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We investigate the O�4� spin model on the simple-cubic lattice by means of the Wolff cluster algorithm.
Using the toroidal boundary condition, we locate the bulk critical point at coupling Kc=0.935 856�2�, and
determine the bulk thermal magnetic renormalization exponents as yt=1.337 5�15� and yh=2.482 0�2�, respec-
tively. The universal ratio Q= �m2�2 / �m4� is also determined as 0.9142�1�. The precision of these estimates
significantly improves over that of the existing results. Then, we simulate the critical O�4� model with two
open surfaces on which the coupling strength K1 can be varied. At the ordinary transitions, the surface
magnetic exponent is determined as yh1

�o�=1.020 2�12�. Further, we find a so-called special surface transition at
�=K1 /K−1=1.258�20�. At this point, the surface thermal exponent yt1

�s� is rather close to zero, and we cannot
exclude that the corresponding surface transition is Kosterlitz-Thouless-like. The surface magnetic exponent is
yh1

�s�=1.816�2�.
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I. INTRODUCTION

The classical O�N� spin model, characterized by a
N-component order parameter, plays a significant role in the
field of statistical physics and condensed-matter physics. It is
known that this model can describe the universal critical be-
havior of many physical systems. In the limit N→0, the
O�N� model reduces to the self-avoiding random walk,
which is an important theoretical model in the polymer sci-
ence. The N=1 case corresponds to the Ising model, and
describes phase transitions ranging from the liquid-vapor to
the magnetic transition in uniaxial �anti-�ferromagnets. The
universal critical behavior of the helium superfluid transition
and of the Meissner transition in type II superconductors is
believed to belong to the XY �N=2� universality class. For
N=3, one has the Heisenberg model for the isotropic mag-
nets. In three dimensions, the O�4� model is related to the
finite-temperature phase transition in QCD with two light
flavors. The O�5� model is relevant to the so-called SO�5�
theory of high Tc superconductivity. The N=6 case describes
the chiral phase transition in QCD with two flavors and two
colors.

Exact results about the critical behavior of the three-
dimensional O�N� model are scarce; investigations mainly
rely on approximation techniques. These include the high-
temperature series expansion, the field-theoretical formula-
tion of the renormalization group, and the Monte Carlo simu-
lations. The thermal and magnetic critical exponents have
been determined for many values of N, including all the in-
tegers in range 0�N�6 �1–12� and N=32 and N=64 �13�.
For a recent review, see Ref. �14�.

In this work we focus on the O�4� model on the simple-
cubic lattice. Our goal is twofold: to improve the precision of
the bulk critical point and provide an independent and care-
ful determination of the bulk critical exponents, and then to
investigate the surface phase transitions by simulating the
critical model with open surfaces.

On the L�L�L simple-cubic lattice with periodic
boundary conditions in all the directions �namely, the toroi-

dal boundary condition�, the Hamiltonian of the O�4� model
in zero magnetic field reads

H/kBT = − K�
�ij	

s�i · s� j , �1�

where K is the coupling strength between nearest-neighbor
lattice sites. The dynamic variable s� is a unit vector of N
=4 components. To our knowledge, the best estimate of the
critical coupling of this model is Kc=0.935 90�5� �15�. The
thermal and magnetic exponents were determined as yt
=1.335�4� and yh=2.4817�5� �7�. The precision of the esti-
mated critical point is rather limited in comparison with
those of the estimated critical points for the Ising, XY, and
Heisenberg cases: Kc�N=1�=0.221 654 55�3� �2�, Kc�N=2�
=0.454 165 9�10� �3,16,17�, and Kc�N=3�=0.693 003�2�
�3,16,17�. It might not be sufficient for our aim of studying
surface effects at the bulk criticality.

