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Backbone exponents of the two-dimensionalq-state Potts model: A Monte Carlo investigation
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We determine the backbone exponentXb of several critical and tricriticalq-state Potts models in two
dimensions. The critical systems include the bond percolation, the Ising, theq522A3, 3, and 4 state Potts,
and the Baxter-Wu model, and the tricritical ones include theq51 Potts model and the Blume-Capel model.
For this purpose, we formulate several efficient Monte Carlo methods and sample the probabilityP2 of a pair
of points connected via at least two independent paths. Finite-size-scaling analysis ofP2 yields Xb as
0.3566(2), 0.2696(3), 0.2105(3), and0.127(4) for the criticalq522A3, 1,2, 3, and 4 state Potts model,
respectively. At tricriticality, we obtainXb50.0520(3) and 0.0753(6) for theq51 and 2 Potts model, respec-
tively. For the criticalq→0 Potts model it is derived thatXb53/4. From a scaling argument, we find that, at
tricriticality, Xb reduces to the magnetic exponent, as confirmed by the numerical results.

DOI: 10.1103/PhysRevE.69.026114 PACS number~s!: 05.50.1q, 64.60.Cn, 64.60.Fr, 75.10.Hk
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I. INTRODUCTION

The integerq-state Potts model@1# is an extension of the
Ising model, and has been a subject of intense researc
terest for decades. It can be generalized to the random-clu
model of allq>0 @2#. For a review see Ref.@3#. This model
has been shown to be very rich in its behavior. In two
mensions, the nature of the critical singularities is now w
established. In the study of critical phenomena, the P
model has become an important testing ground for vari
methods and approaches.

However, there is still a number of critical exponents,
which the exact values have not been obtained. These e
nents characterize geometric properties of the critical P
models, and seem to have no analog in the thermodynam
Among them there are fractal dimensions of ‘‘backbone
@4# and of ‘‘chemical’’ paths@5#.

Here, we shall briefly review definitions of these quan
ties, in the language of the percolation model@6#, a special
case of the Potts model forq→1. Consider a bond percola
tion model on the square lattice; each edge of the lattic
occupied by a ‘‘conducting’’ bond with probabilityp, or is
‘‘empty’’ with probability 12p. At the critical point pc
51/2 @6#, a percolating cluster, which consists of sites co
nected via these conducting bonds, will grow arbitrar
large. Suppose one has a percolating cluster, which con
two sitesS1 andS2 separated by a distancer. The backbone
@4# is then defined as the set of sites from which conduct
paths exist both toS1 andS2, such that both paths have n
bonds in common, i.e., the paths are mutually independ
Thus, if a potential difference is applied toS1 and S2, the
backbone consists exactly of those sites through which
rent would flow, apart from the so-called ‘‘Wheatston
bridges.’’ At criticality, the total number of sites or bonds
the backbone scales asNb}r d2Xb, whered52 andXb are
the spatial and the backbone scaling dimension, respecti
The chemical path@5# is defined as the shortest path betwe
S1 and S2. Its average length at criticality behaves asl
}r d2Xmin, with Xmin the corresponding scaling dimensio
1063-651X/2004/69~2!/026114~9!/$22.50 69 0261
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Another exponent of interest is related to the so-called ‘‘re
bonds. Suppose a bond in the percolating cluster carrie
the current and thus becomes ‘‘hot’’ after some time, th
this bond is named a red bond@4,5#. A cluster with one or
more red bonds will, if any red bond is cut off, split int
disconnected subclusters. The total number of red bond
the percolating cluster behaves asNr}r d2Xr, with Xr the
red-bond scaling dimension.

As mentioned earlier, the ‘‘geometric’’ exponents, such
Xb , Xr , andXmin , characterize geometric structures of cri
cal systems, and are thus of some physical relevance.
instance, the backbone and red-bond scaling dimensionXb
and Xr are related to the electric conductivity of a rando
network@7#. The chemical-path dimensionXmin is the analog
in percolation of the dynamic scaling exponent of critic
phenomena@8#.

Among these exponents, the red-bond dimensionXr has
been identified with another exponentXp @9,10#, which gov-
erns the renormalization flow of the bond probabilityp for
critical systems. As a result, exact values ofXr can be cal-
culated from the theory of the Coulomb gas@11#; these val-
ues are also included in the prediction of the conformal fi
theory @9,12,13#. However, except for the special caseq
→0, exact values have not been obtained forXb and
Xmin . Numerous theoretical attempts have been carr
out. For the percolation modelq→1, a relation was assume
by Herrmann and Stanley@14# asXb5Xr2Xmin , which sat-
isfies numerical tests quite well so far. However, this conj
ture apparently cannot be generalized to the criticalq→0
Potts model, whereXb5Xr5Xmin , as shown later. It was
also assumed thatXb(q→1)57/16 @15,16#, which is, how-
ever, not consistent with current estimations. More recen
Xb(q→1) has been related to a partial differential equat
@17#, which, unfortunately, appears to be intractable, ev
numerically.

