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Surface critical phenomena in three-dimensional percolation
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Using Monte Carlo methods and finite-size scaling, we investigate surface critical phenomena in the bond-
percolation model on the simple-cubic lattice with two open surfaces in one direction. We decompose the
whole lattice into percolation clusters and sample the surface and bulk dimensionlesQyatiaQ,, defined
on the basis of the moments of the cluster-size distribution. These ratios are used to determine critical points.
At the bulk percolation threshold,., we determine the surface bond-occupation probability at the special
transition asp(fg:O.AflS 172), and further obtain the corresponding surface thermal and magnetic exponents as
yii):0.53812) andyﬁfl):l.80146), respectively. Next, from the pair correlation function on the surfaces, we
determiney(h"l):l.02464) and yfff=1.2€(6) for the ordinary and the extraordinary transition, respectively, of
which the former is consistent with the existing regtﬁ@zl.0244). We also numerically derive the line of
surface phase transitions occurringpgt py,, and determine the pertinent asymptotic values of the universal

ratios Q; and Qy,.
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[. INTRODUCTION bulk undergoes a second-order transitiorKatK. between
the paramagnetic and the ferromagnetic states, denoted as BP

For a system undergoing a second-order phase transitiognd BF in Fig. 1, respectively. When the surface coupKag

it is now well establishefil-11] that, due to long-range cor-

i di h b | d Tgéignificantly modified. For instance, for a paramagnetic bulk
nificant, and in many cases, they cannot be neglected. The' e surfaces can behave as an antiferromagnet

surfaces can display critical phenomena that differ from th SA
> . . _ . , a ferromagne{SH, and a paramagnésP, depend-

bulk critical behavior; for each bulk universality class, d|f-eitng E)n the sign gnd(thlz strengtr? ks, Tr?e f:o?respgnding
fer(;nt surface ur;(lverslaléty cla:csseshcan feX'St‘ itical oh phase transitions occurring on the surfaces are referred to as

ecause our knowledge of such surface critical phenomg,, «gyrface transitions['1], and they are represented by the
ena in percolation problems is limited, we first review thesolid curved lines in Fig. 1. Due to the absence of long-
Ising model with nearest-neighbor interactions on a threez, 04 ik correlations, these surface transitions display the
dimensional lattice with periodic and free boundary condi-  iical behavior of the two-dimension&2D) Ising model
tions in thexy plane and_along the d|r_ect|pn, respecuvely. with anti- or ferromagnetic couplings,; <0 or K;>0, re-
In other words, for a finite system with linear sike there spectively. Therefore, the corresponding thermal and mag-

are two open surfaces a=1 and z=L. The interaction : _ _ ;
) netic exponents ang=1 andy,,=15/8[12], respectively. For
strengthsk; on the surfaces can assume values different P " Vi [12] P ¥

from K in the bulk. The Hamiltonian of this Ising model can \
then be written into two parts: a bulk term proportional to the K special
volume of the system and a surface term proportional to the
surface areas, i.e.,
ordinary sP surface
HikgT=-K2 Pss -HY s -K, X Oss,, SAF \ |7 / i
G k (Im) Bp 1l el
-Hi Y s, (s= 1), (1)
n SAF SF
BF BF extraordinary

where the first two sums account for the bulk and the last
two sums involve the spins on the open surfaces. In the ab-

sence of bulk and surface magnetic fieldsand H,, the 0 K
phase diagram of the mod€l) is sketched in Fig. 1 for the

caseK >0. When the bulk temperature K /is lowered, the FIG. 1. Schematic phase diagram for the three-dimensional

Ising model, in terms of ferromagnetic bulk couplingsand the
ratio k=K,;/K of the surface over the bulk couplings. The bulk
transition occurs aK=K.. The bulk phases are denoted as BF for
*Present address: Laboratory for Materials Science, Delft Univerthe ferromagnet and BP for the paramagnet. The surface phases are
sity of Technology, Rotterdamseweg 137, 2628 AL Delft, The Neth-labeled as SF, SP, and SAF for the ferro-, para-, and antiferromag-
erlands. net, respectively.
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surface coupling&,<0, the phase boundaries for the bulk field h, is relevant(y,; >0); botht, andh, are relevant at the
and surface transitions cross at a decoupled critical poirgpecial tfanSitiOf(Kc-K(lsc) .
because of the different signs KfandK;. We shall denote In three dimensions, exact information about critical be-
this decoupled point a($(C,K(1?), and at this point there is no havior is scarce, and determinations of transition points and
indication of any change in the surface universality cfd§s  the corresponding critical exponents have to rely on approxi-
However, the surface critical line fét; >0 terminates at the mations of various kinds. These include mean-field theory,
bulk criticality in a “special” critical point(K.,KY). At this ~ Series expansions, renormalization group theory, Monte

point, both the surface and the bulk correlation lengths aré&arlo simulations, etc. The bulk critical point of the Ising
divergent. Thus, the poin(th,ng) acts as a multicritical model(1) on the simple-cubic lattice has been determined as

point, and the phase transition is referred to as the “speciiﬁczor']221 ?54 55f3)h[1:;]' llhﬁre IS ?ISO dsome co_nsen:{ﬂns]