Surface effects on the O�N� model, particularly on the
Ising model, have been extensively investigated. Near the
bulk critical points, owning to the long-range bulk correla-
tions, surface effects can be significant and, in many cases,
they cannot be neglected. The surfaces can display critical
phenomena that differ from the bulk critical behavior; for
each bulk criticality, different surface universality classes can
exist. For a review, see Refs. �18–20�, and for more recent
work see Refs. �17,21,22�

Here, we shall review surface phase transitions on the
simple-cubic Ising model with periodic and free boundary
conditions in the xy plane and along the z direction, respec-
tively. Namely, for a finite system with linear size L, there
are two open surfaces at z=1 and z=L. The interaction
strengths K1 on the surfaces can assume different values
from those K in the bulk. The Hamiltonian of this Ising
model can then be written into two parts: a bulk term pro-
portional to the volume of the system and a surface term
proportional to the surface areas, i.e.,

H/kBT = − K�
�ij�

�b�sisj − K1�
�lm�

�s�slsm, �2�
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where the first sum accounts for the bulk and the second sum
involves the spins on the open surfaces. The phase diagram
of the model �2� is then sketched in Fig. 1. The critical line
K=Kc separates the bulk paramagnetic and ferromagnetic
states, denoted as BP and BF in Fig. 1, respectively. When
the surface coupling K1 is varied, the local behavior on and
near the surfaces can be significantly modified. For a para-
magnetic bulk K�Kc, the surfaces can behave as an antifer-
romagnet �SAF�, a ferromagnet �SF�, and a paramagnet �SP�,
depending on the sign and the strength of K1. The corre-
sponding phase transitions occurring on the surfaces are re-
ferred to as the ‘surface “transitions” and they are repre-
sented by the solid curved lines in Fig. 1. Due to the absence
of long-ranged bulk correlations, these surface transitions
display critical behavior as the two-dimensional Ising model
with anti-or ferromagnetic couplings, K1�0 or K1�0, re-
spectively. For the surface couplings K1�0, because the
bulk and surface couplings have different signs, the line of
surface transitions, which is in the two-dimensional Ising
universality class, extends to the zero temperature. However,
for ferromagnetic surface couplings K1�0, the surface criti-
cal line terminates at the bulk criticality in a “special” critical
point �Kc ,K1c

�s��. At this point, the surface critical correlations
coincide with the diverging bulk correlation lengths. Thus,
the point �Kc ,K1c

�s�� acts as a “multicritical” point, and the
phase transition is referred to as the ‘special transition.’
For K1�K1c

�s�, when K is varied, both the surfaces and the
bulk simultaneously undergo a phase transition at K=Kc. In
this case, the critical correlations on the surfaces arise from
the diverging bulk correlation length, and the phase transi-
tion is named the “ordinary transition.” For the larger cou-
pling K1�K1c

�s�, however, since the surfaces become ferro-
magnetic at a smaller coupling K�Kc, the bulk transition at
K=Kc has to occur in the presence of spontaneous long-
ranged surface order, and the transition is referred to as the
“extraordinary transition.” Nevertheless, the surfaces still
display some critical behavior owning to diverging bulk cor-

relation lengths. At the ordinary, the special, and the extraor-
dinary surface transitions, the scaling behavior of the mag-
netic correlations on the surfaces is governed by different
exponents; we shall denote them as yh1

�o�, yh1
�s�, and yh1

�e�, respec-
tively. In addition, the special transition has a relevant ther-
mal surface exponent yt1

�s�.
From the phase diagram in Fig. 1, it is clear that the

occurance of the multicritical point, i.e., the special transi-
tion, is closely related to the existence of the line of surface
phase transitions in the bulk paramagnetic region K�Kc.
Since the two-dimensional O�N� model with N�2 does not
undergo phase transitions at nonzero temperature, the line of
surface transitions does not exist in the three-dimensional
O�N� model. It may then seem self-evident that the special
and the extraordinary transitions do not exist either, and thus
that only the ordinary transitions remain on the surfaces.
However, such a statement does not agree with some recent
studies of the Heisenberg model in three dimensions. It was
reported that, at the bulk criticality, the surface magnetic ex-
ponents depend on the ratio K1 /K for K1 /K�2.0 �23�. Fur-
ther, in Ref. �17�, substantial evidence was found for the
existence of a special surface transition. It seems then desir-
able to provide additional investigations about the existence
of a special surface transition for the three-dimensional O�N�
model for N�2.