In parallel with these theoretical attempts, several num
cal determinations ofXb have been achieved. Significan
progress is obtained by Monte Carlo simulatio
@8,14,18,19#. The basic idea of these simulations is to cou
©2004 The American Physical Society14-1
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the total number of sites or bonds in the backbones.
instance, for the percolation model in the ‘‘bus-bar’’ geom
etry, Grassberger@19# determinedXb50.3569(8). Slow con-
vergence applies toXb in this case. For theq52 and 3 state
Potts models, it has been estimated@18# that Xb50.25(1)
and 0.25(2), respectively.

Another approach was taken by Jacobsen and Zinn-Ju
@20# recently. They applied a transfer-matrix method, a
obtainedXb50.3569(6) for the percolation model. Instea
of the total number of sites in the backbones, they inve
gated the correlation length ofk-connected clusters@21#,
where k>1 is an integer. A cluster is considered to
k-connected if, by eliminating anyk21 sites or conducting
bonds, no separation into disconnected subclusters is
sible. This means that any two sites in the cluster are c
nected viaat least kindependent paths without any bond
common. At criticality, the behavior of thesek-connected
clusters is dominated by a family of exponentsXk . More-
over, it has been shown thatX25Xb @22#, so that one can
estimateXb by studying 2-connected clusters.

In such transfer-matrix calculations, the finite syste
sizes are restricted to relatively small values, since the c
puter memory required increases exponentially with lin
sizeL. For instance, in Ref.@20#, L is limited to 2<L<10.
This effect, together with the aforementioned slow finite-s
convergence, makes it difficult to determineXb accurately.

In this paper, we present another Monte Carlo study of
backbone exponents. However, in comparison with the
lier Monte Carlo studies@8,14,18,19#, we apply a different
sampling procedure. As mentioned above, the earlier m
ods involve counting procedures for the number of sites
bonds in the backbone. In other words, for a cluster of in
est, all dangling bonds have to be identified and exclud
This appears to be a time-consuming task. Instead, in
present work, we sample the probabilityP2(r ) that a pair of
sites, separated by a distancer, are connected viaat leasttwo
independent paths. For later convenience, we shall refe
the quantityP2(r ) as the ‘‘backbone correlation function.
The sampling procedure forP2(r ), which will be described
in detail later, has a speed at least of the same order a
well-known Wolff cluster method@23#. We note that, in com-
parison with Refs.@8,14,18,19#, our procedure to sampl
P2(r ) is more in line with that used in Ref.@20#.

The sampling procedure forP2(r ) can be applied to the
generalq-state Potts model with any value ofq>0. Further,
with this technique, we simply investigate systems with p
riodic boundary conditions rather than in the bus-bar geo
etry @8,18,19#. Thus, one avoids any finite-size correctio
associated with the surfaces in the bus-bar geometry.
will be confirmed later.

In the present work, several critical and tricriticalq-state
Potts systems are investigated. The values ofq are chosen as
q522A3, 1, 2, 3, and 4 for the critical systems, andq
51 and 2 at tricriticality. The criticalq51 and 2 Potts mod-
els are just the bond percolation and the Ising model, res
tively, and the tricriticalq52 system is the Blume-Cape
model @24,25#. For q54, we avoid slow finite-size conver
gence by investigating a diluteq54 Potts model and the
Baxter-Wu model@26#.
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For these systems, extensive simulations were perform
to determineXb . In order to suppress critical slowing down
we make use of various efficient cluster Monte Carlo alg
rithms. For instance, for the diluteq54 Potts and the
Blume-Capel model, a geometric cluster method@27# was
used to move vacancies on lattices. Another example is
simulation of the criticalq522A3 Potts model. For this
purpose, we formulate a Monte Carlo method for the Po
model with nonintegerq.0. This method hardly suffers
from critical slowing down for smallq.0.

The outline of this paper is as follows. Section II review
the Potts model and the systems included in the presen
per. In Section III, the Monte Carlo simulations and the sa
pling procedures forP2 are presented. In Sec. IV, the exa
value ofXb is derived for theq→0 limit, and the numerical
results for other values ofq are presented. A short discussio
is given in Sec. V.

