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We study the two-dimensional dilute q-state Potts model by means of transfer-matrix and Monte Carlo
methods. Using the random-cluster representation, we include noninteger values of q. We locate phase transi-
tions in the three-dimensional parameter space of q, the Potts coupling K�0, and the chemical potential of the
vacancies. The critical plane is found to contain a line of fixed points that divides into a critical branch and a
tricritical one, just as predicted by the renormalization scenario formulated by Nienhuis et al. for the dilute
Potts model. The universal properties along the line of fixed points agree with the theoretical predictions. We
also determine the density of the vacancies along these branches. For q=2−�2 we obtain the phase diagram in
a three-dimensional parameter space that also includes a coupling V�0 between the vacancies. For q=2, the
latter space contains the Blume-Capel model as a special case. We include a determination of the tricritical
point of this model, as well as an analysis of percolation clusters constructed on tricritical Potts configurations
for noninteger q. This percolation study is based on Monte Carlo algorithms that include local updates flipping
between Potts sites and vacancies. The bond updates are performed locally for q�1 and by means of a cluster
algorithm for q�1. The updates for q�1 use a number of operations per site independent of the system size.
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I. INTRODUCTION

The renormalization scenario for the dilute q-state Potts
model, as formulated by Nienhuis et al. �1� has been remark-
ably successful in reproducing known properties of the two-
dimensional Potts model such as the qualitative q depen-
dence of the temperature exponent, the first-order character
of the phase transition �2� when q exceeds a certain thresh-
old, and the existence of a branch of tricritical points that
merges with the critical manifold at this threshold. The
renormalization equations as, e.g., analyzed by Nauenberg
and Scalapino �3� and others �4,5� even allow the accurate
reproduction of subtle details in the mathematical form of
free-energy singularity, including the energy discontinuity as
a function of q for q�4, which was exactly calculated by
Baxter �2�. While this strongly suggests that the renormaliza-
tion description of Ref. �1� is true in a fundamental sense,
this approach is not very suitable to obtain quantitative in-
formation on the phase diagram. For instance, the renormal-
ization equations of �1� locate the threshold value of q near
q=4.73 instead of at the exact value �2� q=4.

The present work aims to obtain some quantitative infor-
mation about the model described by the three temperature-
like parameters of Ref. �1�. In addition to the Potts coupling
K and the chemical potential D of the vacancies, the model
also includes a vacancy-vacancy coupling V. It is thus de-
scribed by the Hamiltonian

H/kBT = − K�
�ij�

��i�j
�1 − ��i0

� − V�
�ij�

��i0
��j0

− D�
k

��k0,

�1�

where the variables �i carry indices that refer to the sites of
a square lattice. They can assume values �i=0,1 , . . . ,q,
where �i=0 stands for a vacancy and �i�0 for one of the
Potts states. The sums on �ij� run over all pairs of nearest
neighbors. While Nienhuis et al. defined their model on the
triangular lattice, we do not expect qualitative differences
with respect to the model on the square lattice.

The partition sum of the model described by Eq. �1� is

Z� = 	

i=1

N

�
�i=0

q �	

�ij�

exp�K��i�j
�1 − ��i0

��exp�V��i0
��j0

��
�	


k

exp�D��k0�� . �2�

It is convenient to specify the vacancies by a separate vari-
able �i that assumes the values 0 �for vacancies� or 1. This
leads to

Z� = 	

i=1

N

�
�i=0

1

�
�i=�i

q�i �	

�ij�

exp�K��i�j
�i�exp�V��i0

��j0
��

�	

k

exp�D��k0�� . �3�

For the purpose of the mapping on the random-cluster
model, we rewrite exp�K��i�j

�i�=�bij=0
�i�j �u��i�j

�bij where u
�eK−1 is the temperaturelike parameter, and with the con-
vention 00=1. Substitution in Eq. �3� yields
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Z� = 	

i=1

N

�
�i=0

1 �	

i=1

N

�
�i=�i

q�i �	

�ij�

�
bij=0

�i�j

�u��i�j
�bij exp�V��i0

��j0
��

�	

k

exp�D��k0�� . �4�

Nonzero bond variables bij =1 may occur only on lattice
edges connecting equal, nonzero Potts variables. Also in the
presence of vacancies we can execute the summation on the
Potts variables �i=1, . . . ,q, i.e., perform the Kasteleyn-
Fortuin mapping �6�. While Kasteleyn and Fortuin did not
include vacancies, they formulated this mapping for a gen-
eral lattice, so that it can be applied directly to each term in
the sum on the vacancy configurations as expressed by the �i.
The sum on the Potts variables yields a factor q for each
cluster of sites connected by nonzero bonds. This yields the
random-cluster representation of the Potts model with vacan-
cies:

Z� = Zb � 	

i=1

N

�
�i=0

1 �	

�ij�

�
bij=0

�i�j �uNbqNc exp�VNvv�exp�DNv� ,

�5�

where Nb��bij denotes the number of nonzero bonds. These
bonds divide the lattice into Nc clusters or components, Nv
denotes the number of vacancies, and Nvv the number of
nearest-neighbor vacancy pairs as specified by the site vari-
ables �i.

Although Eqs. �1� and �2� are meaningful only when the
number of states is an integer q�1, Eq. �5� is well defined
also for noninteger q. It has played a useful role �together
with its simplified version that excludes vacancies� in map-
pings on the eight-vertex model and on the Coulomb gas, so
that exact critical exponents could be obtained �7�. They can
be expressed in the Coulomb gas coupling constant g which
depends on q by

q = 2 + 2 cos
g	

2
�6�

with 2
g
4 for the critical and 4�g
6 for the tricritical
Potts model. The temperature dimension followed as

Xt =
6

g
− 1 �7�

and the magnetic dimension as

Xh = 1 −
g

8
−

3

2g
. �8�

These dimensions were also exactly derived in the theory of
conformal invariance �8�. In this context one characterizes
universality classes by a number m related to the Coulomb
gas coupling g by m=g / �4−g� for the critical branch �g

4� and by m=4/ �g−4� for the tricritical branch �g�4�.
The theory predicts that there exists a set of scaling dimen-
sions, associated with scalar observables. Some of these di-
mensions can be labeled by two integers p and q, and are
determined by the Kac formula as

Xp,q =
�p�m + 1� − �qm��2 − 1

2m�m + 1�
. �9�

For the critical branch we may identify the ith temperature
dimension with Xi+1,1, and for the tricritical branch with
X1,i+1. The most relevant magnetic dimension is
X�m+1�/2,�m+1�/2 for the critical Potts model and Xm/2,m/2 for the
tricritical Potts model.

While considerable exact information is thus available,
there remain some problems that have thus far escaped exact
analysis. We mention the backbone exponents �9–11�, sur-
face critical phenomena �12–14�, and percolation properties
of random clusters �15�. These problems can in principle be
solved by numerical work. For the critical Potts model, one
can simply Monte Carlo simulate the model without vacan-
cies. But for q4, strong corrections to scaling occur due to
the subleading temperature field, which becomes marginal at
q=4 and thus generates logarithmic corrections. It is there-
fore desirable to determine the locus of fixed points, natu-
rally in a truncated parameter space. In a two-dimensional
space, the two leading temperature fields thus vanish at this
locus. For the critical branch, this would mean that the lead-
ing corrections to scaling are suppressed, so that accurate
numerical investigations become feasible. For q�4 one ex-
pects to find, in addition to the critical fixed point, a second
fixed point corresponding with the Potts tricritical point,
which may also be of some use for numerical work. Here we
remark that, for some purposes, an exact result of Nienhuis
�16� may offer a good alternative for numerical work on
tricritical Potts models. Another research subject that may
benefit from accurate knowledge of critical points of models
with vacancies concerns the finite-size scaling behavior of
models with a constraint. The scaling theory of such models
in the thermodynamic limit is described by the Fisher renor-
malization theory �17�. These phenomena can be investigated
numerically in systems whose number of vacancies is con-
served by the constraint. The geometric cluster algorithm
�18� provides a very suitable tool for such investigations,
because it not only conserves the number of vacancies, but
also reduces critical slowing down. However, its useful ap-
plications are restricted to integer values of q.

