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Using Monte Carlo methods and finite-size scaling, we investigate surface critical phenomena in the bond-
percolation model on the simple-cubic lattice with two open surfaces in one direction. We decompose the
whole lattice into percolation clusters and sample the surface and bulk dimensionless ratiosQ1 andQb, defined
on the basis of the moments of the cluster-size distribution. These ratios are used to determine critical points.
At the bulk percolation thresholdpbc, we determine the surface bond-occupation probability at the special
transition asp1c

ssd=0.418 17s2d, and further obtain the corresponding surface thermal and magnetic exponents as
yt1

ssd=0.5387s2d andyh1
ssd=1.8014s6d, respectively. Next, from the pair correlation function on the surfaces, we

determineyh1
sod=1.0246s4d and yh1

sed=1.25s6d for the ordinary and the extraordinary transition, respectively, of
which the former is consistent with the existing resultyh1

sod=1.024s4d. We also numerically derive the line of
surface phase transitions occurring atpb,pbc, and determine the pertinent asymptotic values of the universal
ratiosQ1 andQb.
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I. INTRODUCTION

For a system undergoing a second-order phase transition,
it is now well establishedf1–11g that, due to long-range cor-
relations, surface effects on the bulk properties can be sig-
nificant, and in many cases, they cannot be neglected. The
surfaces can display critical phenomena that differ from the
bulk critical behavior; for each bulk universality class, dif-
ferent surface universality classes can exist.

Because our knowledge of such surface critical phenom-
ena in percolation problems is limited, we first review the
Ising model with nearest-neighbor interactions on a three-
dimensional lattice with periodic and free boundary condi-
tions in thexy plane and along thez direction, respectively.
In other words, for a finite system with linear sizeL, there
are two open surfaces atz=1 and z=L. The interaction
strengthsK1 on the surfaces can assume values different
from K in the bulk. The Hamiltonian of this Ising model can
then be written into two parts: a bulk term proportional to the
volume of the system and a surface term proportional to the
surface areas, i.e.,

H/kBT = − Ko
ki j l

sbdsisj − Ho
k

sbdsk − K1o
klml

ssdslsm

− H1o
n

ssdsn ss= ± 1d, s1d

where the first two sums account for the bulk and the last
two sums involve the spins on the open surfaces. In the ab-
sence of bulk and surface magnetic fieldsH and H1, the
phase diagram of the models1d is sketched in Fig. 1 for the
caseK.0. When the bulk temperature 1/K is lowered, the

bulk undergoes a second-order transition atK=Kc between
the paramagnetic and the ferromagnetic states, denoted as BP
and BF in Fig. 1, respectively. When the surface couplingK1
is varied, the local behavior on and near the surfaces can be
significantly modified. For instance, for a paramagnetic bulk
K,Kc, the surfaces can behave as an antiferromagnet
sSAFd, a ferromagnetsSFd, and a paramagnetsSPd, depend-
ing on the sign and the strength ofK1. The corresponding
phase transitions occurring on the surfaces are referred to as
the “surface transitions”f1g, and they are represented by the
solid curved lines in Fig. 1. Due to the absence of long-
ranged bulk correlations, these surface transitions display the
critical behavior of the two-dimensionals2Dd Ising model
with anti- or ferromagnetic couplings,K1,0 or K1.0, re-
spectively. Therefore, the corresponding thermal and mag-
netic exponents areyt=1 andyh=15/8f12g, respectively. For
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FIG. 1. Schematic phase diagram for the three-dimensional
Ising model, in terms of ferromagnetic bulk couplingsK and the
ratio k=K1/K of the surface over the bulk couplings. The bulk
transition occurs atK=Kc. The bulk phases are denoted as BF for
the ferromagnet and BP for the paramagnet. The surface phases are
labeled as SF, SP, and SAF for the ferro-, para-, and antiferromag-
net, respectively.
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surface couplingsK1,0, the phase boundaries for the bulk
and surface transitions cross at a decoupled critical point
because of the different signs ofK andK1. We shall denote
this decoupled point assKc,K1c

sadd, and at this point there is no
indication of any change in the surface universality classf4g.
However, the surface critical line forK1.0 terminates at the
bulk criticality in a “special” critical pointsKc,K1c

ssdd. At this
point, both the surface and the bulk correlation lengths are
divergent. Thus, the pointsKc,K1c

ssdd acts as a multicritical
point, and the phase transition is referred to as the “special
transition.” WhenK is varied, while the surface coupling is
in the rangeK1c

sad,K1,K1c
ssd, the surfaces and the bulk simul-

taneously undergo a phase transition atK=Kc. In this case,
the critical correlations on the surfaces arise from the diverg-
ing bulk correlation length, and the phase transition is named
the “ordinary transition.” For larger couplingsK1.K1c

ssd,
however, the bulk transition atK=Kc has to occur in the
presence of spontaneous long-ranged surface order, because
the surfaces become ferromagnetic at a smaller couplingK
,Kc, and the transition is referred to as the “extraordinary
transition.” Thus, different universality classes apply to the
surface transitions of the three-dimensional Ising models1d.