II. MODELS

We start from the Hamiltonian of the diluteq-state Potts
model on the square lattice@3#, which reads

H/kBT52K(
^ i , j &

ds i ,s j
~12ds i ,0

!2D(
k

dsk,0

~s50,1, . . . ,q!. ~1!

Each site is occupied by a Potts variable withs51, . . . ,q or
by a vacancys50, and the sum̂ & is over all nearest-
neighbor sites. The abundance of the vacancies is contro
by the chemical potentialD. Nonzero couplingsK occur only
between equal Potts variables, i.e., variables with nonz
values ofs.

Just as the ‘‘pure’’ Potts model, this model can be rep
sented by Kasteleyn-Fortuin~KF! clusters@2,28#, with each
site of the lattice also occupied by a vacancy or a Potts v
able. A nearest-neighbor bond is placed between each pa
equal, nonzero Potts variables with the probabilityp51
2exp(2K). We emphasize that, for any pair of neare
neighbor sites, no bond is present if any of them is a vaca
The whole lattice is then decomposed into clusters, i.e.,
aforementioned KF clusters. This model is also referred to
a random-cluster model with a partition sum

Z5 (
$v,b%

unbqncwnv ~u5eK21 andw5eD!, ~2!

where the sum is over all mutually consistent vacancy a
bond configurations, andnb , nc , andnv are the total number
of bonds, KF clusters, and vacancies, respectively. Accord
to finite-size scaling, the average size of these KF cluster
criticality is governed by the magnetic scaling dimensi
Xh . With the partition sum~2!, the Potts model is now also
well defined for any nonintegerq>0.

For D52`, the vacancies are excluded, and the syst
reduces to the pure Potts model. In this case, the mod
self-dual, and the critical point follows@3# as uc5exp(Kc)
4-2
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215Aq on the square lattice. With sufficiently abundant v
cancies, tricritical systems, described by Eqs.~1! and~2!, can
be obtained.

Apart from these KF clusters, we also investigate
called ‘‘Potts’’ clusters@9,10,13#, defined as sets of Pott
variables in the same state, connected by nearest-neig
bonds. In other words, conducting bonds arealwayspresent
between nearest-neighbor Potts variables as long as the
in the same state. Exponents describing Potts clusters
normally different from those for KF clusters. For instanc
the q52 Potts clusters, i.e., Ising clusters, are described
the magnetic exponent of the tricriticalq51 Potts model
@9,10,29#, different from that of the critical Ising model. Ex
ponents forq53 and q54 Potts clusters have also bee
predicted asXh57/80 and 1/8@13#.

Among the systems included in the present work, mos
the systems can be described by Eqs.~1! or ~2!, except the
Blume-Capel, and the Baxter-Wu model, which will be d
scribed later.

For the q54 Potts model, logarithmic corrections aris
due to the marginal field associated with the fugacity of
cancies@3#. In order to avoid such corrections, we investiga
a dilute system at the point where this marginal field va
ishes. We shall refer to this point, although somewhat imp
cisely, as the ‘‘fixed’’ point. By means of a transfer-matr
calculation @30#, we locate this fixed point asKtc
51.457 90(1), Dtc52.478 438(2), and r tc50.212 07(2)
for the vacancy density. The precision of this result is co
sidered sufficient for our later investigation of the backbo
exponents.

For the case ofq54, beside the aforementioned dilu
system, we also investigate the Baxter-Wu model@26#, which
is defined on the triangular lattice as

H/kBT52K(
D,¹

s is jsk ~s561!, ~3!

where the sum is over every up- and down-triangular face
the lattice. It has been shown that this model belongs to
universality class of theq54 Potts model, and that logarith
mic corrections are absent@26#. This means that the
Baxter-Wu model also sits at the aforementioned fixed po
The critical point is given byKc5 ln(11A2)/2 @26#.

For the Ising and the Blume-Capel model, instead of
~1!, the Hamiltonian reads

H/kBT52K (I )(
^ i , j &

s is j1D (I )(
k

s i
2 ~s521,0,1!,

~4!

where vacancies are also denoted ass50. We mention that,
instead p512exp(2K), the bond probability for the KF
clusters is nowp512exp(22K(I)). Analogously, for the
chemical potentialD (I )52`, the system reduces to the pu
Ising model, with the critical point atKc

(I )5 ln(11A2)/2. By
means of a transfer-matrix calculation@30#, we locate, with a
sufficient precision, the tricritical point of the Blume-Cap
model asKtc

(I )51.643 1759(1), Dtc
(I )53.230 1797(2), and

r tc50.454 9506(2).
02611
-

-

bor

are
re

,
y

f

-

-

-
-

-
e

f
e

t.

.

