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Some alloys show interstitial-induced phase transitions and order-disorder transitions due to the mutual
interactions between the interstitial �I� species and the substitutional �S� host lattice. An innovative approach,
based on the cluster variation method �CVM�, that takes this coupling into account is proposed here for the
calculation of thermodynamic data and phase boundaries. In the case of fcc substitutional alloys with intersti-
tial species a simple cube is chosen as the basic cluster. The cube is defined such that it explicitly accounts for
the mutual interaction between the S and the I sublattices comprising the system. Expressions for the configu-
rational entropy in the cube approximation and the internal energy are derived. Phase diagrams for several
hypothetical binary host alloys with interstitials are calculated. The results obtained using the proposed simple-
cube approximation demonstrate the effect of mutual interactions on the phase boundaries.
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I. INTRODUCTION

The thermodynamics and phase stability of interstitial
systems is important since such alloys are encountered in
numerous industrial applications: nitrogen and carbon in
steels, boron or carbon in aluminum alloys, and hydrogen in
palladium-based membranes or in materials for hydrogen
storage. These systems consist of a host metal lattice of
which interstitial sites are partly occupied by other atomic
species. In most of the aforementioned examples, the metal
lattice is a substitutional metal alloy. On both sublattices, the
substitutional host �S sublattice� and the interstitial sublattice
�I sublattice�, order-disorder transitions could occur. More-
over the presence of interstitial atoms could induce ordering
in the substitutional metal lattice, or vice versa, the presence
of substitutional atoms in the metal lattice could induce or-
dering of the interstitial atoms. Experiments indicate that in a
number of Pd-alloys �e.g., those alloyed with metals from
group IIIb-Vb, and with rare earth metals� hydrogen-induced
ordering occurs.1–3 Also other systems show ordering transi-
tions induced by the presence of interstitial atoms, e.g., Fe-
Cr-C, Fe-Cr-N, Al-C-Mn, and Al-B-Mn.4 A sound thermo-
dynamic model for such systems should be capable of pre-
dicting the presence of short- and �or� long-range order, as
well as the occurrence of order-disorder transformations. In
this paper a unified approach, i.e., one that incorporates the
coupling of the interstitial and substitutional lattices, is put
forward.

The cluster variation method �CVM� �Refs. 5–9� is used
to describe the substitutional-interstitial systems as it has
been recognized to provide a reliable way to estimate the
configurational entropy and to predict thermodynamic prop-
erties and phase transformations in systems that show order-
disorder transformations.10–16 The main approximation in the
CVM is the choice of a basic cluster up to which the atomic
correlations are accounted for in the free energy functional.
Recently, the combination of CVM with ab initio calcula-
tions has opened the path towards a priori predictions of
phase diagrams in solid systems. Most of these studies, how-
ever, deal with binary or ternary substitutional alloys, and

only few applications to interstitial solid solutions have been
reported.17–20 Up to now, the distribution of interstitial atoms
on the I sublattice is described as that of a binary �or ternary�
interstitial atom�s�–vacancy substitutional system in the
mean-field created by the metal sublattice.17 Such an ap-
proach provides good results when the metal sublattice is a
pure substance,17–20 but cannot be used to describe the influ-
ence of the atomic arrangement of the substitutional metal
alloy on that of the interstitial atoms on the I sublattice. The
coupling between the two sublattices is not accounted for.

In this paper, a CVM approach that treats explicitly the
coupling between the S and the I sublattices is proposed for
calculations of thermodynamic data and phase boundaries of
fcc substitutional alloys with interstitial species. A simple
cube is chosen as the basic cluster. The cube is defined such
that it includes sites belonging to both the substitutional and
the interstitial sublattices comprising the system. Expressions
of the configurational entropy in the cube approximation and
the internal energy are derived in Sec. II. The proposed ap-
proach is then applied to calculate phase boundaries for sev-
eral hypothetical binary host alloys with interstitials. The re-
sults, discussed in Sec. III, illustrate that the proposed
approach can describe the mutual interaction of the S and I
sublattices and its effect on the phase boundaries.