transition.” WhenK is varied, while the surface coupling is fanadtt ea\r/: ;gfn?t tl gSGUant g ezrrzgza?esm:ng;c %Eﬁrgf?;sr

i{g;gglﬁngfﬂ?; ';1; Kéz’sg]?r;zgﬁgﬁigﬁd tlh netggkcziggul- encg;1 only in the Iést decimall plaée. F?thher, t%\e mean-field
Y 9 P “ ' _analysis and the Gaussian fixed point of #fetheory yield

the critical correlations on the surfaces arise from the diverg: 14] the exact values of the standard magnetic indegs
ing bulk correlation length, and the phase transition is namegll(;)) 9 (@ mag e
B, =1, B;’=1/2, andB;”=1 for the ordinary, special, and

P o : (s)
. > ; " ; .
the "ordinary transition.” For larger couplings;>Ky, extraordinary surface transitions, respectively. The in@ex

however, the bulk transition =K, has to occur in the escribes the asymptotic scaling behavior of the surface
presence of spontaneous long-ranged surface order, becaﬂjse o ymp ; 9 )
magnetizatiorm; as a function of the bulk thermal fielg

the surfaces become ferromagnetic at a smaller coupling e m.oth such that it is related to the renormalization
<K,, and the transition is referred to as the “extraordinary"_"’ 1 ' - . .
exponents asB;=(d-1-yu;)/y;. The mean-field analysis

transition.” Thus, different universality classes apply to the . .
surface transitions of the three-dimensional Ising madiel [;’.14] also(sgp_ves thf crossover exponent at the special ran-
We mention that, although the local behavior near and apiion as® _ytllyt_l./z' From a simple scahng argument,
the surfaces can be modified by the variation of surface pafI was showr{15] that, independent of the spatial .d|men5|on-.
ﬁhty d, tk(\ot)a surface thermal exponent at the ordinary transi-
can be long ranged, the bulk properties of the systBnare  UONS isY;; =—1. Many numerical results have also been ob-
not affected. Naturally, besides the bulk thermal and maggamed. On the simple-cubic lattice, the special tra(rsl)5|t|on of

netic exponents, andy;, additional surface critical expo- the model (1) was located [5,16] at x.=K;;/K.
nents are needed to describe the scaling behavior of thel.500420); the surface exponents are determinedy%%)s
above phase transitions on the surfaces. To illustrate this0.7375) [6,9],y§?=0.9£(6), andy:fl)zl.62(2) [5,16]. These
point, one writes the total free ener§yof the systen{1) as  results, together with the aforementioned bulk exponents,
the sum of a bulk and a surface tefn10] yield the critical indices as%(1°):0.79€{5), 3(15)20.24(1), and
®=0.593). As generally expected for systems below the
upper critical dimensionality, which is 4 for Ising systems,
these values differ significantly from the mean-field predic-
tions.

Beside the Ising model, the right-hand-side gart-0) of
he phase diagram in Fig. 1 applies to a number of other
hree-dimensional systems, including t®¢n) model with
n=<2 and the percolation model. Tl model is a marginal
case of theD(n) model withn=2 in the sense that the two-

F=fV+1,S. )

For a finite system with linear size, the volume and the
surface areas aré=L% and S=2L%1, respectively, withd
=3 the spatial dimensionality. The prefactor 2 counts th
number of the surfaces. The finite-size scaling of the bul‘é
and the surface free energy density,and fs, can then be
expressed as

fo(t,h, L) = L9, (tLY, hLYh) + f(t,h) (3)  dimensional surfaces display a Kosterlitz-Thouless-like tran-
sition for K<K_ [17,18. At the ordinary phase transitions,
and the surface magnetic exponent was numerically determined
as y;?:0.79(115) [6]. In the context of percolation theory,
fa(t,h,ty,hy, L) = L@V (LY hh, 1LY, hy L V) the mean-field analysi§14,19 vyields the critical indices
+f .t 0ty hy). (4) B¥=3/2 andB?=1, and the crossover exponabf’=1/2.

Naturally, these predictions are expected to be correct only at
The functionsf, and fy,, are the singular and the analytical or above the upper critical dimensionality of percolation
parts off,, respectively, and,s andf,, similarly apply to the  problems, which is equal to 6. In three dimensions, a number
surface free-energy densify. The bulk thermal and mag- of Monte Carlo investigations also exig&,20,21. The sur-
netic scaling fields are represented tbgnd h, respectively, face magnetic exponent at the ordinary phase transitions was
and the surface scaling fields Iy and h;, with exponents determined agﬁg):l.OSQG) [21] andyﬁ’l):l.024(4) [9]. The
denoted agy;; andy;, respectively. The finite-size scaling latter result was obtained from predictions of conformal in-
behavior of the surface gquantities is obtained by differentiatvariance combined with simulations of the anisotropic limit
ing Eq. (4) with respect to appropriate scaling fields. For theof the bond-percolation model on a spherocylinder. However,
ordinary and the extraordinary transitions, the surface theras far as we know, a systematic study of surface critical
mal field t, is irrelevant(y;;<0) and the magnetic scaling properties as a function of the bulk and surface parameters is
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still absent. In particular, numerical estimations of the criticalcount the number of sites in each cluster which lie on a
exponentsy.?, yi*, andy\?, have not been reported. For this surface. Thus, for each cluster three numbers are stored in
reason we conduct further explorations. computer memory, which are denotex),, n;;(z=1), and

