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Edge phase transitions of the tricritical Potts model in two dimensions
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Using Monte Carlo techniques and finite-size analysis, we investigate several two-dimensional lattice mod-
els with open edges, including the Blume-Capel model andjtiteand 3 Potts models with vacancies. At bulk
tricriticality, we find that the open edges are dominated by the vacancies when the surface ddyplidghe
chemical potentiaD¢ of the vacancies assume the bulk values. Wigand/orDy is sufficiently enhanced, an
edge phase transition takes place, beyond which spontaneous one-dimensional order occurs on the edges. Edge
phase transitions can also be induced by a surface magneti¢ifieltfe numerically determine a number of
edge critical exponents and derive phase diagrams in terr{g, @, andH,. In the low-temperature region,
we observe first-order transitions whéfy and Dg are varied; the associated hysteresis loops of surface
guantities are remarkably asymmetric. Some further insight into these edge transitions is provided by the exact
equivalence of the tricriticadj=1 Potts model and the Ising model.
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I. INTRODUCTION bulk, and the last two sums involve spins on the open sur-

While theoretical physicists frequently study phase transi-faces' For a finite cube with linear site the surface terms

. . ’ e 2 - ~'concern an areal?, because there are surfaces botlr at
tions in systems with periodic boundary conditions, in reallty:8 and atz=L
systems generally have surfaces. Thus, there may be a nee In three dimensions, exact information is scarce about the

to consider the effects due to the presence of surfaces. Forb"ﬁlk critical behavior of the Ising model described by Eq.

d-dimensional system containirig' atoms, the relative frac- (1), so that investigations have to depend on approximations.

';:;)rnle?rf ?I?Wisszﬁs%raﬂealz;ifsigg?gi:es I(gc(t)rtﬂztsﬁ?;cgee?fceects Nevertheless, accurate information has been obtained. For
9 v 9 instance, it has been determingtP] that the bulk critical

on bulk properties of the material. However, near a phas%

" i . oint isK=K.=0.221 654 5683) andH=H.=0, and the ther-
transition, correlations become long ranged, so that relativel : L
al and magnetic renormalization exponents ayge

small perturbations can produce large responses. Therefore - . I
surface effects can become significant, and in many cases 1.58683) ar_1d yh._2'48161)_’ respectively. Surface critical
enomena in this magnetic systd) are now also well

they cannot be ignored. Indeed surface phase transitions hal o
been the subject of considerable research interest in the pas aIXzed[1,4,8,1Q. In the apsence .Of magnetic fields
decadeg1-11]. Many theoretical and numerical methods s=0 and fpr ferromagneUc couplmg};zO and KS;O’.
have been developed, including mean-field approximation§,he phase dlag_ram_ is sketched in Flg. 1. In the high-
high- and low-temperature expansions, renormalizatiorfcMPerature region, i.e., the bulk couplings- K., the bulk
group techniques, conformal field theory, and Monte Carlo
simulations, etc. UK A
Most of these results apply to three-dimensional systems, special
and in this context, we briefly review surface critical phe-
nomena of the Ising model on a simple-cubic lattice with two surface
open surfaces in the direction and periodic boundary con-
ditions in thexy plane[1,4,8,10. The Hamiltonian of this
system can be divided into two parts: bulk terms and surface
terms, i.e.,

ordinary

/K

extraordinary

b b S S
HIKeT ==K 58 ~H2 5= KX ssm=He2 57 (1) =
ij k Im n

The spins assume valuesl, and interactions occur between FIG. 1. Sketch of the surface phase transitions of the Ising

nearest-neighbor spins. The first two sums account for th&odel in three dimensions. The vertical axis is the bulk temperature
1/K, and the parameter=(Ks—K)/K in the horizontal axis repre-

sents the enhancement of the surface couplings. The “surface,” the
“ordinary,” and the “extraordinary” phase transitions are repre-
*Present address: Laboratory for Material Science, Delft Universented by the thick solid, the thin solid, and the dashed lines, re-
sity of Technology, Rotterdamseweg 137, 2628 AL Delft, The Neth-spectively. The lines meet in a point, shown as the black circle,
erlands. which is referred to as the “special” phase transition.
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is in the paramagnetic stat&disordered), so that the bulk xs(t) < |Inft]] (Hs=0,
correlations remain finite. However, phase transitions can ) )
still occur on the open surfaces when the surface coupling&herexs is defined agimy/dHs. N
K, are varied. These transitions, referred to as the “surface The statement that only ordinary transitions occur on the
transitions”, are shown as the curved solid line in Fig. 1.edges can be generalized to the critical branch ofjtstate
Apparently, they belong to the same universality class a®otts model in two dimensions. For a review of the Potts
Onsager’s Ising moddl13] in two dimensions, so that the model, see Ref.17]. For this model, the nature of the bulk
thermal and magnetic exponents diE3] y,=1 andy,s critical singularities is now well established. This is mostly
=15/8, respectively. At the bulk critical poit=K,, the line  due to exact calculatio49,18, Coulomb gas theorj20],
of surface transitions terminates at a pailt,Kso), which  and conformal field theorfB]. In the context of the Coulomb
acts as a multicritical point. For relatively small surface cou-gas theory[20], a sequence of universal exponents can be
plings Ks<Kg, both the bulk and the surfaces undergo aexactly expressed in terms of a single paramgtere., the
second-order phase transition lat KC when K is varied. Coup"ng strength of the Coulomb gas. The paramgteat-
However, for larger s_urface couplingg> K¢, the surfaces isfiesq=2+2 coggw/2), with 2<g<4 and 4<g=<6 for the
become ferromagnetic at a smaller bulk couplg K., SO cyitical and the tricritical branch of the Potts model, respec-
that the bulk transitioi =K occurs in the presence of Spon- ey The leading thermal and magnetic exponents of the
taneous surface order. Along the bulk critical lik& K., the oo’ model arg20,21] y,=3-6/g andy=(g+2)(g+6)/8g,
Per:?:c? ttc:a;Ss |ttrl]oen“30;‘8§]sa<r K?‘t’hgs,.;Ké‘éi;n,fj aKnsd> tﬁéc“zﬁr;%-r di- respectively. For the ordinary surface transition of the critical
Y. P ' [Potts model, Cardy{5-7] employed boundary conformal

