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The conventional periodic boundary conditions in two dimensions are extended to general boundary condi-
tions, prescribed by primitive vector pairs that may not coincide with the coordinate axes. This extension is
shown to be unambiguously specified by the twisting scheme. Equivalent relations between different twist
settings are constructed explicitly. The classification of finite-size scaling functions is discussed based on the
equivalent relations. A self-similar pattern for distinct classes of finite-size scaling functions is shown to appear
on the plane that parametrizes the toroidal geometry.
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Finite-size scaling theory, initiated more than three de-
cades ago by Fisher and Barber �1�, concerns itself with how
the thermodynamic behaviors of finite systems are modified
near critical points in response to the onset of large fluctua-
tions. Accordingly, the occurrence of rounding of the critical
point singularity in the thermodynamic response functions
can be expressed in terms of the finite-size scaling functions
�FSSFs� �2,3�. The FSSFs of a variety of quantities were
determined for different lattice structures and boundary con-
ditions �BCs� in the earlier studies �4–13�. The analyses have
enhanced our understanding of the scaling behaviors of finite
systems. In particular, the relations among the critical ampli-
tudes have provided more stringent tests of the universality
class to which finite systems belong �2�. Moreover, notice-
able properties of FSSFs also have been revealed in the in-
vestigations. For example, it was shown that universal FSSFs
of different lattice structures with the conventional periodic
BCs can be achieved by adjusting the aspect ratios and the
metric factors �13�. In general, FSSFs are very sensitive to
the aspect ratio and BCs. The classification of FSSFs for
systems on a specified planar lattice is mainly a geometric
issue with the significance incorporated essentially in various
BC settings. This Rapid Communication is devoted to a com-
plete classification of FSSFs for planar lattice systems with
full toroidal BCs, a generalization of the conventional peri-
odic BCs. Our endeavor is to establish the transformation
laws which determine the equivalent geometric structures
among systems of fixed area. Such attempts have been made
by Okabe et al. �6� and Ziff et al. �7�. The present study
provides a systematic and complete treatment of this issue.
Moreover, as a consequence of equivalent geometric struc-
tures, we report the appearance of a fractal pattern formed by
the regions corresponding to distinct classes of FSSFs on the
parametrization plane for full toroidal BCs.

The general prescription for the full class of periodic BCs
on planar lattices, subject to the doubly connected topology,
is based on pairs of primitive vectors. As shown in Fig. 1�a�,

primitive vectors are linearly independent vectors which
separately preimpose the identifications of boundary vari-
ables �14�. When the two primitive vectors are mutually per-
pendicular, the specified geometry is a helical torus, in the
context of nanotube physics �15�, labeled by the chirality �
as depicted in Fig. 1�b�. Hence, the conventional periodic
BCs in which both vectors coincide with the coordinate axes
correspond to the helical ones with trivial chirality, �=0.
However, distinct pairs of primitive vectors may end up with
the same period identification if they are related by a matrix
M,

�a�1�

a�2�
� = M�a�1

a�2
� with det�M� = 1, �1�

where the matrix M has integer elements, and the condition
for the unity of the determinant is to ensure the same area of
the unit cell. This is known to be an SL�2,Z� transform, the
prototype of modular symmetry discussed in the context of
conformal field theory �16�. We notice that any sign flipping
�7� and/or reordering of the primitive vectors, which may not
be allowed by SL�2,Z� transforms, does not alter the setting
of boundary conditions.

There exists another prescription of periodic BCs called
the twist setting �6–8� for which, as shown in Fig. 2�a�, the
direction of one of the primitive vectors is kept fixed, and it
may coincide with one of the lattice orientations. Note that
the terminology used in the literature has aroused some con-
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FIG. 1. Two primitive vectors on a planar square lattice: �a�
general case; �b� the orthogonal case with the deviation from the
coordinate axes of the underlying lattice by an angle � called
chirality.
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fusions. The term twisting has been used as synonymous
with antipode �10�; however, no conflict arises here when
restricted to the toroidal geometry. Moreover, it has also been
referred to simply as helical, a usage different from that of
particular significance for chiral nanotubes �15�. Henceforth,
we shall employ the term twisting as indicating the particular
choice of primitive pairs described above, and the term fully
helical for tori equipped with definite chirality. We notice
that the twisting prescription is equivalent to the general pre-
scription. This can be proved by showing that a map of the
general prescription onto the twisting prescription via an
SL�2,Z� transform is always achievable, as given explicitly
in the following.

