PHYSICAL REVIEW E 69, 066129(2004)

Anisotropic limit of the bond-percolation model and conformal invariance in curved geometries
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We investigate the anisotropic limit of the bond-percolation model dimensions, which is equivalent to
a (d-1)-dimensional quantung— 1 Potts model. We formulate an efficient Monte Carlo method for this
model. Its application shows that the anisotropic model fits well with the percolation universality cldss in
dimensions. For three-dimensional rectangular geometry, we determine the critical pRmn8a##294), and
determine the length ratio ag=1.58443), which relates the anisotropic limit of the percolation model and its
isotropic version. On this basis, we simulate critical systems in several curved geometries including a spheroid
and a spherocylinder. Using finite-size scaling and the assumption of conformal invariance, we determine the
bulk and surface magnetic exponents in two and three dimensions. They are in good agreement with the
existing results.
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I. INTRODUCTION shown that they are within the same universality class as the
isotropic percolation model id dimensions. In the present
Since their original introduction in 195[4], percolation paper, we shall focus on the limriR— . In this anisotropic
problems have been studied extensively, and a variety dfmit of the bond-percolation model, the probability in the
applications has also been reportege, e.g., Refg2,3]).  (d-1)-dimensional layers approaches 0 near criticality, and
Percolation provides a simple picture of a second-ordethus one can express, andp, as
phase transition, and remains an active research subject
[4—6]. We illustrate the problem of the bond percolation on a pp)=1-¢, and p, =€t (e—0), (1)
regular lattice. Between each pair of lattice sites, a bond is
occupied or empty with a probability or 1-p, respectively. wheret is a temperaturelike parameter. Wheiis precisely
Two sites connected through a chain of occupied bonds argero, the system becomes one-dimensional and this percola-
said to be in the same cluster. Then, various questions can ien problem is trivial. However, as we shall argue later, the
asked concerning the critical cluster distribution and the peranisotropic percolation model defined by Ef) is equiva-
colation probability, etc. Such percolation problems are nowent with a quantung— 1 Potts model ir(d— 1) dimensions,
rather well understood,; this can at least partly be attributed t@uhich fits in thed-dimensional percolation universality class.
the well-known relationshig7] between the bond percola- For the anisotropic model defined by Ed), the correla-
tion and the Potts modélor a review of the Potts model, see tion length in thez direction is of the order of 1. In order
Ref. [8]). In this way, the phase transition that occurs into maintain thed-dimensional character of the system, the
percolation problems can be described in the language déttice size in this direction must also diverge a.1Thus,
critical phenomena in statistical physics. As a consequence,\ge apply a rescaling’ =ze, so that the correlation length in
considerable number of critical exponents is now exactly obthe new unit and the physical size remain approximately con-
tained in two dimensions. For instance, the thermal and magstant. Ase— 0, thez’ dimension becomes continuous, and
netic scaling exponents ang=3/4 andy,=91/48. These e refer to the resulting continuous percolation problem as
exponents can be calculated from the Coulomb gas theore transverse percolation model. A detailed description of
[9,101 and are also predicted by the conformal field theorythe above procedure will be given in Sec. Il.
[11-13. Next, we formulate a Monte Carlo method for the trans-
Besides the above isotropic percolation model, it is ofyerse percolation model. The numerical results confirm that
interest to understand the behavior of anisotropic systems ithe transverse percolation model belongs to the same univer-
the percolation theory. For instance, an anisotropic randorgality class as the conventional percolation problem on a
percolation model was demonstrated to be governed by newjscrete lattice.
random fixed point$14]. In the present paper, we shall con-  Another purpose of the present paper is the application of
sider the anisotropic bond-percolation model, which is deconformal mappings in curved geometries. In two dimen-
fined on ad-dimensional rectangular lattice with a bond sjons, the theory of conformal invariance has yielded sub-
probability p, within (d—1)-dimensional layers perpendicu- stantial result§11-13. Conformal mappings yield relations
lar to thez direction, and with the probabilitp,=Rp, par-  between critical systems in different geometries, and thus
allel to z. For R=0, the system decouples into independentprovide useful tools for the determination of universal prop-
(d-1)-dimensional layers, so that the percolation problemerties of critical models. A well-known example is Cardy’s
reduces tdd-1) dimensions. Models with a finite and non- mapping between an infinite plane and the surface of an in-
zeroR have already received some attentj@b], and it was finitely long cylinder[16]. Since a cylinder is pseudo-one-

1539-3755/2004/68)/06612910)/$22.50 69 066129-1 ©2004 The American Physical Society



Y. DENG AND H. J. W. BLOTE PHYSICAL REVIEW E69, 066129(2004

dimensional, its numerical investigation is simpler than that The Hamiltonian limit of the lattice Ising model defined
of a two-dimensional plane. Cardy’s mapping can be generby Egs.(2) and (4) can be exactly mapped onto tlome
alized to any number of spatial dimensions, and in threalimensional quantum Ising mod¢R1]. This equivalence
dimensions it transforms an infinite spag2into a pseudo- was formulated in the reverse direction by Suzi#d], using
one-dimensional geometr§’ X R. However, the nonzero the Trotter formula[23]. The Hamiltonian of the quantum
curvature of the geometi$* X R poses a serious obstacle for Ising chain reads
numerical simulations.