The present work aims to provide accurate information on
the location of the fixed points and the phase diagram. Most
of this program is realized by means of transfer-matrix cal-
culations which are explained in Sec. II, which also contains
a short description of the Monte Carlo algorithms employed
in this work. In Sec. III we present results for the phase
diagram in the �q ,K ,D� parameter space, in particular the
line of fixed points consisting of a critical branch and a tri-
critical one. This part is restricted to the case V=0. For one
special value q=2−�2 we determine the phase diagram in
the three-dimensional space �K ,V ,D�. The results, which are
probably generically true �1� for q�3 Potts models, are re-
ported in Sec. IV. Section V presents various results includ-
ing a critical and a tricritical point of the Blume-Capel
model, and the location and exponents of the percolation
threshold of tricritical Potts clusters for several values of q.
Finally, our conclusions are listed in Sec. VI.
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II. ALGORITHMS

A. Transfer-matrix technique

We summarize the calculations performed for the
continuous-q model defined by Eq. �5�. Additional analyses
were performed using integer spin representations which are
already adequately described in the literature �19� and do not
need further explanation. We define the random-cluster
model on a lattice on the surface of a cylinder, with one set
of nearest-neighbor edges parallel to the transfer direction,
i.e., the axis of the cylinder. The cylinder has a length of n
lattice units, and has an open end at the nth layer of L sites.
The construction of a transfer matrix requires a “coding” of
the relevant degrees of freedom at the free end of the cylin-
der. These degrees of freedom include the positions of the
vacancies, and how the remaining sites are connected by the
random-cluster bonds. This information is called “connectiv-
ity.” The somewhat elaborate task of coding these connec-
tivities is described in Appendix A, and the actual definition
of the transfer matrix in Appendix B, which is used to build
an algorithm that can multiply a vector v� by the transfer
matrix T:

v�� = T · v� . �10�

It is not necessary to store the full matrix T. The availability
of a numerical procedure that executes this multiplication is
sufficient for the calculation of a few of the largest eigenval-
ues. The power method, or direct iteration, would lead to the
desired result but the projection of the transfer matrix on a
relatively low-dimensional Hessenberg matrix, which was
explained in detail in Ref. �20�, leads to much faster conver-
gence. As explained in Appendix B, the transfer matrix can
be viewed as consisting of two independent sectors, a “non-
magnetic” and a “magnetic” sector. Three different eigenval-
ues were calculated, namely, the largest eigenvalues in both
sectors, and a second eigenvalue in the nonmagnetic sector.

Calculations with finite sizes up to L=12 �for the deter-
mination of the critical and tricritical points� or L=13 �for
the determination of the vacancy densities� were performed.
The size of the matrix T is 19 181 100�19 181 100 for the
latter system size.

1. Calculation of the scaling dimensions

The Potts magnetic correlation function along the coordi-
nate r in the length direction of the cylinder is defined as

gh�r� =
�q��0�r

− 1�

q − 1
. �11�

In the random-cluster representation, this correlation func-
tion is equal to the probability that sites 0 and r belong to the
same random cluster. At large r, gh�r� decays exponentially
with a characteristic length scale �h that depends on K, D, V,
and L:

gh�r� � e−r/�h�K,V,D,L�, �12�

and can be calculated from the largest two eigenvalues 0
and 1 of the transfer matrix:

�h
−1�K,V,D,L� = ln�0/1� . �13�

For the calculation of the eigenvalues, as needed to find �h,
we may employ the following properties of the correspond-
ing eigenvectors. Since the partition sum of the random-
cluster model can be expressed using only the nonmagnetic
connectivities �see Appendix B�, it follows that the largest
eigenvalue, which determines the free energy, resides in the
nonmagnetic sector. Furthermore, the transfer matrix con-
tains a nondiagonal block of zeros that reflects the fact that
the multiplication of a vector with only zeros on the mag-
netic positions again leads to such a vector. Thus, there exist
left-hand eigenvectors with nonzero elements only for mag-
netic connectivities. The one among these with the largest
eigenvalue is associated with the magnetic correlation func-
tion. The calculation of this eigenvector, and its eigenvalue
1, can thus be restricted to the magnetic sector.

Application of a conformal mapping �21� relates �h on the
cylinder with the magnetic scaling dimension Xh �equal to
one-half of the magnetic correlation function exponent ��. At
a critical point �e.g., K adjusted to its critical value K=Kc for
given D and V� this exponent obeys

Xh � Xh�K,V,D,L� �
L

2	�h�K,V,D,L�
. �14�

This is asymptotically true for a critical model in the limit of
large L. We may thus use it to estimate Xh numerically, and
thereby obtain evidence about the universality class of the
model. Or, if the universality class, and thus Xh, are consid-
ered known, we may solve for K, V, or D in

Xh�K,V,D,L� � Xh �15�

to determine the critical subspace.
In addition to �h, it is possible to determine a second

correlation length �t describing the exponential decay of the
energy-energy correlation function. It is associated with a
third eigenvalue 2 of the transfer matrix with an eigenvector
in the nonmagnetic subspace, just like the one with eigen-
value 0. The pertinent eigenvalue can be obtained by means
of the projection technique described in Ref. �20�. In analogy
with the case of the magnetic correlation length we can use
the third eigenvalue 2 to estimate the temperature scaling
dimension Xt as

Xt�K,V,D,L� �
L

2	�t�K,V,D,L�
, �16�

where �t
−1=ln�0 /2�.

2. Calculation of the vacancy density

In the calculation of the vacancy density we have to take
into account that the transfer matrix for general q is essen-
tially nonsymmetric. We define a matrix representation of the
density with elements V�����,�nv��� /L where nv��� is the
number of vacancies as implicit in the connectivity �. The
expectation value of the vacancy density � is, in vector
notation,

DILUTE POTTS MODEL IN TWO DIMENSIONS PHYSICAL REVIEW E 72, 056132 �2005�

056132-3



��� =
��

�Tn−k · V · Tk · v�0��

��
�Tn · v�0��

, �17�

where v�0 is the Boltzmann weight of the first row of the
system. For an infinitely long system we may take both k and
n−k to infinity. The right-hand eigenvalue problem of the
transfer matrix is

T · R = R · � , �18�

where R is the matrix of right-hand eigenvectors, arranged as
columns of R, and � is the diagonal matrix containing the
eigenvalues of T. In general we can similarly formulate the
left-hand eigenvalue problem as

L · T = � · L , �19�

such that the matrix of left-hand eigenvectors L is the in-
verse of R. Next we insert the unit matrix R ·L between all
inner products in Eq. �17�:

��� =
��

�R · �n−k · L · V · R · �k · L · v�0��

��
�R · �n · L · v�0��

. �20�

Let �11 be the largest eigenvalue, which is the only one that
survives when the powers k and n−k become large. After
dividing out �11

n , ��R�1, and ��L1��v0��, Eq. �20� reduces to

��� = �
�

L1�V��R�1. �21�

Thus the determination of � requires the determination of
both the right- and left-hand leading eigenvectors. This was
realized by means of two independent calculations along the
lines described in Ref. �20�, one employing the sparse-matrix
decomposition of T, and the other that of the transpose of T.

B. Monte Carlo technique

1. Local bond update for dilute Potts models with 0�q�1

For noninteger q�1, no cluster algorithm is available and
we developed an algorithm employing local updates, with
bond updates as well as site updates. The latter may flip Potts
sites �i�0 into vacancies �i=0 and vice versa, thus gener-
alizing the algorithms of Sweeney �22� and Gliozzi �23�. A
complication in this type of algorithm is that the number of
components Nc in Eq. �5� can be changed by a local update,
which influences the transition probabilities. Since the deter-
mination of the change in Nc caused by a local update is an
essentially nonlocal task, the Monte Carlo algorithms are
quite slow in comparison with the cluster methods available
for q�1. Moreover, now also the four surrounding bond
variables enter into the probabilities of flips between vacan-
cies and Potts sites which leads to many possibilities and
leads to a rather time-consuming programming task when a
relatively optimal algorithm is desired.

The transition probabilities are defined such as to satisfy
detailed balance on the basis of the weights defined by the
random-cluster partition sum Eq. �5�. Simulations under the
constraint that the density of the vacancies is conserved are

realized by excluding updates leading to states with less than
Nv or more than Nv+1 vacancies.