We mention that, although the local behavior near and at
the surfaces can be modified by the variation of surface pa-
rameters and the decay of the surface effects into the bulk
can be long ranged, the bulk properties of the systems1d are
not affected. Naturally, besides the bulk thermal and mag-
netic exponentsyt and yh, additional surface critical expo-
nents are needed to describe the scaling behavior of the
above phase transitions on the surfaces. To illustrate this
point, one writes the total free energyF of the systems1d as
the sum of a bulk and a surface termf1,10g

F = fbV + f1S. s2d

For a finite system with linear sizeL, the volume and the
surface areas areV=Ld and S=2Ld−1, respectively, withd
=3 the spatial dimensionality. The prefactor 2 counts the
number of the surfaces. The finite-size scaling of the bulk
and the surface free energy density,fb and fs, can then be
expressed as

fbst,h,Ld = L−dfbsstLyt,hLyhd + fbast,hd s3d

and

f1st,h,t1,h1,Ld = L−sd−1df1sstLyt,hLyh,t1L
yt1,h1L

yh1d

+ f1ast,h,t1,h1d. s4d

The functionsfbs and fba are the singular and the analytical
parts offb, respectively, andf1s and f1a similarly apply to the
surface free-energy densityf1. The bulk thermal and mag-
netic scaling fields are represented byt and h, respectively,
and the surface scaling fields byt1 and h1, with exponents
denoted asyt1 and yh1 respectively. The finite-size scaling
behavior of the surface quantities is obtained by differentiat-
ing Eq. s4d with respect to appropriate scaling fields. For the
ordinary and the extraordinary transitions, the surface ther-
mal field t1 is irrelevantsyt1,0d and the magnetic scaling

field h1 is relevantsyh1.0d; both t1 andh1 are relevant at the
special transitionsKc,K1c

ssdd.
In three dimensions, exact information about critical be-

havior is scarce, and determinations of transition points and
the corresponding critical exponents have to rely on approxi-
mations of various kinds. These include mean-field theory,
series expansions, renormalization group theory, Monte
Carlo simulations, etc. The bulk critical point of the Ising
models1d on the simple-cubic lattice has been determined as
Kc=0.221 654 55s3d f13g. There is also some consensusf13g
that the values of the bulk thermal and magnetic exponentsyt
and yh are about 1.586 and 2.482, respectively, with differ-
ences only in the last decimal place. Further, the mean-field
analysis and the Gaussian fixed point of thef4 theory yield
f1,14g the exact values of the standard magnetic indexb1 as
b1

sod=1, b1
ssd=1/2, andb1

sed=1 for the ordinary, special, and
extraordinary surface transitions, respectively. The indexb1
describes the asymptotic scaling behavior of the surface
magnetizationm1 as a function of the bulk thermal fieldt,
i.e., m1~ tb1, such that it is related to the renormalization
exponents asb1=sd−1−yh1d /yt. The mean-field analysis
f1,14g also gives the crossover exponent at the special tran-
sition asFssd=yt1/yt=1/2. From a simple scaling argument,
it was shownf15g that, independent of the spatial dimension-
ality d, the surface thermal exponent at the ordinary transi-
tions isyt1

sod=−1. Many numerical results have also been ob-
tained. On the simple-cubic lattice, the special transition of
the model s1d was located f5,16g at kc=K1c

ssd /Kc

=1.5004s20d; the surface exponents are determined asyh1
sod

=0.737s5d f6,9g, yt1
ssd=0.94s6d, andyh1

ssd=1.62s2d f5,16g. These
results, together with the aforementioned bulk exponents,
yield the critical indices asb1

sod=0.796s5d, b1
ssd=0.24s1d, and

Fssd=0.59s3d. As generally expected for systems below the
upper critical dimensionality, which is 4 for Ising systems,
these values differ significantly from the mean-field predic-
tions.

Beside the Ising model, the right-hand-side partsk.0d of
the phase diagram in Fig. 1 applies to a number of other
three-dimensional systems, including theOsnd model with
nø2 and the percolation model. TheXY model is a marginal
case of theOsnd model withn=2 in the sense that the two-
dimensional surfaces display a Kosterlitz-Thouless-like tran-
sition for K,Kc f17,18g. At the ordinary phase transitions,
the surface magnetic exponent was numerically determined
as yh1

sod=0.790s15d f6g. In the context of percolation theory,
the mean-field analysisf14,19g yields the critical indices
b1

sod=3/2 andb1
ssd=1, and the crossover exponentFssd=1/2.

Naturally, these predictions are expected to be correct only at
or above the upper critical dimensionality of percolation
problems, which is equal to 6. In three dimensions, a number
of Monte Carlo investigations also existsf9,20,21g. The sur-
face magnetic exponent at the ordinary phase transitions was
determined asyh1

sod=1.030s6d f21g andyh1
sod=1.024s4d f9g. The

latter result was obtained from predictions of conformal in-
variance combined with simulations of the anisotropic limit
of the bond-percolation model on a spherocylinder. However,
as far as we know, a systematic study of surface critical
properties as a function of the bulk and surface parameters is
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still absent. In particular, numerical estimations of the critical
exponents,yt1

ssd, yh1
ssd, andyh1

sed, have not been reported. For this
reason we conduct further explorations.