nary” transitions, respectively. In order to describe the scal:. Id theorv. and expressed the surface madnetic exponent
ing aspects of these surface transitions, besides the bulf 9 in t Y, £ th bplk h I " 9 P
in terms of the bulk thermal exponewptas

exponentsy; andy;,, additional surface critical exponents are Yhs
also needed. The ordinary and the extraordinary transitions 0 — o _ =9 _
have one additional relevgnt surface magnetic s)i:aling field; Yhs=2-313-y)=2-g2 (2=g=4) @
both the surface thermal and magnetic scaling fields are rejA remarkable feature of Eq4) is thatyg is a decreasing
evant at the special transition. We denote the correspondininction of the Coulomb gas couplireg In particular, for the
exponents aS’h? yLeS) yE?, and yffs) respectively, where the =4 potts modelg=4), Eq. (4) yields yﬁ‘i):o, so that the
superscriptgo), (), and(s) are for the ordinary, the extraor- g ,rface magnetic scaling field isarginal It seems natural
dinary, and the special transitions, respectively. In an analogy, ¢ Eq.(4) can also be applied tg> 4, just as the above
with the bulk onesy, apd Vh, €xact values of thes_e surface expressions for the bulk exponentsandy;, [20,21). This
exponents are UnaVa'l("’(‘)E)'e- It has tzgen numer'cal|y(s)detefipplication then yields that the surface magnetic scaling field
mined[1,4,8,9,14 thaty, =0.7315), y,; =0.946), andy,¢ isirrelevantfor the tricritical Potts model. On the other hand,
=1.622). it is known that, near a second-order transition, the strength
The present paper investigates the surface effects on ¢ critical fluctuations and the sensitivity to perturbations are
number of two-dimensional systems. However, in this casereflected by the magnitudes of the critical exponeptand
the “surfaces” are just one-dimensional edges. Since oney,. For the Potts model,=3-6/g is an increasing function
dimensional systems with short-range interactions are knowsf g, and, for 0<q<4, yj is larger on the tricritical branch
not to order for any nonzero temperature, the “surface tranthan on the critical one. Thus, one might naively expect that
sitions” occurring atk <K simply cannot exist on open the surface effects, including that of the surface magnetic
edges of two-dimensional systems. It may then seem naturgield H, become stronger agincreases. Further exploration
that no spontaneous edge order can occur without a longf this paradox seems justified.
ranged ordered bulk. In other words, in two dimensions, it Recently, boundary conformal field theory has received
may be expected that only the ordinary transition exists oonsiderable research interg82—27. In the context of sta-
the one-dimensional surfaces. It has further been arfilied tistical physics, this has been applied to the tricritical Ising
that the surface dimensionality=2 is the lower critical di- model in two dimensions. This model is considered to cor-
mensionality for the special, the surface, and the extraordirespond with an integral scattering theory of massive kinks
nary transitions. This is consistent with exact results for thg22], and it preserves superconformal symmetry. By means
Ising model in two dimensions. Exact calculations of surfaceof factorizableS matrix, fusion rules, and symmetry argu-
effects in this mode]15,16 were not restricted to the critical ments, various boundary operators were conject[28pand
region but covered in the entire temperature range. At thehe corresponding renormalization flows were constructed. A
bulk criticality, it was shown that, for any finite surface cou- physical interpretation of these boundary phenomena was
pling K, the transition on the open edges is just the ordinarghen provided by Afflec24], indicating the possible emer-
transition. The corresponding surface magnetic exponent igence of spontaneous edge order if the bulk is in the tricriti-
yﬁfgzllz [15,16], different from the bulk exponent, cal state. Moreover, this scenario has been numerically con-
=15/8[13]. The surface magnetization density and the firmed in Ref.[28].
surface susceptibilitys at the ordinary transition appear to  The present paper extends the work in R28]. First, as

t

=|K-K<1), 3

be of logarithmic natur¢l5,16, i.e., a direct illustration of the existence of the edge transitions in
tricritical Potts models in two dimensions, we make use of
= < X . ' )
my(Hy) < HyInH{ (K=K, |H{ < 1) 2) the exact equivalence of the dilutes 1 Potts model with the
and Ising model in a magnetic fielfR9]. Thus, the exact infor-
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mation about the edge critical phenomena in the latter model KV=K/4 and HP=-D/2+K, (8)
can be reformulated in the language of the former model. . .

Then, using suitable Monte Carlo methods, we simulate th&/here the superscripi) r_efeﬁ to the Ising model. In the
Blume-Capel(BC) model[30,31] and theq=3 Potts model ~aPsence of a magne('iigc fietd", the Ising model7) has a
with vacancies. From the finite-size analysis of the numericafritical point atk=K’=In(1+y2)/2 [13]. This point is not
data, we derive a number of edge phase diagrams in terms Bercolationlike; it serves as theicritical point of theq=1
surface parameters, and determine several surface critical eROtts systen(6). Equation(8) yields the tricritical point as

ponents. K=K,=2In(1+y2) and D=D,=4In(1+42); the up-down
The outline of this paper is as follows. Section Il de- symmetry of Ising spins implies that the tricritical vacancy
scribes the surface phenomena of the dilgtel Potts density isp=1/2. Further, it follows from Eq.(8) that the
model, as derived from the known properties of the Isingleading and the subleading thermal exponents of the tricriti-
model in a magnetic field. In Secs. Ill and IV, Monte Carlo cal Potts model are equal to the magnetic and the thermal
results are presented for the surface transitions of the Blumexponents of the Ising model, respectively, so tlyat
Capel model and the tricriticaj=3 Potts model, respec- =15/8 andy,,=1. The leading magnetic exponent is known

tively. A brief discussion is given in Sec. V. as Y, =187/96 [20]. In the low-temperature regioi?
>K(C'), the Ising model undergoes a first-order phase transi-
Il. DILUTE ONE-STATE POTTS MODEL tion when the magnetic fieltH” changes sign. In other

words, the diluteg=1 Potts mode(6) has a line of first-order
The dilute Potts model is obtained by including vacanciephase transitions @ =2K for K> K.
in the corresponding “pure” Potts model. On thexL Because of the attraction between the vacancies, the dilute
square lattice with periodic boundary conditions, to whichq=1 model(6) is different from the conventional site-bond-
we shall refer as the torus geometry, the Hamiltonian of thgyercolation probleni32]. In the latter system, the vacancies

dilute g-state model reads are randomly distributed over the lattice sites, and then
L bonds are placed with probability <Op<1 between all

kT =-K 1-5 S +8 nearest-neighboring occupied sites. Apart from that, sites and
Helke 2 ( "WO) ( TxyIx+ly "va"’wﬂ) bonds areuncorrelated.A limiting case is the “pure” site-