2. Cluster algorithm for dilute Potts models with q�1

A cluster Monte Carlo algorithm for the noninteger q
�1 random-cluster model without vacancies �24� is already
available. It appears to be an efficient tool for the study of
noninteger q-state Potts model �25� and was also applied in
Ref. �26�. To include vacancies it is convenient to use a
formulation of this algorithm based on a cluster decomposi-
tion as given in Ref. �25� �but here we use a slightly different
notation, with number 0 referring to vacancies and 1 to one
of the Potts states�. Colors are randomly assigned, such that
color 1 is singled out with a probability 1 /q. This procedure
remains essentially the same in the presence of vacancies.
After defining the subset of the lattice in state 1, we can thus
include local Metropolis-like updates that may flip state-1
site variables into vacancies and vice versa. The advantage is
that the bond variables disappear from the transition prob-
abilities which thus become simple, and a site update re-
quires only a number of operations independent of the sys-
tem size. The summary of the Monte Carlo procedure,
starting from a configuration specified by the subset in state
0 �the vacancies� and the random-cluster decomposition of
the remaining sites, is as follows. �1� Assign color 1 to each
cluster with probability 1 /q; �2� apply local updates flipping
between color-1 sites and vacancies; �3� form clusters on the
type-1 sites, using a bond probability u / �u+1�; and �4� erase
the color variables. The use of a probability 1 /q restricts the
useful range of the algorithm to q�1.

The method enables the study the critical and tricritical
properties of dilute Potts models. For instance, it can be used
to determine fractal properties of noninteger q Potts clusters
at tricriticality. Simulations conserving the number of vacan-
cies require a modification of step 2: we no longer allow flips
between vacancies and color-1 variables. Instead, we pro-
pose local configuration changes involving the interchange
of two site variables, chosen at two random positions. Only
interchanges of vacancies and color-1 sites are accepted,
with acceptance probabilities that are subject to the condition
of detailed balance.

III. LINE OF FIXED POINTS FOR V=0

A. Solving the equations for the fixed points

The transfer-matrix algorithms defined in Sec. II A en-
ables the numerical calculation of the functions Xh�K ,D ,L�
and Xt�K ,D ,L� for a range of finite sizes L. The algorithm
numerically calculates these functions for given values of K,
D, and L. The dependence on the parameters q and V, which
are kept constant for the present, is not explicitly shown. We
employ this technique to estimate the critical and tricritical
fixed points in the V=0 subspace, by simultaneously solving
for the two unknown K and D in the two equations

Xh�K,D,L� = Xh, Xt�K,D,L� = Xt, �22�

in which we substitute the exactly known values of Xh and Xt
as a function of q �see Sec. I�. However, the results for the
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fixed points do not critically depend on these exact values,
since the numerical procedure includes some redundancy as
we shall discuss in Sec. III C. The solutions are denoted
Kf�L� and Df�L�, where the index f refers to “fixed point.” In
order to find their finite-size-scaling properties, we express
the functions Xh�K ,D ,L� and Xt�K ,D ,L� in terms of the two
leading temperature fields t1 and t2, and another temperature-
like field u that is taken to be irrelevant. Expansion of the
finite-size scaling functions yields the equations

Xh�t1,t2,u,L� = Xh + aht1Lyt1 + bht2Lyt2 + uhLyi + ¯ ,
�23�

Xt�t1,t2,u,L� = Xt + att1Lyt1 + btt2Lyt2 + utL
yi + ¯ ,

where ah, bh, uh, at, bt, and ut are unknown constants, yi is an
irrelevant exponent �yt3

or the integer −2�, and yt1
and yt2

are
the two leading temperature exponents. At the simultaneous
solution we thus have

aht1Lyt1 + bht2Lyt2 + uhLyi + ¯ = 0,
�24�

att1Lyt1 + btt2Lyt2 + utL
yi + ¯ = 0.

Elimination of t1 and solving for t2 yields

t2 =
�atuh − ahut�
�ahbt − atbh�

Lyi−yt2. �25�

Similarly, we find the solution for t1 as

t1 =
�btuh − bhut�
�ahbt − atbh�

Lyi−yt1. �26�

The scaling behavior of the numerical solutions Kf�L� and
Df�L� is found by expressing their differences with the
asymptotic values Kf and Df as linear combinations of t1 and
t2:

Kf�L� = Kf + a0Lyi−yt2 + a1Lyi−yt1 + ¯ �27�

and

TABLE I. Fixed points of tricritical and critical dilute Potts models. These are extrapolations of finite-size
data for systems with sizes up to L=12, except for the case q=2 which used sizes up to L=16. The vacancy
densities � are based on data for system sizes up to L=13. The results for g�3 were rejected �see text�. Exact
data for the q=1 tricritical point are included.

q g Kf Df Refined Df �

0.1 2.2021… 0.334 �5� −1.0 �1�
0.5 2.4601… 0.596 �4� −0.46 �3�
0.8 2.5903… 0.709 �3� −0.15 �2�
2.45 3.1444… 1.065 �2� 0.950 �5� 0.94708 �5� 0.0810 �3�

2+�2−�3 19/6 1.0783 �5� 1.004 �3� 1.00460 �5� 0.0838 �2�
2.6 3.1939… 1.0936 �5� 1.068 �2� 1.06687 �5� 0.0871 �1�
2.8 3.2619… 1.1313 �2� 1.2222 �4� 1.22171 �5� 0.09579 �2�
3.0 10/3 1.16941 �2� 1.37655 �5� 1.376483 �5� 0.10528 �1�
3.5 3.5398… 1.27104 �2� 1.77785 �4� 1.777891 �5� 0.13496 �1�
3.8 3.7128… 1.34722 �2� 2.06903 �4� 2.069046 �4� 0.16225 �1�

2+�2+�2 15/4 1.36261 �2� 2.12689 �4� 2.126922 �4� 0.16839 �1�
3.9 3.7978… 1.38194 �2� 2.19915 �4� 2.19917 �1� 0.176431 �10�
4.0 4 1.45791 �2� 2.47845 �4� 2.47847 �1� 0.21207 �1�
3.9 4.2021… 1.525175 �4� 2.719730 �8� 2.719732 �3� 0.250190 �5�
3.8 4.2871… 1.551010 �3� 2.810900 �6� 2.810902 �2� 0.266885 �5�
3.5 4.4601… 1.599352 �3� 2.979260 �6� 2.979263 �2� 0.30202 �2�

2+�2 9/2 1.609715 �5� 3.014962 �10� 3.014971 �3� 0.31031 �2�
3 14/3 1.649903 �5� 3.152149 �10� 3.152152 �2� 0.345766 �10�

2+�2−�2 19/4 1.668155 �5� 3.213760 �10� 3.213758 �3� 0.36396 �4�
2.5 4.8391… 1.686350 �5� 3.274720 �10� 3.274720 �3� 0.3838 �1�
2.0 5 1.715733 �1� 3.372204 �2� 3.372205 �3� 0.42020 �10�
1.5 5.1608… 1.740760 �8� 3.454225 �15� 3.454222 �3� 0.4578 �2�

2−�2−�2 21/4 1.752746 �8� 3.493180 �15� 3.493172 �3� 0.4793 �2�
1 16/3 2 ln�1+�2� 4 ln�1+�2� 1/2

2−�2 11/2 1.77927 �4� 3.57851 �8� 3.578504 �3� 0.5430 �5�
2−�3 17/3 1.79110 �5� 3.61617 �10� 3.616170 �4� 0.5885 �8�

0.1 5.7978… 1.7971 �1� 3.6352 �2� 3.63516 �2� 0.630 �10�
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Df�L� = Df + b0Lyi−yt2 + b1Lyi−yt1 + ¯ , �28�

where aj �j=0,1 , . . . � and bj �j=0,1 , . . . � are unknown con-
stants. Since we know, in principle, the exponents yt1

, yt2
,

and yi �see Sec. I�, we can use this knowledge to extrapolate
the solutions to obtain Kf and Df. Two subsequent finite-size
results Kf�L� and Kf�L+1� allow one extrapolation by solv-
ing for Kf

�1��L� and a0 in

Kf�L�� = Kf
�1��L� + a0Lyi−yt2 �29�

for L�=L and L+1. A second iteration step with a free expo-
nent according to the three-point fits described in Ref. �20�
then yielded iterated estimates Kf

�2��L� from which we obtain
final estimates listed in Table I. The numerical uncertainty
margin in these numbers was estimated from the differences
between the Kf

�2��L� obtained for the few largest L available.
The data for Df were analyzed similarly. The actual numeri-
cal accuracies of the fixed points are better in the direction
perpendicular to the line of phase transitions than along this
line. For this reason we have solved for D in the equation
Xh�K ,D ,L�=Xh, with K fixed at its estimated fixed-point
value Kf, except for g�3, because of reasons given below.
The solutions were again fitted using similar methods as
above. The fits yield refined estimates of D that are included
in Table I. The latter estimates are likely to lie closer to the
line of phase transitions, but not necessarily closer to the
fixed point.

