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We study bond percolation in two dimensions between random site variables having one out ofq colors,
using transfer-matrix and Monte Carlo techniques. We determine the percolation threshold as a function of the
Potts temperatureT in the disordered Potts rangeTcøT,` for severalq-state Potts Hamiltonians. For highT,
these transitions fit, irrespective ofq, in the universality class of the ordinary percolation transitions. However,
for T↓Tc, q-dependent crossover phenomena appear. The topology of the phase diagram changes in a quali-
tative sense atq=2. For q,2 the Potts critical state appears to enhance percolation, forq.2 it appears to
suppress it. Remarkably, forq=2 the percolation line coincides with theonly flow line extending toT.Tc

from the critical fixed point associated with Potts clusters.
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I. INTRODUCTION

The universal properties of the pure percolation problem
in two dimensions are well understood. While short-range
correlations in the substrate do not influence the universality
class of the percolation transition, percolation phenomena on
critical substrates display new universal behavior. Such cor-
related percolation models have already been the subject of
various investigations. For instance, motivated by the pros-
pect to find new types of critical behavior, the study of per-
colation phenomena inq-state Potts configurations has re-
ceived considerable attention;1–6 see also references therein.
The correlated percolation problem, while interesting in its
own right, is also relevant for a several other fields of re-
search, see for instance Refs. 7–9, and references therein.
These fields include colossal magnetoresistance, correlated
resistor networks and the quantum-Hall transition.

The reduced Hamiltonian of theq-state Potts model is

H/kBT = − Ko
ki j l

dsi,s j
, s1d

with Potts variablessis=1,2, . . . ,qd, and ki j l runs over all
interacting pairs of such variables. The Kasteleyn-Fortuin
mapping10 of Eq. s1d on the random-cluster model general-
izes it to continuousq. This mapping involves the formation
of percolation clusters: each pairsi j d with si =s j is con-
nected by a bondbij =1 with probability p=1−e−K. After
summing out the Potts variables, only bond variables remain
in the partition sum

Zsq;Kd = o
hbj

unbqnc, s2d

where the sum is on allbij =0,1;u;eK−1, nb is the number
of bonds, andnc the number of clusters. The percolation
threshold of the random-cluster model appears to coincide
with the Potts critical point, and the critical exponents de-
scribing its percolation and thermodynamic properties appear
to depend continuously onq.

While the bond percolation probabilityp in the random-
cluster model is determined by the Potts couplingK, here we
consider the more general case thatp is independent ofK.
Since all Potts colors are equivalent, it is sufficient to form
clusters of one color, saysi =1. These sites are considered
“occupied” and percolation bonds are added between occu-
pied sites with probabilityp. The resulting partition sum

Z = Fp
k

o
sk=1

q GFp
ki j l

expsKdsi,s j
d o
bij=0

1

h1 − bij + ps2bij − 1d

3dsi,1
ds j,1

jG s3d

is equal to the Potts partition sum, but its terms include per-
colation degrees of freedom. Two special cases ares1d p=1,
leading to so-called Potts clusters, ands2d p=1−e−K repro-
ducing random clusters.10 Most work has thus far focused on
these two cases at the Potts critical pointK=Kc.

1–6 The re-
sults for the Ising caseq=2 in terms of the phase diagram
and the renormalization flow are summarized in Fig. 1. The
qualitative characteristics are, however, believed to apply
more generally than just forq=2. Along the critical line
K=Kc the bond probability is relevant at the random-cluster
fixed point. The flow in thep-direction is governed by
the so-called red-bond exponent.2 Thus we expect stable
fixed points on either side. A trivial fixed point naturally
occurs atp=0, but the location of the stable fixed point
at ps.1−e−K is not well known. Furthermore, there are
fixed points at infinite Potts temperatureK=0, of which
we mention the fully stable trivial one atp=0, and the one
at the percolation thresholdpc. The latter fixed point is
thus unstable in thep-direction. It describes a mixed site-
bond percolation problem where sites are occupied with
probability 1/q.