III. ALGORITHMS

The Monte Carlo investigation of the backbone expone
of the aforementioned systems involves two parts, i.e.,
simulation and the sampling procedure.

A. Monte Carlo simulations

For pure Potts systems with integerq, one can simply use
the standard Wolff procedure@23#. In the present paper, thes
systems include the bond percolation, the Ising, and thq
53 Potts model. For the dilute systems, i.e., the Blum
Capel and theq54 Potts model, cluster algorithms to fli
between vacancies and Potts variables are generally
available. For this reason, we fix the global vacancy den
at its equilibrium value, so that critical slowing down due
fluctuations in the number of vacancies is avoided. Clus
steps satisfying this conservation law are realized by a g
metric cluster algorithm@27#. It moves groups of vacancie
and Potts variables over the lattice in accordance with
Boltzmann distribution. This geometric cluster method
based on spatial symmetries, such as the spatial inver
symmetry. A detailed account can be found in Ref.@27#.

Simulations of the Baxter-Wu model@26#, which involves
three-spin interactions, can be performed as follows@31#.
The triangular lattice is divided into three sublattices, one
the sublattices is randomly chosen, and its spins are ‘‘f
zen.’’ Since each elementary triangle contains one spin fr
each sublattice, only two-spin interactions remain effective
Further, the Hamiltonian~3! is unchanged if all spins on
these two sublattices are flipped. Due to this symmetry,
can now apply the Wolff cluster method on these two su
lattices.

For the 0,q,1 Potts model, we formulate a Mont
Carlo method on the basis of the random-cluster represe
tion, Eq.~2!, which uses bond variablesl 50 or 1. For sim-
plicity, we illustrate this method precisely at the critical poi
uc5Aq.

~1! Randomly choose a bond variablel, connecting sitesi
and j.

~2! Draw a uniformly distributed random number 0<r
<1.

~a! If r ,Aq/(11Aq), the edgel is occupied by a bond
i.e., l 51.

~b! If r .1/(11Aq), no bond is present at the edgel, i.e.,
l 50.

~c! If Aq/(11Aq)<r<1/(11Aq), set l 50, and check
whether sitesi and j are connected. If they are notl 51;
otherwisel 50.

~3! Current Monte Carlo step is completed, and goto~1!.
Figure 1 illustrates possible connectivities of sitesi and j

and their relative weights. According to the procedure d
scribed above, the transition probability from (1) to (2)
T1→25Aq/(11Aq), and that from (2) to (1) isT2→1

51/(11Aq). Since equilibrium statistics implies that th
probabilityp1 /p2 is 1/Aq, one hasp1T1→25p2T2→1. Thus,
the condition of detailed balance is satisfied between st
(1) and (2). Thesame argument applies to states (3) a
(4).
4-3
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DENG, BLÖTE, AND NIENHUIS PHYSICAL REVIEW E69, 026114 ~2004!
For small values ofq, we observe that this method hard
suffers from critical slowing down. A similar procedure fo
q.1 has already been published@32#. Using the procedure
described in Ref.@32#, we simulated theq521A3 Potts
model. In this case, we did observe serious critical slow
down, in agreement with the Li-Sokal bound@33# for the
dynamic exponent. This is due to the rather strong ene
fluctuations forq.2, especially when the marginal caseqc
54 is approached. In Ref.@32#, this Monte Carlo technique
was used to locate the marginal value ofqc in three dimen-
sions, and it was claimed that no critical slowing down o
curs. This stands, however, in a remarkable contrast with
findings nearqc54 in two dimensions.

B. Sampling procedure

Here, we illustrate, in the language of the bond perco
tion model, the sampling procedure of the backbone corr
tion functionP2(r ).

Step 1, form a KF cluster. We shall illustrate the construc
tion of a KF clusters as follows. Suppose a percolation mo
is defined on aL3L square lattice with periodic boundar
conditions, and there are two sitesA and B separated by a
distanceL/2. The task of this step is to form a KF clusterF
from siteA, and then to check whetherB is also included in
F, so thatA andB are connected via conducting bonds. F
the Potts model with integerq, the sites in this KF cluste
just form the Wolff cluster@23#. In the standard Wolff algo-
rithm, if two nearest-neighbor sites are already in the clus
it is not necessary to check whether the bond between t
is present or absent. However, we are interested in the b
bone correlation function here. IfA andB are connected, one
then asks how many mutually independent paths exist
tween A and B. Thus, all edges between nearest-neigh
sites withinF have to be checked. We introduce a variab
C50,1, and 2, representing that there is no path, only
path, andat leasttwo mutually independent paths betweenA
andB, respectively. First, the edge variables on the lattice
initialized asei521 with 1< i<2L2. The valueei51 rep-
resents that thei th edge is occupied by a bond, andei50
stands for an empty edge. Since only one KF cluste
formed, not all edges of the square lattice are necess
visited during the formation ofF. The edges, which are no
visited, keep their valueei521. After this initialization,
uniformly distributed random numbers are drawn for ea