The outline of the present paper is as follows. Section II
briefly reviews the definitions of the bond-percolation model
and of the sampled quantities. In Sec. III, Monte Carlo data
are analyzed and the results are presented for the ordinary,
the special, and the extraordinary transitions, and for the line
of surface phase transitions. A brief discussion is given in
Sec. IV.

II. MODEL AND SAMPLED QUANTITIES

Since their original introduction in 1957f22g, percolation
problems have been of great research interest to physicists
and mathematiciansf23g, and a variety of applicationsf24g
has been reported. In the field of critical phenomena, the
percolation theory provides a simple picture and a fascinat-
ing illustration of many important concepts in terms of geo-
metric properties. In fact, the percolation, together with the
Ising model, has become an important testing ground for
various methods and approaches; frequently, they are used
for tutorial purposesf25g.

A simple example of a percolation problem is provided by
the following bond-percolation model on a regular lattice.
Between each pair of nearest-neighbor sites, a bond is occu-
pied or empty with probabilitiesp and 1−p, respectively.
Two sites connected through a chain of occupied bonds are
said to percolate, i.e., to be in the same cluster. Then, various
questions can be asked concerning the distribution of cluster
sizes, the fractal dimension of the clusters, etc. It is fascinat-
ing that the bond-percolation model can be generalized to an
infinite range of universality classes, namely, the random-
cluster representation of theq-state Potts modelf26g. The
pertinent clusters are referred to as the Kasteleyn-Fortuin
clustersf27g. For q→1 the random-cluster model reduces to
the percolation model. As a result, much of the knowledge
that has been gathered for the Potts model is directly appli-
cable to the percolation model. For instance, the fractal di-
mension of percolation clusters can be identified as the mag-
netic scaling dimension of theq→1 Potts model. In two
dimensions, the bulk thermal and magnetic exponents are
f26g yt=3/4 and yh=91/48, respectively. In three dimen-
sions, the exact values ofyt andyh are unknown yet, but they
have been numerically determinedf28–30g as yt=1.141s5d
andyh=2.523s4d, respectively.

In the present work, we also chose the bond-percolation
model on the simple-cubic lattice with periodic boundary
conditions in thexy plane and open boundary conditions in
the z direction. Again, we allow for different values of the
surface and bulk bond-occupation probabilities which are de-
notedp1 and pb. Further, we make use of the existing esti-
mate of the bulk percolation thresholdpb=pbc
=0.248 821 6s5d f28g, whose precision is sufficient for the
present investigation. Just as in the well-known Swendsen-
Wang algorithmf31g for the Potts model, we decompose the
lattice into clusters according to the bulk and surface prob-
abilities, pb and p1. The size of a cluster is defined as the
total number of lattice sites in that cluster. In addition, we

count the number of sites in each cluster which lie on a
surface. Thus, for each cluster three numbers are stored in
computer memory, which are denotednib, ni1sz=1d, and
ni1sz=Ld, wherei is the cluster number. We refer tonib and
ni1 as the bulk and the surface cluster size, respectively. On
this basis, we sampled the moments of the cluster sizes as

l21 =
1

2S2o
i

hfni1sz= 1dg2 + fni1sz= Ldg2j and

l2b =
1

V2o
i

nib
2 , s5d

and

l41 =
1

2S2o
i

hfni1sz= 1dg4 + fni1sz= Ldg4j and

l4b =
1

V4o
i

nib
4 , s6d

whereS=L2 and V=L3 are the area of one surface and the
volume of the system, respectively. At the bulk percolation
thresholdpbc, the scaling behavior of the bulk quantitiesl2b
and l4b in Eqs.s5d ands6d is described by the bulk magnetic
exponentyh. Analogously, the surface critical quantitiesl21
and l41 are governed by the surface magnetic exponentyh1,
which assumes different values in different surface univer-
sality classes.

In Monte Carlo studies of phase transitions, certain di-
mensionless ratiosf32g are known to be very helpful, par-
ticularly in the determinations of critical points. Thus, on the
basis of the quantities defined in Eqs.s5d and s6d, we
sampled the surface and bulk ratios defined as

Q1 = kl21l2/s3kl21
2 l − 2kl4sld and

Qb = kl2bl2/s3kl2b
2 l − 2kl4bld. s7d

The large-L asymptotic values of these ratios at criticality are
universal. We mention that other definitions of universal ra-
tios are possible, e.g., one can haveQb8=kl2bl2/ kl4bl. The par-
ticular choice of the denominators in Eq.s7d is due to the
following reasons, as given in the language of the bulk ratio
Qb. First, for the limiting casepb→0, most clusters contain
only a few sites, and the distribution of the cluster sizes
becomes Gaussian-like forL→`. In this case, the quantities
l2b in Eq. s5d andl4b in Eq. s6d are of the order 1/V and 1/V3,
respectively, so that the asymptotic value approachesQbsL
→`d=1/3, which correctly reflects the normal distribution.
In the other limitpb→1, a single cluster occupies a nonzero
fraction of the lattice, so that one simply hasQbspb→1d=1.
Second, it can be shown that, in the case of the Ising model,
the quantitiesl2b and l2b in Eq. s6d are exactly related to the
moments of the magnetizationm as

kmb
2l = kl2bl and kmb

4l = 3kl2b
2 l − 2kl4bl. s8d

Thus, the ratioQb in Eq. s5d is just the magnetic amplitude
ratio Q=kmb

2l2/ kmb
4l, which has been used extensively.
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In the percolation theory, quantities known as the mean
cluster sizes are of some interestf23g. These quantities can
be defined on the basis ofnib andni1 as

x1 =
1

2S
o

i
9hfnissz= 1dg2 + fnissz= Ldg2j and

xb =
1

V
o

i
8nib

2 , s9d

where the latter sum excludes the largest cluster in the bulk,
and the former sum excludes the largest cluster on each sur-
face. Just like the susceptibility at a thermodynamic phase
transition, the quantitiesx1 andxb display a peak at critical-
ity.