TABLE I. Description of the simulations of the O�4� model. The
table lists the simulation length in millions of samples �No. MS�,
and the number of Wolff clusters �No. Wc/S� between subsequent
samples, for each system size L. The average size of a Wolff cluster
at K=0.935 870 is also presented, which is in the unit of the lattice
volume. The simulations were performed for several values of K
in a range �K about the critical point Kc. According to Ref. �6�,
the autocorrelation time of the Wolff cluster simulations is about
	
2.0, in the unit of updates of the whole spins on the lattice. The
approximate number of independent samples can then be calculated
from No. MS, No.Wc/S, and Sw.

L No. MS No. Wc/S Sw �K

5 240 2 0.162 32�4� 0.024

6 240 3 0.134 67�3� 0.024

7 240 3 0.114 96�2� 0.024

8 240 4 0.100 22�2� 0.024

9 240 4 0.088 78�2� 0.024

10 240 5 0.079 60�2� 0.012

12 240 6 0.065 96�1� 0.012

14 240 7 0.056 26�1� 0.012

16 240 8 0.049 01�1� 0.008

20 160 10 0.038 912�8� 0.004

24 160 12 0.032 236�7� 0.004

32 120 16 0.023 914�6� 0.002

40 120 20 0.018 991�5� 0.002

48 40 24 0.015 735�4� 0

64 120 32 0.011 674�3� 0.0004

96 40 48 0.007 672�2� 0.0003

150 6 75 0.004 840�3� 0

FIG. 1. Schematic phase diagram for the three-dimensional
Ising model with ferromagnetic bulk couplings K�0. The bulk
transition is K=Kc, and the the bulk state is denoted as BF for a
ferromagnet and BP for a paramagnet. The surface phases are la-
beled as SF, SP, and SAF for the ferro-, para-, and antiferro-
magnets, respectively. The symbol �=K1 /K is the ratio of the sur-
face over the bulk coupling constant.
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The organization of the present paper is as follows. Sec-
tion II generates and analyzes high-precision Monte Carlo
data for the O�4� model near the bulk critical point. A com-
parison of our estimates for various parameters and the ex-
isting results is given. In Sec. III, simulations were carried
out for several values of K1 /K. We determine the surface
magnetic exponent at the ordinary phase transitions, and find
substantial evidence for the existence of a special surface
transition.

II. BULK CRITICALITY OF THE O„4… MODEL

We study the O�4� model on the L�L�L simple-cubic
lattice, as described by Eq. �1�; periodic boundary conditions
were applied in all the x, y, and z directions.

A. Simulation method and sampled quantities

The simulations used a version of the Wolff cluster algo-
rithm �24,25�. The Cartesian components, sx, sy, sz, and sw, of
the spin vectors are stored in computer memory; they satis-
fied �sx�2+ �sy�2+ �sz�2+ �sw�2=1.1 A Wolff cluster is con-
structed on the basis of the Cartesian component sw, with
bond-occupation probability p=max�0,1−exp�−2si

wsj
w�� for

a pair of nearest-neighbor sites. The spin components sw in
the Wolff cluster are then inverted. The simulation consists
of a large number of cycles, each of which contains several
Wolff steps and a data sampling procedure. Since the cluster
flips do not change the absolute values of the spin compo-
nents, each cycle also includes a random rotation of the
whole system of spin vectors.

Simulations were carried out near K=0.935 857, which is
rather close to the critical point determined later. The details
of the simulations are described in Table I. According to Ref.
�6�, the dynamical exponent of the Wolff cluster simulation
of the O�4� model is very close to zero, and the autocorrela-
tion time is around 	
2. Thus, the approximate number of
independent samples can be estimated from Table I.