In particular the percolation phenomena at and near Potts
criticality remain largely unexplored. It is therefore the sub-
ject of this paper to determine how theK=0 percolation
transition continues forK.0, how it connects to the critical
line K=Kc, and how the resulting phase diagram and its un-
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derlying flow-line structure depend on the number of Potts
statesq. The outline of this paper is as follows. In Sec. II we
summarize the numerical techniques and describe the deter-
mination of the critical points needed in the following calcu-
lations. Sections III and IV present our results for the Ising
caseq=2, and forqÞ2 respectively. Section V concludes
this paper with a brief discussion and an investigation of
some remaining questions.

II. ALGORITHMS AND CRITICAL POINTS

A. Critical points

The critical couplingsKc of the models that are investi-
gated in the following sections, are available from various
sources including exact analysis, duality transformations,
transfer-matrix calculations and Monte Carlo simulations.
First, the critical point of the nearest-neighbor Potts
model on the square lattice is known from duality11 as
Kc=lns1+Îqd. The transformation10 of the Potts partition
sum into a Whitney polynomial, which is self-dual,12 enables
the generalization of this result to nonintegerq. The critical
point of the exactly solved13 triangular q=2 model is
Kc=lns3d /2.

The determination of the critical points of the other sys-
tems investigated requires the use of numerical means. The
square-lattice Ising model with eight equivalent neighbors
has been analyzed by means of a transfer-matrix method.14

In terms of the Potts couplingswhich is twice the coupling in
the equivalent Ising Hamiltoniand the critical point is thus
known asK=0.3803853614s4d.

The models with many more interacting neighbors are
less easy to investigate by transfer-matrix methods, and
Monte Carlo methods were used instead. There exists an
efficient cluster algorithm15 for such models: critical slowing
down is strongly reduced, and the time per spin flip is almost
independent of the number of interacting neighbors. The de-
termination of the critical point is based on the Monte Carlo
sampling of the moments of the magnetizationm and the
determination of their dimensionless ratioQ;km2l2/ km4l,
which is related to the Binder cumulant16 and converges to a
universal constant at the critical point in the limit of large

system sizeL. Multivariate least-squares analysis of Monte
Carlo results forQ, obtained in a narrow interval around the
critical point for a sequence of different sizesL, then yields
the critical point. This procedure was described in Ref. 17
and applied there to several equivalent-neighbor Ising mod-
els on the square lattice. We quote its result for the 20-
neighbor Ising model, in terms of the Potts coupling, as
Kc=0.1263852s8d.

For the three-state Potts model on the square lattice
with 20 equivalent neighbors we performed new simulations
to determine the critical point. The densityns of Potts
variables in states s=1, 2, or 3d was sampled for 20
system sizes in the range 8øLø200. The quantityQ is
now defined as above but withm2 replaced byfsn1−n2d2

+sn2−n3d2+sn3−n1d2g /2. The data for system sizesLø60
are shown in Fig. 2. The apparent converge of the intersec-
tions hints at a phase transition nearK=0.154. Multivariate
least-squares analysis ofQ, along the lines of Ref. 17, but
with the Ising correction-to-scaling exponents replaced by
the three-state Potts ones, yielded the critical point as
Kc=0.154078s1d. The fit was able to resolve the temperature
exponentyt which was found to agree well with the three-
state Potts universality class. This result confirms that the
transition is continuous. In contrast, a first-order transition is
predicted by mean-field theory. The predictions of mean-field
theory might be considered relevant because they tend to
become more accurate when the range of interactions in-
creases.

B. Percolation algorithms

The percolation problem defined in Sec. I was studied by
means of a transfer-matrix technique whose principle was
outlined in Ref. 18, and by means of cluster Monte Carlo
algorithms for the Potts model19,20 and for the noninteger-q
random-cluster model.21,22 The transfer-matrix method uses
in fact the random-cluster representation of theq=1 Potts
model as outlined in Ref. 23. In particular the “magnetic”
connectivities defined there serve to construct a transfer ma-
trix that enables the calculation of “magnetic correlations,”
i.e., the probability that two sites belong to the same perco-
lation cluster. The fact that we now construct percolation

FIG. 1. Thesp,Kd diagram. The curve connecting toK=p=0
represents the random-cluster model. Arrows indicate the renormal-
ization flow. Dashed lines show the percolation threshold in the
ordered phasesK.Kcd and for smallK.