We also determined the pair correlation functiongsrd, de-
fined as the probability that two points at a distancer lie in
the same cluster. For this purpose, a numbercx,y,z is stored
for each sitesx,y,zd. This number is the number of the clus-
ter to which sitesx,y,zd belongs. Therefore, two sites with
the same value ofcx,y,z belong to the same cluster. On this
basis, we sampled pair correlations on the surfaces atz=1
andz=L as

g11sr = L/2d =
1

2L2 o
x,y=1

L

kdcsx,y,1d,csx,y+r,1d + dcsx,y,Ld,csx,y+r,Ldl

s10d

and

g12sr = Ld =
1

L2 o
x,y=1

L

kdcsx,y,1d,csx,y,Ldl. s11d

At criticality, the scaling behavior ofg11sLd andg12sLd as a
function of system sizeL is described by a power law; the
corresponding exponent is −2Xh1, whereXh1=2−yh1 is the
surface magnetic scaling dimension. We further remark that
the quantityL2kl21l in Eq. s5d can be obtained by integration
of g11srd over the surfaces.

III. RESULTS

We simulated the bond-percolation model at the bulk per-
colation thresholdpb=pbc=0.248 821 6s5d f28g. For an illus-
tration of the surface critical properties as a function ofp1,
we took p1 in the range 0.1øp1ø0.62 and the system size
asL=8, 12, 16, and 24. The sampled quantities include the
surface and the bulk ratioQ1 andQb, and the surface mean
cluster sizex1. The Q1, Qb, andx1 data are shown in Figs.
2–4, respectively. These data indicate the existence of the
special phase transition at aboutp1c

ssd.0.42. The finite-size
behavior ofx1 in Fig. 4 appears to be rather asymmetric with
respect to the location of the special transition atp1c

ssd. At the
extraordinary transitionsp1.p1c

ssd, x1 converges rapidly to a
constant asL increases. This is due to the fact that the clus-
ters, with the exception of the largest one, are limited in size.
In contrast, at the ordinary phase transitionsp1,p1c

ssd, x1 in-
creases significantly as a function ofL. This indicates that
the surfaces maintain strong critical correlations at the ordi-
nary transition. On the other hand, the asymptotic valueQ1c

sod,
as shown in Fig. 2, is close the Gaussian value 1/3. This
indicates that the surface critical singularities at the ordinary
transition are much weaker than those at the special transi-
tion.

FIG. 2. Surface ratioQ1 of the 3D bond-percolation model at
bulk criticality pbc vs the surface bond probabilityp1. The data
points1, h, s, n, andL represent system sizesL=8, 12, 16, 20,
and 24, respectively.

FIG. 3. Bulk ratio Qb at bulk criticality pbc vs p1. The data
points1, h, s, n, andL represent system sizesL=8, 12, 16, 20,
and 24, respectively.

FIG. 4. Surface mean cluster sizex1 at bulk criticalitypbc, vsp1.
The data points1, h, s, n, andL represent system sizesL=8,
12, 16, 20, and 24, respectively.
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As shown in Fig. 3, theQb data for different system sizes
display three clear intersections. These intersections corre-
spond with the fixed points for the ordinary, the special, and
the extraordinary transition, which are denoted asp1c

sod, p1c
ssd,

and p1c
sed, respectively. As expected, it follows from Fig. 3

that, along thep1 direction,p1c
sod andp1c

sed are stable whilep1c
ssd

is unstable.

A. Special transition

As indicated by Figs. 2–4 the special transition occurs at
p1c

ssd<0.42. We thus performed extensive simulations in the
range 0.4øp1ø0.44 at the bulk percolation thresholdpbc.
The sampled quantities include the surface ratioQ1, and the
surface correlation functionsg11 and g12, etc. The system
sizes were chosen as 15 values in the range 6øLø120.
About 2.63109 samples were taken for system sizes in the
rangeLø20, and 4.03108 for L.20. In order to save com-
puter time, the actual simulations did not decompose the
whole lattice. Instead, a Monte Carlo step was finished as
soon as the two surfaces were completely divided into clus-
ters. This does not affect the surface quantities such asl21
and Q1, but the sampling of the bulk quantities such asl2b
andQb becomes incomplete. Part of theQ1 data are shown in
Fig. 5, of which the clean intersection indicates that finite-
size corrections are not very important in the ratioQ1. Near
the special critical pointp1c

