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Percolation in one ofq colors near criticality
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We study bond percolation in two dimensions between random site variables having onegoclofs,
using transfer-matrix and Monte Carlo techniques. We determine the percolation threshold as a function of the
Potts temperatur® in the disordered Potts range< T <« for severalg-state Potts Hamiltonians. For high
these transitions fit, irrespective gf in the universality class of the ordinary percolation transitions. However,
for T|T., g-dependent crossover phenomena appear. The topology of the phase diagram changes in a quali-
tative sense afj=2. Forq<2 the Potts critical state appears to enhance percolatiorg > it appears to
suppress it. Remarkably, fa=2 the percolation line coincides with thamly flow line extending toT > T,
from the critical fixed point associated with Potts clusters.
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I. INTRODUCTION While the bond percolation probabilify in the random-

cluster model is determined by the Potts coupkhdere we

. The u_nivers_al properties of the pure perco_lation problenyynsider the more general case tpais independent oK.

in two (_jlmepsmns are well unders.tood. While shqrt-rangesince all Potts colors are equivalent, it is sufficient to form

correlations in the substrate do not influence the universality| siers of one color say;=1. These sites are considered
1 | .

class of the percolation transition, percolation phenomena Ofhccupied” and percolation bonds are added between occu-
critical substrates display new universal behavior. Such corgiag sites with probabilityp. The resulting partition sum
J .

related percolation models have already been the subject
various investigations. For instance, motivated by the pros- 4 !
z= 11 2 || 11 expKs, ) > {1 by +p(2b;-1)
k 0'k=1 (IJ) bij:O

pect to find new types of critical behavior, the study of per-
colation phenomena ig-state Potts configurations has re-
ceived considerable attentidrf see also references therein.
The correlated percolation problem, while interesting in its X8, 16, 1} 3
own right, is also relevant for a several other fields of re- o
search, see for instance Refs. 7-9, and references thereig.
These fields include colossal magnetoresistance, correlat%g)
resistor networks and the quantum-Hall transition.

The reduced Hamiltonian of thg-state Potts model is

equal to the Potts partition sum, but its terms include per-
lation degrees of freedom. Two special casedBre=1,
leading to so-called Potts clusters, a@ p=1-¢eX repro-
ducing random clustef8.Most work has thus far focused on
these two cases at the Potts critical pditK .16 The re-
HIkgT=-K> O (1)  sults for the Ising casg=2 in terms of the phase diagram
(i and the renormalization flow are summarized in Fig. 1. The
) ] 3 qualitative characteristics are, however, believed to apply
with Potts variablessi(=1,2, ... ), and(ij) runs over all  mnore generally than just fog=2. Along the critical line
interacting pairs of such variables. The Kasteleyn-Fortuirk =K the bond probability is relevant at the random-cluster
mapping® of Eq. (1) on the random-cluster model general- fixed point. The flow in thep-direction is governed by
izes it to Continuouﬂ. This mapplng involves the formation the so-called red-bond exponénﬂ_'hus we expect stable
of percolation clusters: each paliij) with o;=0j is con-  fixed points on either side. A trivial fixed point naturally
nected by a bondy;=1 with probability p=1-e™ . After  occurs atp=0, but the location of the stable fixed point
summing out the Potts variables, only bond variables remaiat p,>1-e™ is not well known. Furthermore, there are

in the partition sum fixed points at infinite Potts temperatuté=0, of which
we mention the fully stable trivial one g@=0, and the one

Z(q;K) = > uq, 2) at the percolation threshol@.. The latter fixed point is
{b} thus unstable in the-direction. It describes a mixed site-

bond percolation problem where sites are occupied with
where the sum is on al;=0,1; u=eX-1, n, is the number probability 1/.
of bonds, andn; the number of clusters. The percolation In particular the percolation phenomena at and near Potts
threshold of the random-cluster model appears to coincideriticality remain largely unexplored. It is therefore the sub-
with the Potts critical point, and the critical exponents de-ject of this paper to determine how th€=0 percolation
scribing its percolation and thermodynamic properties appedransition continues fok >0, how it connects to the critical
to depend continuously on line K=K, and how the resulting phase diagram and its un-
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FIG. 2. Dimensionless rati@Q of the 20-neighbor 3-state Potts
FIG. 1. The(p,K) diagram. The curve connecting t=p=0  model versus couplind(, for several system sizes. Data points
represents the random-cluster model. Arrows indicate the renormaleircles for the same system size are connected by lines. Larger
ization flow. Dashed lines show the percolation threshold in thesystem sizes corrrespond to larger slopes.
ordered phaséK >K,) and for smallK.

