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Simulation algorithms for the random-cluster model
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We compare the performance of Monte Carlo algorithms for the simulation of the random-cluster represen-
tation of theg-state Potts model for continuous valuescpfin particular we consider a local bond update
method, a statistical reweighting method of percolation configurations, and a cluster algorithm, all of which
generate Boltzmann statistics. The dynamic exporeitthe cluster algorithm appears to be quite small, and
to assume the values of the Swendsen-Wang algorithng$& and 3. The cluster algorithm appears to be
much more efficient than our versions of the other two methods for the simulation of the random-cluster model.
The higher efficiency of the cluster method with respect to the local method is primarily due to the fact that the
computer time usage of the local method increases more rapidly with system size; the difference between the
dynamic exponents is less important.
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I. INTRODUCTION dimensions. Although this question can also be studied by

The Potts modef1], which can be seen as a generaliza-Means of analytical approximatiofisl, 12, their accuracy is
tion of the Ising model, has been the subject of considerabléifficult to estimate and numerical tests are thus desirable.
research in recent decad@j. Many of these investigations Furthermore, some critical exponents, for instance, the so-
make use of the Kasteleyn-Fortuin mapping on the randomealled backbone exponent of the Potts model is not exactly
cluster mode[3]. Remarkably, the symmetry parameteof ~ known, even in two dimensions. It may be determined nu-
the g-state Potts model appears as a continuous parameter inerically as a function off by means of Monte Carlo meth-
the random-cluster model. Thus the random-cluster model isds, and then it is natural to include noninteger valueg of
a generalization of the Potts model to noninteger valuas of [13] for a more complete coverage.

(and on this basis one might even choose to refer to such a A local Monte Carlo algorithm for the nonintegey
model with nonintegeq as a Potts modgl For the integer random-cluster model in two dimensions was formulated by
g=1, the random-cluster model reduces to the bondSweeny{14]. It updates individual bond variables. Although
percolation model. it has been reported that critical slowing down is ab$#&Bt,

Another mapping, formulated by Baxter, Kelland, and Wuthe Li-Sokal method16] is also applicable here and it fol-
[4], leads from the random-cluster model on a planar latticdows thatz= «a/v where « and v are the specific-heat and
to the six-vertex model, which is a limiting case of Baxter’s correlation-length exponents, respectively. Therefore systems
eight-vertex mode[5]. This second mapping lends further with a positive specific-heat exponemimustdisplay critical
physical meaning to the random-cluster model. slowing down, as has been confirmed Idt&r]. In this al-

While many questions concerning the random-clustegorithm, the transition probabilities depend on nonlocal in-
model could be answered exacf,7], in many cases, espe- formation: whether neighbor sites are connected by a perco-
cially in more than two dimensions, numerical approxima-lating path of bond variables. Thus the execution of a bond
tions are needed. For integgr 1 one can obviously apply a update may require the exploration of a large percolation
Metropolis-type algorithm to the Potts representation of thecluster. Since the pertinent cluster size is divergent at criti-
model. However, such simulations suffer from the critical- cality, the number of operations needed for an update of the
slowing-down phenomenon, which inhibits the investigationsystem increases faster than the number of ditéa the
of relatively large system sizes. This problem was partlysystem. How much faster it increases still depends on the
solved by Swendsen and Wafg||. Their algorithm is non-  sophistication of the algorithm; the Swe€liy] algorithm is
local in the sense that arbitrarily large groups of Potts varitelatively efficient because it avoids the formation of a whole
ables are flipped at the same time. As a result, critical sloweluster by following only its perimeter instead.
ing down, as expressed by the dynamic exponenis In a different approach, H{118] applied a statistical re-
reduced, though not eliminated. The dynamic exponent isveighting procedure to bond percolation configurations in
still dependent on the number of stateand the dimension- order to sample thg+ 1 random-cluster model. While this
ality d, as reviewed in Ref.9]. model has no critical slowing down in the sense that it gen-