In applications to the Ising model, this problem was Hom=~-2 (o{ol +ta)), 5

solved recently in Refd.17-19. The solution makes use of :
the Hamiltonian limit of the lattice Ising model, which ren- \here oz and o * are the Pauli matrices for treandx spin

ders one of the lattice directions continuous. Thus, one cagomponents, respectively. The Hamiltonid#,, contains

as the surface of a sphe®x S in two dimensions and the jith nearest-neighbor Ising interactions, and the tempera-
cylinderlike geometryS X R* in three dimensions. It was yrelike parametet acts as a transverse field in thelirec-
reported[17,1§ that, in three dimensions, the Ising model is tjon.

conformally invariant and the corresponding estimations of Tpjs equivalence can be readily generalized to spatial di-
critical exponents are compatible with existing results. Inmensions d>2, i.e., the Hamiltonian limit of a

Ref.[17] the three-dimensional geome®)x k' was named  q_gimensional lattice Ising model is equivalent with the

a spherocylinder. Here, we simulate the transverse percolgansverse Ising model ifd—1) dimensions.

tion model in curved geometries, which provides another ap- |ncjyding the transverse Ising model as a special case, one
plication of conformal mappings to investigate bulk and sur--5 gefine a general quantugpstate Potts model24,25.

face critical phenomena. _ For instance, the Hamiltonian of a quantwustate Potts
The outline of this paper is as follows. Section I eXploreSchain(with integerq) can be written as

the relationship of the anisotropic limit of the percolation

model defined by Eq(l) and the quantung— 1 system in ot » .
(d-1) dimensions, and moreover a Monte Carlo method is Hqm= —Z > (S STE+tRY, (6)
formulated for this anisotropic percolation model. In Sec. I, k=0

Monte Carlo simulations in the two- and three-dimensionalyhereS andR areqx q matrices satisfying th&(q) algebra
rectangular geometries are presented. Section IV summarizes

the conformal mappings involved in the present paper; appli- [S.S]=[R.R]=[S,Rj]=0, i#],
cations of these mappings are reported in Sec. V. We give a
short discussion in Sec. VI. SR =exfi2a/g)R; S, and RI=Si=1. (7)

Il. MODELS AND ALGORITHMS For the case ofj=2, the operator$ and R reduce to the
A. Quantum transverse g-state Potts model Pauli matriceso * and o %, respectively, and Eq6) simpli-
N o fies to Eq.(5). The eigenspectra of these critical quantum
The partition sum of thg=1 Potts model is just & con- q.state Potts chain®< q<4) with free and periodic bound-

stant, so that its equivalence to the bond-percolation mod ry conditions have already been explored in RgZd,25
has to be formulatef7] in terms of geometric properties of 5 it was shown that, indeed, they share the same critical

the random-cluster representation of the Potts model in th@xponents as the corresponding clasgiesiate Potts models
limit g—1. To explore the anisotropic limit of the bond- ;. wwo dimensions.

percolation model defined by Edl), we start with the For nonintegen or the limiting caseq— 1, Eqs.(6) and

Hamiltonian limit of an Ising model on aNx M rectangular (7) are not suitable to describe the Hamiltonian limit of the
lattice with periodic boundary conditions g-state Potts model. In this case, one can instead apply the

_ transfer matrix of the random-cluster mod26]. The evalu-
HikeT = iEJ[KX Sij Seay + Ky S Sl @ ation of the partition function uses the transfer matrix as
The spins can assume the valsgs= +1, the integer coordi- Z= > (SYTs?y- - (sW[T|sV Dy .. (8)
natesi andj label the lattice sites, anld, andK, are the W2

coupling strengths in theandy directions, respectively. The

V) i i
critical line of this model is given by20] wheresY is the bond configuration at thgh row and the

transfer is in the direction of the strong coupling. For the
sinh(2K,)sinh(2K,) = 1. (3)  anisotropic bond-percolation model described by #&gj.the

. . L ) transfer matrix reads
Thus, in the anisotropic limit— 0, the couplings can be
writen as (STl D) =1 - €3 {B&”*” : 50&%] LO(&), (9

Ke=elt, and exg-2K)=e (e—0), (4) x t

wheret parametrizes the temperature; the critical point.is wherel is the unit matrix. The symboIB(xy'y*l) represents
=1. that, between thgth and(y+1) rows, a “broken” bond oc-
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curs at the sitex while the remaining bonds are occupied, m=1+[In(r)/In(1 -¢)], (11
and CEZ))(H means that onlyne bond exists betweer and
x+1 at theyth row. Onceq is not precisely equal to 1, the
operatorsB and C do not commute, and thus are quantum
operators. Fot<1, most sites are connected so that the sys
tem is in an “ordered” state; while fde>1, they are inde-
pendent of each other and the system is “disordered. s . .
o In the x direction, one instead uses the distribution

phase transition occurs &t 1. = ) .