II. CVM CUBE APPROXIMATION

In this paper, binary fcc substitutional alloys that contain
interstitial atoms are considered. It is assumed that the inter-
stitial atoms only occupy the octahedral sites formed by the
close-packed metal lattice. Hence the interstitial lattice has
also a fcc structure. The sites of the substitutional host sub-
lattice and the sites belonging to the interstitial sublattice are
denoted by S and I, respectively. For convenience it is con-
sidered that the S and I lattice sites can both be occupied by
two types of species �atoms or vacancies�, as follows: species
A1 and A2 on the S sublattice, and B1 and B2 on the I sub-
lattice. The A and B types of species are restricted to occupy
their own sublattices, i.e., A species only reside on the S
sublattice, and B species only reside on the I sublattice.
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Such a system of two interpenetrating fcc lattices can be
described by a simple cube as the basic cluster. The cube
cluster is defined such that it includes sites from both the S
and I sublattices �Fig. 1�. In fact, as shown in Fig. 1, the
simple cube consists of two tetrahedrons, one on the S sub-
lattice and the other on the I sublattice.

The lattice sites on the cube are denoted by �, �, �, and �
for the I sublattice and �, �, �, and � for the S sublattice
�Fig. 1�. The occupation of the sites on the I sublattice is
described respectively by i, j, k, and l, which can take the
values of 1 or 2 whether the sites are occupied by B1 or B2,
while the occupation of the sites on the S sublattice is de-
scribed respectively by m, n, p, and s, which can take the
values of 1 or 2 whether A1 or A2 occupies the sites. The
cluster distribution variables of the simple cube are repre-
sented by Cijklmnps

��������. The super- and subscripts of Cijklmnps
��������

specify the index of an element of an array of 28 �256� ele-
ments, which represents all possible arrangements of four
species on two separate sublattices. The simple-cube distri-
bution variables obey the normalized condition

�
ijklmnps

Cijklmnps
�������� = 1, �1�

where the summation is over all possible arrangements of
species restricted to their sublattices.

The distribution variables of the subclusters included in
the simple cube �i.e., point, pairs, etc.� are not independent of
each other and can be obtained by summing the simple-cube
cluster distribution variables Cijklmnps

��������. For example, the
distribution variables Wijmn

���� of the square cluster, Yim
�� of the

nearest-neighbor pair cluster, and Xi
� or Xm

� of the point clus-
ter, can be calculated by Eq. �2�. The summations in Eq. �2�
involve all possible arrangements of the species over the
specified lattice sites. For example, the square cluster Wijmn

����

consists of two lattice sites on the I sublattice �� and �� and
two on the S sublattice �� and ��. Each of the � and � sites
can be occupied either by B1 or B2 �indexed by i and j�, and
each of the � and � sites can be occupied either by A1 or A2
�indexed by m and n�.

Square: Wijmn
���� = �

klps

Cijklmnps
��������, . . . ,

Pair: Yim
�� = �

jklnps
Cijklmnps

�������� = �
jn

Wijmn
����, . . . ,

Point: Xi
� = �

jklmnps
Cijklmnps

�������� = �
m

Yim
��, . . . . �2�

Having defined the cluster distribution variables and their
relations, one can proceed to define the thermodynamic func-
tions describing the system in terms of the cluster distribu-
tion variables. The grand potential function, 	, is used to
calculate the equilibrium states in this paper. For each phase,
the grand potential per lattice site is defined21 as