X,y=1
yl_ percolation model, in which the bond-occupation probability
P (5) is 1. Thl_s_ modell|s st|II_|n the percolation um_versahty, so that
o Ty 0 no tricritical point exists for the conventional site-bond-
’ percolation problem. In contrast, for a correlated dilute
where the lattice site is occupied by a vacancy0 or a  g-state Potts model described by E§), it has been found
Potts variable withr=1,2,...,9. Nonzero coupling& occur  [29,33 that the tricritical point occurs for any value in the
only between Potts variables, and the chemical poteBtial continuous range € q=4.
controls the concentration of the vacancies. In Ej, we In order to investigate the surface effects, we define the
have introduced the subscript P to represent periodic bounaorrelated percolation modés) on an open cylinder, i.e., the
ary conditions. For the special cagel Eq. (5) reduces, L XL square lattice with periodic and free boundary condi-

apart from a constant, to tions in thex and they directions, respectively. As for the
L L three-dimensional case, the surface couplikgsand the
chemical potentiaD, can assume different values from those
= - + + = . . S . H

HelkeT sz’l Ty Oty + Oxyed) Dwgzl Txy(@=0.1 in the bulk. The Hamiltoniaft{, on the open cylinder can be

written as the sum of{p in Eq. (6) and their difference,
©) which reads

For D — —, the vacancies are excluded, and the first sum of L

Eq. (6) is just a constant. Nevertheless, the random-cluster HoAKeT = HolkeT=KS 0 10

representation of Hamiltonia$) corresponds with the bond- o elks g’l e

percolation model with bond-occupation probabilip=1 L

—-exp(—K), so that Eq(6) still describes percolation phenom-
ena. In the presence of vacancies, Ej.describes aorre-

lated dilute bond-percolation model, which can be trans-
formed into the Ising model in a magnetic field. This follows

from substitution ofs=20—1 in Eq.(6), which yields - DKdXZl(Um* Tx L) (9)

- KKkE (Ux,lo'x+1,1+ Ux,LO'x+1,L)
x=1

L

L

Hg)/kBT =K E Sey(Sersy + Scyed) where ki, =Ki,/K-1 andxy=D¢/D -1 represent the enhance-

ments of the surface coupling and the chemical potential,

X'yLl respectively. The subscript O is for the open cylinder. The
(i) a sums in the right-hand side of E¢Q) are only over spins
-H 2:4 Sy(s= £1), (7) " sitting on the edgeg=1 andy=L. Thus, the surface effects
=t can be regarded as containing two parts: the first term in Eq.
with the relations (9) accounts for the geometric effect due to “missing” neigh-
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bors for spins at the surface layers, and the last two sums 1K
describe the enhancements of the surface parami¢ieand S- disord
D.. Effectively, the first term serves as a perturbation which B.' disor d.

decreases the correlations along the liped andy=L. Af-
ter substitutingo=(s+1)/2 in Eq. (9), one obtains the Ising
model on a cylinder with open ends K,

HOIkeT - HY kg T

©,1)

l

|
I
I
) ) S: vacancy * S: Potts
B K2 K E( N ) B: vacancy . B: Pots
= 4X:155<,15x,|_ 4ka:1 Sx,15x+1,1F SxLSe+1L ) E (1)
L :
~HIZ (sa+ ), (10 n Kk
x=1
with a surface magnetic field"” FIG. 2. Edge phase transitions of the dilgtel Potts model in
) s two dimensions, withK/D=1/2 and kq=(Ds—D)/D=0. For K
H(S') =[K(2k,— 1) — 2Dkyl/4. (11) <K,, both the bulk and the surface are in the “disordered” state,

. and no edge transition occurs. At bulk tricriticalky=K, the varia-
Due to the equivalences of Eq#) and(7), and of Egs. tion of x=(Ks—K)/K vyields a “special” edge critical point ag,

(9) and(10), the edge transitions of the Ising model can now_ 5 Fork>K,, a line of first-order phase transitiong,=1/2,

be reformulated in the language of the dilujel Potts  geparates the phases dominated by the vacancies and by the Potts
model. In the high-temperature regiét>K,, no transition  yariaples, respectively. Arrows describe the direction of the renor-
occurs on the one-dimensional edge. At bulk criticality, themalization flow.

Ising model exhibits an ordinary edge transitionl—tﬂt):o,

and the surface magnetic exponentyjy=1/2 [15,16. I |sing model, and it played an important role in the develop-
the context of the tricriticaj=1 Potts mode(9), this means  ment of the theory of phase transitions and critical phenom-
that, as indicated by the relati¢fil), an edge transition can gng. |n the torus geometry, the Hamiltonian reads
be induced by varying the surface couplingg and the
chemical potentiaDg. For instance, for the case=0, the HelkeT=—-K> ssi+ DYs (s=0,%1). (12
edges of the Potts model are dominated by vacangies (i) k
=0) or by Potts variable§o=1) for «,<1/2 or k. >1/2,
respectively. Sinc&g andDg are temperaturelike parameters,
we refer to such an edge transition as the “special transition.
The surface thermal exponent is simply obtainedyg)séq
=1)=1/2. In thelow-temperature regioK > K;, the bulk of
the Potts mode(9) is in a two-phase equilibrium along the
line D/K=2, as discussed above. Therefore, a small pertu
bation due to an enhancemegtor x4 induces a first-order
transition, which involves the bulk as well as the edges. Fi
ure 2 sketches the phase diagram of the dilytel Potts
model (9) for the casexy=0. ” A
For theq=1 Potts model at bulk tricriticality, Eq(11) K
yields a line of “special” critical points in théx,, k4) plane,
as shown in Fig. 3.

