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We formulate an irreversible Markov chain Monte Carlo algorithm for the self-avoiding walk (SAW),
which violates the detailed balance condition and satisfies the balance condition. Its performance
improves significantly compared to that of the Berretti–Sokal algorithm, which is a variant of the
Metropolis–Hastings method. The gained efficiency increases with spatial dimension (D), from ap-
proximately 10 times in 2D to approximately 40 times in 5D. We simulate the SAW on a 5D hyper-
cubic lattice with periodic boundary conditions, for a linear system with a size up to L = 128, and
confirm that as for the 5D Ising model, the finite-size scaling of the SAW is governed by renormalized
exponents, ν∗ = 2/d and γ/ν∗ = d/2. The critical point is determined, which is approximately 8 times
more precise than the best available estimate.
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1 Introduction

The self-avoiding walk (SAW) serves as a paradigmatic
model in polymer physics (see, e.g., Ref. [1] and the ref-
erences therein). It is equivalent to the n → 0 limit of
the O(n) model [2], and plays an important role in the
study of critical phenomena. In the grand-canonical en-
semble, the length of a walk can fluctuate and the SAW
model is defined by the following partition sum:

Z =
∑
ω

x|ω|, (1)

where |ω| is the length of the walk, ω, x is the weight of
each unit length, and the summation is over all possible
self-avoiding paths. In two and higher dimensions (D),
the SAW has two distinct phases separated by a critical
point, xc. The length, |ω|, remains finite in the dilute
phase with x < xc, and becomes divergent in the dense
region with x > xc.

*arXiv: 1602.01671.

Markov chain Monte Carlo (MCMC) methods have
been extensively used in simulation of the SAW [3]. The
balance condition (BC) and ergodicity are two key fac-
tors in designing an MCMC algorithm. The BC states
that the probability flow entering into a configuration
equals the flow out of the configuration. Thus, it en-
sures a stationary distribution. Then, ergodicity ensures
convergence to the distribution [4]. In practice, the BC
is typically satisfied by employing the detailed balance
condition (DBC), which implies that the probability flow
from one configuration to another is equal to reverse flow,
i.e., the dynamics is reversible.

In recent years, there have been several successful
studies [5–14] that show a promising future for MCMC
algorithms beyond the DBC. Geometric allocation ap-
proaches have been applied to the Potts model [5, 6];
irreversible MCMC methods have been designed for the
mean-field Ising model [7, 8]; event-chain Monte Carlo
(ECMC) methods have been proposed for simulation of
hard-sphere systems [9, 10] and generalized to particle
systems with arbitrary pairwise interactions [11], includ-
ing soft-disk systems [12], the XY model [13], and the
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Heisenberg model [14]. Near the phase transition point,
the geometric allocation method outperforms the stan-
dard Metropolis–Hastings (MH) method by 6.4 times for
the q = 4 square lattice Potts model, and its performance
increases with q [5, 6]. For the mean-field Ising model,
the irreversible MCMC method has a dynamic exponent,
z ≃ 0.85, which is considerably smaller than z ≃ 1.43 for
the reversible MH method [7, 8]. In comparison with the
MH method, the gained efficiency of the ECMC method
reaches two orders of magnitude in large systems consist-
ing of 106 hard spheres [10]. For the 3D ferromagnetic
Heisenberg model, it has been reported that the ECMC
method has a dynamic exponent, z ≃ 1, in contrast to
z ≃ 2 for the MH method [14].

For a Monte Carlo Markov chain, let π(ω) be the
weight of a configuration, ω, A(ω → ω′) be the a priori
probability of proposing a transition to another configu-
ration, ω′, and P (ω → ω′) be the probability of accept-
ing the proposal. One obtains the stationary probability
flow, ϕ(ω → ω′) ≡ π(ω)A(ω → ω′)P (ω → ω′). The
DBC states that for any pair of ω and ω′, ϕ(ω → ω′) =
ϕ(ω′ → ω). Instead, the BC requires that for any ω,∑

ω′ ϕ(ω → ω′) =
∑

ω′ ϕ(ω′ → ω), where the summa-
tion is over all possible configurations, ω′. Without the
DBC, net probability flows can exist between two states,
ω and ω′, i.e., ϕ(ω → ω′) ̸= ϕ(ω′ → ω), and the proba-
bility fluxes make circles in a phase space [7].