	�V,T,
B1

* ,
B2

* ,
A1

* ,
A2

* �

= E − TS + pV −
1

2�
i=1

2

xi
Bi

* −
1

2 �
m=1

2

ym
Am

* , �3�

where E and S describe the energy and the entropy per lattice
site, respectively, T is the temperature, p is the external pres-
sure, and V represents the volume per lattice site. The terms
xi and ym denote the mole fraction of component Bi �i
=1,2� on the I sublattice and of component Am �m=1,2� on
the S sublattice, respectively. The mole fractions are related
to the point-cluster distribution variables as follows:

xi = �Xi
� + Xi

� + Xi
� + Xi

��/4,

ym = �Xm
� + Xm

� + Xm
� + Xm

��/4, �4�

where Xi
� represents the probability that site � is occupied by

either B1 or B2, and Xm
� represents the probability that site �

is occupied by either A1 or A2.
The parameters 
Bi

* and 
Am

* in Eq. �3� are the effective
chemical potentials of Bi species on the I sublattice and of
Am species on the S sublattice, respectively. They are defined
as


Bi

* = 
Bi
− �
B1

+ 
B2
�/2, 
Am

* = 
Am
− �
A1

+ 
A2
�/2,

�5�

where 
Bi
and 
Am

are the chemical potentials of component
Bi and Am, respectively. The effective chemical potentials
satisfy thus the relations 
B1

* +
B2

* =0 and 
A1

* +
A2

* =0. Note
that in Eq. �3� the chemical potential is written separately for
each sublattice, the factor 1 /2 ensures that each term con-
tains only one half of the total number of lattice sites in the
system.

FIG. 1. Graphical representation of a fcc substitutional system
with interstitial species. The sites on the S and I sublattices are
represented by large and small open circles, respectively. The four
neighboring species occupying the S or I sublattices of the fcc unit
cell form a tetrahedron; two tetrahedrons from the S and I sublat-
tices construct a simple cube, whose vertices are denoted by �, �,
�, � �, �, �, and �.
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A. Configurational entropy in the simple-cube approximation

In the framework of the CVM, the configurational entropy
is described as a function of cluster and subcluster distribu-
tion variables. The analysis of possible subclusters of the
simple cube that contribute to the total configurational en-
tropy �following the procedure described in Ref. 22� resulted
in that only the points, the nearest-neighbor pairs, and the
squares have nonzero contributions. Note that the next-
nearest-neighbor pairs, although not appearing in the expres-
sion of the total entropy, contribute to the internal energy.

Following Kikuchi’s procedure,5 the configurational en-
tropy per lattice site in the simple-cube approximation be-
comes

S = kB�− L�cube� + 3L�square� − 3L�pair� + L�point��

= kB�− �
ijklmnps

L�Cijklmnps
��������� +

1

2	�
ijmn

L�Wijmn
�����

+ �
iknp

L�Wiknp
����� + �

ilmp

L�Wilmp
����� + �

jkns

L�Wjkns
�����

+ �
jlms

L�Wjlms
����� + �

klps

L�Wklps
�����
 −

1

4	�im L�Yim
���

+ �
in

L�Yin
��� + �

ip

L�Yip
��� + �

jm

L�Y jm
��� + �

jn

L�Y jn
���

+ �
js

L�Y js
��� + �

kn

L�Ykn
��� + �

kp

L�Ykp
��� + �

ks

L�Yks
���

+ �
lm

L�Y lm
��� + �

lp

L�Ylp
��� + �

ls

L�Yls
���


+
1

8	�i

L�Xi
�� + �

j

L�Xj
�� + �

k

L�Xk
�� + �

l

L�Xl
��

+ �
m

L�Xm
�� + �

n

L�Xn
�� + �

p

L�Xp
�� + �

s

L�Xs
��
� , �6�

where kB is Boltzmann’s constant and the function L�a�
�a ln a.