Therefore, we simply expect that the anisotropic limit of Px(n)=p,(1-p,)™" to express the probability than-1)

the bond-percolation model by E¢) is within the same subsequent variabldz are zero, while thath bond variable

universality class with the corresponding isotropic versionIS 1- We mention that, although the bond variables are now in

This will be demonstrated further by means of Monte Carloth€X direction, they are still counted sequentially along yhe
direction. Analogously, one can transform a uniformly dis-

simulations. g ! )
tributed random numbar into an integem,

where 0<r <1 and the square brackets denote the integer
part of the number in between. The numberepresents the
distance of the current empty bond to the one to be gener-
ated. Thus, only one random number is needed to generate
» ghe next empty bond in the direction.

B. Algorithms n=1+[In(r)/In(1-py] (px=e€lt). (12)

We consider the anisotropic limit of the bond-percolation ~ The average number of thedimensional empty bonds
model[Eq. (1)] on anN X M rectangular lattice with periodic a@nd that of the occupied bonds in tkelirection are
boundary conditions. The bond occupation probabilities in 1 1 t
the x andy directions arep, andp; in Eq. (1), respectively. m= f drin(r)/in(l-e) ==, and nx—-, (13
For such a system, the correlation length in yrdirection is 0 € €

of order 1/, as mentioned earlier. Thus, we have to take therespectively Now, suppose théx M square lattice repre-

Isattlce sizeM proportlone_ll to 1é¥yh_|le 'T N is kept .‘:O”Stﬁf‘t- | sents a conducting network, and the occupied bonds act as
blncg c_ompﬁter mtl\a/lmoneéarle |r|1|te,. 'rt] may n%t |r]:nme l'atedythe elementary conducting units. According to E3), in
elf) vious how "’.Ih ohnte arlo algorithm canl € OrmlfJ ateh they direction, the current is allowed to flow along the con-
et us start W't. .t € procgdures commonly used for t educting “lines” until it occasionally encounters an empty
cluster decomposition of the isotropic version of the PETCO%0nd, to which we shall refer as a barrier with an infinitely
lation model with the bond probabilitp. First, one intro- '

duces a bond variable. for each bond between nearest- large resistance. In thg direction, since most bonds are
. . o 1 . empty, the areas between the neighboring conducting lines
neighboring sited and j. Occupied and empty bonds are

represented big; =1 and 0, respectively. For each bond vari- can be considered to be filled with an insulating material, and
P - , resp Y- the electrical current has to rely on sparsely distributed

able b;;, one draws a uniformly distributed random number“bridges” (occupied bonds If a potential difference is ap-

r(0=r<1), and setd;; =1 if r <p. The whole lattice is then lied to the up and down sides of thex M network, the

decomposed into clusters of connected sites through the o orresponding conductivity of this network then depends on

cupied bonds. These perC(_)Iatlon clusters are analogous 0 the, (o|ative abundance of the bridges and barriers. According
Swendsen-Wang clusters in the Potts mdael.

For the anisotropic limit of the percolation model defined o Eq.(13), the average total numbers of the barriers and the
L T bonds are&NM dNMelt, tively, so that th i
by Eq. (1), the bond probability in the direction isp,=1 onas ar € an €L, respectively, so that they remain

<0 that one has 1o draw of orderelfandom numbers finite in the limit e—0. Thus, the conductivity of the net-
—€ ;

’ . L kd d I the t turelik etéio
before finding an empty bonth,=0. This indicates that work cepends only on the temperaiirelixe param '

bond v distribated i irection. In th t>1, the sizes of conducting clusters are small, and the up
empty bonds are sparsely distribute in rirection. In '®  and down sides are disconnected, so that no current exists; if
x direction, the bond probabilitg, « € so that the task to find

) = - the temperaturé is sufficiently low, a percolating cluster
the next occupied bond,=1 again involves of order ¥/ which carries current may occur in the system.
random numbers.

A Hicient d follows28]. Counting th Although one now needs only a finite number of random
more eflicient procedure o_ow§ 8]. ounting e n mpers, one still has to solve the problem of the infinite
bond variables sequentially in tlyedirection, the distribution size M in the y direction, reflected by the divergence mf

— m-1 HH ’
Py(m)=(1-p,)p;"* expresses the probability thdtn-1) 5,41 This can be done by rescaling tiedirection asy’

sub_sequgnt bonq variableg are equal to 1, while thmth =ey, so that the physical siz&1'=Me remains approxi-
variable is zero, i.e., an empty bond occursrdh position. mately a constant. In the limié—0, they dimension be-

Thus, the cumulative distribution can be written as comes continuous, i.e., there is an infinite number of lattice
sites per physical length unit, and thex M square lattice

m
_ o _ reduces toN lines of physical lengtiv’. Meanwhile, Egs.
Cym) = 21 P)=1-pf'=1-(1-9", (10 (12) and(12) change into
J:

m =em=-1In(r), and n"=en=-tIn(r) (e—0),
which represents the probability that an empty bdid0 (14)
occurs in the range € j<m. Thus, by mapping the distri-
bution 0<C,(m) <1 on the uniform distribution of the ran- which indicates that the average distances of the barriers and
dom numberr, one transforms into an integem, bridges,m’” andn’, are now of the order of 1. As a result,
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+

consists of conducting lines connected through the bridges.
The size of theth cluster is the sum of the lengths of the
conducting lines in it, which can be calculated from the po-
sitions of the barriers stored in the computer memory. If the
size of theith cluster is denoted &3, a quantity resembling
the magnetic susceptibility and the corresponding Binder-
like ratio Q [29] can be defined as

el
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whereV=NM’ is the volume of the system.

