PHYSICAL REVIEW E 69, 026114 (2004
Backbone exponents of the two-dimensionaj-state Potts model: A Monte Carlo investigation
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We determine the backbone exponefy of several critical and tricriticab-state Potts models in two
dimensions. The critical systems include the bond percolation, the Ising,=/2e- \/3, 3, and 4 state Potts,
and the Baxter-Wu model, and the tricritical ones includedgkel Potts model and the Blume-Capel model.
For this purpose, we formulate several efficient Monte Carlo methods and sample the proPalilitst pair
of points connected via at least two independent paths. Finite-size-scaling analyBis yoélds X,, as
0.356€2), 0.269€3), 0.210%3), and0.127(4) for the criticalj=2— V3, 1,2, 3, and 4 state Potts model,
respectively. At tricriticality, we obtaiX,=0.0520(3) and 0.0753(6) for thee=1 and 2 Potts model, respec-
tively. For the criticalg— 0 Potts model it is derived tha¢,= 3/4. From a scaling argument, we find that, at
tricriticality, Xy, reduces to the magnetic exponent, as confirmed by the numerical results.
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I. INTRODUCTION Another exponent of interest is related to the so-called “red”
bonds. Suppose a bond in the percolating cluster carries all
The integerg-state Potts modéll] is an extension of the the current and thus becomes “hot” after some time, then
Ising model, and has been a subject of intense research ithis bond is named a red boid,5]. A cluster with one or
terest for decades. It can be generalized to the random-clustarore red bonds will, if any red bond is cut off, split into
model of allg=0 [2]. For a review see Ref3]. This model disconnected subclusters. The total number of red bonds in
has been shown to be very rich in its behavior. In two di-the percolating cluster behaves Msxrd=*r, with X, the
mensions, the nature of the critical singularities is now wellred-bond scaling dimension.
established. In the study of critical phenomena, the Potts As mentioned earlier, the “geometric” exponents, such as
model has become an important testing ground for variouX,, X,, andX,, characterize geometric structures of criti-
methods and approaches. cal systems, and are thus of some physical relevance. For
However, there is still a number of critical exponents, ofinstance, the backbone and red-bond scaling dimensigns
which the exact values have not been obtained. These expand X, are related to the electric conductivity of a random
nents characterize geometric properties of the critical Potteetwork[7]. The chemical-path dimensiofy,;, is the analog
models, and seem to have no analog in the thermodynamici percolation of the dynamic scaling exponent of critical
Among them there are fractal dimensions of “backbones’phenomen4s8].
[4] and of “chemical” pathg5]. Among these exponents, the red-bond dimens{prhas
Here, we shall briefly review definitions of these quanti- been identified with another exponex [9,10], which gov-
ties, in the language of the percolation mofig], a special erns the renormalization flow of the bond probabilityfor
case of the Potts model foy— 1. Consider a bond percola- critical systems. As a result, exact valuesXpfcan be cal-
tion model on the square lattice; each edge of the lattice isulated from the theory of the Coulomb dgd4]; these val-
occupied by a “conducting” bond with probabilitg, or is  ues are also included in the prediction of the conformal field
“empty” with probability 1—p. At the critical pointp.  theory[9,12,13. However, except for the special cage
=1/2[6], a percolating cluster, which consists of sites con-—0, exact values have not been obtained ¥y and
nected via these conducting bonds, will grow arbitrarily X,;,. Numerous theoretical attempts have been carried
large. Suppose one has a percolating cluster, which containgit. For the percolation modgl— 1, a relation was assumed
two sitesS, andS, separated by a distanceThe backbone by Herrmann and Stanlgyl4] as X=X, — Xyin» Which sat-
[4] is then defined as the set of sites from which conductingsfies numerical tests quite well so far. However, this conjec-
paths exist both t&; andS,, such that both paths have no ture apparently cannot be generalized to the critipal0
bonds in common, i.e., the paths are mutually independenkotts model, wheréX,=X,=Xi,, as shown later. It was
Thus, if a potential difference is applied 8 andS,, the  also assumed that,(q—1)=7/16[15,16, which is, how-
backbone consists exactly of those sites through which curever, not consistent with current estimations. More recently,
rent would flow, apart from the so-called “Wheatstone X, (q— 1) has been related to a partial differential equation
bridges.” At criticality, the total number of sites or bonds in [17], which, unfortunately, appears to be intractable, even
the backbone scales &&xr% v, whered=2 andX, are numerically.
the spatial and the backbone scaling dimension, respectively. In parallel with these theoretical attempts, several numeri-
The chemical pathb] is defined as the shortest path betweencal determinations oiX,, have been achieved. Significant
S, and S,. Its average length at criticality behaves las progress is obtained by Monte Carlo simulations
ocr @ Xmin with X, the corresponding scaling dimension. [8,14,18,19. The basic idea of these simulations is to count
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the total number of sites or bonds in the backbones. For For these systems, extensive simulations were performed
instance, for the percolation model in the “bus-bar” geom-to determineX,,. In order to suppress critical slowing down,
etry, Grassbergdi 9] determinedX,=0.35698). Slow con- we make use of various efficient cluster Monte Carlo algo-
vergence applies t¥;, in this case. For thg=2 and 3 state rithms. For instance, for the dilutg=4 Potts and the
Potts models, it has been estimafdd] that X,=0.25(1) Blume-Capel model, a geometric cluster metj@d] was
and 0.2%2), respectively. used to move vacancies on lattices. Another example is the
Another approach was taken by Jacobsen and Zinn-Justsimulation of the criticalq=2— /3 Potts model. For this
[20] recently. They applied a transfer-matrix method, andpurpose, we formulate a Monte Carlo method for the Potts
obtainedX,=0.3569(6) for the percolation model. Instead model with nonintegeq>0. This method hardly suffers
of the total number of sites in the backbones, they investifrom critical slowing down for smaltj>0.
gated the correlation length dé-connected cluster§21], The outline of this paper is as follows. Section Il reviews
where k=1 is an integer. A cluster is considered to bethe Potts model and the systems included in the present pa-
k-connected if, by eliminating ank—1 sites or conducting per. In Section IIl, the Monte Carlo simulations and the sam-
bonds, no separation into disconnected subclusters is popling procedures foP, are presented. In Sec. IV, the exact
sible. This means that any two sites in the cluster are convalue ofX,, is derived for theq—0 limit, and the numerical
nected viaat least kindependent paths without any bond in results for other values af are presented. A short discussion
common. At criticality, the behavior of thedeconnected is given in Sec. V.
clusters is dominated by a family of exponetts. More-
over, it has been shown that,= X, [22], so that one can Il. MODELS
estimateX, by studying 2-connected clusters.
In such transfer-matrix calculations, the finite system We start from the Hamiltonian of the dilutgstate Potts
sizes are restricted to relatively small values, since the conmodel on the square lattid8], which reads
puter memory required increases exponentially with linear
sizeL. For instance, in Ref.20], L is limited to 2<L<10.
This effect, together with the aforementioned slow finite-size HIkgT=— K“ED S, 'Uj(l_ 80,00~ D; 50,0
convergence, makes it difficult to determiXg accurately. '
In this paper, we present another Monte Carlo study of the
backbone exponents. However, in comparison with the ear-
lier Monte Carlo studie$8,14,18,19, we apply a different