FIG. 2. Dimensionless ratioQ of the 20-neighbor 3-state Potts
model versus couplingK, for several system sizes. Data points
scirclesd for the same system size are connected by lines. Larger
system sizes corrrespond to larger slopes.
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clusters only between variables in the same state makes it
necessary to construct a more complicated algorithm than
that used in Ref. 23. These complications were solved in a
rather straightforward but tedious way; we do not go into
details here.

In contrast, the Monte Carlo construction of percolation
clusters between variables in the same state is rather simple;
the algorithm is essentially the same as the Wolff algorithm20

used to generate the Potts configurations for integerq, but
with a different bond probability.

III. THE ISING CASE q=2

First we search for the stable fixed point of the Ising
modelsq=2d at K=Kc, p.0. Reference 18 suggests that the
fixed point lies nearp=1.1 for the square lattice, but a sketch
in Ref. 3 shows it atp,1. We used the transfer matrix of
Ref. 18 to compute the correlation lengthjsp,K ,Ld of the
probability that two sites at a distancer along a cylinder of
circumferenceL belong to the same cluster. From it we de-
fine

Xhsp,K,Ld ;
L

2pjsp,K,Ld
, s4d

where Xhsp,K ,Ld.Xh in the limit of largeL, with Xh the
magnetic scaling dimension at the fixed point attracting the
point sp,Kd. We fix K=Kc and apply finite-size scaling near
a stable fixed point atp=ps:

Xhsp,Kc,Ld = Xhsps + sp − psdLyr,Kc,1d + ¯ s5d

with a red-bond exponentyr =−5/8.18 In first order, correc-
tions to scalingXhsp,Kc,Ld−Xh are proportional to the irrel-
evant fieldp−ps and can thus be used to determineps. Using
numerical data forXhsp,Kc,Ld for sizes up toL=11 at sev-
eral values ofp, and the exact resultXh=5/96, and a least-
squares fit of an expansion of Eq.s5d in p−ps, we obtain
ps=1.08s3d. This bond probability exceeds 1 and is thus un-
physical, but there is no sign of a change of universality.

The same algorithm was used to locate percolation tran-
sitions forK,Kc. Near theK=0 percolation fixed point the
data forXh were fitted by

Xhsp,K,Ld = Xh + o
k

aksp − pcdkLkyp + o
j

bjL
jyi + ¯ ,

s6d

whereXh=5/48 is themagnetic dimension andyp=3/4 the
thermal exponent of the percolation model; the irrelevant
Potts exponent isyi =−1 nearK=0. The resulting percolation
line is shown in Fig. 3. It lies wholly in the unphysical re-
gion. Reasonably accurate data could be obtained for
Kø0.7; for largerK, the available range of finite sizes is
insufficient because of crossover phenomena due to the prox-
imity of the Ising critical point. The percolation line seems to
connect to theirrelevant fixed point. This is remarkable, be-
cause then the percolation line is, among infinitely many
flow lines in the sp,Kd diagram forK,Kc, the only one
extending down from the stable fixed pointsps,Kcd and the

only flow line coming in to the percolation fixed point
spc,0d. Coincidence of both flow linesssee Fig. 1d hints at a
deeper connection involving these two seemingly indepen-
dent fixed points.

In view of the unexpectedness of this result, we have
performed similar analyses of different Ising models. First
we studied theq=2 model with eight equivalent neighbors
on the square lattice. Its critical point is known as
K=0.3803853614s4d.14 Because of the increased number of
neighbors, the percolation line forK,Kc shifts into the
physical rangepø1 where Monte Carlo methods can be
applied. For several periodic lattices up to sizeL=360, up to
107 spin configurations were generated by Metropolis or
Wolff 20 methods, and percolation clusters were formed. For a
range of values ofp andK, we then sampled the dimension-
less ratio

Q =
koi

ci
2l2

k3soi
ci

2d2 − 2oi
ci

4l
, s7d

whereci is the size of theith cluster. In the Ising caseq=2,
the sum overall random clusterssi.e., p=1−e−Kd yields a
result that is equal to the above-mentioned ratio of magneti-
zation momentsQ=km2l2/ km4l. However, here the sum in-
cludes clusters ofonly onePotts color, to ensure thatQ sat-
isfies universality independent ofq. Near the percolation
threshold it scales as