FIG. 1. The anisotropic limit of the percolation model after the ~ During the first step of the above algorithm, the function,
rescalingy’ =ey. The horizontal lines represent “conducting” lines In r, has to be frequently carried out, which decreases some-
in they’ direction, and the black bars are barriers with an infinitely what the efficiency of the algorithm. A different procedure
large resistance on these lines; the vertical lines serve as “bridgegan be applied as follows. From Ed4), the total number of
between neighboring lines. One percolating cluster is shown byhe barriers and bridges is a8,)=V/{m’)=V and (B,)
solid .Iines. This figure shows.that the conducting lines on the left—\//(n’y=V/t, respectively. Instead of allowing the fluctua-
and right-hand sides of a barrier may belong to the same cluster, byl o otB andB, during Monte Carlo simulations, one may
in that case t.hey are via a detour. If this barrier is removed, thefix them at their expectation valudsandV/t, respectively.
cluster size will remain unchanged. . : . . o

Since these barriers and bridges are uniformly distributed,
after the rescaling’ =ye, the anisotropic limit of the perco- their positions can now bédependentlycalculated ad;
lation model defined by Eql) reduces to a continuous per- =rV with the random number €r<1. Then, the coordi-
colation model, to which we shall refer as the transverséates of theth barrier is given byx=[l;/M’]+1 andy;=1;
percolation model. A typical configuration is shown in Fig. 1, —(x—1)M’', where the square brackets represent the integer
where the horizontal lines are the aforementioned conductinpart. Here, the word “independently” means that the position
lines and the vertical lines are the bridges in the transversef the (i + 1)th barrier does not depend on that of ttte one.
direction. The black bars represent the barriers, through However, in this way, since the fluctuations of the ener-
which the current cannot penetrate. For clarity, in Fig. 1 wegylike quantitiesB, and B, are suppressed, an external con-
have outlined a cluster by means of solid lines. straint is effectively imposed on the system. A question arises

Conventional Monte Carlo methods for discrete latticehow this energylike constraint affects the critical behavior of
percolation problems store the lattice sites simply in an arraythe system. For the percolation model, since the thermal scal-
For the transverse percolation, this is no longer applicableing exponent satisfiesy2-d< 0, it can be showrj30] that
since one of the dimensions is now continuous. However, athe leading scaling behavior of the critical system is not
mentioned above, the total number of the barriers andnodified. But new corrections to scaling can arise due to this
bridges still remains finite, so that one can make use of theiconstraint. To avoid this complication, we still use Et4)
positions as the dynamical variables. On this basis, a procée generate positions of the barriers and bridges in the
dure for the cluster decomposition and the sampling is forpresent paper.
mulated as follows.

First, randomly distribute barriers and bridges over the
NX M’ geometryStarting from an arbitrarily chosen origin, Ill. SIMULATIONS IN FLAT GEOMETRIES
the positions of the barriers and the bridges are sequentially
generated by Eq(14). For instance, suppose the current
Monte Carlo step arrives at thth barrier, whose positionis  For the anisotropic limit of the percolation model in the
stored ag(x;,y;). Here, the coordinatels;,y;) represent that  two-dimensional rectangular geometry, the duality argument
theith barrier sits at the positioy) of thexth line. Then, one  yields that the critical point i$.=1, since the critical bond
draws a random number<0r <1 and evaluates1’ by Eq.  probabilities satisfyp,.+p,.=1. Furthermore, the thermal
(14). If y;+m’<M’, the(i +1)th barrier is placed at the same and magnetic critical exponents are exactly known, as men-
line as theith one, and thusg;,;=x andy;,;=y;+m’; other-  tioned earlier. Thus, this model provides a good test case for
wise if M'<y,+m’'<2M’, the (i+1)th barrier is at(x; the Monte Carlo algorithm described in Sec. Il and the uni-
+1,y;+m’'=M’); .... Repeat this procedure until the whole versality of the transverse percolation model.

N X M’ geometry is visited. The same procedure is applied to The simulations used a rectangular geometri, tihes of
the distribution of the bridges, and the total numbers of thdength L in the range 6L <32. Periodic boundary condi-
barriers and the bridges are denotedBasand B,, respec- tions were applied, and the dimensionless Binder-like 1@tio
tively. and the susceptibilitylike quantity defined in Eq(15) were

Second,sample the sizes of the clustefster the first sampled. Near the critical point, the numerical dataof

step, the geometry is now decomposed into clusters whictvere fitted[31] by

A. Two dimensions
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FIG. 2. The Binder-like ratidQ vs the temperaturelike param-
etert for the transverse percolation model on tHex L rectangular
geometry. The system siteis 12(+), 16 (), 20(X), 24(O), and
28 (0), respectively.

4

Q(t,L) = o+ X Gi(t — KL% + by L1 + byLY2
k=1

+ oyt =t LV, (16)

The terms withy, =-2 andy,=-3 account for corrections to
scaling. The fit withy,=3/4 yields t;=0.99945), in good
agreement with the exact restt=1. If t. is kept fixed at 1
while vy, is left free, we havey,=0.7523)~3/4 [9-13.
Moreover, we fitted the Monte Carlo data patt.=1 by the
formula

X(to) =X+ L¥n™2(by + by LY + b,LY2), (17)

from which we obtainy,=0.10434) ~5/48[9-13.