sampling procedure. As mentioned above, the earlier met)‘EaCh site is occupied by a Potts variable witi 1, ... g or

ods involve counting procedures for the number of sites o ya vaca_ncya=0, and the sum() is over f'i" nearest-
bonds in the backbone. In other words. for a cluster of inter€ighbor sites. The abundance of the vacancies is controlled
' y the chemical potentid. Nonzero coupling& occur only

est, all dangling bonds have to be identified and excluded:; i . . .
This appears to be a time-consuming task. Instead, in th etween equal Potts variables, i.e., variables with nonzero
' ' values ofo.

present work, we sample the probabilley(r) that a pair of Just as the “pure” Potts model, this model can be repre-

sites, separated by a distancare connected viat leasttwo . .
independent paths. For later convenience, we shall refer tgented by Kasteleyn-FortuifKF) clusters|2,28], with each

the quantityP,(r) as the “backbone correlation function.” site of the lattice allso occupied' by a vacancy or a Potts vari—
The sampling procedure f&,(r), which will be described able. A nearest-neighbor bond is placed between each pair of

in detall later, has a speed at least of the same order as t gual, nonzero Potts variables with the probability- 1

well-known Wolff cluster methodl23]. We note that, in com- —gxp(—K)._ we emphas_|ze that, _for any pair .Of nearest-
parison with Refs[8,14,18,13, our procedure to sample neighbor sites, no bond is present if any of them is a vacancy.
P,(r) is more in line ,vvith tf;at,used in Ref20] The whole lattice is then decomposed into clusters, i.e., the