Various quantities were sampled during the simulations,
including the magnetization density m� = 1

Ld �is�i, and the sec-
ond and the fourth moments m2 and m4. On this basis, the
Binder ratio is defined as

Q =
�m2�2

�m4�
. �3�

At criticality, the value of Q is universal. It is well accepted
that ratio Q is a very good candidate to locate phase transi-
tions in Monte Carlo studies of statistical models.

We also sampled the nearest-neighbor correlation func-
tions, which is an energy-like quantity, as

e =
1

Ld�
�ij	

s�is� j , �4�

where the sum is over all pairs of nearest-neighbor sites. The
specific heat is then defined as C=Ld��e2�− �e�2�.

We further measured a quantity Qp, which correlates the
magnetization distribution and the energy density, as

Qp = Ld�2�em2�
�m2�

−
�em4�
�m4�

− �e�� . �5�

This quantity can be obtained by differentiating the Binder
ratio Q with respect to the coupling strength K. It reflects the
slope of the Binder ratio Q at criticality.

B. Simulations and analyses

The numerical data generated by the Wolff cluster simu-
lations were analyzed by the finite-size scaling theory.

The finite-size scaling behavior of quantities defined in
the previous subsection can be obtained by differentiating the

1The x, y, z, and w directions of the spin vector should not be
confused with the spatial dimensions.

TABLE II. Numerical data for specific-heat C, susceptibility 
,
Binder ratio Q, and quantity Qp at K=0.935 857.

L C 
 Q Qp

5 2.210�2� 27.726�6� 0.918 22�6� 0.820�2�
6 2.341�2� 39.943�7� 0.917 50�6� 1.051�2�
7 2.477�2� 54.29�1� 0.916 82�6� 1.296�3�
8 2.531�2� 70.78�1� 0.916 48�6� 1.553�3�
9 2.600�2� 89.38�2� 0.916 23�6� 1.813�3�
10 2.664�2� 110.09�2� 0.915 91�6� 2.094�4�
12 2.761�2� 157.77�3� 0.915 55�6� 2.679�4�
14 2.835�2� 213.85�3� 0.915 37�6� 3.286�8�
16 2.905�2� 278.18�6� 0.915 19�6� 3.934�9�
20 3.000�3� 431.8�1� 0.915 05�6� 5.28�1�
24 3.073�3� 618.2�1� 0.914 89�6� 6.74�1�
32 3.187�3� 1087.2�2� 0.914 63�6� 9.95�2�
40 3.264�3� 1687.0�3� 0.914 57�6� 13.43�3�
48 3.327�4� 2414.2�5� 0.914 51�6� 17.04�5�
64 3.412�4� 4248.7�8� 0.914 40�6� 25.2�1�
96 3.517�6� 9422�3� 0.914 43�8� 43.2�2�
150 3.626�8� 422674�12� 0.914 5�1� 77.6�5�

FIG. 2. Binder ratio Q in range 0.934�K�0.938. The data
points �, �, �, �, �, �, and � represent system sizes L=12, 16,
20, 24, 32, 40, and 64, respectively. The error bars of the data are
smaller than the point sizes. The lines, which simply connect data
points for each L, are just for illustration purpose.
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free energy density with respect to appropriate scaling fields.
For instance, the leading behavior of the Binder ratio near
criticality behaves as

Q�K,L� = Q�tLyt� , �6�

where t
�K−Kc� is the thermal scaling field, and the right-
hand side of Eq. �6� is a universal function. Taking into ac-
count finite-size corrections, Taylor expansion of Eq. �6�
leads to