While local probability flow circles are introduced in
the geometric allocation approach, considerably larger or
even global circles can appear in other methods beyond
the DBC. This is achieved through a lifting technique,
which enlarges a phase space by an auxiliary variable.
As a result, a system can be at different modes speci-
fied by different values of the auxiliary variable. Within
a given mode, an a priori direction of Monte Carlo up-
dates is preferred, and probability flow may exist. The
BC is recovered by allowing switches between different
modes, and the probability flow can satisfy a skew de-
tailed balance condition (see, e.g., Refs. [15, 16]). For
example, the phase space for the mean-field Ising model
[7] is doubled and denoted as decreasing and increasing
modes. In the first mode, only positive spins are flipped
and total magnetization, M , decreases, whereas in the
second mode, M increases only through flipping of neg-
ative spins. Updates can persist for a long time in one
mode until a spin-flip proposal is rejected, after which
the updates are switched to the other mode. This leads
to large probability flow circles, and the diffusive fea-
ture of random updates is suppressed or even replaced
by ballistic-like behavior. It is noted that while the ef-
ficiency of the mean-field Ising model improves qualita-
tively, the lifting technique does not help significantly in
the 2D Ising model [8, 17].

In this work, we design an irreversible MCMC algo-

rithm for the SAW by employing the lifting technique.
The update direction is selected such that the length |ω|
increases in one mode and decreases in the other. The
two modes are “linked” to each other through switching.
For practical coding, only a few lines need be added to
the widely used Berretti–Sokal (BS) algorithm, a simple
variant of the MH method [18]. Nevertheless, numerical
results show that the irreversible MCMC method is con-
siderably superior to the BS algorithm. We use this new
method to explore the finite-size scaling (FSS) of the 5D
SAW, above the upper critical dimension, du = 4. The
critical point is located with high precision.

The rest of this article is organized as follows: In Sec-
tion 2, we review a few Monte Carlo methods for the
SAW, including the conventional MH algorithm and the
BS method. Section 3 describes the irreversible MCMC
algorithm. We compare the performances of these algo-
rithms in Section 4. Section 5 contains an FSS analy-
sis for the SAW on a periodic hypercubic lattice in five
dimensions. A brief conclusion and discussion are pre-
sented in Section 6.

2 Reversible MCMC algorithms

We review below the MH and BS algorithms for the
SAW, which employ the DBC and are reversible.

[Metropolis–Hastings algorithm.] Given a regular
d-dimensional lattice with coordination number z, the
SAW, ω, with length N ≡ |ω|, is a sequence of N + 1
lattice sites connected through a chain of occupied edges.
For simplicity, we fix an end of the walk at the origin
and denote the movable end by I. The MH algorithm
[19, 20] is a standard reversible MCMC algorithm, which
is constructed as follows:

Metropolis–Hastings Algorithm

i) Randomly select one of the z neighboring sites of
I, e.g., I ′, and propose a symmetric update of the
edge in between, which flips an empty edge to be
occupied, and vice versa.

ii) If the update leads to a valid SAW, ω′, accept the
proposal with probability P = min{1, π(ω′)/π(ω)}.

The weight π(ω) is given by Eq. (1) as π(ω) = x|ω|, and
the acceptance probabilities are

P (∆N = +1) = min{1, x},
P (∆N = −1) = min{1, 1/x}, (2)

where ∆N = |ω′| − |ω|. Here, the a priori probability is
a constant, A(ω → ω′) = 1/z, independent of ∆N = ±1.
The DBC can be easily proven.
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[Berretti–Sokal algorithm.] On a lattice with a
large coordination number, z (e.g., a high-dimensional
lattice), the critical point of the SAW occurs at xc ≈
1/(z− 1). This implies that, in the abovementioned MH
algorithm, a typical update would attempt to flip an
empty edge; however, it will most likely fail, and thus, it
is ineffective. A more efficient MH algorithm for SAWs
is the BS method [18], which employs a different scheme
for a priori probabilities. A version of the BS algorithm,
slightly different from that in Ref. [18], is described be-
low.

Berretti–Sokal Algorithm

i) Choose Action: propose, with equal probability, the
“add” action, a+, for ∆N = +1 and the “delete”
action, a−, for ∆N = −1.

ii) Perform Action:
• For action a+, randomly occupy, with proba-

bility P+
BS, one of the (z − 1) empty edges if it

leads a valid SAW.
• For action a−, delete, with probability P−

BS, the
last occupied edge, incident to I.

Note that an empty edge is chosen with probability
1/2(z − 1) while the occupied edge is chosen with prob-
ability 1/2. The DBC condition leads to the Metropolis
acceptance probabilities as

P+
BS = min{1, x(z − 1)},

P−
BS = min{1, 1/x(z − 1)}. (3)

Near the critical point, the acceptance probabilities are
close to unity. In the original version [18], a priori prob-
abilities are slightly more optimized such that the BS
algorithm becomes rejection free.

It is noted that special attention is required for the
case of a “null” walk with N = 0, in which there are z
empty incident edges instead of z− 1. For simplicity, we
permanently delete an edge incident to the original site.