The sampling procedure fd?,(r) can be applied to the aforementioned KF clusters. This model is also referred to as
2

generalg-state Potts model with any value @&0. Further, a random-cluster model with a partition sum
with this technique, we simply investigate systems with pe-

(c=0,1,...0). 1)

riodic boundary conditions rather than in the bus-bar geom- Z=Y, u™gew™ (u=eX—1 andw=eP), )

etry [8,18,19. Thus, one avoids any finite-size correction {vb}

associated with the surfaces in the bus-bar geometry. This

will be confirmed later. where the sum is over all mutually consistent vacancy and

In the present work, several critical and tricritiggbtate  bond configurations, ang,, n., andn, are the total number
Potts systems are investigated. The valueg afe chosen as of bonds, KF clusters, and vacancies, respectively. According
q=2-+3, 1, 2, 3, and 4 for the critical systems, aqd to finite-size scaling, the average size of these KF clusters at
=1 and 2 at tricriticality. The criticadj=1 and 2 Potts mod- criticality is governed by the magnetic scaling dimension
els are just the bond percolation and the Ising model, respedy, . With the partition sum?2), the Potts model is now also
tively, and the tricriticalg=2 system is the Blume-Capel well defined for any nonintegey=0.

model[24,25. For q=4, we avoid slow finite-size conver- For D= -, the vacancies are excluded, and the system
gence by investigating a dilutg=4 Potts model and the reduces to the pure Potts model. In this case, the model is
Baxter-Wu mode[26]. self-dual, and the critical point followg3] as u.=expKL)
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—1=1/q on the square lattice. With sufficiently abundant va- ll. ALGORITHMS
cancies, tricritical systems, described by Ed$.and(2), can
be obtained. The Monte Carlo investigation of the backbone exponents

Apart from these KF clusters, we also investigate so-of the aforementioned systems involves two parts, i.e., the
called “Potts” clusters[9,10,13, defined as sets of Potts simulation and the sampling procedure.
variables in the same state, connected by nearest-neighbor
bonds. In other words, conducting bonds alwayspresent A. Monte Carlo simulations
between nearest-neighbor Potts variables as long as they are - .
in the same state. Exponents describing Potts clusters are O PUre Potts systems with integgrone can simply use
normally different from those for KF clusters. For instance,the standard Wolff proceduf@3]. In the present paper, these

the q=2 Potts clusters, i.e., Ising clusters, are described byYStems include the bond percolation, the Ising, andcthe

the magnetic exponent of the tricriticg=1 Potts model ~3 Potts model. For the dilute systems, i.e., the Blume-

[9,10,29, different from that of the critical Ising model. Ex- Capel and they :_4 Potts model, clu_ster algorithms to flip
ponents forq=3 andq=4 Potts clusters have also been between vacancies and Potts variables are generally not
predicted as(,=7/80 and 1/g13] available. For this reason, we fix the global vacancy density

t its equilibrium value, so that critical slowing down due to
luctuations in the number of vacancies is avoided. Cluster
steps satisfying this conservation law are realized by a geo-
metric cluster algorithnj27]. It moves groups of vacancies
and Potts variables over the lattice in accordance with the

For theq=4 Potts model, logarithmic corrections arise Bolt distributi Thi tric clust thod i
due to the marginal field associated with the fugacity of va- oltzmann distribution. 1his geometric. cluster method 1S
based on spatial symmetries, such as the spatial inversion

cancied 3]. In order to avoid such corrections, we investigate . .
43] g symmetry. A detailed account can be found in R&f7].

a dilute system at the point where this marginal field van-"7"_. : .k
ishes. We shall refer to this point, although somewhat impre{h Slmul_at|(_)nts of tthe Baxter-Vt\)/u moofl@G], \éVh'Chfml\l/gé\gs
cisely, as the “fixed” point. By means of a transfer-matrix ree-spin intéractions, can be periormed as 1o )

calculation [30], we locate this fixed point ask,, The triangular lattice is divided into three sublattices, one of

—1.4579Q1), D,,=2.4784382), and p,=0.21207(2) the sublattices is randomly chosen, and its spins are “fro-

for the vacancy density. The precision of this result is con2&M: Since each elementary triangle contains one spin from

sidered sufficient for our later investigation of the backbonele:ach sublattice, °'."y two-spin interactions remain ef_fectwely.
exponents. urther, the Hamiltoniar(3) is unchanged if all spins on