FIG. 1. Relative weights of the bond variables between nei
boring sitesi and j for the critical Potts model. Existing paths o
bonds are represented by solid lines, while dashed lines mean
no path or bond is present. The relative weights between states
and (2) and those between (3) and (4) are specified asWi with
a5Aq.
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edge connecting to a neighbor in the same state. The ed
occupied by a bond ifr<pc and is empty ifr .pc . The sites
connected via these bonds are included inF, as stored in a
stack memoryS. Next, a sitej is read and erased fromS.
Then, the edges connecting to sitej are checked. If they have
not been visited (ei521), new random numbers are used
determine whether they are occupied. Repetition of this p
cedure creates a list of occupied edges and sites, and th
clusterF is formed. The determination of the backbone b
tweenA andB indeed requires that each bond between s
in F is visited. This procedure costs some additional co
puter time in comparison with the algorithm growing a Wo
cluster@6#.

If the siteB is not in the clusterF, i.e., A andB are not
connected, one hasC50, and the current Monte Carlo ste
is completed; otherwise, it continues as follows.

Step 2, a pathW is formed between AandB. This can be
done by an ‘‘ant’’ walking fromA through the conducting
bonds. Suppose the ant is currently at sitej, it continues its
journey by randomly choosing a conducting bond connect
to j, excluding the one it just passed. The ant does not pa
bond twice unless it arrives at a ‘‘dead’’ end. The dead end
defined as a site whose connected nearest-neighbor sites
all been visited. In this case, the ant walks back along
‘‘old’’ road until it finds a ‘‘new’’ bond which it has not
visited. Since siteB is also inF, the ant will always arrive at
site B. The aforementioned pathW is just composed of the
bonds through which the ant has passed once and only o
An example is shown in Fig. 2~a!, where the pathW is rep-
resented by the thick solid line, and the sites on it are sp
fied as 1,2, . . . ,n.

The next task is to check whether there is any red bond
W. If only one independent path can be formed betweeA
and B, then at least one red bond occurs on the pathW.
Furthermore, if any of these bonds is cut off, the ant can
arrive at siteB. An inefficient way is as follows. Temporarily
eliminate a bondb on W, and then let the ant restart it
journey. If the ant can still arrive atB, the bondb cannot be
a red bond, and thus is restored. Suppose all the bonds o
pathW pass this test, then no red bond occurs betweenA and
B, so thatC52; otherwise,C51. In this way, however, the
ant may become too tired to walk. Therefore, we apply
more efficient procedure.

-

hat
1)

FIG. 2. Outline of the procedure to determine the connect
variableC. The pathW is shown as the thick line, and the remainin
conducting bonds are shown as the thin lines. The bonds onW are
temporarily eliminated first. In~a!, the remaining path stops at 5
After the bonds betweenA, 1, . . . , and 5 arerestored, the path
connects toB, so thatC52. In ~b!, the bond between 3 and 4 is
red bond, and thus the path stops at site 3, so thatC51.
4-4
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Step 3, temporarily eliminate all the bonds onW, and let
the ant restart its journey from Ato B. Suppose the an
cannot arrive atB; this does not necessarily mean, howev
that there are red bonds. For instance, in Fig. 2~a!, after the
elimination of the whole path, the ant can only arrive at s
5. This indicates that the bonds betweenA,1, . . . , and 5 are
not red bonds, and may thus be restored. Then, the ant
tinues its journey and arrives atB. In this case, no red bon
occurs on the pathW, and C52. An example of opposite
case is given in Fig. 2~b!. Following the same steps the a
cannot go beyond site 3, since the bond between sites 3
4 is a red bond. In this case, one hasC51.

In practical applications of this procedure, one can s
improve the efficiency by some tricks. For instance, dur
the formation of the pathW, the siteB may act as an ‘‘at-
tractor,’’ so thatW will not go too far fromB and the ant
need not continue its journey randomly. Furthermore, a
the elimination ofW, instead of having the ant restart th
journey, one can form a new cluster fromA on the basis of
the remaining bonds, and then check whether it includesB.
In the case thatB is not included, one restores the ‘‘temp
rarily eliminated’’ bonds onW which connect sites inA, and
then continues to grow clusterA. This procedure ends whe
either B is included or no growth ofA is possible. This
avoids the situation that the ant has to walk back from a d
end.