system sizd_. Multivariate least-squares analysis of Monte
derlying flow-line structure depend on the number of PottsCarlo results forQ, obtained in a narrow interval around the
states. The outline of this paper is as follows. In Sec. Il we critical point for a sequence of different sizesthen yields
summarize the numerical techniques and describe the detefe critical point. This procedure was described in Ref. 17
mination of the critical points needed in the following calcu- and applied there to several equivalent-neighbor Ising mod-
lations. Sections Il and IV present our results for the Isingels on the square lattice. We quote its result for the 20-

caseq=2, and forq+ 2 respectively. Section V concludes neighbor Ising model, in terms of the Potts coupling, as
this paper with a brief discussion and an investigation ofK.=0.12638528).

some remaining questions. For the three-state Potts model on the square lattice
with 20 equivalent neighbors we performed new simulations
Il. ALGORITHMS AND CRITICAL POINTS to determine the critical point. The density, of Potts

variables in statesc (=1, 2, or 3 was sampled for 20
system sizes in the rangesd8 <200. The quantityQ is

The critical couplingsK, of the models that are investi- now defined as above but with/’ replaced by[(n;—n,)?
gated in the following sections, are available from various+(n,—n3)?+(n3—n;)?]/2. The data for system sizés<60
sources including exact analysis, duality transformationsare shown in Fig. 2. The apparent converge of the intersec-
transfer-matrix calculations and Monte Carlo simulations.tions hints at a phase transition neéés0.154. Multivariate
First, the critical point of the nearest-neighbor Pottsleast-squares analysis @, along the lines of Ref. 17, but
model on the square lattice is known from dudfittas  with the Ising correction-to-scaling exponents replaced by

Kc=In(1+4q). The transformatiol¥ of the Potts partition the three-state Potts ones, yielded the critical point as
sum into a Whitney polynomial, which is self-dudlenables  K.=0.1540781). The fit was able to resolve the temperature
the generalization of this result to noninteggrThe critical ~ exponenty, which was found to agree well with the three-
point of the exactly solved triangular g=2 model is state Potts universality class. This result confirms that the
K.=In(3)/2. transition is continuous. In contrast, a first-order transition is

The determination of the critical points of the other sys-predicted by mean-field theory. The predictions of mean-field
tems investigated requires the use of numerical means. Thheory might be considered relevant because they tend to
square-lattice Ising model with eight equivalent neighborsbecome more accurate when the range of interactions in-
has been analyzed by means of a transfer-matrix method.creases.
In terms of the Potts couplin@vhich is twice the coupling in
the equivalent Ising Hamiltoniarthe critical point is thus _ )
known ask =0.380385361¢). B. Percolation algorithms

The models with many more interacting neighbors are The percolation problem defined in Sec. | was studied by
less easy to investigate by transfer-matrix methods, angheans of a transfer-matrix technique whose principle was
Monte Carlo methods were used instead. There exists aputlined in Ref. 18, and by means of cluster Monte Carlo
efficient cluster algorithi? for such models: critical slowing algorithms for the Potts mod@&2° and for the nonintegey-
down is strongly reduced, and the time per spin flip is almostandom-cluster modélt22 The transfer-matrix method uses
independent of the number of interacting neighbors. The dein fact the random-cluster representation of tiel Potts
termination of the critical point is based on the Monte Carlomodel as outlined in Ref. 23. In particular the “magnetic”
sampling of the moments of the magnetizationand the  connectivities defined there serve to construct a transfer ma-
determination of their dimensionless rat@=(m??/(m*,  trix that enables the calculation of “magnetic correlations,”
which is related to the Binder cumulafand converges to a i.e., the probability that two sites belong to the same perco-
universal constant at the critical point in the limit of large lation cluster. The fact that we now construct percolation

A. Critical points
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clusters only between variables in the same state makes it 12 — '
necessary to construct a more complicated algorithm than L /
that used in Ref. 23. These complications were solved in a K, .
rather straightforward but tedious way; we do not go into 08 r
details here. v 06 L
In contrast, the Monte Carlo construction of percolation
clusters between variables in the same state is rather simple; 04 ¢
the algorithm is essentially the same as the Wolff algorfthm o2 |
used to generate the Potts configurations for integdvut P
with a different bond probability. 0 ' ' ' ' ' —.