For the case ofj=4, beside the aforementioned dilute these two sublattices are flipped. Due to this symmetry, one

system, we also investigate the Baxter-Wu mdael, which can now apply the Wolff cluster method on these two sub-

. ) : . lattices.
's defined on the triangular lattice as For the 0<g<1 Potts model, we formulate a Monte

Carlo method on the basis of the random-cluster representa-
HikeT=—K2, ciojoy (o==1), (3)  tion, Eq.(2), which uses bond variablés=0 or 1. For sim-
av plicity, we illustrate this method precisely at the critical point

Among the systems included in the present work, most o
the systems can be described by Eds.or (2), except the
Blume-Capel, and the Baxter-Wu model, which will be de-
scribed later.

where the sum is over every up- and down-triangular face of'c~ V0 . . o
the lattice. It has been shown that this model belongs to the (j:) Randomly choose a bond variatjeconnecting sites

universality class of theg=4 Potts model, and that logarith- &M% _ .
mic corrections are abser26]. This means that the (2 Draw a uniformly distributed random number0
Baxter-Wu model also sits at the aforementioned fixed point.g:L

The critical point is given byK.=In(1++/2)/2[26]. C@lfr< Ja/(1+ ), the edgd is occupied by a bond,
For the Ising and the Blume-Capel model, instead of Eq/-€- =1 _ _
(1), the Hamiltonian reads (b) If r>1/(1+\/q), no bond is present at the edgé.e.,
I=0.

(© If Jo/(1+Jg)<r=<1/(1+q), setl=0, and check
whether sites andj are connected. If they are nbt1;
(4)  otherwisel =0.

(3) Current Monte Carlo step is completed, and g(tp
where vacancies are also denotedras0. We mention that, Figure 1 illustrates possible connectivities of sitemnd]
instead p=1—exp(—K), the bond probability for the KF and their relative weights. According to the procedure de-
clusters is nowp=1-—exp(—2K"). Analogously, for the scribed above, the transition probability from (1) to (2) is
chemical potentiaD () = — =, the system reduces to the pure T, .,=/q/(1+q), and that from (2) to (1) isT, ,;
Ising model, with the critical point at{’=In(1+2)/2. By = =1/(1+/q). Since equilibrium statistics implies that the
means of a transfer-matrix calculatif0], we locate, with a  probability p; /p, is 1//q, one hag;T;_,=p,T,_.1. Thus,
sufficient precision, the tricritical point of the Blume-Capel the condition of detailed balance is satisfied between states
model asK{)=1.64317®(1), D{)=3.230179(2), and (1) and (2). Thesame argument applies to states (3) and
prc=0.454 9506 (2). (4).

HlkBT=—K(')<Z> 0'i0'j+D(|); o2 (6=-1,0,0),
1)
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FIG. 1. Relative weights of the bond variables between neigh- F|G. 2. Outline of the procedure to determine the connection
boring sitesi andj for the critical Potts model. Existing paths or yariableC. The pathW is shown as the thick line, and the remaining
bonds are represented by solid lines, while dashed lines mean thaénducting bonds are shown as the thin lines. The bond¥ ane
no path or bond is present. The relative weights between states (k¢mporarily eliminated first. Irfa), the remaining path stops at 5.
and (2) and those between (3) and (4) are specifieWawith  After the bonds betwee®, 1,..., and 5 areestored, the path
a=1g. connects td, so thatC=2. In (b), the bond between 3 and 4 is a

red bond, and thus the path stops at site 3, soGhat.

For small values o, we observe that this method hardly
suffers from critical slowing down. A similar procedure for edge connecting to a neighbor in the same state. The edge is
g>1 has already been publishg8?]. Using the procedure occupied by a bond if<p, and is empty ifr >p.. The sites
described in Ref[32], we simulated theg=2-+ J3 Potts  connected via these bonds are included'jras stored in a
model. In this case, we did observe serious critical slowingstack memorys. Next, a sitej is read and erased from
down, in agreement with the Li-Sokal bou@3] for the  Then, the edges connecting to gitere checked. If they have
dynamic exponent. This is due to the rather strong energwot been visited€;,= — 1), new random numbers are used to
fluctuations forq>2, especially when the marginal cage  determine whether they are occupied. Repetition of this pro-
=4 is approached. In Ref32], this Monte Carlo technique cedure creates a list of occupied edges and sites, and thus a
was used to locate the marginal valueggfin three dimen-  cluster[ is formed. The determination of the backbone be-
sions, and it was claimed that no critical slowing down oc-tweenA andB indeed requires that each bond between sites
curs. This stands, however, in a remarkable contrast with oyf, | is visited. This procedure costs some additional com-

findings neam.=4 in two dimensions. puter time in comparison with the algorithm growing a Wolff
_ cluster[6].
B. Sampling procedure If the site B is not in the clustel, i.e., A andB are not