ssd, we fitted theQ1 data by

Q1sp1,Ld = Q1c
ssd + o

k=1

4

aksp1 − p1c
ssddkLkyt1

ssd
+ o

l=1

4

blL
yl + csp1

− p1c
ssddLyt1

ssd+yi + nsp1 − p1c
ssdd2Lyt1

ssd
+ r0L

ya + r1sp1

− p1c
ssddLya + r2sp1 − p1c

ssdd2Lya + r3sp1 − p1c
ssdd3Lya,

s12d

where the terms with amplitudebl account for various finite-
size corrections. We fixed the exponenty1=yi =−1.14s15d
f28–30g, the exponent of the leading irrelevant scaling field
in the three-dimensional percolation model. In principle, ad-
ditional irrelevant scaling fields can be induced by the open
surfaces, so that we sety2=yi1 as an unknown exponent. In
order to reduce the residualx2 without discarding data for
many small system sizes, we have included further finite-size
corrections with integer powersy3=−2 andy4=−3. The term
with coefficient n reflects the nonlinear dependence of the
scaling field onp1, and the one withc describes the “mixed”
effect of the surface thermal field and the irrelevant field. The
terms with amplitudesr0, r1, r2, and r3 arise from the ana-
lytical part of the free energy, and the exponentya is equal to
2−2yh1

ssd. As determined later, the surface magnetic exponent
at the special transition is aboutyh1

ssd=1.8014s6d, so that we
fixed the exponent ya=−1.6028. We obtain p1c

ssd

=0.418 17s2d, Q1c
ssd=0.7629s2d, yt1

ssd=0.5387s2d, and yi1
=−2.4s20d, where the error margins are quoted as two
standard statistical deviations. The irrelevant exponentyi1
is not well determined, in the sense that the magnitude of
the estimated error is almost as large as the exponentyi1
itself. We indeed found that the residuals and the results

of the fits do not significantly depend on the presence or
absence of the terms withb2.

In order to determine the surface magnetic exponentyh1
ssd,

we fitted theł21 data by

l21sp1,Ld = L2yh1
ssd−4Sa0 + o

k=1

4

aksp1 − p1c
ssddkLkyt1

ssd
+ b1L

yi + b2L
yi1

+ b3L
y3 + b4L

y4 + csp1 − p1c
ssddLyt1

ssd+yi + nsp1

− p1c
ssdd2Lyt1

ssd
+ r0L

ya + r1sp1 − p1c
ssddLya + r2sp1

− p1c
ssdd2Lya + r3sp1 − p1c

ssdd3Lya + c21sp1

− p1c
ssddLyt1

ssd+yi1 + c22sp1 − p1c
ssdd2L2yt1

ssd+yi1D . s13d

Again, the correction exponents were taken asyi
=−1.14s15d f28–30g, y3=−2, and y4=−3. In comparison
with Eq. s12d, we have included in Eq.s13d the “mixed”
effect of the surface thermal field and the irrelevant field with
the unknown exponentyi1, as described by the terms withc21

FIG. 5. Surface ratioQ1 at bulk criticality pbc in the range
0.415øp1ø0.425. The data points1, 3, h, s, n, L, and p

represent system sizesL=16, 24, 32, 40, 48, 64, and 80,
respectively.

FIG. 6. Second momentl21 at the special transitionp1c
ssd

=0.418 17, vsL−2Xh1
ssd

. The surface magnetic scaling dimensions
Xh1

ssd=0.1986 was taken from the fit.
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andc22. These terms lead to a reduction of the residualx2 of
the fits, but do not significantly modify the results. The sur-
face thermal exponent was fixed at
yt1

ssd=0.5387 as found above. We obtainp1c
ssd=0.418 16s4d,

yh1
ssd=1.8014s6d, andyi1=−0.55s2d. The quoted error margins

include the uncertainty due to the error inyt1
ssd. The estimate

of the percolation thresholdp1c
ssd is in agreement with that

obtained from the fit of Q1. The fit yields
b2=−0.04s2d, so that the term withb2 is not very significant.
The value ofyi1 is mainly determined by the term with am-
plitude c21. For clarity, thel21 data atp1=p1c

ssd=0.418 17s2d
are shown in Fig. 6 versusL2yh1

ssd
−4, whereyh1

ssd=1.8015s6d as
determined by the fit.

We also fitted Eq.s13d to the data of the pair correlation
function g11, and obtainp1c

ssd=0.418 15s4d, yh1
ssd=1.8016s6d,

andyi1=−0.54s2d. These results are in agreement with those
from Q1 and l21, and confirm the value ofyi1.

The present work also includes a determination of the
asymptotic value of the bulk ratioQb. For this purpose, we
performed additional simulations which included a decom-
position of the whole lattice into clusters, at the estimated
bulk percolation thresholdp1c

ssd=0.418 17s2d. The system
sizes were taken in the range 6øLø120. TheQ1 and Qb
data are shown in Table I. We fittedQb by

QbsLd = Qbc
ssd + q1L

yi + q2L
yi1

ssd
+ q3L

−2 + q4L
−3 + q5L

−4,

s14d

with the correction exponentsyi and yi1
ssd fixed at −1.14s15d

and −0.54, respectively. Just as for by the previous fit ofQ1,

we did not find clear indications of the existence of a term
with exponentyi1. The fit yieldsQbc

ssd=0.651 30s8d. The error
margin may be somewhat larger if the correction exponents
are different from our choice.