The diffusive feature of the BS algorithm is clear. Par-
ticularly for x(z−1) ≈ 1, the SAW length N ′ in the next
step will be N ′ = N ± 1 with approximately equal prob-
abilities.

3 Irreversible MCMC method

A direct approach toward an irreversible method is to
double the state space of the SAW by introducing an
auxiliary variable with two values, (+) and (−). In the
increasing mode, (+), action a− is forbidden and the
walk length, N , increases because of action a+. In con-
trast, N decreases in the decreasing mode, (−). The bal-
ance condition is satisfied by allowing switches between

Fig. 1 Sketch of probability flows in the irreversible Monte
Carlo algorithm for the SAW. The enlarged state space con-
sists of two modes labelled as (+) and (−), and each config-
uration is denoted by a circle with the inside number for the
length N . Action a−, which decreases the length by a unity,
is forbidden in the increasing mode (+), and vice versa.

the two modes. Figure 1 shows a sketch of the associated
probability flows. The formulation of the irreversible al-
gorithm is considerably similar to the abovementioned
BS method, as illustrated below.

Irreversible Algorithm

i) For the increasing mode, (+), perform action a+
with probability P+. Randomly select and occupy
one of the (z−1) empty edges if this leads to a valid
SAW; otherwise, switch to the decreasing mode,
(−).

ii) For the decreasing mode, (−), perform action a−
with probability P−. Delete the last occupied edge
in the SAW if N > 0; otherwise, switch to the in-
creasing mode, (+).

The acceptance probabilities, P+ and P−, can also be
given by Eq. (3). For the case where x(z − 1) < 1,
the SAW grows with probability P+ = x(z − 1) in the
increasing mode, (+), and it is deleted until N = 0 in the
decreasing mode, (−). For the case where x(z − 1) > 1,
which includes the critical point, xc, one obtains P+ = 1.
Thus, in the increasing mode, (+), the SAW grows until
it violates self-avoidance, after which it switches to the
decreasing mode, (−), where the chain decreases with
probability P− = 1/x(z − 1). At the critical point, xc,
P− is close to unity, for example, P− ≃ 0.9823 in 5D.
Thus, instead of returning to N = 0 and growing again,
it decreases for a considerably long time, then, it switches
to the increasing mode, (+), and grows again. It is clear
that the diffusive feature of Monte Carlo updates in the
state space is significantly suppressed.

We demonstrate below the balance condition for the
case where x(z− 1) < 1, using the acceptance probabili-
ties given by Eq. (3); the proof for x(z − 1) ≥ 1 follows
the same procedure. Consider an N -step SAW in the in-
creasing mode, (+); the incoming probability flow from
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the (N − 1)-step SAW is

ϕ
(+)
in,a+

= [1/(z − 1)]xN−1P+ = xN . (4)

The factor, 1/(z − 1), accounts for the probability of se-
lecting the edge leading to the current SAW. The incom-
ing probability flow due to the switch from mode (−) is
equal to zero, unless N = 0 and ϕ

(+)
in,s = xN (1−P−) = 0.

The total outgoing probability flows are clearly xN ,
because no action is allowed to keep the configuration
unchanged. In the next step, there is an (N + 1)-step
SAW in mode (+) or an N -step SAW in mode (−).
More specifically, suppose that occupying one of the z′ ∈
[0, z−1] empty edges leads to a valid SAW, the outgoing
probability flow is ϕ(+)

out,a+
= [z′/(z−1)]xNP+ = z′xN+1

and the switch probability flow is ϕ
(+)
out,s = xN (1 − z′x).

Thus, the balance condition in the increasing mode, (+),
is satisfied as

ϕ
(+)
in,a+

+ ϕ
(+)
in,s = ϕ

(+)
out,a+

+ ϕ
(+)
out,s = xN . (5)

The same procedure is followed for the BC in mode (−).

4 Performance

We conducted simulations for the SAW at criticality on
a d-dimensional periodic hypercubic lattice, for d = 2 to
5, where the critical value, xc, is listed in Table 1. For
each linear size, L, we carried out 5× 106/2d sweeps (Ld

Monte Carlo steps) of simulations, in which one fifth were
thrown for thermalization. The number of Monte Carlo
steps between successive samples is L/2 for d = 2, 3, and
L2/4 for d = 4, 5.