Here, we illustrate, in the language of the bond percolaconnected, one haS=0, and the current Monte Carlo step
tion model, the sampling procedure of the backbone correlas completed; otherwise, it continues as follows.
tion function P,(r). Step 2, a pathV is formed between AndB. This can be
Step 1, form a KF clustee shall illustrate the construc- done by an “ant” walking fromA through the conducting
tion of a KF clusters as follows. Suppose a percolation modebonds. Suppose the ant is currently at §ité continues its
is defined on & XL square lattice with periodic boundary journey by randomly choosing a conducting bond connecting
conditions, and there are two sitdsand B separated by a toj, excluding the one it just passed. The ant does not pass a
distancel /2. The task of this step is to form a KF clustér bond twice unless it arrives at a “dead” end. The dead end is
from site A, and then to check wheth&is also included in  defined as a site whose connected nearest-neighbor sites have
I, so thatA andB are connected via conducting bonds. Forall been visited. In this case, the ant walks back along the
the Potts model with integeg, the sites in this KF cluster “old” road until it finds a “new” bond which it has not
just form the Wolff clustef23]. In the standard Wolff algo- visited. Since sitd is also inl', the ant will always arrive at
rithm, if two nearest-neighbor sites are already in the clustersite B. The aforementioned paty is just composed of the
it is not necessary to check whether the bond between thetwonds through which the ant has passed once and only once.
is present or absent. However, we are interested in the backn example is shown in Fig.(3), where the pathV is rep-
bone correlation function here. A andB are connected, one resented by the thick solid line, and the sites on it are speci-
then asks how many mutually independent paths exist bdied as 1,2, .. .n.
tween A and B. Thus, all edges between nearest-neighbor The next task is to check whether there is any red bond on
sites withinl' have to be checked. We introduce a variableW. If only one independent path can be formed betwAen
C=0,1, and 2, representing that there is no path, only onand B, then at leastone red bond occurs on the path
path, andat leasttwo mutually independent paths betwe®n Furthermore, if any of these bonds is cut off, the ant cannot
andB, respectively. First, the edge variables on the lattice ararrive at siteB. An inefficient way is as follows. Temporarily
initialized ase;= —1 with 1<i=<2L2. The valuee;=1 rep- eliminate a boncb on W, and then let the ant restart its
resents that théth edge is occupied by a bond, ard=0  journey. If the ant can still arrive &, the bondb cannot be
stands for an empty edge. Since only one KF cluster is red bond, and thus is restored. Suppose all the bonds on the
formed, not all edges of the square lattice are necessarilgathW pass this test, then no red bond occurs betweand
visited during the formation of. The edges, which are not B, so thatC=2; otherwiseC=1. In this way, however, the
visited, keep their valuee;=—1. After this initialization, ant may become too tired to walk. Therefore, we apply a
uniformly distributed random numbers are drawn for eachmore efficient procedure.
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Step 3, temporarily eliminate all the bonds 8, and let 04
the ant restart its journey from Ao B. Suppose the ant 035 | y
cannot arrive aB; this does not necessarily mean, however, Ed
that there are red bonds. For instance, in Fig),2after the 03 r P
elimination of the whole path, the ant can only arrive at site 025 - o
5. This indicates that the bonds betwe®, . .., and 5 are . ool P
not red bonds, and may thus be restored. Then, the ant con- ’ ’,.f"
tinues its journey and arrives Bt In this case, no red bond 0.15 =
occurs on the pathV, andC=2. An example of opposite o1 | ~
case is given in Fig. (®). Following the same steps the ant
cannot go beyond site 3, since the bond between sites 3 and 005
4 is a red bond. In this case, one @s 1. okl . . - - : .
In practical applications of this procedure, one can still 0 01 02 03 04 05 06
improve the efficiency by some tricks. For instance, during L5/

the formation of the pathV, the siteB may act as an “at- , ,

tractor,” so thatW will not go too far fromB and the ant _ FIG: 3. The ratiar, between the computer time for steps 2 and

need not continue its journey randomly. Furthermore, aftef 2 the total timésteps 1, 2, and 3 combingd/s L =" for the

the elimination of W, instead of having the ant restart the percolation model. Every data point involves>1BMonte Carlo