Q�K,L� = Qc + �
k=1

m

�K − Kc�kLkyt + biL
yi + b2Ly2

+ c�K − Kc�Lyi+yt + ¯ �7�

where m is an integer and symbol ¯ means that more terms
can be generated. For instance, one can include further finite-
size corrections or a term like n�K−Kc�2Lyt; the latter ac-
counts for the fact that the scaling field t is a nonlinear func-
tion of �K−Kc�. The term with amplitude bi comes from the
least irrelevant scaling field, of which the exponent was de-
termined as yi=−0.796 in Refs. �4,26�. In addition, it is
known that subleading corrections may exist and play a sig-
nificant role in the finite-size scaling analysis. These correc-
tions can arise from various sources: from the regular part of
the free energy, from the second derivative of the free energy
with respect to the least irrelevant scaling field, or from
the subleading irrelevant scaling field. The first type of sub-
leading corrections has exponent yr=d−2yh
−1.96, as
determined later, and the second has 2yi
 =−1.6. It was
shown �27� that, for the three-dimensional O�N� model with
N=1,2 ,3, the subleading scaling field has exponent about
−1.8. Thus, one might expect that such a correction exponent
also exists in the O�4� model. Nevertheless, since one does
not know how much these finite-size corrections contribute
from a priori argument, we simply describe them by a single
term b2Ly2. The term with c describes the “mixed” effect of
the thermal scaling field and the irrelevant scaling field. The
detailed derivation of Eq. �7� can be found in Ref. �2� and
references therein.

The Monte Carlo data for Q were fitted by Eq. �7� on the
basis of the least-squares criterion. For an illustration, parts
of the Q data are shown in Fig. 2. The exponent yi was left to
be determined by the fit. We found that all the data can be
described by Eq. �7� with m=2. Finite-size corrections are
well accounted for by a single term biL

yi with amplitude
bi=0.027�2� and exponent yi=−1.19�6�. The value of yi is
not consistent with the earlier determination yi=−0.796
�26�. In Ref. �3�, it was determined that yi=−1.85�21�, which
is also much smaller than yi=−0.796. A possible scenario
for this inconsistency can be that the amplitude for leading
corrections is quite small and the estimated exponent
yi=−1.29�6� is owing to a effective mixture of various types
of corrections. Various fits have been tried; for instance, we

FIG. 3. Specific heat C at K=0.935 857 vs L2yt−3. Exponent yt

was fixed at yt=1.337. The error bars of the data are in the order of
the point sizes.

FIG. 4. Quantities 
 /L3 and Sw at K=0.935 857 vs L2yh−6. Ex-
ponent yh was fixed at yh=2.482. The error bars of the data are
smaller than the point sizes. This figure implies that the scaling
behavior of the Wolff-cluster size is indeed governed by the mag-
netic exponent yh.

FIG. 5. Quantity Qp at K=0.935 857 vs Lyt. Exponent yt was
fixed at yt=1.337. The error bars of the data are in the order of the
point sizes.
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had described corrections by terms with bi and b2, where
exponent yi was fixed at −0.796 and y2 was left free to be
fitted. All the fits produced consistent results. The critical
point was located at Kc=0.935 856�2�, the thermal exponent
is yt=1.336�3�, and Binder ratio is Qc=0.914 2�1�. The esti-
mate of yt is in good agreement with the existing results yt
=1.335�4�.

According to the finite-size scaling theory, the specific
heat behaves as C=c0+aL2yt−3 at criticality, where terms
with amplitudes c0 and a arise from the regular and the sin-
gular parts of the free energy density, respectively. The ex-
ponent 2yt−3 is about −0.328, rather close to zero. This im-
plies that terms with a and c0 are difficult to be distinguished
from each other in the fits of C. Thus, the specific heat C
does not serve as a good candidate to determine the thermal
exponent yt. It turns out that quantity Qp can be used to
estimate yt, since the finite-size scaling of Qp at criticality
reads Qp�Lyt. We fitted the data for Qp by

Qp�K,L� = Lyt��
k=0

3

�K − Kc�kLkyt + biL
yi + b1L−2� . �8�

We obtain Kc=0.935 855�2� and yt=1.337 5�15�. The esti-
mates of Kc and yt agree with those obtained from ratio Q.