B. Internal energy in the simple-cube approximation

In CVM calculations using the simple-cube approxima-
tion, the internal energy of the system per lattice site is taken
equal to the weighted sum of the energies for all the 256
possible configurations of the cube cluster, i.e.,

U = �
sites

�ijklmnps
��������Cijklmnps

��������, �7a�

where �ijklmnps
�������� is the energy of a specific configuration on

the simple cube that occurs with a probability given by the
distribution variable Cijklmnps

��������. The energy of a specific con-
figuration �ijklmnps

�������� is approximated as the sum of pairwise
interactions between the nearest- and the next-nearest-
neighbor lattice sites within the cube, and hence the expres-
sion of the internal energy becomes

U =
1

4	�im Yim
���im

�� + �
in

Yin
���in

�� + �
ip

Yip
���ip

�� + �
jm

Y jm
��� jm

��

+ �
jn

Y jn
��� jn

�� + �
js

Y js
��� js

�� + �
kn

Ykn
���kn

�� + �
kp

Ykp
���kp

��

+ �
ks

Yks
���ks

�� + �
lm

Y lm
���lm

�� + �
lp

Ylp
���lp

�� + �
ls

Yls
���ls

��

+

1

2	�ij Yij
���ij

�� + �
ik

Yik
���ik

�� + �
il

Yil
���il

�� + �
jk

Y jk
��� jk

��

+ �
jl

Y jl
��� jl

�� + �
kl

Ykl
���kl

��
 +
1

2	�mn

Ymn
���mn

�� + �
mp

Ymp
�� �mp

��

+ �
ms

Yms
���ms

�� + �
np

Ynp
���np

�� + �
ns

Yns
���ns

�� + �
ps

Yps
���ps

��
 ,

�7b�

where the fractions 1/4 and 1/2 take care of the fact that the
nearest-neighbor pairs and the next-nearest-neighbor pairs
are shared between four and two cubes, respectively. Note
that nearest-neighbor pairs occur between species occupying
sites on different �S and I� sublattices, whereas next-nearest-
neighbor pairs are formed within the same �S or I� sublattice
�Fig. 1�. �im

�� is the pairwise effective interaction between
sublattice site � occupied with i and sublattice site � occu-
pied with m. The so-called 8-4 type Lennard-Jones �L-J� po-
tential �Eq. �8�� is used in this work to describe the volume
dependence of the pair interactions,21

�im
���r� = �im

0 �	 rim
0

r

8

− 2	 rim
0

r

4� . �8�

Equation �8� is written for the case of nearest-neighbor pairs
consisting of an I site and a S site. Similar expressions in-
cluding the proper indices can be written for the other types
of pairs. In Eq. �5�, �im

0 and rim
0 are L-J parameters and r is

the distance between sites. In principle the L-J parameters
can be derived based on thermodynamic data of cohesive
energy, heats of formation, and lattice constants.

C. Calculation of phase equilibrium

For a given temperature T and fixed effective chemical
potentials 
Bi

* �I sublattice� and 
Am

* �S sublattice�, the equi-
librium state of the system corresponds to those configura-
tions that minimize the value of the grand potential
	�V ,T ,
B1

* ,
B2

* ,
A1

* ,
A2

* �. In this work, the natural iteration
method5,23 �NIM� is used to minimize the grand potential
with respect to the cluster distribution variables. The mini-
mization of 	 with respect to Cijklmnps

�������� yields
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Cijklmnps
�������� = exp	 �

kT

exp	−

�ijklmnps
��������

kT




 exp	
Bi

* Xi
� + 
Bj

* Xj
� + 
Bk

* Xk
� + 
Bl

* Xl
�

8kT




exp	
Am

* Xm
� + 
An

* Xn
� + 
Ap

* Xp
� + 
As

* Xs
�

8kT




 �Wijklmnps�1/2�Yijklmnps�−1/4�Xijklmnps�1/8, �9�

with

Wijklmnps = Wijmn
����Wiknp

����Wilmp
����Wjkns

����Wjlms
����Wklps

����,

Yijklmnps = Yim
��Yin

��Yip
��Y jm

��Y jn
��Y js

��Ykn
��Ykp

��Yks
��Y lm

��Ylp
��Yls

��,

and

Xijklmnps = Xi
�Xj

�Xl
�Xl

�Xm
�Xn

�Xp
�Xs

�,

where � is the Lagrange multiplier taking into account the
normalization conditions given in Eq. �1�.