Q = Q0 + o
k

aksp − pcdkLkyp + o
j=1,2,̄

bjL
jyi + csp − pcdLyp+yi

+ dsp − pcd2Lyp + eLyp−2yh + fLd−2yh + ¯ s8d

with yp=3/4, yh=91/48, yi =−1, and Q0=0.87048s5d. We
determined this value ofQ0 numerically for the square-lattice
bond-percolation model, prior to the present analysis. Mean-
while an independent determination ofQ0 has appeared in
Ref. 24. Corrections to the leading scaling behavior are due
to the analytic background, nonlinearity of the relevant scal-
ing field in p, and mixed contributions of other scaling fields
to the temperaturelike variable. ForKÞ0, new corrections
may appear due to the correlation between the spin variables.

FIG. 3. Percolation diagram of the square-lattice, nearest-
neighbor Ising model. The percolation line lies in the unphysical
region p.1. It runs frompc=1.2668s2d, K=0 to the stable fixed
point on the critical lineK=Kc.
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These are governed by the irrelevant exponentyi =−1 gov-
erning the flow to the infinite-temperature fixed point
sp=pc,K=0d.

In order to locate the percolation line, we have fitted the
free parameters in formulas8d to our simulation data forQ at
couplingsK,Kc. This procedure was also applied to locate
the stable fixed point atK=Kc, with a different universal
value ofQ0, and withyp replaced by the irrelevant exponent
yr =−5/8. We used the geometric cluster algorithm25 at zero
magnetization, to suppress corrections that obstruct the de-
termination of the fixed point and the error estimation. We
verified our results with consistency checks using other defi-
nitions of Q, excluding the largest or second largest cluster,
using only the largest cluster, or using two colors instead of
one. As shown in Fig. 4, again the percolation line ap-
proaches the stable fixed point.

We have similarly analyzed the triangular Ising model. As
shown in Fig. 5, we find a percolation line atp=1. This is
explained by an exact argument. The site percolation thresh-
old is ps=1/2 sRef. 26d for the triangular lattice. Thus the
present bond percolation model is critical atK=0, p=1.
However, the “matching lattice” argument26 behind this re-
sult requires only that the site probability distribution is sym-
metric under the interchange of occupied and empty sites.
Thus, the present triangular percolation model is still critical

at p=1 for 0,KøKc. For K.Kc the symmetry is broken
and the model is no longer critical.

IV. POTTS MODELS WITH qÅ2

This section addresses the question how the phase dia-
gram depends onq. For q=1, K is redundant, and the perco-
lation line lies at constantp and connects to the random-
cluster point, i.e., theunstablefixed point atK=Kc. We also
studied the square-lattice model at an intermediate value
q=2−2 coss7p /18d=1.31596̄ with a cluster Monte Carlo
algorithm21,22 for the random-cluster model. The cluster de-
composition and the analysis are the same as above. The
results in Fig. 6 show that, just as forq=1, the percolation
line connects to the random-cluster point.

Next, we focus on the three-state Potts model. Because of
the lower density of sites of one color in the disordered Potts
phase, the percolation line of the nearest-neighbor model
moves even farther into the unphysical region than in the
case of the Ising model. However, the stable fixed point on
the critical line K=Kc=lns1+Î3d still lies in the physical
range atps=0.83s2d, as determined by the transfer-matrix
technique. In order to bring the percolation line into the
physical range, we included couplings with a substantial
number of neighbors; we adopted the square lattice model
with 20 equivalent neighbors, which has its critical point at
Kc=0.154078s1d as mentioned in Sec. II. We determined the
location of the percolation transition line forK,Kc, and the
location of the stable fixed point by an analysis as described
above. The results, shown in Fig. 7, indicate that the perco-
lation line does not connect to the stable fixed point located
at ps=0.25s2d, but moves to largerp when K↑Kc. It seems
plausible that the percolation line connects to an unstable
fixed point at largerp, but analysis of our numerical results
for the ratioQ in the physical rangepø1 did not reveal clear
evidence for such a fixed point.

V. DISCUSSION AND MISCELLANEOUS RESULTS

The behavior of the percolation line forq=3 in the
preceding section suggests that the percolation line connects

FIG. 4. Percolation diagram of the Ising model on the square
lattice with nearest- and next-nearest-neighbor interactions. The
percolation line lies in the physical regionp,1. It runs from
pc=0.70622s6d at K=0 to the stable fixed point atps=0.702s15d on
the critical lineK=Kc.