When the chemical potenti@ goes to <, the vacancies

=0 are excluded, and this model reduces to the spig-1
Ising model. The critical coupling constaKt(D) is an in-
creasing function oD, and the critical line&k(D) terminates

at the tricritical point(K;,D,). For K>K,, this line continues

as a line of first-order phase transitions. The phase diagram
of the bulk transitions is sketched in Fig. 4. At the tricritical
gpoint, there are four relevant scaling fields; two of them are

1/2

Ill. BLUME-CAPEL MODEL

The previous section indicates that, also in two-
dimensional systems, special phase transitions can occur.
However, the diluteg=1 Potts model described by E@®) is
only a special case. For instance, the coupling constants and
the chemical potential in this Potts model are just the mag-
netic field in the Ising model. In the following two sections,
we shall investigate the Blume-Capel model and the dilute
g=3 Potts model. FIG. 3. Line of “special” transitions in the dilutg=1 Potts

The BC model, also referred to as the spin-1 Ising modelmodel at bulk tricriticality. The fixed point is shown as a black
was independently introduced by Blurf0] and Cape[31].  circle, and the arrows represent the direction of the renormalization
This model can be obtained by including vacancies in thelow.

—-1/4 Kq
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I/K paramagnet 0.8 ,
0.7 =
a .
trigritical "
ferromagnet / 06 -

] 05 ’

1

: vacancy 0 02 04 06 03 1

oxp (D/K) exp (-y/5)

FIG. 4. Sketch of the bulk phase diagram of the BC model. The FIG. 5. Exponential decay of the vacancy dengitplong an
tricritical point is denoted as the black circle, the second- and thé- > 10L cylinder for the tricritical BC model. The system size is

first-order transition lines are represented by the solid and th&hosen a& =12, andr represents the distance to one open end. The
dashed lines, respectively. correlation length used for the horizontal scale is calculateg, as

=L/(2mX), whereX;;=1/5 is thebulk thermal scaling dimension.

i In the middle of the cylinderp is close to the tricritical valug
thermal ones and the other two are magnetic ones. In tWQ 454 950 62). Deviations from the exponential behavior occur

dimensions, the renormalization exponents are known agear the edgesight-hand sideand near the middléot visible on
Yu=9/5 andy,,=4/5, andy,=77/40 andy,,=9/8[20,21,  this scale.

respectively. By means of a sparse transfer-matrix technique

and finite-size scaling, we located the square-lattice tricritical 1. Ordinary edge transitions

point[33] asK;=1.643 175 91) andD,=3.230 179 72); the As discussed above, the surface effects can be divided

tricritical vacancy density ig;=0.454 950 62). This resultis  into two parts: the geometric effect and the surface enhance-

obtained from the requirement that both the bulk leadingnents. To study the former effect only, we investigated the

magnetic and energy-energy correlation |engths Simu|tanCfitiCa| BC model on an open cylinder with circumferenc_e

neously reach their theoretical values. The precision is con- and lengtmL for n=10. We took the surface parameters in

sidered to be sufficient for the present investigation. Eqg. (13) as ky=k¢=0 andHs=0. The system sizes assumed
On theL X L open cylinder, as for the dilutg=1 Potts  €V€N _numbers in the range<d < 24. Simulations used a

model (9), the Hamiltonian of the BC model can be ex- combination of Wolff and Metropolis steps. The former step

pressed as the sum of the Hamiltonian in the torus geomet lips Ising spins, Wh“? the latter step also ajlows fluctuations
and their difference. which reads f the vacancy density. The vacancy dengitwas sampled

along the cylinder. The data forL=12 are shown in Fig. 5.
One observes that, without sufficient enhancement& of
ke T — Hp/kgT '
HolkeT = Helke andDg, the open edges of the tricritical BC model are mainly
occupied by the vacancies. This is analogous to the case of
=2 SxaSxL ~ Kk (Sq1S+1,1F ScLSx1L) the tricritical =1 Potts model.
=1 =1 An explanation of the paradox mentioned after &j.can

L L

L be given as follows. As mentioned in Sec. |, the effect of a
+D, 2 (f1+55) ~He (S1+s,), (13)  temperaturelike perturbation is reflected by the bulk thermal
x=1 k exponenty;, and thus the geometric effect described by the
] o . ~ first term in Eq.(13) also increases as a function yf For
whereH is the surface magnetic field. In the right-hand sidethe critical Potts modelg<4), v, is relatively small, so that
of Eqg. (13), the first term corresponds with the geometric o edges maintain strong critical correlations. gsin-
effect, and the remaining three terms describe the effects Qfeases, however, the density of the vacancies increases and
the surface parametel§, D, andHs. the edge critical correlations become less strong. As a con-
sequence, the surface magnetic field becomes less “effec-
A. Bulk criticality: K <K, tive.” On the tricritical branciig> 4), the geometric effect is
) - so large that the edges are dominated by vacancies, and the
_For bulk couplingsK <K, the phase transition along the gyrface magnetic field becomes irrelevant. We mention that,
critical line K.(D) is just Ising-like. Thus, in the absence of although the edges have a considerable degree of disorder,
surface magnetic fieldss, only the ordinary transitions oc- and the decay of this disorder into the bulk can be long
cur on the open edges, and the surface magnetic exponentrignged, the bulk tricritical correlation lengths remain diver-
yio=1/2[15,16. gent. This is reflected by the asymptotically exponential de-
cay of the vacancy density in Fig. 5, which takes place
with the predicted length scale Thus, the bulk transition at
K=K; and D=D; occurs in the presence of “disordered”
When the bulk is at the ftricritical point, the prediction edges. In analogy with the three-dimensional Ising model,
from conformal field theory described by E) and the we refer to this phase transition as the “ordinary transition.”
discussions in Sec. Il indicate that intriguing phase transi- Under Cardy’s well-known conformal mappiri@], the
tions can occur on the open edges of the BC model. semi-infinite cylinder is be transformed into a semi-infinite

B. Bulk tricriticality: K=K, D=Dy
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FIG. 6. Absolute value of the edge magnetizatjon| of the
tricritical BC model vs coupling enhancemeqt The other surface
parameters areg=0 andH¢=0, and the system size is=15.