. ’ . sweeps, and the system sizes are in the rargke8800. The ratio

journey, one can form a new cluster frofnon the basis of r extrapolates 1o O fok —

the remaining bonds, and then check whether it inclugles '

In the case thaB is not included, one restores the “tempo- .

rarily eliminated” bonds orW which connect sites i, and that the KF clusters become less and less ramified. As a

then continues to grow clustéx This procedure ends when "€sult, the backbone correlation functiéy behaves more

either B is included or no growth ofA is possible. This and more in line withP,, so thatX, may be expected to

avoids the situation that the ant has to walk back from a dea@PProach the normal magnetic expon¥ptasq—4. For the

end. tricritical Potts model, sinc, =2, we expect that the back-
With the connection variabl€, the normal magnetic cor- Pone exponenk, reduces to the magnetic exponeg.

relation functionP, and the backbone correlation function ~ For the criticalq—0 Potts mode(3,2], the KF clusters
P, between siteé\ andB can be defined as span the whole lattice without any loop, and are thus referred

to as spanning trees. In this case, between any pair of points
Po=(6c.2), (5) on the lattice, there is precisely only one p&thso that the
backbone correlation functio®, vanishes. This is due to the
where the symbo{ ) means the statistical average. vanishing of the amplitude oP, as g—0. As a conse-

Efficiency of the sampling procedurs described above, quence, one cannot obtaiX,(q—0) by investigating
the sampling oP, involves up to three steps; the probability k-connected clusters, as we will do for other valuesqof
that steps 2 and 3 are performed is just the magnetic corre=0. In this case, one can simply make use of the original
lation functionP,. Step 1 is just a standard Wolff step with definitions of the geometric quantities in Sec. I, which in-
a small amount of added computer time, as mentioned abovelude the backbone, the red bond, and the chemical-path ex-
Steps 2 and 3 involve a number of sites with an upper limitponents. From these definitions, one knows that the afore-
equal to the size of the clust&r so that their computer time mentioned pathl® is just the chemical path, and that the
is also of the same order as the Wolff step. Moreover, thdackbone precisely consists of all the bondstorFurther-
probability P, that they are performed decayslas®*h, and ~ more, all these bonds are red bonds. Since the red-bond scal-
each sample is only taken between several simulation stepi#lg dimension is exactly knowiX,=3/4[9,34], one simply
As a result, the sampling procedure requires less computdras thatX,= X, = X,j;=3/4 forgq—0. In fact, the statement
time than the Wolff method. As an illustration, we performed that X,= X, = X,i, holds for any type of spanning tree.
10° Monte Carlo steps for the percolation model with system In the remaining part of this section, we present our
size 8<L<800. We sampled the ratio between the com- Monte Carlo determinations of, for the systems discussed
puter time for steps 2 and 3 and the total time, i.e., for step# Sec. Il. Periodic boundary conditions apply to all these
1, 2, and 3. The data far are shown in Fig. 3 versus®*n systems. The aforementioned shewas chosen at random,
=L"524 The approximate linearity indicates that the fractionand siteB is chosen at a distanae=L/2 in thex direction
of the computer time needed by the sampling procedure ovdrom A. Further, we chose a sife also separated from a
the total time goes to 0 ds— . distancel/2 but in they direction.

The correlation function®, andP, were sampled both in
the x andy directions, such tha®, =[P+ PY)]/2 andP,
=[P+ PY1/2. Moreover, we sampled another backbone

As mentioned in Sec. |, the backbone correlation functioncorrelation functionP,, that A is simultaneously connected
P,, and thus the backbone exponent, is related with the beeo B andD by at leasttwo mutually independent paths.
havior of the red bonds. For critical Potts models §<4, According to finite-size scaling, the quantiti®, P,
the value ofX, is known to increase witly, which indicates and P, behave at criticality as

P1=(1—6c 0,

IV. RESULTS
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FIG. 4. Decay of the backbone correlation functBE for KF FIG. 5. Finite-size corrections |ﬁ2 for KF clusters of the criti-
clusters of the critical bond percolation model. The data are showf@l bond percolation model, shown &L>%—bg vs LY. The
as InP, vs. InL. values ofX,, by, andy;, are taken from the numerical fiKy
=0.35662), by=0.7442), andy;,= —1.274).
P,=L" 2n(ay+a,LYi+asL 2+a,L "2, (6)
P,=L " 2b(by+ by LYib+ byLYi+bal ~2+b,L~3), (7) The Ising model and the tricritical § 1 Potts modelThe
simulations were performed for critical Ising systems on
and square lattices in the range<@.<240. The quantities,

and P,, were sampled both for KF and Ising clusters. As
mentioned above, the Ising clusters are described by the
magnetic dimensiorX,=5/96 of the tricriticalg=1 Potts