The volume per cluster site, V, corresponding to a particu-
lar configuration Cijklmnps

�������� is obtained through Eq. �10� at
constant T and taking atmospheric pressure p as reference,


�	

�V



T,
*,Cijklmnps
��������

= − p . �10�

The thermodynamic equilibrium is determined by the T,

Bi

* , and 
Am

* for which 	’s are the same for both phases. The
concentrations and the lattice parameters of the phases in
equilibrium are obtained from Eqs. �9� and �10�.

III. APPLICATION TO CALCULATIONS OF PHASE
DIAGRAMS

Phase diagram calculations were performed in order to
demonstrate how the proposed simple-cube approximation of
CVM accounts for the coupling between the substitutional
and interstitial sublattices. The systems considered consist of
a binary host alloy with interstitials, i.e., a fcc substitutional
A1−A2 alloy which contains B1 and B2 interstitial species,
were B2 is taken as a vacancy. The cases investigated here
are referred to as hypothetical, in view of the fact that the
values of the input parameters are rather arbitrarily chosen
and varied. The input parameters required for phase diagram
calculations are the values of the Lennard-Jones pair-
interaction parameters, i.e., �0 and r0 �Eq. �8��. Relative �nor-
malized� values for the L-J parameters and 
* with respect to
a reference state are used. The L-J parameters of pure host A1
are chosen as the reference state for all L-J parameters; and
all the effective chemical potentials 
* are normalized with
respect to �A1A1

0 . The values chosen for �A1A1

0 and rA1A1

0 are
62.80 kJ/mol �15 kcal/mol� and 0.27 nm, respectively.
These values lie typically within the range of Lennard-Jones
parameters for transition metals.17,21 One further remark has
to be made regarding the energy E and the entropy S. The
vibrational contributions to energy and entropy are not con-
sidered in the calculations, since the main purpose of the

present work is to qualitatively demonstrate how the pro-
posed formalism describes the coupling of S and I sublattices
and to show the effect of that on phase diagrams.

The CVM calculations are performed, at constant �atmo-
spheric� pressure, in the three-dimensional parameter space
�T ,
B

* ,
A
*�. The results discussed here are obtained from cal-

culations using the normalized parameters given in Table I.
The interstitial species B2 are taken as vacancies that only
interact with the interstitial species B1.

First, the value of the effective chemical potentials

A1

* �=−
A2

* � on the S �host� sublattice is fixed. Note that fix-
ing the value for 
A1

* implies that the tangent to the Gibbs
energy of the host lattice is fixed �see Appendix A of Ref. 17�
at the same value for all T used in the calculations. Since the
shape of the Gibbs energy varies with T, this implies that the
composition of the host matrix for which the calculation is
performed differs for each T. The equilibrium state is
searched for a given temperature T by varying the effective
chemical potentials on the I sublattice 
B1

* �=−
B2

* �; see Fig.
2. The phase equilibrium is determined by the T and 
B1

* for
which 	 is the same for both phases, i.e., it corresponds to
the intersection of the two curves each representing the
variation of the grand potential of a phase with 
B1

*,norm

�=
B1

* /�A1A1

0 �.23 The composition of the phases at equilibrium
�at T=400 K, 
A1

*,norm=0, and 
B1

*,norm=1.464� is obtained
from the corresponding site occupancies. The calculations at
given fixed 
A1

*,norm are repeated for different T in order to
obtain the equilibrium temperature-composition diagrams
shown in Fig. 3. Note that the compositions in Fig. 3 are
given in terms of the mole fractions for each sublattice, as
defined in Eq. �4�, and not in terms of overall mole fractions.
The equilibrium compositions of the A1−A2 host alloy as
function of T are given in the left graphs of Fig. 3. The
corresponding compositions of the interstitial sublattice for
these phases in equilibrium are given in the graphs at the
right.