B. Ordinary transitions

We simulated at bulk criticalitypbc and took the surface
bond-occupation probabilities asp1sz=1d=1 and p1sz=Ld
=pbc, respectively. In other words, fixed boundary conditions
were imposed on the surfacez=1, so that all the lattice sites
on this plane belong to the same cluster. As a consequence,
we only formed a single cluster containing all sites atz=1,
and we sampled the fractionl11 of the sites atz=L in this
cluster and the pair correlation functiong11. About 2.4
3108 samples were taken for each of 15 system sizes in the
range 4øLø120. The data forl11 and g11 are shown in
Table II. They were fitted by

l11sLd = L−Xh1
sod

sa0 + a1L
yi + a2L

yi1 + a3L
y3 + a4L

y4d s15d

and

g11sLd = L−2Xh1
sod

sb0 + b1L
yi + b2L

yi1 + b3L
y3 + b4L

y4d,

s16d

where the terms withai and bi si =1,2,3,4d account for
finite-size corrections, andXh1

sod=2−yh1
sod is the surface mag-

netic scaling dimension at the ordinary phase transition. We
mention that the exponent in Eq.s15d is Xh1

sod instead of 2Xh1
sod

because of the fixed boundary conditions on the surfacez
=1. We tookyi =−1.14s15d f28–30g. Since the surface ther-

TABLE I. Finite-size data ofQ1 andQb and their extrapolated values forL→`. The bulk bond probability ispb=pbc=0.248 812 6 for
columns 2–8. For the last column, one haspb=0 andp1=1/2, sothat the system reduces to a two-dimensional bond-percolation model at
criticality. For the ordinary, the special, and the extraordinary transitions, the surface probabilities were taken asp1=pbc, p1=p1c

ssd

=0.418 17s2d, andp1=0.54, respectively.

Ordinary Special Extraordinary Periodic

L Q1 Qb Q1 Qb Q1 Qb Qbs3Dd Qbs2Dd

6 0.46304s3d 0.52890s6d 0.78145s3d 0.68183s5d 0.953774s6d 0.75379s3d 0.62994s5d 0.87331s2d
8 0.43405s3d 0.52590s6d 0.77388s3d 0.66255s5d 0.965311s5d 0.75293s3d 0.62868s5d 0.87158s2d
10 0.41688s3d 0.52473s6d 0.76982s3d 0.65962s5d 0.973709s4d 0.75305s3d 0.62836s5d 0.87082s2d
12 0.40565s3d 0.52425s6d 0.76740s3d 0.65792s5d 0.9797347s3d 0.75343s3d 0.62866s5d 0.87048s2d
14 0.39767s3d 0.52409s6d 0.76584s3d 0.65679s5d 0.984064s3d 0.75369s3d 0.62899s5d 0.87029s2d
16 0.39174s3d 0.52409s6d 0.76481s3d 0.65590s5d 0.987233s2d 0.75391s3d 0.62939s5d 0.87021s2d
20 0.38341s2d 0.52413s6d 0.76361s3d 0.65487s5d 0.991368s1d 0.75418s3d 0.63005s5d 0.87016s2d
24 0.37790s2d 0.52424s6d 0.76294s3d 0.65420s5d 0.993816s1d 0.75431s3d 0.63056s5d 0.87018s2d
28 0.37390s2d 0.52447s6d 0.76262s3d 0.65373s5d 0.995369s1d 0.75437s3d 0.63102s5d 0.87020s2d
32 0.37084s2d 0.52445s6d 0.76243s3d 0.65332s5d 0.996407s1d 0.75440s3d 0.63137s5d 0.87022s2d
40 0.36647s2d 0.52467s6d 0.76214s3d 0.65289s5d 0.997663s1d 0.75437s3d 0.63188s5d 0.87025s2d
48 0.36352s2d 0.52476s6d 0.76211s3d 0.65259s5d 0.998363s1d 0.75443s3d 0.63210s5d 0.87030s2d
64 0.35951s3d 0.52499s6d 0.76225s3d 0.65222s6d 0.999071s1d 0.75423s6d 0.63262s5d 0.87037s2d
80 0.35710s3d 0.52540s6d 0.76223s6d 0.65199s6d 0.999407s1d 0.75420s6d 0.63288s5d 0.87042s2d
120 0.35338s3d 0.52521s6d 0.76240s6d 0.65170s6d 0.999748s1d 0.75412s6d 0.63300s5d 0.87049s2d
` 0.3414s4d 0.52555s7d 0.7629s2d 0.65130s8d 1 0.75390s8d 0.6338s2d 0.87053s2d
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mal exponent isyt1
sod=−1, we sety2=−1, y3=−2, and y4

=−3. However, the values ofyi andy2 are so close to each
other that only one of the terms withb1 and b2 was in-
cluded in the fit. The analyses ofl11 and g11 yield the
surface magnetic scaling dimension asXh1

sod=0.9754s4d and
0.9753s4d, respectively, where the error margins are again
quoted as two standard deviations. These estimates are in
good agreement with each other, and further improve the
existing resultsXh1

sod=0.970s6d f21g and Xh1
sod=0.976s4d f9g.