The numerical procedure yielded results with a satisfac-
tory finite-size convergence, except for q→0 on the tricriti-
cal branch, where the results become less accurate because
the scaling exponents become indistinguishable from those at
the first-order transition, and for q�2.5 on the critical
branch, where complications of a different nature arise. First,
it has been reported �7,27� that corrections to scaling due to
the second temperature field, i.e., governed by the exponent
yt2

, disappear in most observables for q→2. This means that,
near q=2, the numerical solutions �if any� do not suppress
the second temperature field, but instead other effects, possi-
bly analytic corrections with exponent −2 as in the Ising
model. Second, for q�1, we have yt2

�−2 so that the lead-
ing corrections to scaling in Eqs. �24� are the analytic ones,
and the procedure will again try to suppress these, instead of
the second temperature field. Although numerical solutions
were obtained for q�1, they should not be interpreted as
fixed points in the truncated space of the two leading tem-
perature fields t1 and t2.

We have also computed the finite-size data for the va-
cancy density at the estimated fixed points �Kf ,Df�, using the
procedure outlined in Sec. II A 2. The scaling behavior of �
follows by differentiation of the free-energy density to D.
When we substitute the scaling relation of the free energy,
and linearize D in t1 and t2, we obtain

��L,u� = �0 + a1Lyt1
−2 + a2Lyt2

−2 + ¯ + b1Lyt1
+yi−2 + ¯ .

�30�

Fits according to this expression showed no sign of a non-
zero amplitude a1. Indeed the derivative of the scaling func-
tion for the free energy with respect to t1 must vanish, be-

cause the energy of L�� self-dual Potts strips does not
depend on L �20�. We thus only used exponents yt2

−2 and
yt1

+yi−2 in the iterated fitting procedure. The extrapolated
values of � are sensitive to small deviations in the estimated
location of the fixed point. For comparison, we have also
computed the finite-size data for the vacancy density at the
corresponding finite-size solutions of Eqs. �22�. The scaling
behavior of these finite-size data for � now also contains
contributions due to the deviations expressed by Eqs. �25�
and �26�, which may arise from the dependence of �0, a1,
etc., on t1 and t2. Which of these contributions dominates
depends on the value of g that parametrizes the fixed line.
We have applied many fits, using the predicted correction
exponents as well as three-point fits that leave the exponent
free. Best estimates were obtained by a comparison between
these fits, and with the fit of the data obtained at the extrapo-
lated fixed point. The finite-size dependence of the various
fits, and the degree of their mutual consistency allowed us to
estimate the numerical accuracy of the extrapolated results
for the density as included in Table I.

B. Polynomial approximations at the line of fixed points

The numerical data presented in Table I appear to behave
rather smoothly as a function of the Coulomb gas coupling
constant g defined in Sec. I, especially for g�3, as shown in
Fig. 1. We fitted the quantity r�eD / �eK−1� by the expres-
sion

r�g� = �
j=0

5

rj�g − 2� j , �31�

where the coefficients rj were determined by means of the
least-squares criterion. No satisfactory fits, as judged from
the residual �2, were obtained including all data in Table I,
because the data for g�3 did not accurately follow the trend

FIG. 1. The line of critical and tricritical fixed points of the
dilute Potts model in terms of the ratio eD /u defined in the text
versus the Coulomb gas coupling constant g. These fixed points
were obtained in the two-dimensional parameter space �K ,D� while
V was set equal to zero. The error bars are much smaller than the
symbol size. The curve shows the polynomial approximation for
eD /u described in the text. The scale for q is shown above.
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of the remaining data, which is understandable on the basis
of the relative magnitudes of yt2

and yi as described in the
preceding subsection. A satisfactory fit was however ob-
tained excluding the g�3 data. The result for the zeroth-
order coefficient r0=−0.027 was slightly negative but not
significantly different from 0. Noting that r�0 for the
present model described by Eq. �1�, we take this small value
as an indication that r=0 in the limit q↓0 for the critical
fixed point, and thus that the vacancies disappear in this
limit. We thus fixed r0=0 and recalculated the coefficients.
They are listed in Table II. Figure 1 shows the fit to the
numerical results for r as a function of the Coulomb gas
coupling constant g.

The fits made use of the exactly known tricritical point for
q=1, which is equivalent with the Ising model without va-
cancies. The exact numbers for this point are included in
Table I. The addition of this point does not significantly in-
crease the �2 residual, which indicates that this point joins
smoothly with the numerical data for other values of g.

We have similarly fitted the temperature parameter u as a
function of g by the expression

u�g� = �
j=1

5

uj�g − 2� j �32�

and the density � of the vacancies by

��g� = �
j=1

6

� j�g − 2� j . �33�

The number of coefficients was based on the requirement
that the residual �2 is acceptable. The results are shown in
Tables III and IV, respectively. The fitted expression for the
density is shown in Fig. 2 as a function of g, together with
the numerical data.

C. Consistency with theory and universality

Our numerical procedure to determine the fixed points
relies heavily on the existing results for the magnetic and
temperature scaling dimensions, which are not supported by
exact analysis for the general case of the model described by
Eq. �5�. We therefore consider the possibility that the scaling
dimensions given by Eqs. �7� and �8� do not apply to the
present model. That would lead to an additional constant in
Eqs. �23� whose effect is the same as that of a term with an
exponent yi=0. Thus, from Eqs. �27� and �28�, we would
then expect finite-size corrections proportional to L−yt2 in the
numerical solutions of Eqs. �22�. For the tricritical branch we
have yt2

�0 so that the solutions for large L still converge to
the tricritical fixed point. For Potts criticality we have yt2
�0 so that the solutions would fail to converge to the critical
fixed point for large L. However, the analysis of the solutions
showed satisfactory convergence.

More specifically, the finite-size dependence of the solu-
tions of Eqs. �22� agreed well with the theoretical results for
the exponents. This confirms the universality of the Potts
model in an extended parameter space.

TABLE II. Coefficients of the polynomial describing r�g� along
the fixed line as a function of g.

k rk Error

1 0.39815155 0.00250115

2 0.38326777 0.00431988

3 0.44162858 0.00271091

4 −0.16983072 0.00073526

5 0.01472573 0.00007298

TABLE III. Coefficients of the polynomial describing u�g�
along the fixed line as a function of g.

k uk Error

1 1.57118750 0.00122031

2 0.11386463 0.00206715

3 −0.01998229 0.00127897

4 −0.01068977 0.00034315

5 0.00093745 0.00003377

TABLE IV. Coefficients of the polynomial describing ��g� along
the fixed line as a function of g.

k �k Error

1 0.01280616 0.00244377

2 0.06353299 0.00594846

3 −0.01922001 0.00564925

4 0.00978198 0.00261807

5 −0.00278903 0.00059244

6 0.00029403 0.00005239

FIG. 2. The vacancy density � along the line of fixed points of
the dilute Potts model as a function of the Coulomb gas coupling
constant g. The error bars are much smaller than the symbol size
except for the rightmost data point. The curve shows the polynomial
approximation for � described in the text. The scale for q is shown
above.
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As another test, we have analyzed the finite-size depen-
dence of the free energies at the extrapolated fixed points
given in Table I. Assuming conformal invariance �8�, the
conformal anomaly c can be obtained from the reduced free
energy F�L� per unit of length of the cylinder, using the
formula �28,29�

F�L� � Lf� −
	c

6L
, �34�

where f� is the reduced bulk free-energy density. This for-
mula applies to the large-L limit. On the other hand, the
reduced free energy F�L� per unit of length follows from the
largest eigenvalue 0 of the transfer matrix as

F�L� = − ln 0 �35�

and can thus be calculated with the procedures outlined in
Sec. II A. Since there are two unknowns f� and c in Eq. �34�,
the substitution of finite-size data for two subsequent system
sizes in Eqs. �34� and �35� yields one estimate of the confor-
mal anomaly c. These estimates display a rapid apparent
convergence with increasing system sizes, with a finite-size
dependence approximately as L−2 for most values of q, as
deduced from three-point fits �see Ref. �20��. The final esti-
mates of c are shown in Table VII below, together with its
theoretical value �28,30�

c = 1 −
6

m�m + 1�
�36�

in terms of the parameter m defined in Sec. I.