0 02 04 06 08 1 1.2 14
p

lll. THE ISING CASE =2 FIG. 3. Percolation diagram of the square-lattice, nearest-
neighbor Ising model. The percolation line lies in the unphysical
region p>1. It runs fromp,=1.26682), K=0 to the stable fixed
point on the critical lineK=K..

First we search for the stable fixed point of the Ising
model(q=2) at K=K, p>0. Reference 18 suggests that the
fixed point lies neap=1.1 for the square lattice, but a sketch
in Ref. 3 shows it ap<1. We used the transfer matrix of _ . ) ) .
Ref. 18 to compute the correlation lengétp,K,L) of the only flow line coming in to the percolation fixed point

probability that two sites at a distancealong a cylinder of (P, 0). Coincidence _Of bOt_h flow linetsee Fig. ;hints_ ata
circumferencel. belong to the same cluster. From it we de- 9€€Per connection involving these two seemingly indepen-
fine dent fixed points.

In view of the unexpectedness of this result, we have
performed similar analyses of different Ising models. First
27E(p,K, L)’ @ we studied theg=2 model with eight equivalent neighbors
on the square lattice. Its critical point is known as
where Xy(p,K,L) =X, in the limit of largeL, with X, the  K=0.380385361%).24 Because of the increased number of
magnetic scaling dimension at the fixed point attracting theyeighbors, the percolation line fd{ <K, shifts into the
point (p,K). We fix K=K and apply finite-size scaling near physical rangep<1 where Monte Carlo methods can be
a stable fixed point ap=pg: ap7plied. For several periodic lattices up to size360, up to
_ 10" spin configurations were generated by Metropolis or
h(P.Ke L) = Xn(ps + (p ~ pILI K, 1) + - ®) Wolff?° methods, and percolation clusters were formed. For a
with a red-bond exponent,=-5/812 In first order, correc- range of values op andK, we then sampled the dimension-
tions to scalingXy(p,K¢,L) =Xy, are proportional to the irrel- less ratio
evant fieldp—ps and can thus be used to determpmeUsing
numerical data foX,(p,K.,L) for sizes up ta.=11 at sev- <2i Ci2>2
eral values ofp, and the exact resuk,=5/96, and a least- Q= 22 N (7)
squares fit of an expansion of E€5) in p—ps We obtain (B, cf?- 22, )
ps=1.083). This bond probability exceeds 1 and is thus un-WhereCi is the size of theth cluster. In the Ising casg=2,

physical, but there is no sign of a change of universality. the sum overll random clusterdi.e., p=1-e™) yields a

The same algorithm was used to locate percolation tran- . ! . :
sitions forK <K_. Near theK=0 percolation fixed point the result that is equal to the above-mentioned ratio of magneti-

data forX, were fitted by zation moment®=(m??2/{m"*). However, here the sum in-
n cludes clusters obnly onePotts color, to ensure th& sat-
Xn(p,K,L) = X, + 2 a(p- pc)kkap+ E bijYi T isfies univ_ersality independent af. Near the percolation
k j threshold it scales as

Xp(p.K,L) =

(6) Q= QO + E ak(p _ pc)kl—kyp + 2 bjLJYi + C(p - pC)LYp+Yi
whereX;,=5/48 is themagnetic dimension ang,=3/4 the k =1.2;-
thermal exponent of the percolation model; the irrelevant +d(p- po)2LYe+eLVr Ph+ fLEDn 4 ... (8)