With the connection variableC, the normal magnetic cor
relation functionP1 and the backbone correlation functio
P2 between sitesA andB can be defined as

P15^12dC,0&, P25^dC,2&, ~5!

where the symbol̂ & means the statistical average.
Efficiency of the sampling procedure. As described above

the sampling ofP2 involves up to three steps; the probabili
that steps 2 and 3 are performed is just the magnetic co
lation functionP1. Step 1 is just a standard Wolff step wit
a small amount of added computer time, as mentioned ab
Steps 2 and 3 involve a number of sites with an upper li
equal to the size of the clusterF, so that their computer time
is also of the same order as the Wolff step. Moreover,
probability P1 that they are performed decays asL22Xh, and
each sample is only taken between several simulation st
As a result, the sampling procedure requires less comp
time than the Wolff method. As an illustration, we perform
105 Monte Carlo steps for the percolation model with syst
size 8<L<800. We sampled the ratior between the com-
puter time for steps 2 and 3 and the total time, i.e., for st
1, 2, and 3. The data forr are shown in Fig. 3 versusL2Xh

5L25/24. The approximate linearity indicates that the fracti
of the computer time needed by the sampling procedure o
the total time goes to 0 asL→`.

IV. RESULTS

As mentioned in Sec. I, the backbone correlation funct
P2, and thus the backbone exponent, is related with the
havior of the red bonds. For critical Potts models 0<q<4,
the value ofXr is known to increase withq, which indicates
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that the KF clusters become less and less ramified. A
result, the backbone correlation functionP2 behaves more
and more in line withP1, so thatXb may be expected to
approach the normal magnetic exponentXh asq→4. For the
tricritical Potts model, sinceXr>2, we expect that the back
bone exponentXb reduces to the magnetic exponentXh .

For the criticalq→0 Potts model@3,2#, the KF clusters
span the whole lattice without any loop, and are thus refer
to as spanning trees. In this case, between any pair of po
on the lattice, there is precisely only one pathP, so that the
backbone correlation functionP2 vanishes. This is due to th
vanishing of the amplitude ofP2 as q→0. As a conse-
quence, one cannot obtainXb(q→0) by investigating
k-connected clusters, as we will do for other values ofq
.0. In this case, one can simply make use of the origi
definitions of the geometric quantities in Sec. I, which i
clude the backbone, the red bond, and the chemical-path
ponents. From these definitions, one knows that the af
mentioned pathP is just the chemical path, and that th
backbone precisely consists of all the bonds onP. Further-
more, all these bonds are red bonds. Since the red-bond
ing dimension is exactly knownXr53/4 @9,34#, one simply
has thatX25Xb5Xmin53/4 for q→0. In fact, the statemen
that Xb5Xr5Xmin holds for any type of spanning tree.

In the remaining part of this section, we present o
Monte Carlo determinations ofXb for the systems discusse
in Sec. II. Periodic boundary conditions apply to all the
systems. The aforementioned siteA was chosen at random
and siteB is chosen at a distancer 5L/2 in the x direction
from A. Further, we chose a siteD also separated fromA a
distanceL/2 but in they direction.

The correlation functionsP1 andP2 were sampled both in
the x andy directions, such thatP15@P1

(x)1P1
(y)#/2 andP2

5@P2
(x)1P2

(y)#/2. Moreover, we sampled another backbo
correlation functionP22 that A is simultaneously connecte
to B andD by at leasttwo mutually independent paths.

According to finite-size scaling, the quantitiesP1 , P2,
andP22 behave at criticality as

FIG. 3. The ratior, between the computer time for steps 2 a
3 and the total time~steps 1, 2, and 3 combined!, vs L25/24 for the
percolation model. Every data point involves 105 Monte Carlo
sweeps, and the system sizes are in the range 8<L<800. The ratio
r extrapolates to 0 forL→`.
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DENG, BLÖTE, AND NIENHUIS PHYSICAL REVIEW E69, 026114 ~2004!
P15L22Xh~a01a2Lyi1a3L221a4L23!, ~6!