IV. PHASE DIAGRAM FOR q=2−�2

We determine the phase diagram in the three-dimensional
parameter space �K ,D ,V� for K�0 and V�0, using numeri-
cal analysis and some exact arguments. The choice q=2
−�2, while somewhat arbitrary, was based on the fact that
much is already known for the integer values of q, and that
the exact results for the critical exponents assume simple
fractional values.

A. Equivalences and exact limits

Before presenting the numerical results, we list a few ex-
act results and limiting cases that are helpful to construct the
phase diagram. The bond weights offer a handle to identify
various phase boundaries and critical points. We consider the
following cases.

�1� If both D+2V�0 and D�0, the vacancies disappear
and the Potts critical surface then lies at K=ln�1+�q� �31�.

�2� When the Potts coupling vanishes, the dilute Potts
model can be mapped on to the Ising model in a field, by
interpreting the vacancies as Ising spins of one sign and the
remaining site variables as Ising spins of the other sign. The
field vanishes for special choices of D and V. For K=0 the
partition sum Eq. �4� becomes

Z� = 	

i=1

N

�
�i=0

1

�
�i=�i

q�i �	

�ij�

exp�V��i0
��j0

��	

k

exp�D��k0�� .

�37�

The summand does not explicitly depend on the �i, and the
sums on the �i can thus be executed trivially:

Z� = 	

i=1

N

�
�i=0

1 �	

�ij�

exp�V��i0
��j0

��	

k

exp�D��k0�q�k� .

�38�

After dividing each site weight over the four surrounding
bonds, this becomes

Z� = 	

i=1

N

�
�i=0

1 �	

�ij�

exp�V��i0
��j0

+ D���i0
+ ��j0

�/4�

�q��i+�j�/4� . �39�

We compare the bond weights specified by this expression to
the zero-field Ising weights e±KI where the sign depends on
whether the site variables �i and � j are equal or not. The
black circles represent Potts variables in one of the q states,
the black square a Potts different state, and the open circles
vacancies:

�i � j dilute Potts Ising

� � q1/2 eKI

� � q1/2 eKI

� � q1/4eD/4 e−KI

� � eV+D/2 eKI

�40�

The dilute Potts model becomes equivalent with the zero-
field Ising model when the two types of bond weights are
proportional, which holds if

K = 0, D + 2V = ln q . �41�

The Ising-like critical point occurs at KI=ln�1+�2� /2 or

K = 0, V = 2 ln�1 + �2�, D = − 4 ln�1 + �2� + ln q .

�42�

The Ising transition is one between a disordered Potts phase
and a phase dominated by vacancies. The Ising locus Eqs.
�41� contains a first-order line ending in the Ising critical
point. It is natural that this coexistence line and critical point
extend to nonzero values of K, so that there exists a coexist-
ence plane in the �K ,V ,D� space, bounded on one side by an
Ising critical line.

�3� For D=0 and V=K, the vacancies become equivalent
with the q Potts states, and the model becomes a �q+1�-state
Potts model. We illustrate this equivalence by listing the
bond weights of the dilute q-state Potts model according to
Eq. �2� and the bond weights of the �q+1�-state Potts model
without vacancies. The meaning of the symbols describing
the site variables is the same as above:
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�i � j dilute Potts �q + 1�-state Potts

� � eK eK

� � 1 1

� � eD/4 1

� � eV+D/2 eK

�43�

The phase diagram of the q-state Potts model with vacancies
therefore contains a �q+1�-state Potts critical point at D=0,
V=K=ln�1+�q+1�.

�4� For 2K=2V+D while D�4K, the Potts ordered phase
and the vacancy-dominated phase balance one another while
their interfaces cost much energy. Therefore this condition
describes a surface where these two phases coexist.

B. Numerical results

We include the vacancy-vacancy coupling in the transfer-
matrix calculation defined in Sec. II A, and locate the Potts
critical surface by solving for K at selected values of D, V,
and L in

Xh�K,V,D,L� = Xh, �44�

where we make use of the exact result for Xh quoted in Sec.
I. In the vicinity of a critical point, there is only one relevant
temperature field, but corrections to scaling may still be gen-
erated by irrelevant fields. As a consequence of these correc-
tions, the solution for K will not precisely coincide with a
critical point. The effects of an irrelevant scaling field u and
a small temperature field t, due to a deviation K from its
critical value Kc, are expressed by

Xh�K,V,D,L� = Xh + auLyi + btLyt1 + ¯ , �45�

where a and b are unknown constants, and yt1
is the leading

temperature exponent. For the present value q=2−�2, the
corrections are dominated by the exponent yi=−2 which ex-
ceeds the second temperature exponent yt2

. The scaling be-
havior of the numerical solutions Kc�L� is found by expan-
sion of the appropriate scaling function in the leading
temperature field, which is in first order proportional to K
−Kc:

Kc�L� = Kc + a0Lyi−yt1 + ¯ . �46�

The numerical results were found to be consistent with this
formula, quite clearly so in parts of the critical surface that
are not close to its boundary. Near the boundary, crossover
effects become important. We determined critical points Kc
for several values of V along six lines of constant D in the
interval −6
D
4 as shown in Fig. 3. For most of the criti-
cal surface, it proved to be easy to obtain critical points with
an accuracy better than 10−3 which is sufficient for the
graphical presentation of the phase diagram provided in this
subsection. Much better accuracies may be obtained if de-
sired; for D→−�, where the model reduced to the Potts
model without vacancies, we found, using system sizes up to
L=11, Kc=0.568 358, with an apparent accuracy of less than
10−6. This is consistent with the exact value K=ln�1
+�2−�2�.

The plane of these q-state Potts transitions is bounded by
a tricritical line for D�0. Several points on the tricritical
line were solved by means of the numerical technique de-
scribed in Sec. III A but including V as a parameter. These
results indicate that, as expected, the tricritical line does con-
nect to the �q+1�-state critical point, as shown in Fig. 3.

We have also used the transfer-matrix technique to nu-
merically investigate the Ising critical point at K=0, de-
scribed in the preceding subsection. Since Potts magnetic
correlations are zero, the calculation of Xh yields only diver-
gent results. The calculation of Xt yields results approaching
the Ising magnetic dimension 1/8. Indeed, the Ising mag-
netic correlations, corresponding, e.g., with vacancy-vacancy
correlations, are contained in the Potts nonmagnetic sector.
We were thus able, by following the behavior of function Xt,
to follow the Ising line emerging from the K=0 point. We
observed that the discontinuous transition between the disor-
dered Potts phase and the vacancy-dominated phase is ac-
companied by a minimum in the function Xt, with values
�1/8 and decreasing with L. The Ising critical points can be
approximated by requiring that the minimum in the function
Xt tends to 1/8. This yields results of a sufficient accuracy
for the purpose of constructing Fig. 3.

For D�0, the Potts critical surface is not bounded by a
tricritical line, but by a critical end line located in the plane
of first-order transitions.

FIG. 3. Phase diagram of the �2−�2�-state Potts model in the
three-dimensional parameter space �V ,D ,K�. The plane of q-state
Potts transitions �left-hand side� is outlined by thin solid lines, and
that of first-order transitions �right-hand side� by thick solid lines.
These lines are shown at constant values D=−6, ln�58−41�2�
−4.06, −2, 0, 2, and 4. The planes of Potts and first-order transi-
tions merge at a tricritical line �dotted, upper right� and at a critical
end line �dash-dotted, lower left�. At negative D, the first-order
sheet is bounded by an Ising-like critical line on its low-V side
�thick dashed, lower left�. The intersection of this line with the
ground plane K=0 is indicated by �. The critical end line, the Ising
line, and the tricritical Potts line meet at the �q+1�-state critical
point ���. This diagram is constructed on the basis of the arguments
presented in Sec. IV A and the numerical results of Sec. IV B.
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V. MISCELLANEOUS RESULTS

A. Blume-Capel model and dilute q=2 Potts model

We first describe the relation between the Blume-Capel
�BC� model �32�, which is the spin-1 Ising model with vari-
able fugacity of the zero spins, and the dilute q=2 Potts
model. The reduced Hamiltonian of the BC model with
nearest-neighbor interactions is

H/kBT = − KBC�
�ij�

sisj + DBC�
k

sk
2, �47�

where si=0, ±1, KBC is the nearest-neighbor coupling, and
DBC acts as the chemical potential of the vacancies �the sites
with si=0�. This Hamiltonian assumes the form of Eq. �1�
after the substitution �i��si+3si