An illustration of the quality of these fits is provided in

Fig. 7, where thel11 data are shown versusL−Xh1
sod

with
Xh1

sod=0.9754.
To determine the universal valuesQ1c

sod andQbc
sod, we per-

formed simulations atpb=pbc=0.248 812 6s5d f28g and
p1sz=1d=p1sz=Ld=pbc; the whole lattice was decomposed
into clusters. As one can see in Fig. 3, this point is rather
close to the fixed pointp1c

sod for the ordinary transition, and
thus one does not expect serious crossover phenomena from
the special transition. The system sizes were taken in the
range 6øLø120. The finite-size data of the surface ratioQ1
are shown versusL−0.65 in Fig. 8, which indicates that slowly
convergent corrections are indeed induced by the open sur-
faces. According to the least-squares criterion, we fitted the
Q1 data by

Q1sLd = Q1c
sod + b1L

yi1 + b2L
yi + b3L

−2 + b4L
−3 + b5L

−4,

s17d

where the exponentyi was fixed at −1.14s15d. First, we ex-
cluded the term withb2, and obtainQ1c

sod=0.3414s4d andyi1

=−0.64s2d. The resultyi1 does not seem to be in agreement
with the exact valueyt1

sod=−1. This may suggest that, apart
from those with exponent −1, additional slowly decaying
corrections can exist at the ordinary transition. When the
term with b2 was included, the fit ofQ1 yields yi1
=−0.62s10d. We also fitted theQb data by Eq.s17d, and
obtain Qbc

sod=0.525 55s7d. For clarity, theQ1 and Qb data
are shown in Table I.

C. Extraordinary transition

At the extraordinary phase transitionpb=pbc, p1.p1c
ssd, the

largest cluster occupies a finite fraction of the surfaces, so
that, for L→`, the surface ratioQ1 is equal to 1 and the
correlation functionsg11 andg12 approach nonzero constants.
However, since the bulk maintains long-ranged critical cor-
relations, the surfaces can also display some “critical” behav-
ior. This is indicated by the clean intersection of theQb data
nearp1c

sed<0.54, which is shown in Figs. 3 and 9.
Thus, more extensive simulations were performed at bulk

criticality pbc with p1=0.54, in order to sample the surface
correlation functiong12 with an adequate statistical accuracy.
The system sizeL took 15 values in the range 6øLø120,
and for each system size, a number of about 23108 samples
was taken. Part of theg12 data are shown in Fig. 10. As
expected, these figures confirm thats1d in the thermody-
namic limit L→`, l21 and g12 assume nonzero values, and
s2d the decay of these quantities withL obeys a power law, as
expected for correlation functions at criticality. We fitted the
g12 data by

TABLE II. Finite-size data ofl11 andg11 for pb=pbc=0.248 81 26s5d, p1sz=1d=1, andp1sz=Ld=pbc.

L 4 6 8 10 12 16 20

l11 0.24990s2d 0.17211s1d 0.13097s1d 0.105688s8d 0.088601s8d 0.067010s5d 0.053928s4d
g11 0.12294s1d 0.060682s7d 0.035554s4d 0.023255s3d 0.016382s3d 0.009386s1d 0.006084s1d

L 24 28 32 40 64 80 120

l11 0.045151s4d 0.038849s4d 0.034094s3d 0.027429s2d 0.017338s2d 0.013948s2d 0.009394s2d
g11 0.0042647s7d 0.0031583s7d 0.0024329s2d 0.0015745s4d 0.0006290s1d 0.0004071s1d 0.0001846s1d

FIG. 7. Surface quantityl11 at the ordinary transition with

p1sz=1d=1 andp1sz=Ld=pbc vs L−Xh1
sod

. The valueXh1
sod=0.9754 was

taken from the fit.

FIG. 8. Surface ratioQ1 at the ordinary transition withp1sz
=1d=p1sz=Ld=pbc, shown asQ1−b3/L2 vs Lyi1. The valuesQ1sL
→`d=0.3414,b3=2.1, yi1=−0.64 were taken from the fit.
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g12sLd = ga + L−Xh1
sed

sg0 + g1L
yi + g2L

y2 + g3L
y3 + g4L

y4d.

s18d

We mention that the exponent in Eq.s18d is Xh1
sed instead of

2Xh1
sed, because the nonzero backgroundgq leads to behavior

of the quantityg12 as a one-point correlation function. We
took the correction exponents asyi =−1.14s15d, y2=−2, y3

=−3, and y4=−4. We obtain ga=0.4747s6d and Xh1
sed

=0.75s6d.
The data of the ratiosQ1 and Qb are shown in Table I.

They were fitted by Eq.s17d. We obtainQ1c
sed=0.999 98s2d

<1 andQbc
sed=0.753 90s8d.

D. Surface transition

For the bulk bond probabilitypb,pbc, a line p1cspbd of
phase transitions, in the two-dimensional percolation univer-
sality class, exists on the surfaces. In particular, forpb=0 the
system reduces to the bond-percolation model on the square
lattice, for which the percolation threshold lies exactly at
p1cspb=0d=1/2.