The outline of the present paper is as follows. Section 1Inj;(z=L), wherei is the cluster number. We refer tg, and
briefly reviews the definitions of the bond-percolation modeln;; as the bulk and the surface cluster size, respectively. On
and of the sampled quantities. In Sec. lll, Monte Carlo datahis basis, we sampled the moments of the cluster sizes as
are analyzed and the results are presented for the ordinary,

the special, and the extraordinary transitions, and for the line _ 1 o 1\12 (=112
of surface phase transitions. A brief discussion is given in 1= 2322 {Ina(z= DI+ [ne(z= L)} and
Sec. IV. .
— 2
lop = WE. Nip 5

II. MODEL AND SAMPLED QUANTITIES

Since their original introduction in 19922], percolation and
problems have been of great research interest to physicists .
and mathematician3], and a variety of application24] _ L _ 4 4
has been reported. In the field of critical phenomena, the lar= 2522 (=D +[na(z=L)} and
percolation theory provides a simple picture and a fascinat-
ing illustration of many important concepts in terms of geo- |, = iz nd (6)
metric properties. In fact, the percolation, together with the ARVE i ib?

Ising model, has become an important testing ground for
various methods and approaches; frequently, they are usethere S=L? and V=L? are the area of one surface and the
for tutorial purpose$25]. volume of the system, respectively. At the bulk percolation

A simple example of a percolation problem is provided bythresholdp,., the scaling behavior of the bulk quantitieg
the following bond-percolation model on a regular lattice.andl 4, in Egs.(5) and(6) is described by the bulk magnetic
Between each pair of nearest-neighbor sites, a bond is occexponenty,,. Analogously, the surface critical quantities
pied or empty with probabilitiep and 1-p, respectively. andl,, are governed by the surface magnetic exporygnt
Two sites connected through a chain of occupied bonds arghich assumes different values in different surface univer-
said to percolate, i.e., to be in the same cluster. Then, variowslity classes.
guestions can be asked concerning the distribution of cluster In Monte Carlo studies of phase transitions, certain di-
sizes, the fractal dimension of the clusters, etc. It is fascinatmensionless ratios32] are known to be very helpful, par-
ing that the bond-percolation model can be generalized to aticularly in the determinations of critical points. Thus, on the
infinite range of universality classes, namely, the randombasis of the quantities defined in Eg&) and (6), we
cluster representation of thg-state Potts moddl26]. The  sampled the surface and bulk ratios defined as
pertinent clusters are referred to as the Kasteleyn-Fortuin
clusters27]. Forg— 1 the random-cluster model reduces to Q1= (I20%(3(15) ~ 2l49) and
the percolation model. As a result, much of the knowledge - 2/(a/12 \ _
that has been gathered for the Potts model is directly appli- Qo = (120 ¥(3(120) = Zlap). @
cable to the percolation model. For instance, the fractal diThe |argeL asymptotic values of these ratios at criticality are
mension of percolation clusters can be identified as the magnijversal. We mention that other definitions of universal ra-
netic scaling dimension of thg—1 Potts model. In two tios are possible, e.g., one can hae=(1,1)2/(l). The par-
dimensions, the bulk thermal and magnetic exponents argejar choice of the denominators in Ef) is due to the
[26] y;=3/4 andy,=91/48, respectively. In three dimen- fqjowing reasons, as given in the language of the bulk ratio
sions, the exact values gfandy, are unknown yet, butthey o First, for the limiting cases, — 0, most clusters contain
have been numerically determing@8—3Q asy,=1.14X5)  qnly a few sites, and the distribution of the cluster sizes
andy,=2.5234), respectively. becomes Gaussian-like far— . In this case, the quantities

In the present work, we also chose the bond-percolatiovp2b in Eq. (5) andly, in Eq. (6) are of the order 1V and 1A/3,
model on the simple-cubic lattice with periodic bOU”dafyrespectiver, so that the asymptotic value approaddgs
conditions in thexy plane and open boundary conditions in _, .)=1/3, which correctly reflects the normal distribution.
the z direction. Again, we allow for different values of the | the other limitp,— 1, a single cluster occupies a nonzero
surface and bulk bond-occupation probabilities which are deg5ction of the lattice, so that one simply h@s(p,— 1)=1.

notedp, andp,. Further, we make use of the existing esti- gecong, it can be shown that, in the case of the Ising model,

mate of the bulk percolation thresholdp,=ph.  the quantitied,, andl,, in Eq. (6) are exactly related to the
=0.248 821 ) [28], whose precision is sufficient for the moments of the magnetization as

present investigation. Just as in the well-known Swendsen-

Wang algorithm31] for the Potts model, we decompose the (M =(lyy and (md=3(12) = 2 4. (8)
lattice into clusters according to the bulk and surface prob-

abilities, p, and p;. The size of a cluster is defined as the Thus, the ratioQ, in Eq. (5) is just the magnetic amplitude
total number of lattice sites in that cluster. In addition, weratio Q=(m2?/(m¢), which has been used extensively.
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FIG. 2. Surface ratid@Q; of the 3D bond-percolation model at FIG. 3. Bulk ratioQ, at bulk criticality py. vs p;. The data

bulk criticality p,c vs the surface bond probability,. The data points +, 00, O, A, and © represent system sizés8, 12, 16, 20,
points+, [, O, A, and © represent system sizés=8, 12, 16, 20,  nq 24, respectively.