2� /2. This is most easily
shown by comparing the weights per bond for the various
values of the site variables. Out of the nine possibilities, only
four are independent. Only one-quarter of the site energies
−DBCsk

2 and D��k,0 belong to a bond connecting to site k,
because these energies are shared among four nearest-
neighbor bonds. The comparison

�i � j dilute q = 2 Potts BC

� � eK eKBC−DBC/2

� � 1 e−KBC−DBC/2

� � eD/4 e−DBC/4

� � eV+D/2 1

�48�

shows that the bond weights differ only by a constant factor
when

K = 2KBC, V = − KBC, D = 4KBC + DBC, �49�

for which both models thus become equivalent. We note that,
although the Blume-Capel model Eq. �47� does not contain
explicit vacancy-vacancy couplings, the resulting value of V
is nonzero in general. Furthermore, the mapping of the q
=2 dilute Potts model in the full three-dimensional parameter
space �K ,D ,V� on a spin-1 Ising model requires the intro-
duction of an additional parameter in the Blume-Capel
model, such as in the Blume-Emery-Griffths model �33�
which contains, in addition to Eq. �47�, also a biquadratic
coupling term proportional to �si

2sj
2. The Blume-Capel tric-

ritical point is thus not the q=2 tricritical point as determined
in Sec. III A, but arguments of universality predict it to have
the same critical exponents. Exact critical exponents in this
universality class are known from the mapping of the dilute
Potts models with plaquette interactions on a Gaussian
model �34� and, in an independent way, from the exact solu-
tion of the hard-square model �35,36�.

We used the spin-1 representation to locate the tricritical
point, because it enables us to perform transfer-matrix calcu-
lations up to finite size L=16, while these calculations based
on Eq. �5� are restricted to L
12. The solutions of Eqs. �22�
�with K and D replaced by KBC and DBC� should, according
to Eqs. �27� and �28�, display finite-size dependences propor-
tional to Lyi−yt1 and Lyi−yt2, i.e., L−14/5 and L−9/5 if we take
yi=yt3

=2−X1,4=−1. However, corrections proportional to
L−9/5 were not observed. Three-point fits �see Ref. �20�� to

the solutions of Eqs. �22� yielded a correction exponent close
to −2.81 with an uncertainty of about 10−2. An explanation
may be that the amplitudes at and ut in Eq. �25� vanish,
which is the case if the derivatives of the scaling function Xt
to the temperaturelike fields t and u are zero.

We thus fixed the leading correction exponent as −14/5 in
order to extrapolate the solutions of Eqs. �22�. This leads to a
sequence of iterated estimates that can again be subjected to
iterated fits. These suggest that the leading finite-size depen-
dence of the iterated fits is as L−19/5 �where the exponent is
equal to 2yi−yt1

� or L−4. The final estimates of Kf and Df are
based on iterated fits using the latter exponents, and on fits in
which the finite-size exponents is left free. The numerical
errors are estimated from the differences between these three
types of fits, and on the differences between the results for
subsequent finite sizes. We thus obtain the final estimates for
the Blume-Capel tricritical point at KBC=1.643 175 9�1�,
DBC=3.230 179 7�2�. These numbers are consistent with the
literature values �37� KBC=1.64�1�, KBC=3.22�2�, and are
sufficiently accurate for the Monte Carlo analyses mentioned
in Sec. I. The finite-size results for the tricritical vacancy
density were extrapolated by similar means as used in Sec.
III A. This yielded �=0.454 950 6�2�.

We did not try to locate the critical fixed point of the
Blume-Capel model because of the vanishing amplitude
�7,27� of the irrelevant field. In view of the research of con-
strained systems, it is still desirable to obtain accurate num-
bers for the location of a critical point of a system subject to
such a constraint. For this purpose we have located the
Blume-Capel critical point at Ising coupling KBC=1 by solv-
ing for DBC in the equation for the scaled magnetic correla-
tion length as indicated in Eq. �15�, using the Ising magnetic
dimension Xh=1/8. The expected finite-size corrections have
exponents equal to y1−yt1

=−3 and next negative integers −4,
−5, and so on. We applied iterated fits as defined in Ref. �20�,
using a few of these exponents. To test the consistency of
this procedure, we varied the procedure by varying the num-
ber of iteration steps and by leaving the exponent free in the
last step. Our final estimate for the critical point at KBC=1 is
DBC=1.702 717 80�3�.

B. Geometric tricritical fixed points for noninteger q

We study the fractal properties of percolation clusters
constructed at the percolation threshold of tricritical Potts
clusters. For integer q, this problem was already addressed in
Ref. �15�. It was found that, when bonds are added with
probability p between neighboring site variables in the same
Potts state, the percolation threshold occurs at a value
smaller than the random-cluster probability prc=1−e−K. In
contrast, the percolation threshold at Potts criticality lies pre-
cisely at prc �38�. This is natural because the so-called red-
bond exponent �38�, which governs the renormalization flow
in the p-direction, is relevant on the Potts critical branch, but
becomes irrelevant on the tricritical branch. On the tricritical
branch, the random-cluster point thus no longer qualifies as a
fixed point of this percolation problem. The renormalization
flow at the random-cluster point is attracted by a stable fixed
point at p� prc. A new unstable fixed point, called the geo-

QIAN, DENG, AND BLÖTE PHYSICAL REVIEW E 72, 056132 �2005�

056132-10



metric fixed point, appears at p� prc, with critical exponents
that are conjectured in Ref. �15�, mainly on the basis of em-
pirical evidence that the universality class of the geometric
fixed point on the tricritical line corresponds with that of the
random-cluster fixed point on the critical line with the same
conformal anomaly, i.e., with the same value of the number
m defined in Sec. I. These two fixed points therefore share
the same exponents; the conjecture specifies the correspon-
dence between the two sets, which we shall outline here for
the magnetic dimensions Xh and the red-bond dimension Xp.
To distinguish between the geometric and the random-cluster
fixed points, we add superscripts g and r, respectively. For
the random-cluster fixed point these dimensions are, as a
function of g,

Xh
�r� =

�g − 2��6 − g�
8g

, Xp
�r� =

�3g − 4��g + 4�
8g

, �50�

where the expression for Xh is taken from Sec. I, and that for
Xp was obtained �38� by means of Coulomb gas methods.
Consider a Potts model on the critical branch with a coupling
constant g and one on the tricritical branch with a coupling
constant g�. From the relations between g and m listed in
Sec. I, it follows that the two models are parametrized by the
same number m when gg�=16. Therefore, the substitution of
g by 16/g� in Eqs. �50� leads to some scaling dimensions on
the other branch. The conjecture in Ref. �15� is that these are
just the corresponding dimensions at the geometric fixed
point. This conjecture supplements a second conjecture
�15,39�, in which the superscripts g and r are interchanged.
Note that the partition sum does not depend on the percola-
tion probability p, so that m must be independent of p. The
substitution leads to

Xh
�g� =

�8 − g���3g� − 8�
32g�

, Xp
�g� =

�12 − g���g� + 4�
8g�

.

�51�

Since Eq. �51� has only been tested for tricritical Potts mod-
els with an integer number of states, we investigate whether
it also applies to Potts models with noninteger q.

In the absence of discrete Potts variables, we choose the
random-cluster decomposition as a starting point, while pre-
serving its bond variables. These have a probability prc be-
tween two Potts variables in the same state; one can thus
form percolation clusters with a bond probability p� prc by
inserting a percolation bond with probability p / prc for each
random-cluster bond that is present, and no percolation bond
otherwise. These percolation bonds define a percolation
problem that is, for p� prc, different from the random-cluster
model. Naturally the investigation of this percolation prob-
lem still relies on the Monte Carlo simulation of the random-
cluster model.