We also fitted the data for susceptibility 
=Ld�m2� by


�K,L� = L2yh−3��
k=0

3

�K − Kc�kLkyt + biL
yi + b1L−2� �9�

and obtain Kc=0.935 856�2� and yh=2.482 0�2�.

C. Data at criticality

Monte Carlo simulations were also performed right at K
=0.935 857, consistent with the estimated critical point
within one standard deviation. For the completeness of the
present paper and the convenience for readers, we list in
Table II the numerical data for specific heat C, susceptibility

, Binder ratio Q, and quantity Qp. The data for the average
size of the Wolff clusters Sw per lattice site were already
given in Table I. The size of a Wolff cluster is counted as the
total number of lattice sites in the cluster, normalized by the
volume of the lattice. Further, the data for C, and 
 and Sw,
and Qp are plotted in Figs. 3–5, respectively.

As a consistency check, we fitted the data for C, 
, Sw,
Qp, and Q by

C�L� = c0 + L2yt−3�a + biL
yi + b1L−2� , �10�


�L� = x0 + L2yh−3�a + biL
yi + b1L−2� , �11�

Sw�L� = L2yh−6�a + biL
yi + b1L−2� , �12�

Qp�L� = Lyt�a + biL
yi + b2Ly2� �13�

and

Q�L� = Qc + biL
yi + b2Ly2. �14�

These formulas are relatively simple in comparison with
those used in the previous subsection, since they do not in-
clude terms with �K−Kc�. The exponent y2 was fixed at
−1.96. The fits imply that the amplitudes bi for quantities C,

, Sw, and Sw are very small, and they cannot be used to
estimate yi. Thus, we fixed exponent yi at −1.2. The results
are given in Table III. As expected, these results are in good
agreement with those obtained in the previous subsection.

TABLE III. Results for the critical exponents yt and yh and Binder ratio Qc, as obtained from the fits of
the Monte Carlo data at K=0.935 857.

C Qp 
 Sw Q

yt=1.34�1� yt=1.337 7�14� yh=2.482 2�2� yh=2.4821�2� Qc=0.914 3�1�

TABLE IV. Summary of recent results for the critical point and renormalization exponents of the O�4�
model on the simple-cubic lattice. MC: Monte Carlo simulations, HT: high-temperature expansions, d=3 PE:
three-dimensional perturbative expansions.

Method Reference Year Kc yt yh

MC �6� 1995 0.936 0�1� 1.337�16� 2.4871�11�
MC �15� 1996 0.935 90�5�
MC �3� 1996 0.935 858�8� 1.329�2� 2.4808�6�
HT �26� 1997 1.333�5� 2.483�5�

d=3 PE �4� 1998 1.350�11� 2.483�2�
�-expansion �4� 1998 1.357�15� 2.482�2�

MC �8�a 2000 1.353�4� 2.488�1�
MC �7� 2001 1.335�4� 2.4817�5�
MC Present 2006 0.935 856�2� 1.337 5�15� 2.4820�2�

aSimulations were only performed at K=0.935 90.
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Table IV gives a summary of some recent results for the
bulk critical point and critical exponents of the O�4� model.
Our estimate of the critical point agrees well with those in
Refs. �6,15,26�, while the precision is significantly improved.
Our results for the renormalization exponents yt and yh are
most consistent with those in Ref. �7�, in which Monte Carlo
simulations were carried out for the O�4�-symmetric 
4

model.

III. SURFACE PHASE TRANSITIONS

To investigate surface effects on the three-dimensional
O�4� model, we simulate the O�4� model on the L�L�L
simple-cubic lattice with two open surfaces in the z direction.
The nearest-neighbor coupling strength K1 on the surfaces
can take different values from K in the bulk. Wolff cluster
simulations were performed at the estimated critical point
Kc=0.935 856�2� for several values of K1. In the remainder
of the present paper, we denote the enhancement of surface
couplings by parameter �=K1 /K−1.