B. Three dimensions

As mentioned earlier, three-dimensional percolation mod
els have been investigated extensivi@y6]. The most accu-
rate results are provided by Monte Carlo simulations. Fo

r

PHYSICAL REVIEW E 69, 066129(2004)

FIG. 3. A cluster for the transverse percolation model on the
L XL rectangular geometry with free boundary conditions &and
=100.

X = Xo + X (t = tC) + X,(t — tc)? + L2
4

X | D ay(t = t) "L+ by V2 + byLY2 + ¢4 (t — t) L1 |,
k=1

(18)

where the terms witly; (i=0,1,2 arise from the regular part
of the free energy. With the thermal exponegpnt1.13, we
obtain y,=2.5191), where the estimated error margin in-
cludes the uncertainty of;.

These investigations confirm the correctness of the Monte
Carlo algorithm described in Sec. I, and moreover confirm
that the transverse percolation model belongs to the same
universality class as the isotropic version of the percolation
model on discrete lattices.

instance, for the isotropic bond-percolation model on the
simple-cubic lattice, the percolation threshold is estimated

[4] as p.=0.248 821 €5); the thermal and magnetic expo-
nents are reportef] asy,=1.132) andy,=2.5234), re-
spectively.

Using the aforementioned Monte Carlo algorithm, we

C. Restoration of isotropy

Although the transverse percolation model defined by Eq.
(1) is intrinsically anisotropic, the correlation lengths in the
longitudinal and transverse directions are of the same order.

simulated the transverse percolation model on the threeFhis can be demonstrated by the approximate isotropy of a

dimensional rectangular geomethy lines of lengthL origi-

cluster in Fig. 3. This arises from the rescalirig- ez in the

nating from thel X L square lattice. The system sizes are inlongitudinal direction discussed in Sec. Il. In fact, one can

the range 6L <40, periodic boundary conditions were ap-
plied, and the quantitie® and y in Eq. (15) were sampled.
Part of the data fo) is shown in Fig. 2, indicating that the
critical point is located at,~ 8.64. The clean intersection of
these lines suggests that corrections to scaling are rath
small. Equation(16) was fitted to the data dp, with y; and
y, taken as —1.14 and —4], respectively. Fory, fixed at
1.13, we obtain.=8.64282); if vy, is left free, we findy,
=1.1358) andt.=8.64294), with the error margin twice the
standard deviation.

Moreover, the data fox were fitted by[31]

asymptotically restore the isotropy by choosing an appropri-
ate rescaling factor, i.ez' =ez/ oy with o a constant. The
value ofag is important in the present investigation, since we
are also interested in applications of conformal mappings,
@rhich rely on isotropy.

In two dimensions, we simulated the transverse percola-
tion model precisely at.=1 on theL X L rectangular geom-
etry. The system sizes and the length ratio were taken as in
the range 6L <64 and 0.65 «<0.80, respectively. Free
boundary conditions were applied both in thandy direc-
tions. During the Monte Carlo simulations, we sampled the
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percolation probabilities in both directions, denoted Rjs gN)psx ™ (r=>0), (23
andP,. Accordingly, we define a dimensionless ratio . _ o _
whereX is the appropriate scaling dimension. Under the con-
P, formal mapping(23), this algebraic decajEqg. (23)] is co-
r(e,l) = YA (19 variantly transformed into
y

u o R—ZX eu/2R_ e—u/2 —2X, 24
Thus, the aforementioned isotropy meas,,L)=1. Taking O ( K 24

into account finite-size effects, we fitted the datar@f,L) whereu>0 is the distance between a pair of points on the

by spherocylinder,(ug, 8, ) and (ug+u,,®). For u>0, the
correlation function decays exponentially(u) « R- ¢ XUR
Fla,L) =1 +ay(a— ag) + ay(a— ag)®+ -+ + b1+ b,LY2 =R e ¥, so that the correlation length along the sphero-
+ e, (e ag). (20) cylinder is equal te€=R/X.
The terms withy, andy, describe corrections to scaling, due B. Interior of a sphere

to small-scale deviations from isotropy of the transverse per-
colation model. The numerical data can be successfully de;

scribed by EQ(Z.O) with y,=-2 andy3:—3, and the fit yields transforms the semi-infinite plad&x R* into the interior of

aO—Q.7_697$7), n agreemept W'th the number 4/3 [25]. a unit circle. In fact, such a mapping can be generalized to
Similarly, for the three-dimensional rectangular geometrySpatial dimensiong > 2. It then reads

L2 X L with free boundary conditions, one can define the ra- '

tio r(a,L) on the basis of the percolation probabilities in the P2 =2+ 1/2, (25)

discrete and continuous directions. Simulations were per-

formed at the aforementioned estimated critical pdint with | an arbitrary fixed unit vector. Under E@25), the

=8.64294), and the system sizes were taken in the range 6nfinite flat spaceR? is mapped onto itself, and the plane
<L=40. The data of(a,L) were fitted by Eq(20) with  ].r=0, which corresponds to a spherical surface with an in-
y;i=—1.14[4]. After a cutoff for small system sizels<10, finite radius, is conformally transformed into the surface of a
the fit yieldsap=1.58444). d-dimensional unit sphere with the center latThe half

spacesf-F>O andl-F<0 are transformed into the interior
IV. CONFORMAL INVARIANCE and exterior of this unit sphere, respectively.