and 24, respectively.
Ill. RESULTS

In the percolation theory, quantities known as the mean \ye simulated the bond-percolation model at the bulk per-
cluster_ sizes are of some inter¢®B]. These quantities can ¢gjation thresholgy, = pye=0.248 821 65) [28]. For an illus-
be defined on the basis of, andn;; as tration of the surface critical properties as a functionpgf
1 we took p, in the range 0.%p;<0.62 and the system size
X1= —E "ne(z= 12+ [ng(z= L)]? and asL=8, 12, 16, and 24._The sampled quantities include the
255 surface and the bulk ratiQ; andQ,, and the surface mean
1 cluster sizey;. The Q;, Q,, and y; data are shown in Figs.
Xo=—>, N, (9)  2-4, respectively. These data indicate the existence of the
Vi special phase transition at aqu[lli)zOAZ. The finite-size
I(behavior ofy, in Fig. 4 appears to be rather asymmetric with

where the latter sum excludes the largest cluster in the bul tespect to the location of the special transitiorp%t At the
and the former sum excludes the largest cluster on each sur:

face. Just like the susceptibility at a thermodynamic phasg)(tratordt'niix transﬂmns_l%; Pic: Xm cto n:/hergfestrta;]pltdlt)r/] to ?
transition, the quantitieg, and y,, display a peak at critical- constant as. increases. 1his 1s due to the fact that the clus-

ity ters, with the exception of the largest one, are limited in size.

We also determined the pair correlation functigin), de- /" contrast, at the ordinary phase transitiqms Pres X1 in-

fined as the probability that two points at a distandie in ~ Creases significantly as a function bf This indicates that

the same cluster. For this purpose, a nungt, is stored the surfaces maintain strong critical correlations at the ordi-
" 1 Y,z " .

for each site(x,y, 7). This number is the number of the clus- Nary transition. On the other hand, the asymptotic VQ@Z&

ter to which site(x,y,2) belongs. Therefore, two sites with &S Shown in Fig. 2, is close the Gaussian value 1/3. This
the same value of, ,, belong to the same cluster. On this indicates that the surface critical singularities at the ordinary
basis. we sampledx');:’)zair correlations on the surfaces=at _ transition are much weaker than those at the special transi-

andz=L as tion.
L 350
gll(r =L/2)= E 2 <5c(x,y,l),c(x,y+r,1) + 5c(x,y,L),c(x,y+r,L)> 300
x,y=1
(10) 250
200
and =
150
1 L
912(" = L) = P E <5c(x,y,1),c(x,y,L)>- (11) 100+
xy=1 50
At criticality, the scaling behavior aofj;4(L) andg;,(L) as a 0 -
function of system sizé is described by a power law; the 0 02 03 04 05 06

corresponding exponent is Xg;, whereXp;=2-yy, is the P

surface magr;etic scaling dimension. We further remark that |G, 4. Surface mean cluster sizeat bulk criticality pyc, VS p;.
the quantityL%(l,,) in Eq. (5) can be obtained by integration The data points+, O, O, A, and ¢ represent system sizés=8,
of gy4(r) over the surfaces. 12, 16, 20, and 24, respectively.
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As shown in Fig. 3, th&, data for different system sizes 0.83
display three clear intersections. These intersections corre- 0.82 |
spond with the fixed points for the ordinary, the special, and 0381 |
the extraordinary transition, which are denotedp% p(li) 0.8
and p(li) respectively. As expected, it follows from Fig. 3 079 |
that, along thep; direction,p\” andp® are stable whilep? & 078 f
is unstable. 077 1

0.76 -
A. Special transition 0.75 r
As indicated by Figs. 2—4 the special transition occurs at 8';: I

p(fgzo.42. We thus performed extensive simulations in the 0'416 0'413 0,;;2 0‘422 0_424

range 0.4<p;=<0.44 at the bulk percolation threshofy,. P

The sampled quantities include the surface rgio and the ) o )

surface correlation functiong;; and g;,, etc. The system FIG. 5. Surface ratioQ, at b_ulk criticality ppc in the range
0.415<p;=<0.425. The data points-, X, 00, O, A, ¢, and *

sizes were chosen as 15 values in the rangel 6 120. o
About 2.6x 10° samples were taken for system sizes in the'ePresent system sizek=16, 24, 32, 40, 48, 64, and 80,

rangel < 20, and 4.0 10° for L>20. In order to save com- respectively.
puter time, the actual simulations did not decompose the ) o
whole lattice. Instead, a Monte Carlo step was finished a&f the fits do not significantly depend on the presence or
soon as the two surfaces were completely divided into clus2bsence of the terms withy.
ters. This does not affect the surface quantities such;as  In order to determine the surface magnetic exponyght
and Q,, but the sampling of the bulk quantities suchlgs Wwe fitted thet,; data by
andQ, becomes incomplete. Part of tigg data are shown in .
Fig. 5, of which the clean intersection indicates that finite- (9_ (9 _ _
sige corrections are not very important in the ragio Near  |21(P1L) = L&t 4<aO + g a(py — PMLIM + byLYi + byl
the special critical poinp(fg, we fitted theQ, data by -