We performed such simulations, while constructing per-
colation clusters for a range of values of p
 prc. We sampled
the distribution of the cluster sizes and thus obtained the
average squared cluster size

S�2� =� 1

N2�
i=1

nc

ci
2� �52�

and the dimensionless ratio

Q =
��i=1

nc ci
2�2

�3��i=1

nc ci
2�2 − 2�i=1

nc ci
4�

, �53�

where ci is the size of the ith cluster, nc the number of clus-
ters, and N the number of total sites. Near the percolation
threshold at p= pc, the quantity Q scales as

Q = Q0 + �
k=1,2,. . .

ak�p − pc�kLkyp
�g�

+ �
j=1,2,. . .

bjL
yj

+ c�p − pc�Lyp
�g�+y1 + d�p − pc�2Lyp

�g�
+ ¯ , �54�

and S�2� scales as

S�2� = L−2Xh
�g�

�a0 + a1�p − pc�Lyp
�g�

+ a2�p − pc�2L2yp
�g�

+ ¯

+ Ly1�b0 + b1�p − pc�Lyp
�g�

+ ¯ �� , �55�

where the yj�j=1,2 , . . . � are negative exponents describing
corrections that will be discussed later, and the ai, bi, c, and
d are unknown amplitudes.

TABLE V. Parameters describing the simulations of the tricritical Potts models. For each value of q we
list the smallest and largest system sizes that were simulated, and the number nL of system sizes in these
ranges. We also show the range of p and the number np of points in this interval used for the simulations, and
the number of samples ns taken for the smallest and largest system sizes. The number of samples for all
system sizes up to L=84 was equal to that for Lmin in lines 2 and 3, and similar for those up to L=96 in line
4. For larger system sizes, the number of samples decreases gradually to that for Lmax, except for the system
of the first line. The last column specifies the numbers of the Monte Carlo moves taken between subsequent
samples. S stands for a site update, B for a bond update, FC for a full cluster decomposition, and M for a
Metropolis sweep through the whole lattice.

q Lmin Lmax nL Range ofp np ns�Lmin� ns�Lmax� Update intervals

2−�2 4 36 11 0.56–0.61 6 1�108 1�108 L2 /5 S+L2 /3 B

2−�2−�2 4 160 17 0.58–0.60 5 6�107 4�106 L /5 �FC+M�
2+�2−�2 4 200 20 0.61–0.645 8 12�107 7�106 L /5 �FC+M�

2+�2 4 160 17 0.63–0.68 6 1�108 8�106 L /5 �FC+M�
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The ratio Q is a useful quantity to locate phase transitions
and to determine the associated temperaturelike exponent.
From Eq. �54� one finds that the Q versus p curves for dif-
ferent values of L tend to intersect at values approaching p
= pc for large L. Moreover, the slopes of these curves behave

as Lyp
�g�

which allows the estimation of yp
�g�.

The simulations took place for four values of q, viz., q
=2±�2 and q=2±�2−�2. The number of vacancies was
conserved as described in Sec. II B. Since the number of
vacancies in a simulation is restricted to an integer, the result
for a given density was obtained by a weighted averaging
over two simulations with a different number of vacancies.
The simulations for q=2−�2 used local updates and were
more time consuming than those for the other values of q,
and thus restricted to relatively small system sizes. The data
for the system sizes, simulation lengths, and intervals of p
are summarized in Table V.

The results for the dimensionless ratio Q are shown in
Fig. 4 for the case q=2−�2−�2. The intersections reveal the

location of the geometric fixed point. A more accurate loca-
tion was determined by a least-squares analysis according to
Eq. �54�. Similar analyses were performed for the other three
values of q. These fits included up to three coefficients ak,
and three or four coefficients bj, depending on the �2 crite-
rion. The corresponding correction exponents yj were fixed
equal to the third temperature exponent, twice this number,
and/or equal to the negative integers −1, −2, −3, etc., such
that largest �closest to 0� exponents appear first. In order to
reduce the residual �2 to acceptable values, the smallest sys-
tem sizes L�6 had to be discarded for all four values of q.
Furthermore, we have fitted an expression of the form Eq.
�55� to the simulation data for S�2� which is, except for a
factor L2, a susceptibilitylike quantity, using a similar set of
finite-size corrections as for Q. These fits allow the determi-
nation of Xh

�g�. The numerical results for the exponents,
which are included in Table VI, are in good agreement with
the exact values predicted by Eqs. �51�.

VI. CONCLUSION

In line with previous work �40� we observe that finite-size
scaling analysis based on transfer-matrix calculations pro-
vides an efficient tool for the analysis of critical phenomena
and the determination of phase diagrams of two dimensional
models, even though the accessible range of finite sizes is
quite limited. This limitation is compensated by the high
numerical accuracy of the transfer-matrix results for the ei-
genvalues, which allow the application of iterated fitting pro-
cedures, especially when the scaling dimensions are known
from other sources. The latter point is relevant for an evalu-
ation of the present transfer-matrix analysis of the dilute
Potts model. Two points of view are possible. First, one may
focus on the question whether the renormalization descrip-
tion of Nienhuis et al. �1�, and the exact results for the ex-
ponents based on arguments of universality, are applicable to
the present model described by Eq. �1�. While this seems
plausible, rigorous evidence is not available so that numeri-
cal tests are justified. Our analysis does indeed provide
ample numerical evidence. We note that, if the expressions
for the scaling dimensions Xh and Xt listed in Sec. I were

FIG. 4. Determination of the geometric fixed point of the tric-
ritical �2−�2−�2=1.234. . . �-state dilute Potts model. The date
shown apply to 12 system sizes in the range 6
L
84. The lines
connect data points with the same L. Their slopes increase with L,
and their intersections reveal the location of the unstable fixed
point, i.e., the percolation threshold. The error bars of the data
points do not exceed the line thickness.

TABLE VI. Geometric fixed points of several tricritical Potts models with a noninteger number of states
q. The numerical values of the percolation threshold pc, the red-bond exponent yp

�g�, and the magnetic
dimension Xh

�g� at the geometric fixed point are obtained by fitting formulas given in the text to the simulation
data. The table also lists the conjectured exact values of yp

�g� and Xh
�g� �see text�. The results for pc are listed

as pci
where i=1, 2 refer to different fits: pc1

and yp
�g� are obtained from fits to the ratio Q in which yp

�g�

appears as a free parameter, and pc2
is obtained with yp

�g� fixed at its conjectured value. The magnetic
exponent Xh

�g� is obtained by a fit to the average squared cluster size with yp
�g� fixed at the conjectured value,

and pc fixed at pc2
. Fits that leave pc as a free parameter lead to consistent results but with slightly larger error

bars.

q g yp
�g� yp

�g� �exact� Xh
�g� Xh

�g� �exact� pc1
pc2

2−�2 11/2 0.59 �4� 105/176 0.12 �1� 85/704 0.581 �5� 0.581 �4�
2−�2−�2 21/4 0.511 �8� 115/224 0.125�2� 341/2688 0.5906�5� 0.5906�4�
2+�2−�2 19/4 0.334�10� 201/608 0.135�3� 325/2432 0.6300�5� 0.6300�4�

2+�2 9/2 0.225 �8� 11/48 0.136�5� 77/576 0.6604�6� 0.6601�4�
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incorrect, that this would be revealed in the fitting proce-
dures for the fixed points by corrections decaying slower
than expected, as mentioned in Sec. III A, unless the differ-
ences with the true exponents would accidentally be very
small. Furthermore, also the consistency of the results for the
conformal anomaly, listed in Table VII, with the existing
theory supports the assumptions made. Our results for c
supplement those already given in Ref. �28�, in particular
most results for the tricritical branch are new. Here we add
the comment that the format of Ref. �28� precluded a discus-
sion of the numerical errors. In one case, this led to a some-
what misleading result, namely the entry for the q=4 Potts
model without vacancies in Table II of Ref. �28�. The finite-
size data for the conformal anomaly are poorly convergent
because of logarithmic corrections induced by the second
temperature field which is marginal at q=4. However, the fit
applied to those finite-size data produced an erratic numeri-
cal result that was much closer to the theoretical value of c
than what one could have expected in view of the actual
numerical accuracy. Therefore the agreement for q=4 looked
better than it actually was. The present analysis of c at the
estimated fixed point does not noticeably suffer from such
numerical problems, and does indeed produce a result �see
Table VII� very close to the expected value c=1. As another
confirmation, the results for the fixed line and for the phase
diagram of the q=2−�2 model, are in a complete qualitative
agreement with the results presented in Ref. �1�. We also
note that this applies as well to the renormalization analysis

of the Blume-Emery-Griffiths model �33�, which was
worked out in considerable detail by Berker and Wortis �41�.