P25L22Xb~b01b1Lyib1b2Lyi1b3L221b4L23!, ~7!

and

P225L23Xb~c01c1Lyib1c2Lyi1c3L221c4L23!, ~8!

where yi is the exponent of the leading irrelevant therm
scaling field, and we have assumed integer correction ex
nents~of 1/L). The amplitudesai , bi , andci are unknown
constants. In comparison with the magnetic correlation fu
tion P1, the geometric quantitiesP2 and P22 may be ex-
pected to suffer from additional finite-size corrections, w
unknown associated exponentsyib . More rapidly decaying
corrections are neglected here. The unknown amplitudes
exponents are determined from multivariate least-squ
analysis using the Levenberg-Marquardt method@35#. For
the systems in the present work, the values ofXh , obtained
from the fits ofP1, are all in excellent agreement with the
exact results@11#, and need not be discussed in this work

The bond percolation model. For this model, the system
sizesL were taken in the range 8<L<240. The data forP2
are shown in Fig. 4, and do not indicate the presence of la
finite-size corrections. Equation~7! was fitted to the Monte
Carlo data according to the least-squares criterion, and
exponentyib was left as a free parameter. We observed t
the terms with amplitudesb2 , b3, andb4 do not decrease th
residualx2, and thus they were not included in the fit. W
obtain Xb50.3566(2) andyib521.27(4), where the error
bars are twice the statistical standard deviations. Comp
to Ref. @19#, it seems that our Monte Carlo data suffer le
seriously from finite-size corrections. This may be due to
choice of a geometry with periodic boundary conditions
stead of the bus-bar geometry. For clarity, we plot the va
of P2L2Xb2b0 as a function ofL21.27 in Fig. 5, whereXb
50.3566(2) andb050.742(2) are taken from the fit. Th
apparent linearity indicates that, indeed, finite-size corr
tions of P2 can be well accounted for by a single power la
b1Lyib.

FIG. 4. Decay of the backbone correlation functionP2 for KF
clusters of the critical bond percolation model. The data are sh
as lnP2 vs. lnL.
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The Ising model and the tricritical q51 Potts model. The
simulations were performed for critical Ising systems
square lattices in the range 6<L<240. The quantitiesP2
and P22 were sampled both for KF and Ising clusters. A
mentioned above, the Ising clusters are described by
magnetic dimensionXh55/96 of the tricriticalq51 Potts
model @9,10,29#. The Monte Carlo data forP2 of the KF
clusters are shown in Fig. 6, which indicates that 2Xb
'0.54. Equations~7! and ~8! were simultaneously fitted to
P2 andP22, respectively, so thatXb andyib appear in the fit
only once. In addition to the terms withyib , the fit also
included a correction with yi522. We obtain Xb
50.2696(3) andyib520.87(4) for KF clusters, andXb
50.0520(3) for Ising clusters. Here, the error bars are ag
two standard deviations. As expected, for the Ising clus
Xb is in a good agreement withXh55/9650.5208 . . . of the
tricritical q51 Potts model.

The critical q53 Potts model. The simulations were per
formed for theq53 Potts model at criticality with system
sizesL in the range 6<L<360. The quantitiesP2 and P22

n

FIG. 5. Finite-size corrections inP2 for KF clusters of the criti-
cal bond percolation model, shown asP2L2Xb2b0 vs Lyib. The
values ofXb , b0, and yib are taken from the numerical fit:Xb

50.3566(2), b050.742(2), andyib521.27(4).

FIG. 6. Decay of the backbone correlation functionP2 for KF
clusters of the critical Ising model. The data are shown asP2 vs
L20.537.
4-6
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BACKBONE EXPONENTS OF THE TWO-DIMENSIONAL . . . PHYSICAL REVIEW E 69, 026114 ~2004!
were sampled both for KF and Potts clusters. As mentio
above, the exponent for the Potts clusters has been pred
asXh57/80 @13#. As a test, Eq.~6! was fitted to the data fo
P1, and we obtainXh50.0876(2), in good agreement with
7/80. Furthermore, a plot of the data forP22 for Potts clus-
ters in Fig. 7 also indicatesXb'7/80. Again, Eqs.~7! and~8!
were simultaneously fitted toP2 and P22, respectively. For
the q53 Potts model, the correction term withyi524/5
@12# appears difficult to separate from that withyib , and thus
it was neglected in the fit. The corrections withL22 were
included, and the fit yields thatXb50.2105(5) andyib5
20.61(4) for the KF clusters, and thatXb50.0873(3)'Xh

57/80 for the Potts clusters.
The tricritical Blume-Capel model. As mentioned above

the backbone exponentXb for the tricritical q51 Potts
model has already been determined from the Ising clust
The resultXb50.0520(3)'5/96 indicates thatXb reduces to
the magnetic exponentXh for tricritical Potts models. As an
independent test, we directly Monte Carlo simulated the
critical Blume-Capel model. The simulations use the fixe
vacancy-density ensemble, as discussed in Sec. II. The
tem sizes were taken in the range 10<L<360, and both
quantitiesP2 andP22 were sampled. The numerical fits yie
Xb50.0760(8) and 0.0753(4) for the KF and the Potts cl
ter, respectively. Both are in good agreement with the t
ritical magnetic exponentXh53/40 @11,12#.