FIG. 7. Edge vacancy densipg of the tricritical BC model vs
coupling enhancement,. The other surface parameters a¢g=0
andHg¢=0, and the system size is=15.

plan_e. The e_xponential decay o_f correlation_S along the cYlinmensionless guantities are closely related to the Binder ratio,
der is covariantly transformed into algebraic decay into theyq they are useful in Monte Carlo analyses of critical

bulk of the semi-infinite plane. Thus, the thermal correlationygints, pecause their asymptotic values at criticality are uni-
length along the cylinder reads=L/(27X;,), with the lead-  \/grsa).

ing thermal scaling dimensioXy =2~y =1/5[20,21]. Ac- The absolute value of the surface magnetizafiog and
cording to the least-squares criterion, we fitted phedata by e edge vacancy densigy for system sizé=15 are shown
the formula in Figs. 6 and 7, respectively. These figures illustrate that, for
F L) =+ L-2a[W(r) + W(nL - r coupling er]hancgmenus(>0.6, the open edges are domi-
plr,L) = pt (v ( )] nated by Ising spins so thapontaneous ordesccurs on the
X(ag+taylYi+al?+ ), (14  one-dimensional edges. Further, the clean intersection of the

Qp data in Fig. 8 reveals a second-order phase transition near

with the function k,=0.56. We fitted the data @, and Q, by the formula

‘I’(I’) — (era-r/L _ e—rﬂ-/L)—Zth, (15) .
(s
wherer is the distance to one of the open ends. A justifica- Q(x,L) = Q. + > alky - ch)kLkVts) + b Y1+ byLY2 + byl Y3
tion of Egs.(14) and(15) can be found in Ref§14,34]. The k=1

term W(nL-r) in Eq. (14) is due to the symmetry between
the positions andnL-r. The parameters,, a;, anda, are
unknown constants, ang=-1 is the leading irrelevant ther- where the terms wittb;, b,, and b account for finite-size
mal exponent of the tricriticaj=2 universality clas§20,21.  corrections. The exponegt=y,=-1 arises from the leading
For L—o andr=L/2, the bulk vacancy density(r,L) ap- irrelevant thermal scaling fielf20,21. More generally, we
proaches the tricritical valug,=0.454 950 62) [33]. We  expect analytic finite-size corrections with exponepgs
fixed the values of; andp;, and discarded the data for small —n with integern=1. Thus, the exponentg,, y;, andy,
system sizet <8 and for small distances<L/4. Then, the were taken as-2, —3, and—4, respectively. The term with
fit yields X;;=0.1983), in good agreement with the theoret- ¢ describes the “mixed” effect of the relevant and the irrel-
ical valueX;;=1/5. evant thermal scaling fields, and the last term in &q) is

due to the fact that the surface thermal scaling field can be a

+b,LY4 + c(k - KkJLyg)"Lyl +n(k - ch)zl_y{?, 1

2. Special phase transitions

As for the case of the tricriticatj=1 Potts model, we 0.9

expect that the geometric effect in the tricritical BC model
can be asymptotically compensated by the enhancements of 08 r
surface parameteisg and Dg. To test this expectation, we
used a combination of the Wolff and Metropolis methods to So7}
simulate the BC model on open cylinders with siz& L.

The simulations were performed at the bulk tricritical point
mentioned above, and we took the surface parameters as
kg=0 andH¢=0. The system sizes assumed 14 odd values in
the range <L <121, and we sampled the magnetization 0.5
density and the vacancy densjtyfor several values ok,.

Further, we defined two dimensionless ratios as

Q= (mﬁ)zl(mﬁ> andQ,= <m51m52>2/<(mslm52)2>a (16) FI(_B. 8. Bulk magnetic ratid@Q, of the tricritical BC model vs
coupling enhancement,. The other surface parameters a¢g=0

wherem,, my, andmg, are the magnetization densities on andH=0, and the system sizes dre 11 (+), 15 (), 19 (O), 23
the linesy=(L+1)/2,y=1, andy=L, respectively. These di- (A), 31(x), and 39(¢).

0.52 0.53 0.54 0.55 0.56 0.57 0.58 0.59 0.6
Ky
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1 L
0.8
24 0.6
E
= 04
0.2
O L
-1 -0.5 0 0.5 1
tanh D

-04 -0.39 -0.38 -0.37 -0.36 -0.35 -0.34 -0.33 -0.32 . . . _— .
Ky FIG. 10. Line of special transitions of the tricritical BC model in

the parameter spadeantKs,tantDg). The symbolsA represent the
FIG. 9. Surface magnetic ratiQ of the tricritical BC model vs ~ humerical data. When the bulk coupligis varied, the transition
chemical-potential enhancemexy. The other surface parameters On the edge is first order in the region above the curve.
are k=0 andH¢=0, and the system sizes dre9 (+), 13(X), 17
(0), 21 (0), and 29(A). =0.56588) and yffs)=0.9148), where the error margins are
quoted as two standard deviations. The corresponding scal-

nonlinear function ofc.. After a cutoff for small system sizes N9 dimensionX(9=1-y/9=0.0868) is marginally consis-
L=<11, the fit of Q, yields Q,.=0.7654), «,.=0.566@4), tent with the bulk magnetic scaling dimensi#h=3/40 but
and y<5>:0.4018), and the fit ofQ, yields Q.=0.5663), also with the exact value 1/1@3,24]. We shall come back

ts

- (9 — : .« to this point in Sec. V.
ke O'.56644)’ andy,; =0.39§7). These two fits are consis Just like k, the enhancemen, of the surface chemical
tent with each other, and the results ﬁgj are equal to the

o . . potential also induces a “special transition.” This is illus-
exact value 2/423,24 \.N'thm the espmated error margins.  ated by theQg data in Fig. 9 for the casg,=0. The fit of
Near the above estlmate;d special ransitiqe Kk and 0 Qs data by Eq.(17) yields a critical point atxy.=
xg=0, the surface magnetic susceptibilifgg=L(M5) Was  _4 3442) Using the same technique, we have determined a
sampled, and the Monte Carlo data were fitted by number of special critical points in the parameter space
(Kg,Dg), which are listed in Table I. On this basis, the line of

S
XK1 L) = 1o+ T3(k = ri) + 1ok = s + LA special edge transitions is shown in Fig. 10. For the limit
4 K;— o0, the edge transition is first order, and separates a state
% E alk- ch)kkaﬁ? +byLY1+ b,LY2 + ol Y3 with edges fully occupied by the vacancies from one with
k=0 fully magnetized edges. From the relative statistical weights
of these phases, the transition is simply obtained as
ok = 1 QL+ (i i 2L | (18  Ks/Ds=1. For the opposite limiDs——x, no vacancies

occur on the edges. We simulated this limit for system sizes

in the range 1L =<111. We still find a second-order tran-
The terms withrg, r1, andr, come from differentiations of sition atK,.=K(1+x,)=0.11838). The surface critical cou-
the analytical part of the free energy with respect to the surpling strengthK,. is quite small in comparison with the bulk
face magnetic scaling field. We fixed the surface thermatricritical value K;=1.643 175 91). Near the critical point
exponentyg) at the value 2/5[23,24], and obtainedx,, K, the data of the surface susceptibility were fitted by