A. Ordinary surface transitions

For the Ising, XY, and Heisenberg models on the simple-
cubic lattice, the special surface phase transitions occur
�17,28–30� at �c�N=1�=0.502 14�8�, �c�N=2�=0.622 2�3�,

and �c�N=3�=0.85. Thus, if the special transition also exists
for the O�4� model, one would expect it to occur at �c

�0.8; this will be confirmed later. For ���c, the surface
phase transitions, i.e., the ordinary transitions, are in the
same universality class. Further, the existing numerical data
for the O�N� model with N�3 imply that the “fixed” point
for the ordinary surface transition occurs at ��0; at this
point, the amplitude for the leading finite-size corrections
vanishes.

In the present work, we simulated at the ordinary surface
transition of the O�4� model with �=−1; namely, the surface
coupling strength K1 was set at zero. The system size took
14 values in range 4�L�64. For each system size, about
4�107 samples were generated. We sampled the magnetiza-
tion density m� 1 on the surfaces and the associated moments,
as

�m� 1�k =
1

2�
 1

Ld �
i:z=1

s�i�k

+ 
 1

Ld �
i:z=L

s�i�k� , �15�

where k=2 and 4. On this basis, we define the surface Binder
ratio as

FIG. 6. Quantity 
1 /L2 at the ordinary surface transition with

�=−1 vs L−1.9596=L2yh1
�o�

−4. The error bars are much smaller than the
size of the data points.

FIG. 7. Ratio Q1 at the ordinary surface transition with �=−1 vs
L−1.1. The exponent −1.1 was obtained from the fit.

FIG. 8. Surface Binder ratio Q1 in range −1���1.6. The data
points �, �, �, �, �, �, and � represent system sizes L=6, 8, 12,
20, 32, 48, and 64, respectively. The error bars of the data are
smaller than the point sizes. The lines, which simply connect data
points for each L, are just for illustration purpose.

FIG. 9. Surface Binder ratio Q1 in range 1���1.4. The data
points �, �, �, �, �, �, and � represent system sizes L=6, 8, 12,
20, 32, 48, and 64, respectively. The error bars of the data are
smaller than the point sizes. The lines, which simply connect data
points for each L, are just for illustration purpose.
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Q1 =
��m� 1�2�
��m� 1�4�

. �16�

The data for the surface susceptibility 
1=L2��m� 1�2� and
Q1 are shown in Figs. 6 and 7, respectively. The fit of the
data for Q1 by

Q1�L� = Q1c + bi1Lyi1 �17�

yields Q1c=0.666 7�6� and yi1=−1.1�1�. Here, we have used
exponent yi1 to describe the leading finite-size corrections at
the ordinary surface transitions. From a simple scaling argu-
ment, it was derived �31� that the value of yi1 is −1, in agree-
ment with our numerical estimate. On the other hand, one
would also expect that the irrelevant exponent yi for the bulk
transition also exists at the ordinary transition. Again, the
estimated value of yi1 is consistent with yi=−1.19�6�, as de-
termined earlier.

We then fitted the data for 
1 by


1�L� = 
1o + L2yh1
�o�−2�a + biL

yi1 + b1Ly1� . �18�

The term with 
1o
arises from the analytical background.

Exponent yi1 was fixed at −1. We simply took y1 as −3
�we did not set y1=−2 because 2yh1

�o�−2
2�. The fit yields

yh1
�o�=1.020 2�12�. To our knowledge, the value of yh1

�o� has not
been reported yet.