Potts exponent ig;=—1 nearK=0. The resulting percolation

line is shown in Fig. 3. It lies wholly in the unphysical re- with y,=3/4, y,=91/48, y;=-1, and Q,=0.870485). We
gion. Reasonably accurate data could be obtained fodetermined this value @&, numerically for the square-lattice
K=0.7; for largerK, the available range of finite sizes is bond-percolation model, prior to the present analysis. Mean-
insufficient because of crossover phenomena due to the prowhile an independent determination @f, has appeared in
imity of the Ising critical point. The percolation line seems to Ref. 24. Corrections to the leading scaling behavior are due
connect to tharrelevantfixed point. This is remarkable, be- to the analytic background, nonlinearity of the relevant scal-
cause then the percolation line is, among infinitely manying field in p, and mixed contributions of other scaling fields
flow lines in the(p,K) diagram forK <K, the only one to the temperaturelike variable. F&+ 0, new corrections
extending down from the stable fixed poiitt, K.) andthe  may appear due to the correlation between the spin variables.
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FIG. 4. Percolation diagram of the Ising model on the square FIG. 6. Percolation diagram of the=2-2 co$7x/18) Potts
lattice with nearest- and next-nearest-neighbor interactions. Theodel on the square lattice with nearest-neighbor interaction. The
percolation line lies in the physical regiop<1. It runs from  percolation line runs fronp.=0.713622), K=0 to the random-
p.=0.706226) at K=0 to the stable fixed point @,=0.70215) on cluster fixed point. We did not locate the stable fixed ppiyn the
the critical lineK=K_. critical line; interpolation betweeg=1 (ps=1) andq=2 (see Fig.

3) suggests that it lies in the unphysical rarme 1.
These are governed by the irrelevant expongst-1 gov-

ering the flow to the infinite-temperature fixed point gt p=1 for 0<K<K,. For K>K, the symmetry is broken

(p=pc,K=0). o _ and the model is no longer critical.
In order to locate the percolation line, we have fitted the
free parameters in formul@®) to our simulation data fo® at IV. POTTS MODELS WITH q#2

couplingsKk <K.. This procedure was also applied to locate

the stable fixed point aK=K,, with a different universal This section addresses the question how the phase dia-

. . gram depends og. Forq=1, K is redundant, and the perco-
value ofQo, and withy, replaced by the irrelevant exponent lation line lies at constanp and connects to the random-

y,=-5/8. We used the geometric cluster algorithmt zero L : . =
magnetization, to suppress corrections that obstruct the dé:-IUSt.er point, 1.e., thems_tableﬁxed point atl_< Ke. W? also
L . . N Studied the square-lattice model at an intermediate value
termination of the fixed point and the error estimation. We™ - )
i ) ) . 0=2-2 co$7m/18)=1.31596-- with a cluster Monte Carlo
verified our results with consistency checks using other def'él orith?>22 for the random-cluster model. The cluster de
nitions of Q, excluding the largest or second largest cluster, 9 ’

using only the largest cluster, or using two colors instead oFomﬁos.'t'an argd Lhe a;?]altys_ls tare ]Ehe 1sa:|:r}1e as atl)ot\_/e. The
one. As shown in Fig. 4, again the percolation line ap_resu S In F1g. 5 show thal, just as 1= 1, the percolation

proaches the stable fixed point line connects to the random-cluster point.

We have similarly analyzed the triangular Ising model. As h I\:ext, Wde foqtjs (?cn _tthe thfree-statle P.Ottti mé)_del. dBecdaLIJDSEitOf
shown in Fig. 5, we find a percolation line pt1. This is € lower density of SILes ot one color In the disoraered ots

explained by an exact argument. The site percolation thresrp-hase’ the percolatlc_)n linesoiine n_earest-nmghbor _model
old is p.=1/2 (Ref. 26 for the triangular lattice. Thus the moves even farther into the unphysical region than in the

present bond percolation model is critical K0, p=1 case of the Ising model. However, the stable fixed point on

However, the “matching lattice” arguméhtbehind this re- the critical line K:Kc:In(1+\s‘°3). still lies in the physical_
sult requires only that the site probability distribution is sym-ange atps=0.832), as determined by the transfer-matrix

metric under the interchange of occupied and empty sited€cnique. In order to bring the percolation line into the
Thus, the present triangular percolation model s still criticalPhysical range, we included couplings with a substantial
number of neighbors; we adopted the square lattice model