TABLE I. Numerical results for several special edge transition points of the tricritical BC model in the
space(Ks,Dg). The critical values are given in terms of the surface enhancemgptnd «q; the corre-
sponding values oKy, and D, are Kq.=K(1+xy) andKy.=Dy(1 +xqo)-

Ko . -17 -16 -15 -1.4

Kie ~0.92804) ~0.90504) ~0.89644) —0.88454) ~0.86864)
K -1.3 -1.2 ~1.1 -1.0 -0.9

Kie —0.84744) ~0.81754) ~0.77787) ~0.72527) ~0.65767)
K -0.8 -0.7 -0.6 ~0.45 -0.35

Kie ~0.57378) ~0.47328) ~0.35639) ~0.12618) ~0.00959)
K ~0.15 0 0.6

Kie 0.30968) 0.56624) 1.66638)
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Eq. (18). We obtain the surface magnetic exponenty}ié

1.2 1.4 16 18 2

o

Q
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0.9
0.89
0.88 g
076 078 0.3 082 084 086 0838

Kie

FIG. 12. Bulk magnetization moment rat{@, of the tricritical
FIG. 11. Line of special transitions of the tricritical BC model in BC model vs surface coupling enhancemeptThe other surface
parameters arey=0 andH=0. The data pointst, X, O, O, A,

¢, and= represent. =7, 9, 11, 13, 17, 21, and 29, respectively. The

clean intersection of these data lines implies that, in addition to the
“special” transition x,=x,.=0.56625), there is another “fixed”

=0.0982), in good agreement with the exact value 1/10pgint atx, ~0.81. However, in contrast to Fig. 8, the slope of these

lines is a decreasing function of the system diz&his means that
As indicated in Fig. 10, the line of the special transitionsthis fixed point is stable in the, direction.

exhibits two bends near the limiB;— +. To display its

[23,24).

behavior for largeDg— —0 in more detail, this line is shown

again in Fig. 11 in the parameter spdtg,ePs).

3. Extraordinary phase transitions

In the upper region of the critical line in Fig. 10, the edges
and the bulk undergo a first- and a second-order transition
respectively, when the bulk coupling is varied, i.e., the
surface magnetization density displays a discontinuity. In

neark,=0.81. The decreasing slope as a functior ahdi-

cates that this fixed point is stable in tkgdirection. Natu-
rally, the question arises what critical exponent governs the
renormalization flow in the, direction. For this purpose, we

fitted the Qp

data by Eq.(17), where the exponeryg) is
replaced byyi?. After discarding data for small system sizes
L=<9, we obtainQ,=0.8922) andy'®=-0.805). We note

comparison with the three-dimensional Ising model, this carhat for an ﬁrbitraryj-dimensional system, a surface thermal
be considered to correspond with the coincidence of the “suf€XPonenty;s=—-1 has been reportd@5] to occur. However,

face” and the “extraordinary” transitions. The existence oft
spontaneous edge order is only possible becthesdulk is
tricritical. At this point, spins on the edges in effect interact

he resultyis)

=-0.8005) is slightly different from this exact
value, which dominates the range of the ordinary transitions.
For a further illustration of the edge critical properties in

via sufficiently long-ranged bulk correlations, so that thethe range of the extraordinary transition, we fitted thg
data atk,=0.805, which are listed in Table I, by the formula

edge correlations also become long ranged.

It seems reasonable to expect that the bulk critical prop-
erties are reflected on the edges even if the edge transition is

first order. As a test, we simulated the tricritical BC model
for k=0 and k,>0.6. The system sizes were taken in the
range 9<L <185, and part of th€, data are shown in Fig. Where the terng, represents the spontaneous edge magneti-
12. The clean intersection in Fig. 12 indicates a fixed pointzation density. The exponeyg) was fixed at the estimated

e = a2+ L 2% by + byLYs + b,LYi + ol 2+ b,L™3),

(19

TABLE Il. Monte Carlo data for the second momermﬁ of the surface magnetization density at the
extraordinary transition in the tricritical BC model. The surface parametersHar®, «4=0, and

=0.805.
L 9 11 13 15 17

m 0.917291) 0.915601) 0.913991) 0.912621) 0.9114%1)
L 19 21 23 25 29

m 0.910441) 0.909601) 0.908861) 0.908211) 0.907171)
L 33 37 45 55 65

m 0.906311) 0.905621) 0.904591) 0.903671) 0.902991)
L 85 105 145 185

m 0.902061) 0.901511) 0.900761) 0.900311)
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0.9 TABLE l1ll. Numerical determinations of several field-driven
e edge transitions for the tricritical BC model in the parameter space
0.7 ] (kx,Hs). The surface chemical-potential enhancemeniyisO.
£ 05 K~ 0.45 0.4 03 0.2
03 | Hg.  0.066110) 0.12128) 0.250G10) 0.388@8)
ot Ke 0.1 0 -0.2 -05
0 02040608 1 12 14 He 0.531510) 0.677210) 0.972G10)  1.408G10)

s

FIG. 13. Edge magnetization densitys of the tricritical BC
model vs surface magnetic fields The system size is=32, and  phases from the vacancy-dominated phase. On this transition
surface parameters akg=0 andx=0. line, just as for the tricriticaf=1 Potts model, the surface
parameters can also induce first-order transitions. These tran-
value —0.8055), and we obtaina,=0.947 764) and xg sitions occur simultaneously on the edges and in the bulk. As

=0.398715)~2/5. Thus, critical correlations still occur on an example, we simulated the BC model #+1.8 andD
the edges. =3.555 35, which is very close to the line of the bulk transi-

tions. The surface parameters were fixeckgtH,=0, and
4. Field-driven edge transition we sampled the bulk and edge vacancy densitjesndp, on