. L model [9,10,29. The Monte Carlo data foP, of the KF

wherey; is the exponent of the leading irrelevant thermaldusters are shown in Fig. 6, which indicates that,2
scaling field, and we have assumed integer correction expo- 5 . Equationg7) and (8) were simultaneously fitted to
nents(of 11L). The amplitudes; , b;, andc; are unknown P, andP,,, respectively, so thaX, andy;, appear in the fit
constants. In comparison with the magnetic correlation funcbnly once. In addition to the terms wit, , the fit also

tion P,, the geometric quantitie®, and P,, may be ex- ' b

ted t for f dditional finite-si i .thincluded a correction withy;=—2. We obtain X,
pected to suffer from additional finite-size corrections, wi =0.2696(3) andy,,=—0.87(4) for KF clusters, anc,

unknown associated exponeng . More rapidly decaying _ g g5503) for Ising clusters. Here, the error bars are again

corrections are neglectgd here. The un!<n0\_/vn amplitudes a%‘/o standard deviations. As expected, for the Ising clusters
exponents are determined from multivariate Ieast-squarei is in a good agreement witk, = 5/96=0.52(8 of the
analysis using the Levenberg-Marquardt metha8]. For tribcritical q=1 Potts model h '

the systems in the present work, the valueXgf obtained The critical g=3 Potts modelThe simulations were per-

from the fits of Py, are all in excellent agreement with their (.4 theq=3 Potts model at criticality with system

exact result$11], and need not be discussed in this work. _. . -
The bond percolation modefFor this model, the system sizesL.in the range &L <360. The quantitie®>, and P2

sizesL were taken in the ranges8L <240. The data foP,

P22= L*3Xb(co+clLyib+C2Lyi+C3L72+C4L73), (8)

are shown in Fig. 4, and do not indicate the presence of large 0.24

finite-size corrections. Equatiof7) was fitted to the Monte 0.22 ¢
Carlo data according to the least-squares criterion, and the 02 e
exponenty;, was left as a free parameter. We observed that 0.18 | e

the terms with amplitudes,, b;, andb, do not decrease the 0.16 7

residualy?, and thus they were not included in the fit. We o Oldr 7

obtain X,=0.3566(2) andy;,=—1.274), where the error 0.12 r o~

bars are twice the statistical standard deviations. Compared 0.1+ e

to Ref.[19], it seems that our Monte Carlo data suffer less 0.08 7

seriously from finite-size corrections. This may be due to our 006 r .~

choice of a geometry with periodic boundary conditions in- 8'3‘2‘ "

stead of the bus-bar geometry. For clarity, we plot the value - ' : ' '

of P,L#—Dy, as a function of. ~*27in Fig. 5, whereX,, 005 ol 015 o 025 03
=0.3566(2) andoy=0.742(2) are taken from the fit. The L

apparent linearity indicates that, indeed, finite-size correc- F|G. 6. Decay of the backbone correlation functieg for KF
tions of P, can be well accounted for by a single power law clusters of the critical Ising model. The data are showrPas/s
blLyib. L*O.537l
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FIG. 8. Decay of the quantity, for the KF clusters of the
dilute q=4 Potts model. The data are shownmsvs L~ 4.

were sampled both for KF and Potts clusters. As mentioned The Baxter-Wu and the tricritical g4 Potts modelThe
above, the exponent for the Potts clusters has been predictéd4 Potts model is a marginal case, not only because the

asX,=7/80[13]. As a test, Eq(6) was fitted to the data for
P, and we obtainX;,=0.087§2), in good agreement with
7/80. Furthermore, a plot of the data Bp, for Potts clus-
ters in Fig. 7 also indicates,~ 7/80. Again, Eqs(7) and(8)
were simultaneously fitted tB, and P,,, respectively. For
the g=3 Potts model, the correction term with= —4/5
[12] appears difficult to separate from that with , and thus
it was neglected in the fit. The corrections with ? were
included, and the fit yields thaX,=0.2105(5) andy;,=
—0.61(4) for the KF clusters, and th&},=0.0873(3 X,
=7/80 for the Potts clusters.