Simulation methods have been developed as well for nonerates uncorrelated configurations, the number of samples
integerg. While the random-cluster model is rich and inter- needed before a significant weight occurs increases rapidly
esting in its own right, the work on such algorithms for gen-with the system sizg19]. In practice, this effect is similar to
eralg may further be justified by fundamental questions suclcritical slowing down in the sense that many simulation steps
as whether the renormalization scenalri®| for the two- have to be performed before a meaningful new sample is
dimensional Potts model does also apply in more than twabtained.
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Given the recent simulatiorj43,15 that have been per- does not depend on whethieand | are connected.
formed using the local bond update method, it would be In the statistical reweighting method as formulated by Hu
interesting to compare with the performance of a cluster alf18] one generates independent configurations of bond vari-
gorithm for continuoug random-cluster models. Indeed the ables using the percolation model. This ensemble of configu-
Swendsen-Wang algorithm can be adapted to include nonimations can be described by E®) with q=1. The bond
teger values ofg; such an algorithm was described by probability is p=u/(u+1). Thus the probability distribution
Chayes and Machtg20]. The resulting cluster algorithm is of {b} is
simple, and requires only of ordBroperations for an update N Neon .
of the system. But it is applicable only for=1. Pg=1({b}) = p"(1 — )™ = U™/ Zy-y, 3)

In this work we report a comparison between our versiongyiin
of these three algorithms for noninteger valuegjofVe il-
lustrate their performance by means of simple applications,
and we estimate the dynamic exponent of the cluster algo- Zy=1=
rithm for three values of]. We feel that our findings may be

of some use for those planning numerical investigations ofyhere N, is the total number of nearest-neighbor bonds in
the random-cluster model. In Sec. Il we summarize the algothe system. The expectation value of an observablge-

1
1> ]u%(l +u)o, (4)

(ij) by=0

rithms, and we report our results in Sec. Ill. pending on{b} is, in the random-cluster model,
1
Il. ALGORITHMS (A)gre= {]‘[ > ]Aq”cu”b/Zb. (5
For the convenience of the reader, we summarize the three i by=0
algorithms for the simulation of the random-cluster model.This can be rewritten as
To expose the close relation with the discrgtPotts model, 1
we start from the Potts partition sum [Hm Ebi:o ]Aqncunb Zoes
(Mrc= ‘ X == = (Ad)p/(q")p,
N g Zy=1 Zy
Z,=| [T 2 |TT exp(Ks,,), (1) ®)
i=1 o;=1 | (ij)

. . . Where the subscrig® denotes averaging on percolation con-
where theo; are site variables, and the second product 'Sfigurations generated by Eq3). The advantage of this
over all nearest-neighbor paif§). The couplingk includes method is that the relevant quéntitié&q"c and g can be

a factor 1kgT and is restricted t&=0. The mapping on the  g5pjed on the basis of percolation configurations which are
random-cluster modef3] eliminates the site variables; | correlated, and simple to generate. The disadvantage is
=1,2,... g after introducing bond variablet; =0 or 1 be- o+ the reweighting factar™ can vary, in particular for large
tween neighboring siteisandj. Bondsh; =1 (0) are consid- gy tem sizes, over such a large range that, among the gener-
ered to be preseriabsent In terms of the new variables one 404 configurationgb}, those which contribute significantly
obtains the random-cluster partition sum to the(- - -)» averages become very scafds.

1 e The cluster algorithm can conveniently be described in
Z,=Zo=| 11 > |geue=> ] quw, (2)  terms of a mapping between the random-cluster model, Eq.
(ij) b;j=0 {b} k=1 (2), and a model with site as well as bond variables. To this

whereu=eX-1, n, is the number of present bonds, and PUrpPose one defines auxiliary “color” variablgs 0 or 1 for
the number of clusteréor components formed by these €ach clustek=1,2,... ng

bonds. The sum ofb} is shorthand for the sum on all bond ne 1 o~ -
variables, anahf)k) is the number of nonzero bonds in tkif Zy= STIS um W[ (g - Lus %, (7)
cluster. {b} k=1T,=0

Equation(2) can serve directly to formulate a Metropolis-
type importance-sampling algorithm for local updates of th
bond variables;;. A bond(b;;=1) contributes a reduce(e.,
divided by kgT) energy If1/u) if sitesi and|j are already
fr?:;e;fdngty :;nngzc?’tager.rphzﬁz ?r:eSlIJg(r:]alb?Jr;)%Sa{tgf)l? a:f bonBond variable, so that all sites in one cluster have the same
variable requires the performance of a task that is essentiall@mor:

Clusters of color 0 and 1 have weight 1 agd1, respec-
etively. The sum over the colors can be replaced by a sum
over N site-color variable§ =0 or 1 if, at the same time, one
includes a factors?j (with the convention B=1) for each

nonlocal: to determine whethérand j belong to the same Ne
cluster. After completion of this task, the energy change due Zo=Zp=> 211 (U5titj)b”H (g-1)lsw, (8)
to the bond “flip” is known, and thereby the transition prob- {t {0} i) k=1

abilities. Given the time-consuming nature of the task men
tioned, one naturally avoids it if not necessdfb]. The

latter possibility arises if the value of the random numbe
used for the bond update is such that the re@yle0 or 1) type 0 :tj=t;=0;

wheres(k) is a site in thekth cluster. For a given site con-
rfiguration{t} one distinguishes three types of bor(d9:
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type 1 :t;=t;=1; needed during the cluster formation process. The information
to which cluster a site belongs is stored as an integer that is
type 2 <t +1,= 1. unique for each cluster.