+bslYs+ by LY + c(py - p(lsc))LySMyi +n(py

4 4
—_ A0 _ (9kp kyD s
Qu(py, L) =Qy¢ + gl ay(py — Pre) L + |§1 LY+ c(py — P2 + rglYa+ ry(py — PE)LYa+ ry(py
9 o — )2 Va4t — 3 a4 ¢
PO oy )L 4 1oL+ P e L e
— PELYa+ rp(py = P22+ r5(py — p)LY, - p(lsc))Lyii)Wu + Cop(py — p(lsc))szyS)Wil) . (13
(12

where the terms with amplitudg account for various finite- Again, the correction exponents were taken &s
size corrections. We fixed the exponent=y;=-1.1415) =-1.1415) [28-3Q, y3=-2, andy,=-3. In comparison

[28-30, the exponent of the leading irrelevant scaling fieldwith Eq. (12), we have included in Eq(13) the “mixed”

in the three-dimensional percolation model. In principle, ad-effect of the surface thermal field and the irrelevant field with
ditional irrelevant scaling fields can be induced by the operthe unknown exponent,, as described by the terms with,
surfaces, so that we sgi=y;; as an unknown exponent. In

order to reduce the residugf without discarding data for 0.6

many small system sizes, we have included further finite-size

corrections with integer powesg=-2 andy,=-3. The term 05} e
with coefficientn reflects the nonlinear dependence of the ,,c/’
scaling field onp;, and the one witlt describes the “mixed” 041 a_,.t"”

effect of the surface thermal field and the irrelevant field. The 03l e

terms with amplitudes,, r4, Iy, andry arise from the ana- - s

lytical part of the free energy, and the expongpis equal to 02} T

2—2y§fl). As determined later, the surface magnetic exponent /,/ﬁ

at the special transition is aboyf=1.80146), so that we o1 7

fixed the exponent y,=-1.6028. We obtain p(lsc) 0 A
=0.418 172), Q(lsg=0-76292), yii):o_53812)’ and yil 0 0.05 0.1 015 0.2 0.55 0.3 0.35 0.4 045
=-2.420), where the error margins are quoted as two L%

standard statistical deviations. The irrelevant exporygnt

is not well determined, in the sense that the magnitude of FIG. 6. Secor:gl moment,; at the special transitiorp!?
the estimated error is almost as large as the expopent =0.41817, vsL™?. The surface magnetic scaling dimensions
itself. We indeed found that the residuals and the resultX®=0.1986 was taken from the fit.
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TABLE |. Finite-size data 0ofQ; andQ, and their extrapolated values fbr— . The bulk bond probability ig,=p,.=0.248 812 6 for
columns 2-8. For the last column, one s 0 andp,;=1/2, sothat the system reduces to a two-dimensional bond-percolation model at
criticality. For the ordinary, the special, and the extraordinary transitions, the surface probabilities were takgnpgas plzp(lsc)
=0.418 172), andp,=0.54, respectively.

Ordinary Special Extraordinary Periodic
L Q1 Qb Q1 Qb Q1 Qb Qun(3D) Qu(2D)

6 0.463043) 0.528906) 0.78145%3) 0.681835) 0.9537746) 0.753793) 0.629945) 0.873312)
8 0.4340%3) 0.525906) 0.773883) 0.6625%5) 0.9653115) 0.752933) 0.628685) 0.871582)
10 0.416883) 0.524736) 0.769823) 0.659625) 0.9737094) 0.7530%3) 0.628365) 0.870822)
12 0.4056%3) 0.52425%6) 0.7674@3) 0.657925) 0.97973413) 0.753433) 0.628665) 0.870482)
14 0.397673) 0.524096) 0.765843) 0.6567%5) 0.9840643) 0.753693) 0.628995) 0.870292)
16 0.391743) 0.524096) 0.764813) 0.655905) 0.9872382) 0.753913) 0.6293%5) 0.870212)

20 0.383412) 0.524136) 0.763613) 0.654875) 0.9913681) 0.754183) 0.6300%5) 0.870162)
24 0.3779(2) 0.524246) 0.762943) 0.6542@5) 0.9938161) 0.754313) 0.630565) 0.870182)
28 0.3739(2) 0.524476) 0.762623) 0.653735) 0.9953691) 0.754373) 0.631025) 0.870202)
32 0.370842) 0.52445%6) 0.762433) 0.653325) 0.9964071) 0.7544@3) 0.631375) 0.870222)
40 0.366472) 0.524676) 0.762143) 0.652895) 0.9976631) 0.754373) 0.631885) 0.870252)
48 0.3635R2) 0.524766) 0.762113) 0.652595) 0.99836381) 0.754433) 0.632105) 0.870302)