It seems reasonable that, in analogy with the enhanceéhe linesy=(L+1)/2 andy=1, L, respectively. The hyster-
ments of the surface couplingg and the chemical potential esis loops ofp, and pg for system sizd.=63 are shown in
D, the geometric effect can also be compensated by thEigs. 15 and 16, respectively. The hysteresis loopofs
surface magnetic fieltls. Thus, we simulated the tricritical ratherasymmetric
BC model for surface parametekg=«, =0 butHg# 0. The According to the investigations in this section, the edge
edge magnetization density, is shown versusigin Fig. 13  phase transitions of the Blume-Capel model are sketched in
for system sizé.=32. It behaves consistently with the above Fig. 17. The shaded area represents the surface of bulk phase
expectation. To test for the presence of a field-driven edgé&ransitions. FOK <K, only the ordinary transitions occur on
phase transition, we defined the ratidQg =((m; the edges, so that all renormalization flow lines in this part of
—(m)22/{(ms—(m)?). The Qg data in the range 8L the critical surface end in a single fixed point. Along the bulk
<48 were fitted by Eq.(17), and we obtainedQ, tricritical line K=K, andD=D;, there are three fixed points,
=0.441910), H,=0.677210), and yLS:0_40510)x2/5_ representing _the ordinary,_the special, and the extraordinary
This result, in particular the relevant expongfy confirms ~ Phase transitions, respectively. RO K;, there is a line of
the existence of the phase transition. first-order transitions, which is denoted as the dashed line in

The phase diagram in the parameter spéegHy) is  Fig- 17. On the left- and the right-hand sides of_thls line, the
sketched in Fig. 14 fok,=0. The numerical results for the €dges and the bulk of the BC model are dominated by the
estimated critical points, as denoted by in Fig. 14, are vacancies and the Ising spins, respectively.
listed in Table lll. It is clear from Fig. 14 that the special

transition, atx,.=0.56624), Hs=0, behaves as a “multicriti- IV. TRICRITICAL THREE-STATE POTTS MODEL
cal” point, because several phase transition lines merge in o ) )
this point. The Hamiltonian of the diluteg=3 Potts model in the
torus geometry is described by E&) with q=3. The bulk
C. Bulk first-order range: K>K; phase diagram of this model is analogous to that of the

For K>K,, the bulk of the BC model exhibits a line of Blume-Capel model described by E@.2). At tricriticality,

first-order transitions, which separates the ferromagnetic
1

0.9 0.8 1
0.6 0.6 1
0.3 2
ol 0.4 |
-0.3 0.2
-0.6
-5 -1 05 0 05 1 15 0t . . . . . . ]
hy 0.1 0 01 02 03 04 05 06
Kk
FIG. 14. Sketch of the phase transitions of the tricritical BC
model in the parameter spate,,Hg) with k4=0. The fixed points FIG. 15. Hysteresis loop of the bulk vacancy dengigyof the
are denoted by the black circles, and the arrows show the directioBC model withK=1.8 andD=3.555 35 vs surface coupling en-
of the renormalization flow. hancemeni,. The system size ik=63.
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N o

Critical
Ky

First—order

0 I 1 I I 1 1
0.1 0 01 02 03 04 05 06
Kk

FIG. 16. Hysteresis loop of the edge vacancy dengitpf the
BC model withK=1.8 andD=3.55535 vs surface coupling en- exp(D/K) 12
hancemeni,. The system size ik=63.

FIG. 17. Sketch of the edge phase diagram of the BC model for
Hs=0. The fixed points are shown as black circles, and the arrows

the leading and subleading bulk thermal exponentsygre T
show the renormalization flow.

=12/7 andy,,=4/7,respectively, and the magnetic ones are
Y =40/21 andy;,=22/21[20,21. By means of a sparse
transfer-matrix technique, the tricritical point on the squareand xq=0. The edge order parameter was definedngs
lattice has been determind®3] as K,=1.649 9185) and  =[(p1~p2)*+(p2~p3)*+(p3—p1)?]/2, in which p; is the den-
D,=3.152 17810); the tricritical vacancy density isp sity of the edge spins in stateAccordingly, we sampled the

=0.345 775). ratio Qg =(m?)2/(md). The Q4 data are partly shown in Fig.
On theL X L open cylinder, the Hamiltonian of the dilute 18. They indicate a special edge transition nea¥0.7. The
q=3 Potts model reads Qg data were fitted by Eq(17), in which the correction
exponents were fixed at=y;=-10/7 [3], y,=-1, y3=-2,
HolkeT — Hp/ksT and y,=-3. We obtainQg.=0.9412), «,=0.7022), and

yE:):0.282{5). Near this special phase transition, i.&

=0.7022) and x4=0, we also analyzed the edge susceptibil-

L L
= KE 50'X‘1,0'X’L(l - 50')(’1,0) - KKkE [50
x=1 ity xs by Eq.(18). The fit yieldsX(?=0.13315).

%,1x+1,1
x=1

X (1 - 6o'x 1,0) + 50')( L1041 L(l - 6o'x L,O)]
L ’ ' ’ L’ B. Field-driven edge transitions

-Dky>, (8, L0+ B0, 0 ~ Hy > (85, 1% 00 1) Next, we simulated the tricriticaj=3 Potts mode{20) in
x=1 : k=1 : the presence of the surface magnetic fidlg; the other sur-

oot oot face enhancements were taken g4s «3=0. The system
Ms1 Ms1 sizes were taken as ten odd values in the rangd. %49,
2 gl(g AL 2 5(5 8% 0 ) and we sampled the bulk rati@, in Eq. (16). Analogous to
the case of the tricritical BC model, edge phase transitions
(20) are introduced by the fieltlg;. Nevertheless, the symmetry
The surface magnetic fieldg, serves to enhance the statis- between the positive and the negative field is now absent.
tical weight of the Potts state=1 with respect to states  The Q, data were fitted by E¢(17), and we found two edge
=2 ando=3.

In analogy with the BC model, the systei20) has a line
of bulk critical points forK <K, in the same universality
class as the “purej=3 Potts model. Thus, only the ordinary 0.96 r
phase transition occurs on the open edges, with a surface
magnetic exponenyff;):l/& aspredicted by Eq.4). For ~
K>K,, a first-order transition can be induced by enhance- & 094 -
ments of the surface couplings and the chemical potential. In
the present work, we concentrate on the case that the bulk is
precisely at the tricritical point. 0.92

E & T T

A. Special phase transitions

We simulated the tricriticafj=3 Potts model20) on the
L XL open cylinder by means of a combination of the Me-
tropolis and Wolff methods, with the linear size in the range FIG. 18. Surface magnetic rati, of the tricritical g=3 model
7<L=65. The bulk parameters were set at the aforemenys coupling enhancemert. The data points-, [, O, A, and ¢
tioned tricritical point, and the surface parameter$lgt=0  represent.=7, 15, 23, 31, and 39, respectively.