Accordingly, superscripts are appended to the pertinent sum- ll. TESTS AND APPLICATION

mation and product signs ] ) o
We have tested the three algorithms under investigation

n by comparing their numerical results mutually and, der2,
Zo=2 | 2 OTT@Qubi || > OT] Db ] (g-1) w!th' those of' c_onventlonal algorithms. The results agree
@ Lo Gj) oy <) k=1 within the statistical errors.

@TT @(1 =p..
X[% <1;[> (1 b”)]' ©) A. Application to specific-heat calculation
o To illustrate the use of the Monte Carlo algorithms under

where the clusters of color 1 are labele®, ... n.". Execu-  cqnsideration, we have calculated the Potts specific heat for
tion of the type 0 and 2 sums and rewriting the type 1 SUMyq random-cluster model on the square lattice for two non-
yields the partition sum expressed in site variables, and bonﬁi]teger values). These areq=4 cod(77/22)=1.169-- and
variables only of type 1: q=4 co2(57/14)=0.753--. The dimensionless specific heat

N (specific heat divided biXkg) is here defined on the basis of

i (K differentiation of the free energy density Znto the Potts

Zio= 211 = % LE[) O u)]% v kI:[l (@=Du® . couplingK, with Z, e.g., definedggs in E(ﬂé):

(10 c— K2#Inz
- 2

Just as Eq(2) describes the probability distribution of bond N oK
configurations of the random-cluster model, EtQ) repre-  with 9/ JK=€eXg/du. Since the the sum, of the bond vari-
sents the probability distribution of a system with both siteables is conjugate to lm, the specific heat can be obtained
variablest;=0,1 andbond variablesb; between nearest- from the fluctuations ofy,. It is sufficient to sample the first
neighbor sites of type 1. The random selection of clusters ofwo moments of,;
color 0 with probability 14 leads to the ensemble of E@)

11

which describes a system of both site and bond variables. A ~_ K_2 (u+ 1)2(<n2> —(ny) = (Np)?) + ut 1<n )
partial summation on bond variables then leads to (E6). N u? b o b u
In a Monte Carlo application of this mapping one makes use (12)

of the fact that the terms in the partition sums are propor-

tional to the probability corresponding configuration. Subse- The value of the temperature exponent of the Potts model
quent assignments of values to random variables in thés known as a function af. This expression was conjectured
Monte Carlo procedure are decided such that the resultingy den Nijs[21]; see also Ref[7]. For the specific-heat
probability of each configuration is in agreement with theexponent « _this expression leads toa=4/3-2/
partition function as expressed in the pertinent variables,3—6 arccoé/q/2)/m]. This formula allows us to select the
This guarantees that the equilibrium distribution is alwaysvalue ofq corresponding to a given value af

maintained. Thus starting from a bond configuration drawn We first simulated theq=4 cog(7x/22) Potts model,

from the equilibrium ensemble of EQ): which has a specific-heat exponert-1/2. We have calcu-
(1) assign color 0 to each cluster with probabilitygl / lated the Potts specific he@tof the square-lattice model in
(2) erase all bonds;;=1 between type-0 sites; a suitable temperature range, and obtained the curve shown
(3) choose new bondk;j=1 between type-0 sites with in Fig. 1, which does indeed display a square-root type cusp
probability u/(u+1); as implied bya=-1/2. During these simulations we found
(4) form clusters on the type-0 sites; that the cluster algorithm was the most efficient one, i.e.,
(5) erase the color variables. produced a more accurate result in a given computer time.