64 0.359513) 0.524996) 0.76225%3) 0.652226) 0.9990711) 0.754236) 0.632625) 0.870372)
80 0.3571(8) 0.525406) 0.762236) 0.651996) 0.9994071) 0.754206) 0.632885) 0.870422)
120 0.35338) 0.525216) 0.762406) 0.651706) 0.9997481) 0.754126) 0.633005) 0.870492)
el 0.34144) 0.52555%7) 0.76292) 0.651308) 1 0.753908) 0.63382) 0.870532)

andc,,. These terms lead to a reduction of the resigfadf  we did not find clear indications of the existence of a term
the fits, but do not significantly modify the results. The sur-with exponenty;;. The fit yieldsQ,; (9-0.651 308). The error
face thermal exponent was fixed at margin may be somewhat Iarger if the correction exponents
(S)—O 5387 as found above. We obtaj Sc)=0.418 164), are different from our choice.

yﬁz—l 80146), andy;;=-0.552). The quoted error margins
include the uncertainty due to the erroryﬁ) The estimate
of the percolation thresholo1C is in agreement with that ) S
obtained from the fit of Q.. The fit yields We simulated at bulk criticalityn,; and took the surface
b,=-0.042), so that the term with, is not very significant. ond-occupation probabilities g%(z=1)=1 and p,(z=L)

The value ofy;, is mainly determined by the term with am- =Poc respectively. In other words, fixed boundary conditions
9-0.418 172) Wwere imposed on the surfage 1, so that all the lattice sites

plitude cy4. For clarity, thely; data atp;= plC _
vO_y on this plane belong to the same clus_te_r. As a consequence,
are shown in Fig. 6.versusz m~%, wherey}) =1.80156) as we only formed a single cluster containing all siteszatl,
determined by the fit. _ ~and we sampled the fractidq, of the sites atz=L in this
We also fitted Eq(13) to the data of the pair correlation | ster and the pair correlation functiogy;. About 2.4
function gy, and obtainpy=0.418 1%4), y;7=1.8016),  x 108 samples were taken for each of 15 system sizes in the
andy;;=-0.542). These results are in agreement with thoserange 4<L<120. The data fol,;; and g;; are shown in

B. Ordinary transitions

from Q; andl,4, and confirm the value ofj;. Table Il. They were fitted by
The present work also includes a determination of the ©
asymptotic value of the bulk ratiQ,. For this purpose, we l14(L) = L% (ag + a LY + a,LYi1 + agl. Y3 + a4L.Y4)  (15)

performed additional simulations which included a decom nd
position of the whole Iatt|ce( ;nto clusters, at the estlmateoa
. S) 0
bulk percolation thresholdp,;=0.418 172). The system gu(L) = L-zxg;(bo +byLYi + b,LYit + bl Y3 + b,L%4),
sizes were taken in the rangesth <120. TheQ; and Q,

data are shown in Table I. We fitteg, by (16
5 where the terms withg; and b; (i=1,2,3,4 account for
Qp(L) = QR+l + Q2|—y'1 +0al 2+ gL+ g5l Y, finite-size corrections, ani;; °)— -y\% is the surface mag-

(14) netic scaling dimension at the ordlnary phase transition. We
mention that the exponent in EAL5) is Xff’l) instead of :Z(Ef
with the correction exponentg and y<s) fixed at —1.1415) because of the fixed boundary conditions on the surface
and —0.54, respectively. Just as for by the previous f@gf =1. We tooky;=-1.1415) [28-30. Since the surface ther-
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TABLE Il. Finite-size data of1; andgy4 for p,=p,.=0.248 81 2€5), p1(z=1)=1, andp;(z=L)=py.

L 4 6 8 10 12 16 20

l11 0.249902) 0.172111) 0.130971) 0.1056888) 0.0886018) 0.0670105) 0.0539284)
011 0.122941) 0.0606827) 0.0355544) 0.02325%3) 0.0163823) 0.0093861) 0.0060841)
L 24 28 32 40 64 80 120

l11 0.0451514) 0.0388494) 0.0340943) 0.0274292) 0.0173382) 0.0139482) 0.0093942)
011 0.00426477) 0.00315887) 0.00243292) 0.001574%4) 0.00062901) 0.00040711) 0.00018461)

mal exponent isyi?:—l, we sety,=-1, y;=-2, andy4  =-0.642). The resulty;; does not seem to be in agreement

=-3. However, the values of andy, are so close to each with the exact Valuglii):—l_ This may suggest that, apart
other that only one of the terms withy and b, was in-  from those with exponent -1, additional slowly decaying
cluded in the fit. The analyses df; and g;; yield the  corrections can exist at the ordinary transition. When the
surface magnetic scaling dimensionX{§=0.97544) and  term with b, was included, the fit ofQ, yields yil
0.97534), respectively, where the error margins are again=-0.6210). We also fitted theQ, data by Eq.(17), and

quoted as two standard deviations. These estimates are ghtain Q\”=0.525 5%7). For clarity, theQ, and Q, data
good agreement with each other, and further improve the o 0 be

b ©)_ ©_ wn in Table I.
existing resultsx;;'=0.9706) [21] and X;; =0.97@4) [9].
An illustration of the quality of these fits is provided in