B. Special surface transition

In order to see whether the special phase transition occurs
for the critical O�4� model in three dimensions, we per-
formed simulations for several values of � in range −1��
�1.6. The system size took 12 values in range 6�L�64.
Parts of the data for Q1 are shown in Fig. 8. This implies that
the surface phase transitions for ��0.7 and for ��1.4 are in
different universality classes, and a special transition must
occur in between. Figure 9 shows the data for Q1 in range
1���1.4. Indeed, a common intersection between the data
lines for different sizes L is found to be near �=1.26. The
existence of the special transition can be further demon-
strated by the data for 
1, which are shown in Fig. 10 as


1L2−2yh1
�s�

vs �, with yh1
�s� fixed at 1.816, as determined later.

We fitted the Q1 data in range 1���1.4 by Eq. �7�,
where m was taken as 6. After discarding the data for small
system sizes L�8, the Q1 data can be well described by Eq.
�7� with exponent yi=−2. The fitting results are �c

=1.258�8�, Q1c=0.982 5�8�, and yt1
�s�=0.107�15�. The value

of yt1
�s� is rather close to 0.

However, the above results for �c and yt1
�s� cannot be taken

too seriously, as argued in the following. From Figs. 8 and 9,
it seems that, for ��1.3, the values of Q1 do not converge to
the low-temperature value 1. Instead, Q1 seems to converge
to a �-dependent value. The overall behavior of Q1 re-
sembles that of the ratio Q for the bulk transitions in the
Kosterlitz-Thouless universality class, as reported for the tri-
angular Ising antiferromagnet with nearest- and next-nearest-
neighbor interactions �32�. Thus, we cannot exclude the pos-
sibility that the special surface phase transition for the O�4�
model is Kosterlitz-Thouless-like. In particular, the small
value yt1

�s�=0.107�15� can be due to the fact that logarithmic
correction terms are not included in Eq. �7�. Nevertheless,
from Fig. 9, it seems that the estimate �c=1.258�20� should
be more or less reliable.

Taking into account the possible scenario that the special
transition is Kosterlitz-Thouless-like, we did not fit all the 
1
data by a single formula. Instead, we fitted the 
1 data for a
fixed value of � by


1�L� = 
1o + L2yh1
�s�−2�a + b1Ly1 + b2Ly2 + b3Ly3� , �19�

where correction exponents were simply taken as y1=−1,
y2=−2, and y3=−3. The results are shown in Table V. Linear

TABLE V. Results for yh1 from the fits by Eq. �19� for several values of �. Symbol Lmin represents the
smallest system size of which the data were included in the fit.

� 1.00 1.04 1.08 1.12 1.16 1.20

Lmin 12 8 8 8 8 8

yh1 1.728�4� 1.753�2� 1.768�2� 1.782�1� 1.795�1� 1.803�1�

� 1.24 1.28 1.32 1.36 1.40 1.60

Lmin 8 8 8 8 8 8

yh1 1.812�1� 1.820�1� 1.828�1� 1.834�1� 1.841�1� 1.862�1�

FIG. 10. Quantity 
1L2−2yh1
�s�

in range 1���1.4. Exponent yh1
�s�

was set at 1.816�2�. The data points �, �, �, �, �, �, and �

represent system sizes L=6, 8, 12,20, 32, 48, and 64, respectively.
The error bars of the data are smaller than the point sizes. The lines,
which simply connect data points for each L, are just for illustration
purpose.
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interpolation between the values for �=1.24 and �=1.28
leads to yh1

�s�=1.86�2� for �c=1.258�20�.

IV. DISCUSSION

We performed extensive simulations for the O�4� spin
model on the simple-cubic lattice, and determined the bulk
critical point and the associated renormalization exponents.
The precision of our results, particularly that of the critical
point, significantly improves over that of the existing results.

We also investigate surface effects on the critical O�4�
model in three dimensions, and observe a so-called special

surface transition. Together with the results in Ref. �17�, we
conclude that, even though the two-dimensional O�N� model
with N�2 does not undergo phase transitions at nonzero
temperature, the special surface transition still occurs when
the surface couplings are sufficiently enhanced.
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