The temperature-composition diagrams for different val-
ues of 
A1

*,norm of the host, namely 1.0, 0.0, −1.0, are given in
Fig. 3. The diagrams in Fig. 3 show the phase boundaries on
the S sublattice �left� and the corresponding compositions of
the I sublattice �right� as calculated in the temperature range
�200–1400 K�.

The diagrams in Fig. 3 indicate first of all that signifi-
cantly different phases exist for different values of 
A1

*,norm.

TABLE I. Normalized Lennard-Jones parameters �o and ro used
to model a A1−A2−B1−B2 system with the simple-cube approxi-
mation of CVM.

Pairs Normalized parameters Pairs Normalized parameters

�0,norm r0,norm �0,norm r0,norm

A1−A1 1.000 1.000 B2−B2 0.000 1.000

A1−A2 0.980 1.050 A1−B1 0.010 1.280

A2−A2 0.950 1.080 A2−B1 0.008 1.330

B1−B1 0.021 1.280 A1−B2 0.000 1.000

B1−B2 0.036 1.230 A2−B2 0.000 1.000
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For instance, for 
A1

*,norm=1.0 the host sublattice S is occu-
pied exclusively by A1 over the whole temperature range
whereas this is not the case for 
A1

*,norm=0 and −1 �see dia-
grams at the left in Fig. 3�. For the case 
A1

*,norm=1, a coex-
istence region with a critical temperature around 510 K ex-
ists between two phases which dissolve different amounts of
interstitials.

In all cases the composition of the I sublattice depends
strongly on the compositions of the substitutional host sub-
lattice. For the case of 
A1

*,norm=−1.0, at any temperature be-
tween 200 K and 1200 K, at equilibrium, the system consists
of a A1-rich phase and a A1-poor phase which dissolve dif-
ferent amounts of B1 interstitials. The A1-poor phase contains
a larger amount of interstitials B1 than the A1-rich phase �the
compositions of both sublattices of one phase are denoted
with the same marks in the left and right graphs�. For the
case 
A1

*,norm=0 the temperature composition diagram is a
combination of the two other cases. At low temperatures the
diagram for 
A1

*,norm=0 is similar to the case of 
A1

*,norm=1.0.
Then, around T=510 K, the two solid phases in equilibrium
have a quite different content of A1 and A2. Again, the
A1-rich phase, which contains less than 10% A2 on the S
sublattice, dissolves a lower amount of B1 interstitials, but
the solubility is larger than in the case 
A1

*,norm=1.0 and lower
than in the case 
A1

*,norm=−1.0.
The results presented in Fig. 3 differ only in the value of

the chemical potential of species on the host sublattice �dif-
ferent 
A1

*,norm� as the starting point for the calculations. The
obtained equilibrium compositions on the I sublattice are
strongly coupled to those of the S sublattice.

Next, a set of CVM calculations were performed for fixed
temperature T and fixed chemical potentials of the interstitial

species 
B1

* �=−
B2

* �; this implies that the tangent to the
Gibbs energy of the interstitial lattice is fixed. As for the
previous case, the composition �here� of the interstitial lattice
is fixed at each T; since the shape of the Gibbs energy could
change with T also the composition could change. The equi-
librium phase boundaries are then determined by varying

A1

* . The phase diagrams in the �T ,y1� and �T ,x1� planes are
shown in Fig. 4 for 
B1

*,norm=1.0, 0.0, and −1.0, respectively.
In all these cases, the system separates into two phases, one
A1-rich phase �represented by solid lines in Fig. 4� and one
A1-poor �represented by dotted lines in Fig. 4�, which dis-
solve a lower or larger amount of B1 interstitials, respec-
tively. This suggests that the presence of B1 interstitial in a
A1−A2 host system induces phase separation. With decreas-
ing the value of 
B1

*,norm the critical temperature of the two-
phase region increases. These temperature-composition dia-
grams demonstrate again that phase transitions on the S and
I sublattices of these fcc alloys are strongly coupled to each
other.