. ©
Fig. 7, where thel;; data are shown versus™m with
X\9=0.9754.

h1 ] . 0) ©) ; TS (s)

To determine the universal valu€s’ andQ,", we per- At the extraordinary phase transitipg=pyc, P1> p;,., the
formed simulations atp,=pp.=0.248 812 €5) [28] and largest cluster occupies a finite fraction of the surfaces, so
p.(z=1)=p,(z=L)=p, the whole lattice was decomposed that, for L— o, the surface ratid; is equal to 1 and the

into clusters. As one can see in Fig. 3, this point is rathefOrrelation functiong,; andg,, approach nonzero constants.
(0) However, since the bulk maintains long-ranged critical cor-

close to the fixed poinp;.; for the ordinary transition, and i i ¢ 150 displ “eritical” beh
thus one does not expect serious crossover phenomena frc{r‘ﬁla lons, e surtaces can also display some “critical behav-
r. This is indicated by the clean intersection of Bgdata

the special transition. The system sizes were taken in th& © o -
range 6< L < 120. The finite-size data of the surface ragip ~ "€arPi. = 0.54, which is shown in Figs. 3 and 9.

are shown versus™®%in Fig. 8, which indicates that slowly _'_I'hu_s, more extensive S|n_1ulat|ons were performed at bulk
convergent corrections are indeed induced by the open suf!itic@lity poc with p;=0.54, in order to sample the surface

faces. According to the least-squares criterion, we fitted th&orrelation functiorg,, with an adequate statistical accuracy.
Q, data by The system siz& took 15 values in the ranges6L <120,

and for each system size, a number of abowt1®® samples
Qu(L) = QI + by LYt + byLYi + bl 72 + by 73+ bl ™4, was taken. Part of the,, data are shown in Fig. 10. As
(17) expected, these figures confirm th@) in the thermody-
) _ namic limit L— <0, I,; and g;, assume nonzero values, and
where the exponeny; was fixed at ~1.1AL5). First, we ex-  (2) the decay of these quantities witrobeys a power law, as
cluded the term witt,, and obtainQ{)=0.34144) andy;;  expected for correlation functions at criticality. We fitted the

C. Extraordinary transition

0.14 : : : : : : g1 data by
021 e 0.4
0.1 | -
e 039 r ’A,/ E
0.08 |
= P . 038}
— ~ ' -
0.06 | =
o _?r" 0.37 t ’/’,.e/
0.04 | = -
- 036}
002} 7
o 0.35
[ - : : - -
0 002 004 006 008 0.1 0.12 0.14 0.34 : - -
() 0 008 012 016 02
L_Xhl -0.65

FIG. 7. Surface quantity;; at the ordinary transition with
()
p1(z=1)=1 andp;(z=L)=ppc vs L *n1. The valuexff’l) =0.9754 was

taken from the fit.

L

FIG. 8. Surface ratidQ, at the ordinary transition wittp;(z
=1)=py(z=L)=ppe Shown asQ;—bg/L? vs LYi1. The valuesQ(L

—0)=0.3414,b;=2.1,y;,=-0.64 were taken from the fit.
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0.77 p .
e
0.765 0491 &
0.76 | A
0.486 | e
0.755 t o e
Kol c0 a"ﬂr
I 075 0.482f
',W'
L e
0743 0478} 7
0.74 S
- 1 1 1 1
0.735 § 0 004 008 012 o0.16
075
0-73 L 1 1 L 1 1
05 052 054 056 058 06 . , ,
Dy FIG. 10. Surface correlation functiogy, at the extraordinary

phase transition withp=0.54 vsL™075,
FIG. 9. Bulk ratioQy, at the extraordinary transition in the range
0.5=p;=<0.6. The data points-, [J, O, A, and ¢ represent sys-

. . —o_od=2_ _
tem sized =8, 12, 16, 20, and 24, respectively. nenty, is obtained asy,=2-2, 43/24, whereyy,

=91/48[26] is the magnetic exponent of the percolation
model in two dimensions. It was recently repor{&d] that,
01o(L) =gat+ L‘X(hel)(go+glLyi +g,LY2+ g5l Y3+ g,LY9). in principle, the term withb; should be replaced by
(19) b, In(L/Lg)/L?, wherelL, is an unknown constant. However,
such a logarithmic factor is difficult to observe numerically
We mention that the exponent in E(.8) is Xﬁ]el) instead of in a correction term, and it hardly influences the results of
ZXE,el), because the nonzero backgroupdeads to behavior the fit. Thus, we still used Eq19) to fit Q; data, and obtain
of the quantityg,, as a one-point correlation function. We the universal valu®,.=0.870 532).

took the correction exponents g§s=-1.1415), y,=-2, y; Next, we performed simulations of the three-dimensional
=-3, and y,=-4. We obtain g,=0.47476) and x;el) bond-percolation model at bulk probabilitigg=0.1, 0.15,
=0.756). 0.18, 0.20, 0.22, 0.23, 0.24, 0.244, and 0.247. For each value

The data of the ratio€, and Q, are shown in Table 1. of py, the percolation thresholpy(p,) was first roughly es-