Here we have stochastically executed the step from Eqdhe results in Fig. 1 are those generated by the cluster
(2~(7), followed by the steps leading to E(L0); and then, algorithm.

in reverse order, back to EQ). This leads to a new bond Next, we simulated the square-latticg=4 co2(57/14)
configuration that again satisfies the equilibrium statistics oPotts model, which has a specific-heat exponent-1. We

Eqg. (2). We note that these steps resemble the Swendsehave calculated the Potts specific heat and obtained the curve
Wang procedure; a difference is that one here uses 2 insteatiown in Fig. 2, which does indeed display a pronounced
of g colors, and that they are not treated equivalently. Thekink as implied bya=-1. The results in Fig. 2 are those
use of a probability 1d restricts the useful range of the generated by the local bond update algorithm, because it be-
algorithm togq> 1. The above description of the algorithm is came clear that it was more efficient than the reweighting
given such as to closely follow the mapping; the actual pro-algorithm.

cedure is even simpler because it is not necessary to keep These two figures, together with the well-known logarith-
track of the bond variable§;;. These variables are only mic divergence of the specific heat fgr 2, illustrate that the
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03 | ' ' ' ' ' random-cluster modek physical For instance, its energy
(not reducell Egc=—kgT{n. In g+n, In u) is a well-behaved,
025 | increasing function of the temperatufewhen the nonre-
duced parametelgT In g andkgT In u are kept constant.
02
B. Efficiency of the algorithms
© 015 ¢ While the dynamical exponent is an important factor in
the efficiency of an algorithm, it is not the only one. The
0.1 r degree of overlap between generated and target distributions
is crucial in reweighting methods, and furthermore, the com-
0.05 r puter time per spin update may depend strongly on the sys-
tem size. From a practical point of view one may be inter-
0 0 ested in the computer time needed to reach a result with a

given statistical accuracy. Thus, to compare the performance
of the three algorithms in a quantitative way, we have simu-
lated the two-dimensional random-cluster model on the

tureT=1/K. The statistical errors do not exceed the size of the datgduare lattice, and determined a dimensionless ratio similar
points. The data points are extrapolations of finite-size data in th&® the Binder cumulanf22]. To this purpose we sampled

range 6<L <384, obtained by means of the cluster Monte CarloPoWwers of the cluster sizes

algorithm. The finite-size data converge exponentially except at the Ne

critical point where power-law behavior occurs. Satisfactory con- gm = E qy (13)
vergence was found for all except in very narrow range@T k=1

~0.02 on both sides of the critical point.

FIG. 1. Dimensionless Potts specific he@ of the q
=4 cog(7w/22)=1.169-- random-cluster model versus tempera-

wheres, is the size of thekth cluster, form=2 and 4. Then

critical singularity becomes less strong whandecreases. the dimensionless ratiQ is defined as

The use oK as the temperature parameter facilitates a com- (52)2

parison with the results for the integgrPotts model. The Q= (3(SD)2_ 25 (14

negative specific heat faq=4 co$(57/14) <1 reflects the (8(8%)7-25%)

fact that the Potts energy per bond decreases with tempergich, for the cas@=2, reduces to the ratio of magnetiza-

ture: the reduced energy §in the ordered state art/qin  tion moments(m?2/(m*). The computer time per lattice

the disordered one. This illustrates the unphysical nature Cgite needed to reach a statistical accuracy of 0 Q serves

the Potts model forg<1l. We note, however, that the as an inverse measure of the efficiency. The results in terms
of t=(10%8Q/L)%tg, wheretg is the CPU time of a run in

0 ' ' ' ' ' ' ' secondsdQ is the statistical error ilQ, andL is the linear

system size, are shown in Fig. 3. These results indicate that

the cluster algorithm is more efficient than the other two,

increasingly so for larger system sizes. The reweighting

method appears to become rapidly inefficient with increasing

system sizes. Here one may remark that a simple statistical

analysis of the probability that the Monte Carlo algorithm

generates a state in the center of the target distribution yields

factors in whichN appearsn the exponentThis argument

thus indicates that the data foobtained by the reweighting

method increase exponentially witlf.

The interpretation of the results in Fig. 3 still requires
some reservation. First, the reweighting method naturally be-
comes more efficient whemapproaches 1. Nevertheless, the

T ' ' data shown are clear enough to indicate that the useful range

FIG. 2. Dimensionless Potts specific he& of the q ofq .IS quite narrow for the reweighting melthod..Seconc.i, our
=4 co€(5m/14)=0.753-- random-cluster model versus tempera- ¥&'S!0N of the local bond.—update algorl_thm IS relayvely
ture T=1/K. The statistical errors are larger than in the precedingSlmple and forms clusters, instead of tracing their perimeter

