL lines of
length L in the range 6øLø32. Periodic boundary condi-
tions were applied, and the dimensionless Binder-like ratioQ
and the susceptibilitylike quantityx defined in Eq.(15) were
sampled. Near the critical point, the numerical data ofQ
were fitted[31] by

FIG. 1. The anisotropic limit of the percolation model after the
rescalingy8=ey. The horizontal lines represent “conducting” lines
in they8 direction, and the black bars are barriers with an infinitely
large resistance on these lines; the vertical lines serve as “bridges”
between neighboring lines. One percolating cluster is shown by
solid lines. This figure shows that the conducting lines on the left-
and right-hand sides of a barrier may belong to the same cluster, but
in that case they are via a detour. If this barrier is removed, the
cluster size will remain unchanged.
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Qst,Ld = q0 + o
k=1

4

qist − tcdkLkyt + b1L
y1 + b2L

y2

+ c1st − tcdLyt+y1. s16d

The terms withy1=−2 andy2=−3 account for corrections to
scaling. The fit withyt=3/4 yields tc=0.9994s5d, in good
agreement with the exact resulttc=1. If tc is kept fixed at 1
while yt is left free, we haveyt=0.752s3d<3/4 [9–13].
Moreover, we fitted the Monte Carlo data ofx at tc=1 by the
formula

xstcd = x0 + L2yh−2sb0 + b1L
y1 + b2L

y2d, s17d

from which we obtainyh=0.1043s4d<5/48 [9–13].

B. Three dimensions

As mentioned earlier, three-dimensional percolation mod-
els have been investigated extensively[2–6]. The most accu-
rate results are provided by Monte Carlo simulations. For
instance, for the isotropic bond-percolation model on the
simple-cubic lattice, the percolation threshold is estimated
[4] as pc=0.248 821 6s5d; the thermal and magnetic expo-
nents are reported[4] as yt=1.13s2d and yh=2.523s4d, re-
spectively.

Using the aforementioned Monte Carlo algorithm, we
simulated the transverse percolation model on the three-
dimensional rectangular geometry:L2 lines of lengthL origi-
nating from theL3L square lattice. The system sizes are in
the range 6øLø40, periodic boundary conditions were ap-
plied, and the quantitiesQ andx in Eq. (15) were sampled.
Part of the data forQ is shown in Fig. 2, indicating that the
critical point is located attc<8.64. The clean intersection of
these lines suggests that corrections to scaling are rather
small. Equation(16) was fitted to the data ofQ, with y1 and
y2 taken as −1.14 and −2[4], respectively. Foryt fixed at
1.13, we obtaintc=8.6428s2d; if yt is left free, we findyt

=1.135s8d andtc=8.6429s4d, with the error margin twice the
standard deviation.

Moreover, the data forx were fitted by[31]

x = x0 + x1st − tcd + x2st − tcd2 + L2yh−2

3Fo
k=1

4

akst − tcdkLkyt + b1L
y1 + b2L

y2 + c1st − tcdLyt+y1G ,

s18d

where the terms withxi si =0,1,2d arise from the regular part
of the free energy. With the thermal exponentyt=1.13, we
obtain yh=2.519s1d, where the estimated error margin in-
cludes the uncertainty ofyt.

These investigations confirm the correctness of the Monte
Carlo algorithm described in Sec. II, and moreover confirm
that the transverse percolation model belongs to the same
universality class as the isotropic version of the percolation
model on discrete lattices.

C. Restoration of isotropy

Although the transverse percolation model defined by Eq.
(1) is intrinsically anisotropic, the correlation lengths in the
longitudinal and transverse directions are of the same order.
This can be demonstrated by the approximate isotropy of a
cluster in Fig. 3. This arises from the rescalingz8=ez in the
longitudinal direction discussed in Sec. II. In fact, one can
asymptotically restore the isotropy by choosing an appropri-
ate rescaling factor, i.e.,z8=ez/a0 with a0 a constant. The
value ofa0 is important in the present investigation, since we
are also interested in applications of conformal mappings,
which rely on isotropy.

In two dimensions, we simulated the transverse percola-
tion model precisely attc=1 on theL3L rectangular geom-
etry. The system sizes and the length ratio were taken as in
the range 6øLø64 and 0.65øaø0.80, respectively. Free
boundary conditions were applied both in thex andy direc-
tions. During the Monte Carlo simulations, we sampled the

FIG. 2. The Binder-like ratioQ vs the temperaturelike param-
etert for the transverse percolation model on theL23L rectangular
geometry. The system sizeL is 12 s+d, 16 shd, 20 s3d, 24 ssd, and
28 shd, respectively.