From a practical point of view, the chemical potential is a
parameter rather difficult to control or estimate directly from
experiments. In this sense, Figs. 3 and 4 are less suitable
because they apply to cases of fixed chemical potential, and
variable composition of both the metal host alloy and the
interstitial sublattices. More useful are phase diagram repre-
sentations that give direct information about the composition
of the phases coexisting in a system at given T, p, and over-
all composition. Hence, representations in the composition
plane �xi ,ym� at constant temperature T and p, which are
similar with the so-called Gibbs triangle for ternary systems,
are preferable. Examples of such diagrams for the system
studied in this paper are given in Figs. 5�a� and 5�b� at tem-
peratures of 400 K and 800 K, respectively. In these cases,
the CVM calculations were performed at constant T �and p�
by varying the 
A1

*,norm and searching the corresponding equi-
librium 
B1

*,norm value �and vice versa�, so to obtain a set of
equilibrium points in the �
A1

*,norm ,
B1

*,norm� space. In Fig. 5
the compositions of the phases in equilibrium are represented
by tie lines �i.e., lines connecting two points of identical
effective chemical potentials�. A system with an overall com-
position represented by a point in the miscibility gap �e.g., a
system with overall composition of y1=0.80 �A1� and x1

=0.70 �B1�, represented by point C in Fig. 5�a�� separates
into two phases that coexist. The compositions of these two
phases correspond to the ends of the tie line drawn through
the point �e.g., at 400 K the composition of phase I is y1
=0.60 �A1� and x1=0.78 �B1� and that of phase II is y1

=0.99 and x1=0.61�. With increasing temperature, the misci-
bility gap decreases.

CVM allows one to evaluate the presence of short- and
long-range order.10–17 In the present calculations it was as-
sumed that both the S and I sublattices of a fcc system ex-
hibit a disordered �A1� structure, i.e., the starting symmetry
of the structure was described by taking Xm

� =Xn
�=Xp

� =Xs
� for

m=n= p=s equal to 1 or 2 �on the S sublattice� and Xi
�

=Xj
�=Xk

�=Xl
� for i= j=k= l equal to 1 or 2 �on the I sublat-

tice�. Hence, from the present calculations it is possible to
evaluate whether short-range ordering �SRO� occurs in the

FIG. 2. �Color online� The grand potential as function of the
effective chemical potential on the I sublattice �
B1

*,norm� at fixed
temperature �T=400 K� and fixed effective chemical potential on
the S sublattice �
A1

*,norm=0�. The equilibrium state is searched for
by firstly increasing 
B1

*,norm �dotted curve� and then by decreasing

B1

*,norm �solid curve� as indicated by arrows along the curves. The
equilibrium state corresponds to point E �
B1

*,norm=1.464�.
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system. This can be achieved by comparing the site occupan-
cies of the cube clusters calculated for a fixed composition
and temperature from the cluster distribution variables
Cijklmnps

�������� obtained by CVM, with those corresponding to a
random distribution of atoms at the same composition. How-

ever, since the equilibrium phase boundaries for the systems
discussed here are given as temperature-composition dia-
grams for both �the substitutional and the interstitial� sublat-
tices �Figs. 3 and 4�, it is convenient to analyze the site
occupancies on each sublattice �i.e., the occupation of the

FIG. 3. Coupled phase diagrams of a hypothetical fcc system, as calculated from the simple-cube approximation using parameters given
in Table I. The effective chemical potential on the substitutional sublattice 
A1

*,norm was fixed during the calculations. Figures on the same row
are obtained from the same calculations; the left and right figures are for the substitutional and interstitial sublattices, respectively.
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two tetrahedrons comprising the cube cluster; see Fig. 1�.
These site occupancies are obtained from the cube-cluster
distribution variables by taking the appropriate summations
�Eq. �2��.