Consider a planar square lattice with a general periodic
BC prescribed by a�1=x1x̂+y1ŷ and a�2=x2x̂+y2ŷ, where x̂
and ŷ are unit vectors specifying the lattice orientation.
Based on Eq. �1�, we can transform this to an M �N lattice

with a twisted BC, specified by b�1=Mx̂+dŷ and b�2=Nŷ, via
the transformation matrix,

M = � m1 m2

− x2/GCD�x1,x2� x1/GCD�x1,x2�
� , �2�

where m1 and m2 are determined by m1x1+m2x2
=GCD�x1 ,x2�, and GCD�x1 ,x2� is the greatest common divi-
sor of x1 and x2. Accordingly, M =GCD�x1 ,x2�, N= �x1y2

−x2y1� /M, and d=m1y1+m2y2. Note that as a special case of
Eq. �2� the matrix M for the unique transformation of a fully
helical torus to the twisted BC has been explicitly deter-
mined in Ref. �8�. Hence, a twist setting suffices for com-
plete characterization of toroidal BCs; we then define the
BC-relevant parameters as the aspect ratio A=N /M and the
twisting factor �=d /M as depicted in Fig. 2�a�. Subse-
quently, on this basis we exploit the transformation laws
among equivalent geometric structures.

The transformation of reversing the twisting factor,
�→−�, corresponds to a change of twisting of the boundary
tori from clockwise to counterclockwise, or vice versa, and
this is indistinguishable for the partition function of a physi-
cal system. In addition, as a symmetry of SL�2,Z�, the trans-
formation of changing � by additional integer multiples of
the aspect ratio, �→sA+�, also leaves the system boundary
unmodified. The two equivalent transformations above indi-
cate that the subspace with parameter range 0���A /2 sat-
isfies the complete characterization of the general periodic

BCs. Furthermore, one may expect to have rotational invari-
ance for isotropic systems. By combining this with other
equivalent transformations, we obtain another invariant rela-
tion, namely, A→ �1+�2� /A, with � kept fixed, as shown
explicitly in Figs. 2�a�–2�c�.

An immediate test is performed by applying the equiva-
lent relations to FSSFs. The Binder parameters �12�, defined
as g�m�=1− �m4� /3�m2�2, for the two-dimensional �2D�
q-state Potts models with q=2 and 3, are measured by the
Monte Carlo method �17�. Here, the critical temperature is
known to be Tc=1 / ln�1+	q� �18� and the Potts magnetiza-
tion density m is defined via m2=
i=0

q−2
 j=i+1
q−1 ��i−� j�2 / �q−1�

with �i for the fraction of lattice sites associated with the
state i. The definitions above yield g�m�→2 /3 and
g�m�→2�q−2� / �3�q−1�� for the limits of low and high tem-
perature, respectively. The simulation results, plotted as g�m�
versus L1/	�T−Tc� /Tc with 	=1, for sets of lattices related by
the transformations �→sA±� with A unaltered, are shown
in Fig. 3�a�; similarly, the results for those related by
A→ �1+�2� /A upon fixing � are shown in Fig. 3�b�. Here L
is defined as the square root of the area of a primitive cell.
All results agree completely with our assertion. Thus, we
may conclude that the BCs equipped with a definite FSSF
are related by composite operations of

�A,�� → �A,sA ± ��, ∀ s � Z , �3�

and

�A,�� → �1 + �2

A
,�� . �4�

We notice that the invariant aspect ratio A / �1+�2�, which
was conjectured in Ref. �6� based on the symmetry of rota-
tion, coincides with the chiral aspect ratio B �19� only for
�=�; on the other hand, the symmetry specified by Eq. �7�
of Ref. �7� can be shown to be equivalent to Eq. �4� on our
parametrization plane.

The finite-size scaling behaviors, in general, anticipate
more accordance among distinct systems, since only the
critical region and the large-size limit are concerned. Direct
numerical observations suggest that for A�1 the difference
among the twisting factors � becomes immaterial for the
FSSFs. For definiteness, two concrete examples of different
measurements are given as follows. The critical shift 
,

= �Tmax−Tc� /Tc, measures the deviation of the specific heat
peak Tmax from the critical temperature Tc. For the 2D Ising
model, the critical shift scales with system size L as

�c /L, where the amplitude c is expected to depend on the
values of A and �. However, the numerical results based on
the exact form of the partition function tend to suggest that
the c values are independent of � for A�1 �8�. The other
example is the simulation data of the 2D q-state Potts models
with q=2 and 3, shown as g�m� versus L�T−Tc� /Tc in Fig. 4;
the results for the same A but different � values coalesce into
a single curve for A�1.