FIG. 7. Decay of the quantityP2 for Potts clusters of the critica
q53 Potts model. The data are shown asP2 vs L27/40.
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The Baxter-Wu and the tricritical q54 Potts model. The
q54 Potts model is a marginal case, not only because
second-leading thermal exponentXt252, but also because
that the red-bond exponentXr52 @9,13#. Thus, the bond-
dilution scaling field, conjugate to the red bonds, becom
marginal, and the question arises whether this field is m
ginally relevant or irrelevant for critical KF and Potts clu
ters. As independent tests, Monte Carlo simulations w
performed both of the aforementioned diluteq54 Potts
model at the fixed point and the Baxter-Wu model. For t
latter, the system sizeL was taken as multiples of 6 and i
the range 12<L<240. For the diluteq54 model, the sys-
tem sizes were in the range 10<L<360. The Monte Carlo
data forP2 of the KF clusters, shown in Fig. 8, indicate th
2Xb'1/4. For these two models, logarithmic finite-size co
rections are absent for ‘‘thermodynamic’’ quantities such
the magnetic correlationP1. However, we have no solid rea
son to assume that such logarithmic corrections are ab
for geometric quantities such asP2. Thus, at criticality, we
assume that, instead of Eqs.~7! and ~8!, P2 behaves as

P25L22Xb~b01b1 /ln L1b2 /ln2L1b3 /L2!. ~9!

Equation~9! was fitted to the Monte Carlo data for these tw
models simultaneously. On the basis of thex2 criterion, we
applied a cutoff for small system sizesL<12. We then ob-

FIG. 8. Decay of the quantityP2 for the KF clusters of the
dilute q54 Potts model. The data are shown asP2 vs L21/4.
andard

TABLE I. Results for the backbone exponentXb and the associated correction-to-scaling exponentyib for

critical Potts systems. Estimated error margins in the last decimal place, which are twice the st
deviations in the fits, are shown in parentheses. For comparison, the magnetic dimensionsXh and estimations
of Xb by other sources are also listed (Xb* , last column!. The numbers given as fractions are exact.

g Model Xh Xb yib Xb*

2 q50 Potts 0 3/4
7/3 q522A3 Potts 11/168 0.4953(3) 22.3(2)
8/3 Percolation 5/48 0.3566(2) 21.27(4) 0.3569(6)@20#

3 Ising 1/8 0.2696(3) 20.87(4) 0.25(2)@18#

10/3 q53 Potts 2/15 0.2105(5) 20.61(4) 0.25(2)@18#

4 q54 Potts 1/8 0.127(4) 1/lnL?
4-7
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tain thatXb50.124(2) and 0.127(4) for the Potts and the K
clusters, respectively, in agreement withXh51/8.

The critical q522A3 Potts model. As a case between
q50 and 1, we simulated theq522A3 Potts model. The
system sizes were taken in the range 6<L<200, and the
quantity P2 was sampled. We find that, as expected,
finite-size corrections converge rapidly, so that Eq.~7! with
only the first two terms is sufficient to describe the Mon
Carlo data. To obtain a satisfactoryx2 residual, we applied a
cutoff for small system sizesL,8. This leas to Xb
50.4953(3) andyib522.3(2).

FIG. 9. The backbone and the magnetic scaling dimensionXb

andXh , as a function of the coupling constant of the Coulomb g
g. The symbolsn and s representXh and Xb , respectively. The
tricritical branch of the Potts model corresponds with 4<g<6; Xh

andXb coincide in this range.
v.

a

a
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V. DISCUSSION

We have developed several Monte Carlo methods to
termine the backbone exponents of theq-state Potts model
The efficiency of these methods is reflected by the precis
of the numerical results, summarized in Table I, which s
nificantly improves over existing results. We find that, f
critical Potts models, the backbone scaling dimensionXb ap-
proaches the magnetic dimensionXh asq→4. This reflects
the fact that Kasteleyn-Fortuin clusters become more
more compact with increasingq. Further, it has been con
firmed numerically that, for the tricritical Potts model, th
backbone exponent reduces to the magnetic exponent. In
9, we plotXb andXh as a function of the coupling constan
of the Coulomb gasg @11#. The relation betweeng and
q is given by q5212cos(gp/2) @11#, with 2<g<4
and 4<g<6 for the critical and tricritical Potts models, re
spectively.

The present Monte Carlo methods can also be applie
three dimensions, and simulations for the percolation and
Ising model are currently being performed@30#.
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