The analysis of the site occupations of the two tetrahedron
clusters comprising the cube cluster has shown that the solid
phases in equilibrium at given conditions of T, p, and chemi-
cal potentials, exhibit different degrees of SRO. For ex-
ample, for the cases presented in Fig. 3, at 400 K, the two
phases in equilibrium �phase I and phase II� show random
distribution of atoms on both, the S and the I sublattices for

A1

*,norm=0 or 1.0. However, this is not the case for 
A1

*,norm

=−1.0, where some SRO occurs in phase II. The fractions of

S and I tetrahedron clusters within the cubes, occupied by 0
to 4 atoms A1 �S sublattice� or B1 �I sublattices�, calculated
by CVM with 
A1

*,norm=−1 for phase II in equilibrium with
phase I at 400 K are shown in Fig. 6. The occupations cor-
responding to random distributions at the corresponding
compositions are also shown for comparison. A clear differ-
ence between CVM results and the random distribution is
observed, i.e., according to the CVM calculations a larger
fraction of S tetrahedron clusters is occupied with only one
or two A1 atoms, a smaller fraction is empty, and only a
small fraction contains three or four A1 atoms; on the I sub-
lattice of the same phase, a larger fraction of I tetrahedrons is
occupied with two or three B1 atoms, and a smaller fraction

FIG. 5. Miscibility gap in the �x1 ,y1� plane for the A1−A2 host alloy with B1 interstitial species. The temperature is �a� T=400 K and �b�
800 K. The dotted lines connect two points where the chemical potentials are identical �tie lines�. For example, a system with an overall
composition represented by point C in �a� with overall composition y1=0.80 �A1�, x1=0.70 �B1� separates into two phases that coexist. The
compositions of these two phases correspond to the ends of the tie line drawn through the point �i.e., for phase I y1=0.60 �A1�, x1=0.78 �B1�
and for phase II, y1=0.99, x1=0.61�.

FIG. 4. �Color online� Coupled phase diagrams of a hypothetical fcc system, as calculated from the simple-cube approximation using
parameters given in Table I. During the calculations the effective chemical potential on the interstitial sublattice 
B1

*,norm was fixed. �a� and
�b� are obtained from the same calculations and correspond to the substitutional and interstitial sublattices, respectively. Dotted lines, phase
I; solid lines, phase II.
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is empty or occupied by one or four B1 atoms. The site
occupancies of the two sublattices are coupled, i.e., higher
fractions of I tetrahedrons occupied by two or more B1 atoms
correspond to lower fractions of S tetrahedrons within the
cube clusters occupied by two or more A1 atoms. This is in
agreement with the previous remark that the composition of
the I sublattice depends strongly on the compositions of the
substitutional host sublattice �and vice versa�, and that the
A1-poor phases dissolve larger amounts of B1 interstitials.

IV. CONCLUSIONS

The above CVM calculations using the simple-cube ap-
proximation demonstrate that phase transitions and ordering
transitions on the S and I sublattices of these hypothetical fcc
alloys are strongly coupled to each other, and that this mutual
interaction can be described by the proposed simple-cube
approximation of the CVM. This phenomenon has already
been observed experimentally in some systems,1–4 but not
accounted for in CVM modeling.

To apply this method to describing real systems, two
routes can be followed to estimate the internal energy, i.e.,
�1� via pair interactions or �2� through first-principle calcu-
lations. For the first approach, the pair interaction parameters
used in expressing the internal energy of the system should
be obtained. To derive all these parameters �see Table I�
based on experimental data �i.e., cohesive energies, lattice
parameters� is quite tedious, if not impossible. Therefore, the
use of internal energy expressed in terms obtained through
ab initio calculations could be a better approach. In that case,
effective cluster interactions �ECI�, which can be obtained
from first-principle calculations, can be used. In previous
work,20 some of us showed that the CVM-ECI approach is
able to provide a reliable description of the phase boundaries
in iron-nitrogen and iron-carbon-nitrogen systems. We be-
lieve the use of ECI’s in the simple-cube approximation of

CVM could provide a good description of order-disorder
phase transitions in fcc substitutional systems in the presence
of interstitial atoms.
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