This fact, namely, FSSFs of different � values are almost
indistinguishable for any given A value below the threshold
A=1, denotes a kind of analytic continuation in specifying
the classes of FSSFs for A�1; this can be employed to ana-
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FIG. 2. �a� Twisted BC specified by the primitive vectors for the
aspect ratio A=N /M and the twisting factor �=d /M. The vectors
are rotated counterclockwise with the angle � /2−arctan��� to an-
other set, shown in �b�. By reversing one vector followed by
�→−�, we achieve the vectors shown in �c�, which gives rise to
the new aspect ratio �1+�2� /A and leaves � unaltered.
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lytically continue the parametrization plane of A and � to a
real space. The continuous curves shown in Fig. 5 are the
results of applying Eqs. �3� and �4� sequentially to the initial
geometries on the horizontal line A=1; these then share the
same FSSFs. Note that the transformations will not cause
any irrational counterpart on the parametrization plane since
none of the transformations will transform rational coordi-
nates into irrational ones, and vice versa. Some remarks on
Fig. 5 are as follows. �1� The intersections between the para-
bolic curves, marked by the circles, represent a class of he-
lical tori of unity aspect ratio, B=1. Certainly, chirality may
vary within the B=1 set, since rotation is involved in the
transformation of Eq. �4�. �2� The curves are the boundaries
of two distinctive regions R1 and R2 with R2 for the domains
enclosed by the curved triangles and R1 for the rest, as de-
picted in Fig. 5. No transformations based on Eqs. �3� and
�4� are found relating R1 and R2. �3� The geometries for other
distinct classes of FSSFs can be obtained by using different
horizontal lines of A�1 as the initial geometries; further
sequential transformations yield other members which be-

long to the same class and are located at the subdomains of
R1. �4� The transformations of the point �A ,�� with A�1
yield a close contour in R2 ranging over limited � values.
Note that no parametrization of BCs within R2 can be ren-
dered fully helical by means of Eq. �1�.

The self-similarity for the pattern of a distinct class of
FSSFs may appear more transparently when the new set of
parameters u=� /A=d /N and v=1 /A is adopted. Here, the
parameter u has also been referred to as tilting �7� and v
inversely defines the aspect ratio. In the new parametrization
plane, the pattern exhibits periodicity with unity period in the
u direction and self-similarity in the v direction toward the
origin. In Fig. 6, two distinct classes of FSSFs, correspond-
ing to A=1 and 0.5, are drawn on the u−v plane. The results
for A=1, marked by crosses in Fig. 6, show that the contours
can be viewed as circles with the circles further inserted
between two other circles in the v direction toward the origin
and so on, remarkably resembling the Apollonian gasket
�20�. Accordingly, the correspondence between Figs. 5 and 6
can be established as follows. The region R1 becomes the
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FIG. 3. Binder parameter g�m� versus L�T−Tc� /Tc for different lattices related by the transformation �a� �→sA±� with A kept fixed and
�b� A→ �1+�2� /A with � kept fixed. The left �right� vertical scale is for q=2 �3�, the data are connected with a smooth solid line for
q=3.
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FIG. 4. The same plot as Fig. 3 for lattice structures with A= �a� 1 and �b� 0.5 but different � values.
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interiors of the circles of Fig. 6, while the intercircle domains
pertain to the region R2; the corresponding loci of fully
helical tori remain on the intersections of the circles.

Our work has aimed at the classification of FSSFs for the
geometry associated with general periodic BCs. Of particular
interest is the appearance of self-similar pattern among dif-
ferent classes of FSSFs on the parametrization plane of ge-
ometry, and the pattern is shown to be the consequence of the
transformation laws among equivalent geometric structures.
In fact, the root cause for the ubiquity of fractal patterns in
the natural world is the peculiar symmetries associated with

the operations of simple transformation laws. Furthermore,
the equivalence relations of geometric structures may also
prove useful in enumerating the multiplicity of equivalence,
subject to a variety of structural settings.
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FIG. 5. Equivalent geometric structures possess the same FSSFs
as A=1 in the plane of A vs �. The circles mark the loci of fully
helical tori. The gray regions are R2 and the others are R1 as
discussed in the text.
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FIG. 6. Geometric structures in the plane of u vs v for two
classes of FSSFs, with lines of crosses for A=1 and dotted lines for
A=0.5. The circles mark the loci of fully helical tori.
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