FIG. 3. A cluster for the transverse percolation model on the
L3L rectangular geometry with free boundary conditions andL
=100.
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percolation probabilities in both directions, denoted asPx
andPy. Accordingly, we define a dimensionless ratio

rsa,Ld =KPx

Py
L . s19d

Thus, the aforementioned isotropy meansrsa0,Ld=1. Taking
into account finite-size effects, we fitted the data ofrsa ,Ld
by

rsa,Ld = 1 +a1sa − a0d + a2sa − a0d2 + ¯ + b1L
y1 + b2L

y2

+ c1L
y1sa − a0d. s20d

The terms withy1 andy2 describe corrections to scaling, due
to small-scale deviations from isotropy of the transverse per-
colation model. The numerical data can be successfully de-
scribed by Eq.(20) with y1=−2 andy3=−3, and the fit yields
a0=0.76978s7d, in agreement with the number 4/3Î3 [25].

Similarly, for the three-dimensional rectangular geometry
L23L with free boundary conditions, one can define the ra-
tio rsa ,Ld on the basis of the percolation probabilities in the
discrete and continuous directions. Simulations were per-
formed at the aforementioned estimated critical pointtc
=8.6429s4d, and the system sizes were taken in the range 6
øLø40. The data ofrsa ,Ld were fitted by Eq.(20) with
yi =−1.14 [4]. After a cutoff for small system sizesLø10,
the fit yieldsa0=1.5844s4d.

IV. CONFORMAL INVARIANCE

In this section, we summarize the conformal mappings
and the corresponding transformations of the pair correlation
functions involved in the present paper. Most of these map-
pings have already been derived in Refs.[13,16–18].

A. Spherocylinder

In two dimensions, one may parametrize the infinite plane
as a complex numberz=x+ iy, Cardy’s well-known mapping
[13,16] is then expressed asz8=R ln z. The geometryz8 can
be interpreted as the surface of an infinitely long cylinder
S13R1 with a radiusR. This mapping can be generalized to
any number of dimensions. For instance, in spherical coordi-
natessr ,u ,fd, Cardy’s mapping in three dimensions reads

sr,u,fd = seu/R,u,fd s− ` , u , `d s21d

with R.0 a free parameter. The geometry described by the
variablessu,u ,fd has a line element as

ds2 = du2 + R2sdu2 + sin2 udf2d s0 ø u ø p, 0 ø f , 2pd
s22d

and thus can be recognized as the extension of a sphereS2

into another dimensionR. In Ref. [17], this pseudo-one-
dimensional geometryS23R was named a spherocylinder.

In the infinite flat spaceR3, a critical two-point correlation
function gsrd behaves as

gsrdR3 ~ r−2X sr @ 0d, s23d

whereX is the appropriate scaling dimension. Under the con-
formal mapping(23), this algebraic decay[Eq. (23)] is co-
variantly transformed into

gsudS23R ~ R−2Xseu/2R − e−u/2Rd−2X, s24d

whereu.0 is the distance between a pair of points on the
spherocylinder,su0,u ,fd and su0+u,u ,fd. For u@0, the
correlation function decays exponentially:gsud~R−2Xe−Xu/R

;R−2Xe−u/j, so that the correlation length along the sphero-
cylinder is equal toj=R/X.

B. Interior of a sphere

In two dimensions, the complex functionz8=sz− id / sz
+ id [13] maps the infinite plane onto itself, and meanwhile
transforms the semi-infinite planeR3R+ into the interior of
a unit circle. In fact, such a mapping can be generalized to
spatial dimensionsd.2. It then reads

rW8/r82 = rW/r2 + Î/2, s25d

with Î an arbitrary fixed unit vector. Under Eq.(25), the
infinite flat spaceRd is mapped onto itself, and the plane

Î ·rW=0, which corresponds to a spherical surface with an in-
finite radius, is conformally transformed into the surface of a

d-dimensional unit sphere with the center atÎ. The half

spacesÎ ·rW.0 and Î ·rW,0 are transformed into the interior
and exterior of this unit sphere, respectively.

On the basis of the conformal transformation(25), it can
be shown[13,32] that, in the interior of a sphere with free or
fixed boundary conditions, the profile of an operatorkcl fol-
lows from

kcsrdl ~ R−Xf1 − sr/Rd2g−X, s26d

whereR is the radius of the sphere.
Furthermore, Eq.(21) transforms the interior of a unit

sphereSd into a semi-infinite spherocylinderSd−13R+, with
an end atu=0. Thus, a conformal mapping between the
semi-infinite flat spaceRd−13R+ and the half spherocylinder
Sd−13R+ is established, and the profile(26) is covariantly
transformed into

kcsudl ~ R−Xseu/2R − e−u/2Rd−2X, s27d

which differs from Eq.(24) only by a factorR−X.