0.66 0.68 0.7 072 0.74 0.76 0.78
Ky
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K, TABLE IV. Theoretical predictions of the surface thermal and

magnetic exponemﬁg andyffs) at the special phase transitions for
° the tricritical g-state Potts model with=1, 2, 3, and 4. The param-
eterg is the Coulomb gas coupling constant.

Model gq=0 g=1 g=2 g=3 q=4

g 6 16/3 5 14/3 4

y 2/3 1/2 215 217 0
- H &
: y 1 15/16  9/10  6/7 3/4
-

cludes that, in two dimensions, it depends on the strength of

FIG. 19. Sketch of the edge phase diagram of the tricritipal BUIK critical fluctuations whether other types of edge phase
=3 Potts model in théH , k) plane forky=0. The fixed points are ~ transitions can occur.
denoted by black circles, and the arrows show the renormalization Let us now address the question of what are the exact
flow. values of the critical exponents describing the edge phase
transitions described in this work. At the special transitions,

transitions atHg;.=0.571G15) and —2.273). At these two  ©One has the exact res 2(g=1)=1/2 for thetricritical
points, the asymptotic values of the ra@g are 0.4624) and =1 Pott_s model. For the case of the tricri'gical BIume-QapeI
0.2328), respectively; those of the renormalization exponentmodel, in the context of superconformal field theory, it has
YLs are 0.2783) and 0.2808), respectively, which are identi- been predicted th?)t the surface thermal and magnetic expo-
cal to each other within the estimated error margins. Fronfents arg23,24 y.2=2/5 andy\2=9/10, respectively. For
these results, we conjecture the loci of the edge transitions ithe whole tricritical branch of the Potts model, it has been
the plane(x,,Hg) as sketched in Fig. 19. recently conjecture@28] that, in terms of the Coulomb gas

In addition toHg,, the surface magnetic fieldsl, and  coupling constang, the exact expressions @’ffs) and yi?
Hg, can also be applied to the Potts systé@). Thus, for  read
the casecy=k=0, Fig. 20 illustrates the edge phase diagram

in the spaceHsg,Hg, Hsa). Y\ = (3g - 6)/2g andy'¥ = 2 - 8, (21)

V. DISCUSSION respectively. These values ;aﬁ andyﬁ? are one-half of the
leading and subleading bulk thermal exponegtsandy;,,

By means of Monte Carlo simulations and finite-size scal . > .
ina. we have found that rich surf ritical bhenomena stilf €SPectively. For the trlcrltlc_al Potts models_qu:F_O, 1, 2,
g, we have found that rich surface critical phenomena st 3, and 4, the results according to E81) are listed in Table

occur in two-dimensional systems with short-range interac= s ) _
tions only. In particular, when the bulk of a Potts model is at'V: A remarkable feature is that the expr_essmn/ﬁjf in Eq.

the tricritical point, edge transitions are introduced by en-(21) can be simply obtained by substitutigg: 16/g’ in Eq.
hancements of the surface couplings and the chemical poteff): Which describes the surface magnetic expoyﬁ’gﬁat the
tial, and by a surface magnetic field. For the critical brancrPrdinary phase transitions. The underlying meaning of this
of the Potts model, however, only the ordinary phase transiProcedure is clear for the tricriticaj=1 Potts model, be-

transition of the Ising model and the Coulomb gas coupling

. of these two models arg=16/3 and 3, respectively. For a
4 pair of critical and tricritical Potts models, we note that the
relation gg’=16 has been reported6,37 in other cases.
Thus, Eqg.(21) might mean that the effect of surface cou-
plings K in a tricritical Potts model is equivalent to that of
the magnetic fieldHg in a critical system, the two models
being related agg’ =16.

For the tricriticalq=1 Potts model, Eq(21) predicts a
surface magnetic exponeytﬁzlS/lG. It is known that the
bulk Potts magnetic scaling dimensidy=5/96 is thefrac-

‘ tal dimension of Ising clusters, which connect nearest-
\ neighbor Ising spins of the same sign. Thus, one would ex-
. pect that the exponevfs) governs the scaling behavior of the
FIG. 20. Sketch of the edge phase diagram of the tricriipal COrrelation functiong"(r), which is defined as the probabil-
=3 Potts model as a function the surface fields #gr x,=0. The ity that a pair of edge points is in the same Ising cluster.
fixed points are denoted by black circles, and the arrows illustratélowever, it has been shown that the decayg®fr) is de-
the renormalization flows. scribed by a geometric scaling dimensig=1/6 [28], dif-

disordered

Hs3
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ferent fromxffs)=1/16. The physical interpretation gffs) is
so far not clear.

For the tricritical BC model, the results obtained from Eq.

(21) are in agreement with the predictions in Ref23,24].

In particular, the predlct|0|yts)—2/5 is well confirmed by
our numerical resulj(t =0.3957). However, the exact value
—9/10 isonly marginally consistent with the resq}ﬁs)
—0 91438) for the casec;=H,=0 andx,.=0.56624). On the
other hand, at the critical poim@c=—0.928024), Kkg=—, the
result yLs,;:O.QOZ(Z) is in good agreement wittyffs):9/10.

This might be taken as a suggestion that the end point of th

line of special transitions aky=-c in Fig. 10 acts as an
unstable fixed point with the expected exponyzﬂt:QI 10,

PHYSICAL REVIEW E71, 026109(20095

The q=4 Potts model is a marginal case for several rea-
sons. First, the critical and the tricritical branches of the Potts
model join atg=4. Second, Eq(4) predicts that, at the or-
dinary phase transitions, the surface magnetic scaling field is
marginal, i.e. ,yh‘Q:O Third, Eq.(21) yields y<5>—o so that
the surface coupling and the chemical- potentlal enhancement
become marginal. However, the predlctlxq(,@—SM accord-
ing to Eq. (21 is apparently different from the exponent
yﬁ’s):o. The resulty(s)—o also differs from the existing sur-
face thermal exponent,=-1[35]. These phenomena indi-
Eate that there exists a special phase transition foiqthé
Potts model.

while the rest of the line is attracted by another fixed point.

However, the numerical evidence is only marginal,
moreover, if the end point at ;=—c is a fixed point, then

and
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