The tricritical Blume-Capel modeAs mentioned above,
the backbone exponernX, for the ftricritical q=1 Potts

second-leading thermal exponex{,=2, but also because
that the red-bond exponeid, =2 [9,13]. Thus, the bond-
dilution scaling field, conjugate to the red bonds, becomes
marginal, and the question arises whether this field is mar-
ginally relevant or irrelevant for critical KF and Potts clus-
ters. As independent tests, Monte Carlo simulations were
performed both of the aforementioned dilutg=4 Potts
model at the fixed point and the Baxter-Wu model. For the
latter, the system sizk was taken as multiples of 6 and in
the range 1&L <240. For the dilutegq=4 model, the sys-
tem sizes were in the range €0 <360. The Monte Carlo
data forP, of the KF clusters, shown in Fig. 8, indicate that
2X,~1/4. For these two models, logarithmic finite-size cor-
rections are absent for “thermodynamic” quantities such as

model has already been determined from the Ising clusterghe magnetic correlatioR,. However, we have no solid rea-

The resultX,=0.0520(3)~5/96 indicates thaX, reduces to

son to assume that such logarithmic corrections are absent

the magnetic exponent;, for tricritical Potts models. As an  for geometric quantities such #,. Thus, at criticality, we

independent test, we directly Monte Carlo simulated the trigssume that, instead of Eq3) and (8), P, behaves as
critical Blume-Capel model. The simulations use the fixed-

vacancy-density ensemble, as discussed in Sec. Il. The sys-
tem sizes were taken in the range<ll0<360, and both
guantitiesP, andP,, were sampled. The numerical fits yield
X,=0.0760(8) and 0.0753(4) for the KF and the Potts clusEquation(9) was fitted to the Monte Carlo data for these two
ter, respectively. Both are in good agreement with the tricanodels simultaneously. On the basis of tpfecriterion, we
ritical magnetic exponenX,,=3/40[11,12. applied a cutoff for small system sizés<12. We then ob-

P2:L72Xb(bo+b1/|n L+b2/|n2L+b3/L2). (9)

TABLE |. Results for the backbone exponefyt and the associated correction-to-scaling expogigfor
critical Potts systems. Estimated error margins in the last decimal place, which are twice the standard
deviations in the fits, are shown in parentheses. For comparison, the magnetic dim&psiodsestimations
of X, by other sources are also liste¥j{(, last column. The numbers given as fractions are exact.

g Model Xh Xb Yib XE
2 q=0 Potts 0 3/4
7/3 q=2- 3 Potts 11/168 0.4953(3) -2.3(2)
8/3 Percolation 5/48 0.3566(2)  —1.27(4) 0.3569(6)20]
3 Ising 18 0.2696(3)  —0.87(4) 0.25(2)[18]
10/3 q=3 Potts 2/15 0.2105(5)  —0.61(4) 0.25(2)[18]
4 q=4 Potts 1/8 0.127(4) 1/Ib?
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V. DISCUSSION

We have developed several Monte Carlo methods to de-
termine the backbone exponents of tiystate Potts model.
The efficiency of these methods is reflected by the precision
of the numerical results, summarized in Table |, which sig-
nificantly improves over existing results. We find that, for
critical Potts models, the backbone scaling dimen3igrap-
proaches the magnetic dimensi¥p asq—4. This reflects
the fact that Kasteleyn-Fortuin clusters become more and
more compact with increasing. Further, it has been con-
firmed numerically that, for the tricritical Potts model, the
backbone exponent reduces to the magnetic exponent. In Fig.
9, we plotX, and X, as a function of the coupling constant
of the Coulomb gag [11]. The relation betweery and

andXp, as a function of the coupling constant of the Coulomb gasg is given by q=2+2cos@n/2) [11], with 2<g=<4

g. The symbolsA and O representX,, and X,,, respectively. The
tricritical branch of the Potts model corresponds witi@<6; X,
and X, coincide in this range.

and 4<g=<6 for the critical and tricritical Potts models, re-
spectively.

The present Monte Carlo methods can also be applied in
three dimensions, and simulations for the percolation and the

tain thatX,=0.124(2) and 0.127(4) for the Potts and the KFIsing model are currently being performggD].

clusters, respectively, in agreement wKh= 1/8.

The critical g=2— 3 Potts model As a case between

gq=0 and 1, we simulated th@=2— /3 Potts model. The
system sizes were taken in the range16<200, and the
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