C. Surface of a sphere

By rotating an ellipse about the minor or major axis, one
obtains an oblate or a prolate spheroid, respectively. In three-
dimensional Cartesian coordinatessx,y,zd, these spheroids
are defined by

x2

a2 +
y2

a2 +
z2

b2 sa,b . 0d, s28d

wherea andb are the equatorial and the polar radii, respec-
tively. Special cases of the spheroids include the surface of
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an infinitely long cylinder, of a sphere, and of a flat disc. The
latter object is reached in the limit of an oblate spheroidb
→0. It is already known[18] that a conformal transforma-
tion exists between the infinite planeR2 and the surface of a
spheroid. For simplicity, we here only introduce the map-
pings of the infinite plane on the surface of a sphere and on
that of a flat disc. Further, we generalize such conformal
mappings to spatial dimensionsd.2.

The transformation between an infinite planeR2 and the
surface of a sphereS2 can be graphically understood as fol-
lows. A sphere with radiusR is placed on the top of an
infinite plane, i.e., only the south “pole” of the sphere
touches the plane. From the north pole, one draws an arbi-
trary line, such that this line penetrates through the sphere at

RW and intersects with the plane atrW. The conformal transfor-
mation is simply obtained by setting a one-to-one correspon-

dence between the pointsrW andRW . If one expresses the plane
in polar coordinatessr ,fd, while parametrizes the surface of
the sphere in spherical coordinatessr =R,u ,fd, the transfor-
mation reads

sr,fd = S2R cot
u

2
,fD . s29d

According to Eqs.(23) and(29), the pair correlation function

gsRW 1,RW 2d on the sphere follows from

gsRW 1,RW 2d ~ 2−xR−2Xf1 − sinu1 sin u2 cossf1 − f2d

− cosu1 cosu2g−X = uRW 1 − RW 2u−2X, s30d

which, interestingly, has the same form as that in the infinite
plane described by Eq.(23).

Application of Eq.(29) to the interior of a unit circle leads
to the half sphereS3S+, so that a conformal transformation
between the semi-infinite planeR3R+ and the half surface
of a sphere is established. Accordingly, the profile of an op-
erator in the geometryS3S+ behaves as

kcsRW dl ~ sR cosud−X. s31d

In spherical coordinatessr ,Vd, whereV is a set of angular
variables specifying the surface of ad-dimensional sphere,
the line element of the flat spaceRd can be written as

ds2 = dr2 + r2dV2. s32d

In three dimension, one simply hasdV2=du2+sin2 udf2.
On this basis, one can express the line element of thesd
+1d-dimensional spaceRd+1 as

ds82 = dr82 + r82sdu82 + sin2 u8dV2d. s33d

It is now obvious that, ford.2, the generalization of Eq.
(29) reads

sr,Vd = S2R cot
u8

2
,VD, with r8 = R. s34d

Therefore, Eq.(34) transforms an infinite spaceRd into the
surface of asd+1d-dimensional sphereSd, on which the pair
correlation function follows from Eq.(30).

D. Surface of a hyper-disc

As mentioned earlier, the disc geometry is obtained in the
limit b→0 of an oblate spheroid, composed of the interiors
of two circles connected at their perimeters. This can be
generalized tod.2, and the surface of a hyperdisc consists
of the interiors of twod-dimensional spheres with the sur-
faces of both spheres sewn together. Then, the conformal
mapping between the spaceRd and the surface of the hyper-
disc reads

Hsr,Vd = sr8/R,Vd s0 ø r , 1, r8 ø R:positive faced
sr,Vd = sR/r8,Vd s0 ø r , 1, r8 ø R:negative faced.

s35d

The first derivative of the mapping formula(35) is discrete at
the edge of the hyperdiscsr8=Rd. For a pair of points on the
same face of the hyperdisc,rW18 andrW28, the correlation function
has the same form as that in the infinite spaceRd, i.e.,
gsrW18rW28d~ urW18−rW28u

−2X.