They were fitted by Eq(17). We obtainQ(li):O.999 082) tlir(r)18ated from theQ; _df:jlta. Then, Iong?r sir;ulations qf ab_out
~1 andQLeC):OJSS 908). steps were carried out nepy.(p,), for 12 system sizes in

the range 6L <120. TheQ, data were fitted by

D. Surface transition

4
= — )k k2 -2 -3
For the bulk bond probabilitp, < py. @ line p(py) of 2P Qm%ak(pl P L+ byl bol.

phase transitions, in the two-dimensional percolation univer- (@=2)

sality class, exists on the surfaces. In particulargg#0 the +bsL ™+ n(py — o)Lt +rglYary(py

system reduces to the bond-percolation model on the square _ )2

lattice, for which the percolation threshold lies exactly at Pao)LYe+ ra(py = Pao)L, (20)

P1(py=0)=1/2. where y\*?=3/4 is the thermal exponent of the two-
In this subsection we aim to numerically locate the criticaldimensional percolation model. The expongptwas taken

line pyc(py) by analyzing theQ, data. Since the asymptotic as 2-3/%?=-43/24, and the universal value &, was

value ofQ; is universal, we first simulated the square-latticefixed at 0.870 5@). The results are shown in Table I,

bond-percolation model g (p,=0)=1/2. Thesystem sizes where the quoted error margins include the uncertainty of

were taken in the ranges6L <120. TheQ data, shown in Q.

Table 1, were fitted by

Qu(L) =Qpc+ bLYi+blYa+ bl 3+ b, L74 (19 IV. DISCUSSION
wherey;=-2 is the exponent of the leading irrelevant field. =~ We have determined the surface bond-occupation prob-
The term withb, arises from the background, and the expo-ability of the bond-percolation model on the simple-cubic

TABLE lIl. Results for the surface phase transition and the special transition; the latter are labeled by the

asterisk.

Po 0 0.1 0.15 0.18 0.2 0.22
P1c 1/2 0.4991%5) 0.4960%6) 0.491516) 0.486036) 0.476576)
Py 0.23 0.24 0.244 0.247 0.2488136

P1c 0.468836) 0.45655%6) 0.448326) 0.43264) 0.418172)"
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0.3 ' - ' critical points. At criticality, the asymptotic values @ and
Qp are universal, although they depend on the boundary con-
0.25 ditions. We have also simulated the bond-percolation model
ol on the simple-cubic lattice with periodic boundary conditions
) in the range 6&L=<120. The Q, data at p,=ppc
£ 045} | =0.248 821 &) [28] are shown in Table |. These data were
fitted by Eq.(17), which leads taQ,(d=3)=0.63382).
0.1+ . The existence of the aforementioned extraordinary transi-
tion, and in particular that of the line of surface transitions, is
0.05 1 related to the fact that the two-dimensional surfaces can sus-
tain long-range order in the absence of an ordered bulk. But
0 ' ) - even without spontaneous surface order, rich surface critical
0.35 0.4 0.45 0.5 0.55

phenomena can still occur. For instance, for the Heisenberg
model in three dimensions, the line of surface transitions

FIG. 11. Phase diagram for the bond-percolation model on th&oes not exist, and only the ordlna_lr_y transition occurs on the
simple-cubic lattice with free surfaces in one direction. Dashed lineSurfaces. Nevertheless, at bulk critically=K and for sur-
ordinary transition. Thin full line: extraordinary transition. Thick ace couplings;/K=2.0, it was reporte{i34] that spurious
curve: surface transition. The special transition is show@as long-range order occurs on the surfaces and the surface mag-

netic exponent becomds,;/K dependent. Another remark-

) ) - 9 able example is the two-dimensional Potts model at its tric-
lattice at the special transition a%?=0.41872), and we pitical point K,, where the surfaces are just one-dimensional
have located the line of surface transitiopig(py). On the  edges. Although the surface transition occurringKat K,
basis of these numerical results, the phase diagram is shovdoes not exist on the edges, various types of edge phase
in Fig. 11. We have also obtained the universal values of théransition have been foun®85-37 when the surface cou-
surface critical exponents ?:1_02454), y'¥=0.53872)  pling and/or the surface field is varied. In particular, sponta-

t1 . .
and yg):l_goug), and yﬁfl):l.OQS) for the ordinary, the N€OUS one-dimensional order occurs on the edges when the

special, and the extraordinary phase transition, respectivelyurface coupling is moderately enhanced.
Near the special transitio{pbc,p(fc)), the line of the surface ACKNOWLEDGMENTS

tran5|t|or(1$ can be asymptotically described &% pso The authors are indebted to Jouke Heringa, Xiaofeng

*(prc=Pi) ™", where the crossover equnent\ls:yg)/yt Qian, and Bob Ziff for valuable discussions. This research
=0.46812). The error margin of¥ is mainly due to the was supported by the Dutch FOM foundati¢tStichting
uncertainty of the bulk thermal exponept=1.1415). voor Fundamenteel Onderzoek der Materighich is finan-

Again, we find that dimensionless ratios lig andQ, in  cially supported by the NWQ“Nederlandse Organisatie
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