figure, in some cases they exceed the symbol size. The data poir®$ I Sweeny’s version. Since the fractal dimension of the
are extrapolations of finite-size data in the rangel4<40, ob- ~ Perimeter is smaller than that of the cluster itself, Sweeny’s
tained by means of the local bond-update Monte Carlo method. Th¥€rsion is expected to be more efficient than ours for suffi-
finite-size data converge exponentially except at the critical poin€i€ntly large system sizes, but at the expense of a more com-
where power-law behavior occurs. Satisfactory convergence waglicated code. Given the simplicity and efficiency of the
found for all T except in narrow range@T=0.2) on both sides of ~ cluster algorithm, we consider it the best choice for the in-
the critical point. vestigation ofq>1 models.
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FIG. 3. Computer time usageof the three algorithms for the FIG. 4. Autocorrelation times versus system size for three

simulation of the continuoug-random-cluster model, versus linear critical Potts modelsq=1.169-- (A), g=2 (O), andg=3 ((J) on
system sizeL. The timet is determined as the computer time in logarithmic scales. These results were obtained using the
seconds per lattice site required to reach an accuracy éfin@nhe continuousq cluster algorithm. The statistical errors do not exceed
dimensionless rati@ of the random-cluster representation of the the size of the data points.

critical g=2 Potts model. The data points apply to the statistical
reweighting methodA), to the local bond update meth¢@), and

slowly converging correction terms in the autocorrelation
to cluster updateé®).

times; such corrections could also be present in our results
for the continuousy cluster algorithm, and thus also explain
C. Dynamic exponent of the cluster algorithm the difference with our value of.

As mentioned in the Introduction, the reweighting method Espeually forq:2 the autoco.rrelatl_on times are not well
does not suffer, at least formally, from any critical slowing 4€SCribed by a single power law the fits suggest the presence
down, and thus its dynamic exponentzs0. The dynamic ©Of @ second term proportional td with 2’ ~—0.4. Allowing
exponent of the local bond-update method has recently beR" such a contribution we obtaiz=0.25410) for q=2,
investigated by Wanet al.[17] for =2 and 3. Their analy- Which is consistent with a result=0.251) [24] for the
sis, apparently more accurate than earlier investigationSwendsen-Wang algorithm, but larger than a more recent de-
[14,15, reported nonzero but still rather small valueszof termination[9,25] which led toz=0.2227) on the basis of
that are, depending on the value @f comparable with, or system sizes up th=512. We found that oug=2 result for
even somewhat smaller than those of the Swendsen-Wargdepends considerably on the choice of the fit formula and
algorithm. Forg—1 one expectz—0 because the bond the range ofL. Instead of adding a second term, one can
variables become independent. To evaluate the dynamic un¢hoose to skip the smallest system sizes in order to obtain an
versality class of the cluster algorithm for continuayswe  acceptable value of the residugl. For system sizes in the
have determined the dynamic exponerfor three different range 66<L <160 we thus find=0.2655). This number, as
values ofg, on the basis of simulations afx L square lat- well as y?, increases when the lower limit of therange is
tices with sizesL=6,12,...160. We sampled the energy decreasedthese numbers agree better with earlier determi-
and determined its autocorrelation timgs in units of clus-  nations[8,26] which are close t@=0.3. Under these cir-
ter steps as described in Sec. I, from least-squares fits to thimstances, we do not assign much significance to the dif-
exponentially decaying autocorrelation function. The resultderences between the reported valueg @r the Swendsen-
are shown in Fig. 4. We have analyzed tHeilependence as Wang algorithm and the continuogs<luster algorithm.
7.=L? by means of least-squares fits. We obtz#0.081)  These differences are of the same order as those between
for q=4 cog(7x/22), and z=0.5518) for q=3. The result different results reported for the Swensen-Wang algorithm
for q=3 is consistent with an existing result for the and may be attributed to unresolved corrections to scaling.
Swendsen-Wang algorithm, namedy0.561) [17], but it is
larger than the result of a more detailed sty@g], using
system sizes up th=1024, which isz=0.5156). The ques- We are indebted to J. R. Heringa and J.-S. Wang for valu-
tion thus arises whether the difference with the continupus- able discussions. This research was supported by the Dutch
cluster algorithm, which amounts to a few standard deviaFrOM Foundation(“Stichting voor Fundamenteel Onderzoek
tions, indicates that the dynamic universality classes of theler Materie’) which is financially supported by the NWO
two algorithms are different. We do not consider the numeri{“Nederlandse Organisatie voor Wetenschappelijk Onder-
cal evidence to be sufficient to reach such a conclusion: izoek”. We acknowledge the hospitality of the Institute for
was noted in Ref[23] that the largest system sizék  Mathematical Sciences of the National University of Sin-
=128 led to a significantly smaller result in comparison gapore(2004, where we learned about the present status of
with the smaller system sizes. This suggest the presence obntinuousg Monte Carlo algorithms.
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