FIG. 5. Percolation diagram of the triangular Ising model with
nearest-neighbor interactions. The percolation line lies exactly at
p=1.

FIG. 6. Percolation diagram of theq=2−2 coss7p /18d Potts
model on the square lattice with nearest-neighbor interaction. The
percolation line runs frompc=0.71362s2d, K=0 to the random-
cluster fixed point. We did not locate the stable fixed pointps on the
critical line; interpolation betweenq=1 sps=1d and q=2 ssee Fig.
3d suggests that it lies in the unphysical rangep.1.
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to another unstable fixed point at largerp. Our data
indicate that there is no such fixed point in the physical range
pø1.

In view of the possible existence of such a fixed point
for q=2, we have simulated square-lattice systems with 20
equivalent neighbors up to sizeL=600 at the critical
point ssee Sec. IId Kc=0.1263852s8d. Again the percolation
line runs toward theK=Kc stable fixed point, located at
ps.0.210s15d. Indeed, from an analysis of the ratioQ in
the interval 0.8,pø1, using Wolff-type simulations, we
found a large-p, unstable fixed point, included in Fig. 8.
Quantitative analysis is difficult because of large corrections
that suggest the presence of an irrelevant exponent
y1<−0.4. Thus, our results for this new fixed point have a
provisional character. Assuming corrections with exponents
that are multiples of −0.4, we locate the fixed point atpu
.0.94s2d, and the red-bond exponent asyr =0.54s3d, close
to the exact value 13/24 at the random-cluster point. The
fractal dimensionXh of the clusters was estimated from a
finite-size analysis of the largest cluster nearp=0.94 as
Xh=0.035s1d.

Our results in the preceding sections indicate that the
percolation line connects to the stable fixed point atK=Kc in
the whole two-dimensional Ising universality class. This spe-
cial topology presumably applies only toq=2. It does not
apply to the casesqÞ2 that we have investigated. The spe-
cial situation atq=2 is exposed by defining a second bond

percolation problem between all sites of theq−1 remaining
colors. Only forq=2 both problems are equivalent, i.e., there
is a symmetry in the model that may force the percolation
transitions into a plane parametrized by a zero irrelevant
field.

This argument based on symmetry thus predicts that
the bond percolation problem involving bonds between
sites withtwo out of q=3 colors would lead to a percolation
line connecting to the point acting as the percolation
threshold on the lineK=Kc si.e., an unstable fixed pointd, but
which is no longer the random-cluster point. Indeed, our nu-
merical results, for the nearest-neighbor three-state Potts
model on the square-lattice, shown in Fig. 9, agree with this
prediction. The results yield the percolation threshold at
K=0 aspc=0.8509s4d: the bond percolation threshold on the
square lattice with site probability 2/3. The percolation
threshold on the critical lineK=Kc lies at pt=0.5622s2d,
which is clearly smaller than the random-cluster probability
p=0.63397̄ .

We conclude this paper by mentioning that the above
symmetry argument holds generally for planar lattices only.
In three-dimensional systems, percolation between sites with
one of q colors may thus be expected to display different
behavior. For instance, for the dilute Ising model at tricriti-
cality, the bond probabilityp at the random-cluster fixed
point is irrelevant in two dimensions5 and relevant in three
dimensions.27 Our preliminary simulation results suggest
that, in contrast to the two-dimensional case, the one-color-
percolation line in the disordered phase of the simple-cubic
Ising model connects to the random-cluster fixed point.
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FIG. 8. Percolation diagram of the Ising model on the square
lattice with 20 equivalent neighbors. The percolation threshold lies
at pc=0.21416s2d for infinite temperatureK=0.

FIG. 7. Percolation diagram of the three-state Potts model on the
square lattice with 20 equivalent-neighbors. The percolation thresh-
old lies atpc=0.39591s4d for K=0.

FIG. 9. Percolation diagram of the three-state Potts model on the
square lattice, with percolation clusters including variables of two
colors. The percolation threshold on the critical line acts as the end
point of the percolation line in the disordered phase. It does not
coincide with the random-cluster point.
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