0.8 ; / : : : with 20 equivalent neighbors, which has its critical point at

K.=0.1540781) as mentioned in Sec. Il. We determined the
location of the percolation transition line f&r<K, and the
location of the stable fixed point by an analysis as described
above. The results, shown in Fig. 7, indicate that the perco-
lation line does not connect to the stable fixed point located
at ps=0.252), but moves to largep whenK K.. It seems
0271 ] plausible that the percolation line connects to an unstable
P fixed point at largeip, but analysis of our numerical results

0 : . . . = for the ratioQ in the physical rangp=<1 did not reveal clear

0 02 04 06 08 1 12 evidence for such a fixed point.
P

0.6 [K

¥ 041

. . . . ) V. DISCUSSION AND MISCELLANEOUS RESULTS
FIG. 5. Percolation diagram of the triangular Ising model with

nearest-neighbor interactions. The percolation line lies exactly at The behavior of the percolation line fag=3 in the
p=1. preceding section suggests that the percolation line connects
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FIG. 7. Percolation diagram of the three-state Potts model on the FIG. 9. Percolation diagram of the three-state Potts model on the
square lattice with 20 equivalent-neighbors. The percolation threshsquare lattice, with percolation clusters including variables of two
old lies atp,=0.395914) for K=0. colors. The percolation threshold on the critical line acts as the end

point of the percolation line in the disordered phase. It does not
to another unstable fixed point at larggr Our data coincide with the random-cluster point.

indicate that there is no such fixed point in the physical range

p<1. . . . ! .__percolation problem between all sites of the 1 remaining

In view of the pqssmle existence Of.SUCh a fixed .po'ntcolors. Only forq=2 both problems are equivalent, i.e., there
for g=2, we have simulated square-lattice systems with 2G5 5 symmetry in the model that may force the percolation
eq_uwalent neighbars up 1o sizk=600 at the Cm'(_:al transitions into a plane parametrized by a zero irrelevant
point (see Sec. )I K.=0.12638588). Again the percolation o4
line runs toward theK=K_ stable fixeq point, Iocate(_JI at This argument based on symmetry thus predicts that
Ps=0.21019). Indeed, from an analysis of the ra@ in  he pond percolation problem involving bonds between
the interval 0.8<p=<1, using Wolff-type simulations, we sjtes withtwo out of q=3 colors would lead to a percolation
found a largep, unstable fixed point, included in Fig. 8. |ine connecting to the point acting as the percolation
Quantitative analysis is difficult because of large correctiongpreshold on the lin&=K_ (.., an unstable fixed pointbut
that suggest the presence of an irrelevant exponeRnfhich is no longer the random-cluster point. Indeed, our nu-
y1=—0.4. Thus, our results for this new fixed point have americal results, for the nearest-neighbor three-state Potts
provisional character. Assuming corrections with exponent$nodel on the square-lattice, shown in Fig. 9, agree with this
that are multiples of -0.4, we locate the fixed pointpgt  prediction. The results yield the percolation threshold at
=0.942), and the red-bond exponent gs=0.543), close k=0 asp.=0.85094): the bond percolation threshold on the
to the exact value 13/24 at the random-cluster point. Thgqare Jattice with site probability 2/3. The percolation
fractal dimensionX,, of the clusters was estimated from a inreshold on the critical linkk =K. lies at p,=0.56222),

finite-size analysis of the largest cluster nga¥0.94 as  \yich is clearly smaller than the random-cluster probability
X,=0.03%1). p=0.63397--.

Our results in the preceding sections indicate that the \ye conclude this paper by mentioning that the above
percolation line connects to the stable fixed poirkatK.in  symmetry argument holds generally for planar lattices only.
the whole two-dimensional Ising universality class. This Speqp, three-dimensional systems, percolation between sites with
cial topology presumably applies only =2. It does not  gne of q colors may thus be expected to display different
apply to the caseq+ 2 that we have investigated. The spe- penavior. For instance, for the dilute Ising model at tricriti-
cial situation atq=2 is exposed by defining a second bondcajity, the bond probabilityp at the random-cluster fixed

02 i i i _ point is irrelevant in two dimensiofsand relevant in three

dimensiong’ Our preliminary simulation results suggest
that, in contrast to the two-dimensional case, the one-color-
0.15 -Kg ] percolation line in the disordered phase of the simple-cubic

. Ising model connects to the random-cluster fixed point.
Mo 01}
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