In this section, we summarize the conformal mapping On the basis of the_ conf(_)rma_l transformat((ﬁS)_, It can
- . . 9%e shown13,32 that, in the interior of a sphere with free or
and the corresponding transformations of the pair correlatlort] ed boundary conditions, the profile of an operaigy fol-
functions involved in the present paper. Most of these map—IX u y tons, profi perap,
pings have already been derived in Réfs3,16-18. lows from

In two dimensions, the complex functiozi=(z—i)/(z
i) [13] maps the infinite plane onto itself, and meanwhile

() = R 1= (IR, (26)

whereR is the radius of the sphere.

In two dimensions, one may parametrize the infinite plane Furthermore, Eq(21) transforms the interior of a unit
as a complex numbea=x+iy, Cardy’s well-known mapping sphereS” into a semi-infinite spherocylind&™* x R*, with
[13,16 is then expressed @=R In z. The geometry’ can an end atu=0. Thus, a conformal mapping between the
be interpreted as the surface of an infinitely long cylindersemi-infinite flat spac&% X R* and the half spherocylinder
Stx R with a radiusR. This mapping can be generalized to X R* is established, and the profil@6) is covariantly
any number of dimensions. For instance, in spherical coorditransformed into
nates(r, 8, ¢), Cardy’s mapping in three dimensions reads (U)o ROX(@H2R — gu2R)-2x. 27

(r,0,4)=("R6,¢) (-o<u<x) (21)  which differs from Eq.(24) only by a factorR™.

A. Spherocylinder

with R>0 a free parameter. The geometry described by the

. . C. Surf f h
variables(u, #, ¢) has a line element as uriace of a sphere

By rotating an ellipse about the minor or major axis, one
dg=dw?+R¥(d +sirf 6d¢?) (0<60<m, 0< p<2m) obtains an oblate or a prolate spheroid, respectively. In three-
dimensional Cartesian coordinatesy,z), these spheroids
(22 X
are defined by

N

and thus can be recognized as the extension of a si3lere Xy
into another dimensioR. In Ref. [17], this pseudo-one- ot 5t
dimensional geometr§’ X R was named a spherocylinder. a a
In the infinite flat spac&3, a critical two-point correlation wherea andb are the equatorial and the polar radii, respec-
functiong(r) behaves as tively. Special cases of the spheroids include the surface of

§ (a,b>0), (28
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an infinitely long cylinder, of a sphere, and of a flat disc. The
latter object is reached in the limit of an oblate spheroid
—0. It is already knowr[18] that a conformal transforma-
tion exists between the infinite plaf& and the surface of a o
spheroid. For simplicity, we here only introduce the map- @

pings of the infinite plane on the surface of a sphere and on

that of a flat disc. Further, we generalize such conformal
mappings to spatial dimensions> 2.

The transformation between an infinite plaié and the
surface of a spher&” can be graphically understood as fol-
lows. A sphere with radiufRR is placed on the top of an
infinite plane, i.e., only the south “pole” of the sphere X
touches the plane. From the north pole, one draws an arbf @ circle-
trary line, such that this line penetrates through the sphere at

R and intersects with the plane @atThe conformal transfor-
mation is simply obtained by setting a one-to-one correspon- As mentioned earlier, the disc geometry is obtained in the

dence between the pointsandR. If one expresses the plane limit b— 0 of an oblate spheroid, composed of the interiors
in polar coordinate$r, ¢), while parametrizes the surface of Of two circles connected at their perimeters. This can be

the sphere in spherical coordinates R, 9, ¢), the transfor- generalized ta@ > 2, and the surface of a hyperdisc consists
mation reads of the interiors of twod-dimensional spheres with the sur-

faces of both spheres sewn together. Then, the conformal
_ 0 mapping between the spaBé and the surface of the hyper-
(r.¢)=|2Rcot_,¢). (29 gisc reads
According to Eqgs(23) and(29), the pair correlation function {(r,ﬂ) =(r'/iRQ)  (0s=r<1, r’<Rypositve face

9(Ry,R,) on the sphere follows from (r,Q)=(Rr,Q) (0=r<1, r’<Rnegatie facg

FIG. 4. Example of transverse percolation model on the interior

D. Surface of a hyper-disc

- - 35
9(Ry,Ry) o 2R 1 = sin 6; sin 6, cog by — ¢b,) 9
. The first derivative of the mapping formu@5) is discrete at
- 0s6; cosb,] X =R, — Ry| %, (30)  the edge of the hyperdige’ =R). For a pair of points on the

which, interestingly, has the same form as that in the infinit same face of the hyperdisg, andrz, the.colrr_elatlon funpuon
as the same form as that in the infinite sp&® i.e.,

plane described by E@23). 2o oo
o N . g(ryry) o |F=ra =%,
Application of Eq.(29) to the interior of a unit circle leads 12 172
to the half spher&Xx S, so that a conformal transformation
between the semi-infinite plan@x R* and the half surface V. SIMULATIONS IN CURVED GEOMETRIES

of a sphere is established. Accordingly, the profile of an op- o )
erator in the geometr$x S" behaves as As seen from Sec. IV, for spatial dimensiods- 2, con-