V. SIMULATIONS IN CURVED GEOMETRIES

As seen from Sec. IV, for spatial dimensionsd.2, con-
formal mappings normally lead to a curved space or a geom-
etry with curved boundaries. Even in two dimensions, curved
geometries, such as the surface of a sphere, can also be ob-
tained from conformal transformations. The nonzero curva-
ture of these geometries poses a serious problem for numeri-
cal applications of conformal mappings, since they defy
discretizations into regular lattices. As a consequence, the
validity of Cardy’s mapping was verified only for the special
case of the spherical model[33]. Recently, for the case of the
Ising model, this difficulty was avoided by making use of the
Hamiltonian limit of the Ising model[17,18], which renders
one of the dimensions continuous. Since the aforementioned
transverse percolation model also has one continuous dimen-
sion, we here provide further applications of conformal map-
pings to both the bulk and surface criticality.

A. Monte Carlo methods in curved geometries

As an example, we sketch a procedure for cluster decom-
position of the interior of a circle. First, one divides the ge-
ometry intoL concentric circles, with theLth circle precisely
at the edge(Fig. 4). The location of thekth circle readsrk

FIG. 4. Example of transverse percolation model on the interior
of a circle.
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=k− 1/2, with the corresponding circumferenceck=ps2k
−1d. Then, let the continuous longitudinal dimension of the
transverse percolation model be thef direction, so that those
concentric circles just represent the conducting lines men-
tioned above. Then, according to Eq.(14), one generates and
uniformly distributes barriers at the concentric circles. We
mention that, at thekth circle, the average number of the
barriers is controlled by the length of its perimeter. The dis-
tribution of bridges follows an analogous way, but the total
number of the bridges between thekth and sk+1dth circles
s1økøL−1d is now governed by the circumference of the
circle in the middle. Furthermore, the diameter of the first
circle is 1, and thus bridges can exhibit through the center,
connecting different parts of the first circle. A typical con-
figuration is shown in Fig. 4, where the bridges are denoted
as the dashed lines.

Similarly, the “lattice” structure on a sphereS2 can be
represented byL uniformly distributed circles with radii as
chosen above. The transverse and longitudinal dimensions
are theu andf directions, respectively. The location of the
kth circle is uk= sk− 1/2dp /L, and its circumference isck
=2L sin uk. Thus, the radius of the sphere isR=L /p. Analo-
gously, the number of the barriers at thekth circle is domi-
nated by the length of its perimeter, while that of the bridges
is governed by the circumference of the circle in the middle
of the kth andsk+1dth ones.

On a microscopic scale, the lattice structure on a sphere or
the interior of a circle is the same as that on a flat plane, i.e.,
both of them are obtained in the anisotropic limit of the
square lattice. Thus, one expects that the critical point is still
tc=1. However, a global effect may arise due to the fact that
the nonzero curvature cannot be fully accounted for by
circles with varying radius. This has been investigated in
Ref. [18], and it was argued that such a global effect can be
described by a correction term proportional toLyt−2. Since
the two- and three-dimensional percolation models have
yt,2, this effect vanishes asL→`.

It is now obvious that, in three dimensions, the spherocyl-
inder S23R can be obtained by extending the aforemen-
tioned lattice structure of a sphere into another dimension.
Meanwhile, in order to approximate the pseudo-one-
dimensional geometry of the spherocylinder, the size of the
R direction should be taken asnL with a sufficiently large
integern.

B. Numerical results

With the Monte Carlo algorithms described above, we are
now able to simulate the transverse percolation model in the
following curved geometries in two and three dimensions.

1. Surface of a sphere

The system sizes were taken in the range 8øLø48, with
L the number of circles on the sphere. The simulations occur
precisely at the critical pointtc=1, and the rescaling length
ratio was set ata0=0.76978, such that the isotropy of the
transverse percolation is asymptotically restored. We
sampled the pair connectivityP2sud of the pointssu ,fd and

su ,f±pd on the same circle. For both points in the same
cluster, we sayP2=1; otherwiseP2=0. According to Eq.
(30), the connectivity behaves askP2sudl~ sL sin ud−2Xh with
Xh the magnetic scaling dimension, graphically shown in Fig.
5. The good quality of the data collapse for different system
sizes(Fig. 5) indicates that corrections to scaling are rela-
tively small. The data forP2 were fitted by

kP2sudl = sL sin ud−2Xh+cLycfa0 + a2L
yc + a3sL sin udyc + ¯ g,

s36d

where the exponentyc=yt−2=−5/4, asexplained above. For
finite systems, the Hamiltonian may deviate from that at the
fixed point, and we account for this by the terms with coef-
ficients c and a2. Furthermore, we also include a term with
a3, describing the inhomogeneity of a finite sphere. We found
that the numerical data forLù12 are successfully explained
by Eq. (36), and the termcLyc cannot be well observed. The
fit with c=0 yieldsXh=0.10418s4d, in good agreement with
the exact resultXh=5/48=0.104167. . ..