In this subsection we aim to numerically locate the critical
line p1cspbd by analyzing theQ1 data. Since the asymptotic
value ofQ1 is universal, we first simulated the square-lattice
bond-percolation model atp1cspb=0d=1/2. Thesystem sizes
were taken in the range 6øLø120. TheQ1 data, shown in
Table 1, were fitted by

Q1sLd = Q1c + b1L
yi + b2L

ya + b3L
−3 + b4L

−4, s19d

whereyi =−2 is the exponent of the leading irrelevant field.
The term withb2 arises from the background, and the expo-

nent ya is obtained asya=2−2yh
sd=2d=−43/24, whereyh

=91/48 f26g is the magnetic exponent of the percolation
model in two dimensions. It was recently reportedf33g that,
in principle, the term with b1 should be replaced by
b1 lnsL /L0d /L2, whereL0 is an unknown constant. However,
such a logarithmic factor is difficult to observe numerically
in a correction term, and it hardly influences the results of
the fit. Thus, we still used Eq.s19d to fit Q1 data, and obtain
the universal valueQ1c=0.870 53s2d.

Next, we performed simulations of the three-dimensional
bond-percolation model at bulk probabilitiespb=0.1, 0.15,
0.18, 0.20, 0.22, 0.23, 0.24, 0.244, and 0.247. For each value
of pb, the percolation thresholdp1cspbd was first roughly es-
timated from theQ1 data. Then, longer simulations of about
108 steps were carried out nearp1cspbd, for 12 system sizes in
the range 6øLø120. TheQ1 data were fitted by

Q1sp1,Ld = Q1c + o
k=1

4

aksp1 − p1cdkLkyt
sd=2d

+ b1L
−2 + b2L

−3

+ b3L
−4 + nsp1 − p1cd2Lyt

sd=2d
+ r0L

yar1sp1

− p1cdLya + r2sp1 − p1cd2Lya, s20d

where yt
sd=2d=3/4 is the thermal exponent of the two-

dimensional percolation model. The exponentya was taken
as 2−2yh

sd=2d=−43/24, and the universal value ofQ1c was
fixed at 0.870 53s2d. The results are shown in Table III,
where the quoted error margins include the uncertainty of
Q1c.

IV. DISCUSSION

We have determined the surface bond-occupation prob-
ability of the bond-percolation model on the simple-cubic

FIG. 10. Surface correlation functiong12 at the extraordinary
phase transition withpl =0.54 vsL−0.75.

FIG. 9. Bulk ratioQb at the extraordinary transition in the range
0.5øp1ø0.6. The data points1, h, s, n, andL represent sys-
tem sizesL=8, 12, 16, 20, and 24, respectively.

TABLE III. Results for the surface phase transition and the special transition; the latter are labeled by the
asterisk.

pb 0 0.1 0.15 0.18 0.2 0.22

p1c 1/2 0.49915s6d 0.49605s6d 0.49151s6d 0.48603s6d 0.47657s6d
pb 0.23 0.24 0.244 0.247 0.2488126s5d*

p1c 0.46883s6d 0.45655s6d 0.44832s6d 0.4326s4d 0.41817s2d*
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lattice at the special transition asp1c
ssd=0.4187s2d, and we

have located the line of surface transitionsp1cspbd. On the
basis of these numerical results, the phase diagram is shown
in Fig. 11. We have also obtained the universal values of the
surface critical exponents asyh1

sod=1.0246s4d, yt1
ssd=0.5387s2d

and yt1
ssd=1.8014s6d, and yh1

sed=1.09s3d for the ordinary, the
special, and the extraordinary phase transition, respectively.
Near the special transitionspbc,p1c

ssdd, the line of the surface
transition can be asymptotically described asspb−pbcd
~ sp1c−p1c

ssdd1/C, where the crossover exponent isC=yt1
ssd /yt

=0.465s12d. The error margin ofC is mainly due to the
uncertainty of the bulk thermal exponentyt=1.141s5d.

Again, we find that dimensionless ratios likeQ1 andQb in
Eq. s7d are very useful in Monte Carlo determinations of

critical points. At criticality, the asymptotic values ofQ1 and
Qb are universal, although they depend on the boundary con-
ditions. We have also simulated the bond-percolation model
on the simple-cubic lattice with periodic boundary conditions
in the range 6øLø120. The Qb data at pb=pbc
=0.248 821 6s5d f28g are shown in Table I. These data were
fitted by Eq.s17d, which leads toQbcsd=3d=0.6338s2d.

The existence of the aforementioned extraordinary transi-
tion, and in particular that of the line of surface transitions, is
related to the fact that the two-dimensional surfaces can sus-
tain long-range order in the absence of an ordered bulk. But
even without spontaneous surface order, rich surface critical
phenomena can still occur. For instance, for the Heisenberg
model in three dimensions, the line of surface transitions
does not exist, and only the ordinary transition occurs on the
surfaces. Nevertheless, at bulk criticalityK=Kc and for sur-
face couplingsK1/Kù2.0, it was reportedf34g that spurious
long-range order occurs on the surfaces and the surface mag-
netic exponent becomesK1/K dependent. Another remark-
able example is the two-dimensional Potts model at its tric-
ritical point Kt, where the surfaces are just one-dimensional
edges. Although the surface transition occurring atK,Kt
does not exist on the edges, various types of edge phase
transition have been foundf35–37g when the surface cou-
pling and/or the surface field is varied. In particular, sponta-
neous one-dimensional order occurs on the edges when the
surface coupling is moderately enhanced.
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