R formal mappings normally lead to a curved space or a geom-
(HR)) = (R cos ) *. (31)  etry with curved boundaries. Even in two dimensions, curved

) . _ geometries, such as the surface of a sphere, can also be ob-
In spherical coordinateg, ), whereQ is a set of angular  tained from conformal transformations. The nonzero curva-

variables specifying the surface ofdadimensional sphere, e of these geometries poses a serious problem for numeri-
the line element of the flat spad¥ can be written as cal applications of conformal mappings, since they defy
d< = dr2 + r2d02. (32) disprgtizations into regqlar Iattices.. _As a consequence, the

validity of Cardy’s mapping was verified only for the special

In three dimension, one simply hai2?=d#*+sir? 6d¢?.  case of the spherical mod@3]. Recently, for the case of the

On this basis, one can express the line element of(the Ising model, this difficulty was avoided by making use of the

+1)-dimensional spac&®* as Hamiltonian limit of the Ising mode]17,18, which renders
one of the dimensions continuous. Since the aforementioned

2 12 12, 12 H ’ 2
ds’?=dr'2+1'%(dg'? + si’ 6'dQ?). (33 transverse percolation model also has one continuous dimen-
It is now obvious that, ford> 2, the generalization of Eg. SIon, we here provide further applications of conformal map-
(29) reads pings to both the bulk and surface criticality.
(r,Q)= <2R cot%,ﬂ), with r’' =R. (34) A. Monte Carlo methods in curved geometries

As an example, we sketch a procedure for cluster decom-
Therefore, Eq(34) transforms an infinite spadé? into the  position of the interior of a circle. First, one divides the ge-
surface of ad+ 1)-dimensional spher&?, on which the pair ometry intoL concentric circles, with theth circle precisely
correlation function follows from Eq.30). at the edgeFig. 4). The location of thekth circle reads
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=k—-1/2, with the corresponding circumferencg=m(2k -0.3 '

—1). Then, let the continuous longitudinal dimension of the 04 "\\

transverse percolation model be thalirection, so that those 05 f .
concentric circles just represent the conducting lines men- 06 | \.\
tioned above. Then, according to E@4), one generates and S og o,
uniformly distributes barriers at the concentric circles. We = 08 Y
mention that, at thékth circle, the average number of the _0'9

barriers is controlled by the length of its perimeter. The dis-
tribution of bridges follows an analogous way, but the total
number of the bridges between th#h and (k+1)th circles -11
(1=<k=L-1) is now governed by the circumference of the

circle in the middle. Furthermore, the diameter of the first

circle is 1, and thus bridges can exhibit through the center, FIG. 5. Data collapse of the quantiBs(6,L) for the transverse
connecting different parts of the first circle. A typical con- percolation model on the sphere. The system sizes &re),816
figuration is shown in Fig. 4, where the bridges are denoted), 24 (X), 32 (O), and 40(<).

as the dashed lines.

Similarly, the *lattice” structure on a sphe® can be  (y 4+ ) on the same circle. For both points in the same
represented by uniformly distributed circles with radii as | ster. we sayP,=1: otherwiseP,=0. According to Eq.
chosen above. The transverse and longitudinal dimensior*(go) the connectivity,behaves 4B,(6)) o (L sin )~ with

th d ¢ directions, tively. The location of th . ; : : . -
‘Etrﬁ cirifeair; 0¢=(Il<rf(§[|/2n)s /rfSF;iZ I\i/tz ycircuemf(()a(;:rlzz e € X, the magnetic s.callng dimension, graph|cally shown in Fig.
k L, k 5. The good quality of the data collapse for different system

=2L sin 6. Thus, the radius of the sphereRs:L/7. Analo-  sjzes(Fig. 5) indicates that corrections to scaling are rela-
gously, the number of the barriers at tkil circle is domi- tively small. The data foP, were fitted by

nated by the length of its perimeter, while that of the bridges
is governed by the circumference of the circle in the middle (P,(6)) = (L sin 9)—2><h+cLy°[a0+ aLYe + ag(L sin O)Ye+ --- ],
of the kth and(k+ 1)th ones. (36)

On a microscopic scale, the lattice structure on a sphere or
the interior of a circle is the same as that on a flat plane, i.e\here the exponent=y,—2=-5/4, agxplained above. For
both of them are obtained in the anisotropic limit of the finite systems, the Hamiltonian may deviate from that at the
square lattice. Thus, one expects that the critical point is stilfixed point, and we account for this by the terms with coef-
t.=1. However, a global effect may arise due to the fact thaficients c anda,. Furthermore, we also include a term with
the nonzero curvature cannot be fully accounted for byas, describing the inhomogeneity of a finite sphere. We found
circles with varying radius. This has been investigated irthat the numerical data fdr=12 are successfully explained
Ref.[18], and it was argued that such a global effect can by Eq.(36), and the terntlYc cannot be well observed. The
described by a correction term proportional lt¢™2. Since  fit with c=0 yieldsX,=0.104184), in good agreement with
the two- and three-dimensional percolation models havehe exact resulk,=5/48=0.104167....
V<2, this effect vanishes ds— .