2. Interior of a circle

For the Ising model, the geometry inside a circle can be
approximated[34] by drawing a circle on the square lattice.
Applications of free or fixed boundary conditions are real-
ized by removing or freezing the spins outside the circle,
respectively. However, the symmetry along thef direction is
broken in this way, and thus irregular finite-size effects arise.
The aforementioned Monte Carlo algorithm avoids this dif-
ficulty. The system sizes were taken in the range 6øLø48,
and fixed boundary conditions were imposed: the whole edge
is set within the same cluster. The fraction of thekth circle in
this clusterP1srd was sampled. The numerical data ofP1srd
were fitted by Eq.(26) but with additional terms accounting
for corrections to scaling. We obtainXh=0.10413s4d<5/48.

3. Spherocylinder S2ÃR

The systems were taken asL=5,7, . . . ,21, and thefinite-
size in theR direction was set asnL=8L. Fixed boundary
conditions were imposed at both endsu=0 andu=8L. The
simulations were performed at the estimated critical point
tc=8.6429, and the length rescaling ratio was fixed ata0

FIG. 5. Data collapse of the quantityP2su ,Ld for the transverse
percolation model on the sphere. The system sizes are 8s+d, 16
shd, 24 s3d, 32 ssd, and 40sLd.
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=1.5844. The quantityP1sud was sampled at the “equators”
only, in order to avoid inhomogeneity on finite spheres. The
behavior ofP1sud follows from Eq.(27), decaying exponen-
tially for u@0. This is demonstrated in Fig. 6. The curved
positions at the right-hand side arise because fixed boundary
conditions were applied at both ends, so that the correlations
P1sud build up over two distancesu and 8L−u.

As discussed above, there is a correction~Lyc in finite
systems, due to the discretization of theu direction. Com-
pared to the irrelevant scaling exponentyi =−1.14 in three
dimensions, the correction with the exponentyc=yt−2
=−0.87 is expected to dominate over that withyi. Taking into
account these effects, Eq.(27) yields

P1su,Ld = L−XfYsud + Ys8L − udgsa0 + a1L
yc + a2L

yi + a3L
−2d,

s37d

with the function

Ysud = seuX/2R − e−uX/2Rd−2X sX = Xh + cLycd, s38d

where the radius of the spheres isR=Lp as mentioned ear-
lier.

Equations(37) and (38) were fitted to the Monte Carlo
data ofP1sud. The fit yieldsXh=0.479s1d, which is in agree-
ment with the existing estimationyh=2.523s4d [4] and with
our earlier determinationyh=2.519s1d on theL23L rectan-
gular geometry.

4. Half spherocylinder SÃS+ÃR

As an example of the applications of conformal mappings
to surface criticality, we simulated the transverse percolation
model on the half spherocylinderS3S+3R. The system
sizes were taken as6,8, . . . ,24, andn=8. The fixed and free
boundary conditions were imposed on the ends of the
spherocylinder and the equators, respectively. The quantity
P1sud was sampled. Analogously, the numerical data ofP1sud
were fitted by Eqs.(37) and (38), but X=Xhs+cLyc, where
Xhs is now the surface magnetic scaling dimension. After a
cutoff for small system sizesLø10, the fit yields Xhs
=0.975s4d, in good agreement with the existing resultsXhs

=0.96s5d [35] andXhs=0.970s6d [36].

VI. DISCUSSION

We define a continuous percolation model: the transverse
percolation model. This model is obtained by applying an
infinite rescale factor to the longitudinal direction of the an-
isotropic limit of the bond-percolation model, and is equiva-
lent with the quantum transverseq→1 Potts model. We for-
mulate and apply an efficient Monte Carlo method, and
confirm that the transverse percolation model belongs to the
same universality class as the conventional percolation prob-
lem on discrete lattices. For the two-dimensional rectangular
geometry, the critical point is exactly available astc=1, and
that in the three-dimensional rectangular geometry is deter-
mined astc=8.6429s4d. Furthermore, we restore the isotropy
asymptotically by requiring that the correlation lengths in all
Cartesian directions are identical to each other.

Moreover, the property that the longitudinal direction is
continuous enables simulations of the transverse percolation
model in curved geometries. The numerical data are ana-
lyzed by finite-size scaling according to the predictions of
the theory of conformal invariance. It is shown that, in
curved geometries, the predictions of conformal invariance
are accurately satisfied. On the other hand, assuming confor-
mal invariance, our method provides a powerful tool to in-
vestigate bulk and surface critical phenomena.
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