As a second point of view, one may accept the Potts
renormalization scenario and the literature values of the scal-
ing dimensions as true for the present model, and thus inter-
pret our results in terms of relatively accurate information on
the phase diagram and the location of what serves effectively
as a line of fixed points in the phase diagram in the �q ,K ,D�
parameter space, including a line of tricritical transitions.
These results are well applicable in Monte Carlo investiga-
tions of tricritical Potts models and q4 Potts models, in-
cluding numerical analysis of the Fisher renormalization
phenomenon. Preliminary results have already been used
�11,14,15�. Minor differences with respect to the values
quoted in the present work appear because data for larger
system sizes are included here.
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APPENDIX A: CODING THE CONNECTIVITIES

The construction of the transfer matrix requires a “cod-
ing” of the relevant degrees of freedom at the open end of the
cylinder, by means of integers 1, 2, … that will serve as a
transfer-matrix index. This code specifies which sites of the
nth layer are vacant, and how the remaining sites are mutu-
ally connected by some path of bonds in rows 1 to n. Since
we are interested in the magnetic correlation function, which
in the language of the random-cluster model is the probabil-
ity that two sites belong to the same cluster, we use connec-
tivities of the magnetic type which, in addition, specifies
which sites of row n are still connected to a site in row 1.
These connectivities satisfy a “well-nestedness” property
which says that the sites labeled 1 ,2 , . . . ,L on row n obey
the following rule: if site i is connected to site k, and site j is
connected to site l while i� j�k� l, all four sites must be
connected. Since a complete definition of the coding of the
general connectivities is somewhat elaborate, we make use
of some definitions already given in Ref. �20�. There, an
L-point connectivity is represented by a row of L integers
i1 , i2 , . . . , iL, such that connected sites are represented by
equal integers, and by different integers if they are not con-
nected. A subset of sites connected to a “ghost site” �which
are not necessarily well nested� were represented by the spe-
cial integer 0. These connectivities were coded by an integer
��i1 , i2 , . . . , iL� defined in Ref. �20�. Since one can alterna-
tively interpret the zeros in the row i1 , i2 , . . . , iL as vacancies,
it follows that the same coding ��i1 , i2 , . . . , iL� applies to non-
magnetic connectivities with vacancies. The number of such
connectivities on L sites is denoted dL, also given in Ref.
�20�. Here we consider the more general problem of coding
the connectivities with well-nested magnetic sites �labeled by

TABLE VII. Numerical results for the conformal anomaly of the
dilute Potts model, for several points on the critical and tricritical
branches. Comparison with the exact results �also listed� confirms
that the present models fit well within the known Potts universality
classes.

q g m c �numerical� c �exact�

2.45 3.1444… 3.6754… 0.6509�1� 0.650854…
2+�2−�3 19/6 19/5 0.6711�1� 51/76

2.8 3.2619… 4.4199… 0.7496�1� 0.749535…
3 8/3 6 0.8000�1� 4/5

3.5 3.5398… 7.6936… 0.9103�1� 0.910294…
3.9 3.7978… 18.7857… 0.9839�1� 0.983857…
4 14/3 � 1.0000�1� 1

3.9 4.2021… 19.7857… 0.9855�1� 0.985410…
3.5 4.4601… 8.6936… 0.9288�1� 0.928802…
2+�2 9/2 8 0.9167�1� 11/12

3 14/3 6 0.8571�1� 6/7

2+�2−�2 19/4 16/3 0.8224�1� 0.822368…
2.5 4.8391… 4.7667… 0.7817�1� 0.781731…
2 5 4 0.7000�1� 7/10

1.5 5.1608… 3.4457… 0.6083�1� 0.608321…
2−�2−�2 21/4 16/5 0.5537�2� 0.553571…
1 16/3 3 0.5000�1� 1/2

2−�2 11/2 8/3 0.3858�5� 17/44

2−�3 17/3 12/5 0.262 �4� 9/34

0.1 5.7978… 2.2248… 0.160 �5� 0.163771…
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−1� as well as vacancies �labeled by 0�. First, we code the
positions of the magnetic sites by means of a binary number
m=0,1 , . . . ,2L−1, where the binary digit 1 denotes a mag-
netic site. The magnetic sites divide the remaining sites in
g�m� groups such that two sites in different groups are not
connected because of the well-nestedness property. Let there
be t�m , j� sites in the jth group. There are thus

hm � dt�m,1�dt�m,2� ¯ dt„m,g�m�… �A1�

connectivities with magnetic subcode m, and the total num-
ber of general connectivities is

GL = �
m=0

2L−1

hm. �A2�

To assign a unique integer to each of these connectivities, we
need to specify an “ordering” of the connectivities. In addi-
tion to the ordering defined in Ref. �20�, we order the mag-
netic subcode according to the value of m. Thus a general
connectivity i1 , i2 , . . . , iL with magnetic subcode
m�i1 , i2 , . . . , iL� is coded by the integer

��i1,i2, . . . ,iL� � 1 + �
k=0

m−1

hk + �
l=1

g�m�

��l − 1�

j=2

l

dj , �A3�

where �l is the code �using the definition in Ref. �20�� for the
lth group of nonmagnetic sites. A decoding algorithm was
constructed on the basis of essentially the same ideas.

APPENDIX B: CONSTRUCTION OF THE TRANSFER
MATRIX

Consider a system on a cylinder with a length of n circu-
lar rows. We denote the variables in row j, bond as well as
site variables, by s� j. Its partition sum is written in the form

Z�n� = �
s�1,. . .,s�n

Wn�s�1,s�2, . . . ,s�n� �B1�

with Wn�s�1 ,s�2 , . . . ,s�n��exp�−Hn�s�1 ,s�2 , . . . ,s�n� /kT� which
denotes the Boltzmann factor of the given configuration of
variables, including the weights of all bonds, sites, and com-
ponents. Let �n be the connectivity on row n. It is, in prin-
ciple, a function of all the variables s� j, j=1,2 , . . . ,n. We
divide Z�n� into contributions for different values of �n:

Z�
�n� = �

s�1,. . .,s�n

��,�n�s�1,. . .,s�n�Wn�s�1,s�2, . . . ,s�n� �B2�

with

Z�n� = �
�=1

GL

Z�
�n�. �B3�

Similarly we have

Z�
�n+1� = �

s�1,. . .,s�n+1

��,�n+1�s�1,. . .,s�n+1�Wn+1�s�1,s�2, . . . ,s�n+1� .

�B4�

Here we may substitute

Wn+1 = Wnw��n,s�n+1� , �B5�

where w denotes the weight of the newly appended row,
which accounts for the weights of the site variables and the
bond variables, and the change in the number of components.
Furthermore we can substitute

�n+1 = ���n,s�n+1� , �B6�

which expresses that the connectivity on row n+1 depends
only on that on row n and on the variables in the appended
row. Thus

Z�
�n+1� = �

s�1,. . .,s�n+1

��,���n,s�n+1�Wn�s�1, . . . ,s�n�w��n,s�n+1� .

�B7�

We may insert a factor ��=1
GL ��,�n�s�1,. . .,s�n�=1 which leads to

Z�
�n+1� = �

�=1

GL

�
s�1,. . .,s�n

��,�n�s�1,. . .,s�n�Wn�s�1,s�2, . . . ,s�n�

��
s�n+1

��,���,s�n+1�w��,s�n+1� . �B8�

The middle part of this expression is Z�
�n�, and the last part is

the transfer matrix

T�� � �
s�

��,���,s��w��,s�� , �B9�

so that we may write the recursion for the restricted partition
sum as

Z�
�n+1� = �

�

T��Z�
�n�. �B10�

The algorithm that performs a multiplication of a vector
by the transfer matrix forms the main ingredient for the cal-
culation of a few of the leading eigenvalues of T��.

To enable calculations for system as large as possible, the
transfer matrix is decomposed into 2L sparse matrices, each
of which accounts for one bond variable, while L of these
also account for appending a new site variable. This sparse-
matrix decomposition leads to a very significant reduction of

FIG. 5. Weights of the vertical and horizontal bonds as they
appear in the sparse-transfer-matrix technique. New sites are ap-
pended in the upper row, which thus also accounts for the site
weights q and eD.
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the required computer time and memory. The decomposition
is the same as for the nearest-neighbor Potts model without
vacancies, which was described in Ref. �20�. The weights
associated with the vertical bonds �which include those of
the new sites appended to the cylinder� and the horizontal
bonds �which may close a loop, so that their weights depend

on whether or not the sites are already connected� are given
in Fig. 5. These sparse matrices are defined such that they do
not only account for the weight of a particular bond, they
also permute the vertices in such way that only two different
sparse matrices remain, one for the vertical bonds and one
for the horizontal ones.
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