It is now obvious that, in three dimensions, the spherocyl- 2. Interior of a circle

. ) . .
inder S"X R can be obtained by extending the aforemen-  pq the Ising model, the geometry inside a circle can be

tioned Ia.ttice.structure of a spherg into another dime”Sionapproximateq34] by drawing a circle on the square lattice.
Meanwhile, "in order to approximate the pseudo-one-apyications of free or fixed boundary conditions are real-
dimensional geometry of the spherocylinder, the size of the;eq by removing or freezing the spins outside the circle,
R direction should be taken ad. with a sufficiently large respectively. However, the symmetry along theirection is
integern. broken in this way, and thus irregular finite-size effects arise.
The aforementioned Monte Carlo algorithm avoids this dif-
ficulty. The system sizes were taken in the rangel6< 48,
_ _ _ and fixed boundary conditions were imposed: the whole edge
With the Monte Carlo algorithms described above, we argg set within the same cluster. The fraction of Htle circle in
now able to simulate the transverse percolation model in thenis clusterP;(r) was sampled. The numerical dataRf(r)
following curved geometries in two and three dimensions. \yere fitted by Eq(26) but with additional terms accounting
for corrections to scaling. We obtal,=0.104134) =5/48.

0 05 1 15 2 25 3 35 4
In (L sin@)

B. Numerical results

1. Surface of a sphere

The system sizes were taken in the rangel8< 48, with 3. Spherocylinder St

L the number of circles on the sphere. The simulations occur The systems were taken bs5,7,...,21, and thénite-
precisely at the critical point.=1, and the rescaling length size in theR direction was set aaL=8L. Fixed boundary
ratio was set atyy=0.76978, such that the isotropy of the conditions were imposed at both engs0 andu=8L. The
transverse percolation is asymptotically restored. Wesimulations were performed at the estimated critical point
sampled the pair connectivity,(6) of the points(6, ) and  t.,=8.6429, and the length rescaling ratio was fixedagt
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FIG. 6. Exponential decay d¥,(u) along the spherocylinder for

the transverse percolation model. The system size=i&4 andn
=8.

=1.5844. The quantity;(u) was sampled at the “equators”
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4. Half spherocylinder SXS* X R

As an example of the applications of conformal mappings
to surface criticality, we simulated the transverse percolation
model on the half spherocylinde8x S* X R. The system
sizes were taken &, 8, ..., 24, anth=8. The fixed and free
boundary conditions were imposed on the ends of the
spherocylinder and the equators, respectively. The quantity
P,(u) was sampled. Analogously, the numerical dat®gt)
were fitted by Eqs(37) and (38), but X=X;s+cLY, where
Xis IS now the surface magnetic scaling dimension. After a
cutoff for small system sized <10, the fit yields X;¢
=0.9754), in good agreement with the existing results,
=0.965) [35] and X;,s=0.9706) [36].

VI. DISCUSSION

We define a continuous percolation model: the transverse
percolation model. This model is obtained by applying an

only, in order to avoid inhomogeneity on finite spheres. Thenfinite rescale factor to the longitudinal direction of the an-

behavior ofP,(u) follows from Eq.(27), decaying exponen-

isotropic limit of the bond-percolation model, and is equiva-

tially for u>0. This is demonstrated in Fig. 6. The curved lent with the quantum transversg— 1 Potts model. We for-
positions at the right-hand side arise because fixed boundarjulate and apply an efficient Monte Carlo method, and
conditions were applied at both ends, so that the correlationsonfirm that the transverse percolation model belongs to the

P,(u) build up over two distances and 8 —u.

As discussed above, there is a correctio¥e in finite
systems, due to the discretization of thedirection. Com-
pared to the irrelevant scaling expongnt-1.14 in three
dimensions, the correction with the exponeyt=y,—-2
=-0.87 is expected to dominate over that withTaking into
account these effects, EQ7) yields

Py(u,L) = L7TY(W) + Y(8L — u)l(ag + agL¥e + @l + agl ™),
(37)

with the function

Y(u) = (MR- e R (X=X, +clk),  (38)
where the radius of the spheresRs L7 as mentioned ear-
lier.

Equations(37) and (38) were fitted to the Monte Carlo
data ofP,(u). The fit yieldsX,,=0.4791), which is in agree-
ment with the existing estimatioy,=2.5234) [4] and with
our earlier determinatioy,=2.5191) on theL2X L rectan-
gular geometry.

same universality class as the conventional percolation prob-
lem on discrete lattices. For the two-dimensional rectangular
geometry, the critical point is exactly availabletas 1, and
that in the three-dimensional rectangular geometry is deter-
mined as,=8.64294). Furthermore, we restore the isotropy
asymptotically by requiring that the correlation lengths in all
Cartesian directions are identical to each other.

Moreover, the property that the longitudinal direction is
continuous enables simulations of the transverse percolation
model in curved geometries. The numerical data are ana-
lyzed by finite-size scaling according to the predictions of
the theory of conformal invariance. It is shown that, in
curved geometries, the predictions of conformal invariance
are accurately satisfied. On the other hand, assuming confor-
mal invariance, our method provides a powerful tool to in-
vestigate bulk and surface critical phenomena.
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