We compare the efficiency of the algorithms according
to the integrated autocorrelation time, τ , for an arbitrary
observable, defined by [25]

δO =

√
1 + 2τ/∆τ

n− 1
(O2 −O2

), (6)

where δO is the standard deviation, ∆τ denotes the num-
ber of sweeps between successive samples, and n is the

Table 1 The critical point xc for SAW on d-dimensional
hypercubic lattices.

d xc

2 0.379 052 277 758(4) [21]
0.379 052 277 755 162(4) [22]

3 0.213 491 0(3) [23]
4 0.147 622 3(1) [24]
5 0.113 140 81(4) [24] 0.113 140 843(5) [this work]

number of samples. For ∆τ ≫ τ , i.e., when the suc-
cessive samples are effectively independent, Eq. (6) is
simplified as δO =

√
(O2 −O2

)/(n− 1).
In the simulations, we sampled the walk length, N ,

and the observable, D0, that describes the event of a
null SAW; D0 = 1 for N = 0 and D0 = 0 otherwise. The
statistical average, D0 = ⟨D0⟩, accounts for the proba-
bility that the walk end, I, returns to the original site.

The autocorrelation time, τ , is measured for N and
D0. Figures 2 and 3 compare the autocorrelation times,
τ(N ) and τ(D0), for the MH, BS, and irreversible algo-
rithms. It can be seen that the performance of the irre-
versible algorithm is considerably superior to that of the
BS and MH algorithms. The gained efficiency becomes
more pronounced as d increases. For d = 2, it outper-
forms the MH and BS algorithms by approximately 12
and 8 times, respectively, while they become approxi-

Fig. 2 Autocorrelation time τ(N ) for the MH algorithm
τMH divided by that of the BS or the irreversible (IR) algo-
rithm, versus the linear system size L.

Fig. 3 Autocorrelation time τMH(D0) of the MH algorithm
divided by that of the BS or the irreversible (IR) algorithm,
versus the linear systems size L.
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Table 2 Autocorrelation time τ(N ) for the various algo-
rithms, in unit of sweeps. For convenience, the ratio of CPU
time tBS/tIR is also calculated.

d L τIR τBS τMH τBS/τIR tBS/tIR

2 1024 12.9(3) 107(4) 166(6) 8(2) 15(2)

3 128 0.559(6) 7.41(7) 22.5(9) 13(1) 18(2)

4 64 0.087 1(8) 2.10(2) 8.7(2) 24(2) 17(2)

5 32 0.028 2(4) 1.20(3) 6.5(3) 43(6) 35(6)

mately 200 and 40 for d = 5. As an illustration, Table 2
shows τ(N ) for various algorithms, for the maximum lin-
ear size, Lmax, in this comparative study. We also com-
pare the efficiency in terms of CPU time using a desktop
computer with 3.8 GB memory and four Intel i5 cores.
As shown in the last column of Table 2, the results are
similar to those for the walk length, N .

5 Finite-size scaling above the upper critical
dimension

The method of FSS, which is derived from the renor-
malization group theory, plays a fundamental role in the
numerical study of critical phenomena. It predicts that
near xc, the energy-like quantity, specific-heat-like quan-
tity, and magnetic susceptibility, i.e., E, C, and χ, re-
spectively, scale as

E(x, L) = LdEr(x) + L1/νEs[L
1/ν(x− xc)],

C(x, L) = Cr(x) + Lα/νCs[L
1/ν(x− xc)],

χ(x, L) = χr(x) + Lγ/νχs[L
1/ν(x− xc)], (7)

where the critical exponents, α and γ, are for the ther-
modynamic (i.e., infinite system size) quantities, C and
χ, respectively. In Eq. (7), the first term accounts for the
regular functions that are size-independent (except that
the regular part of energy is proportional to Ld), while
Es, Cs, and χs are universal functions that account for
singular behavior.

The FSS formula (7) is correct in dimensions lower
than the upper critical dimensionality, du. For d > du,
the thermodynamic critical exponents take mean-field
values; however, the FSS behavior is considerably more
complicated. Different FSS behaviors occur for differ-
ent boundary conditions, and for the k = 0 and the
k ̸= 0 fluctuations. Extensive studies have been carried
out for the 5D Ising model, i.e., the n = 1 case of the
O(n) model, for which the renormalization group theory
gives du = 4, and mean-field exponents ν = 1/2, γ = 1
and α = 0. For periodic boundary conditions, the FSS
formula (7) holds if the critical exponent, ν = 1/2, is

replaced by a renormalized exponent, ν∗ = 2/d, even
though there are debates on the involved physical sce-
narios [26–29].

Similar to the Ising model, the SAW is a special case
of the O(n) model in the n → 0 limit. Using the irre-
versible algorithm, we performed extensive simulations
for the SAW on a 5D periodic hypercubic lattice, up to
L = 128. This provides an independent and accurate
study of the d > du FSS behavior for the O(n) univer-
sality. In comparison with the Ising model, such a study
of the 5D SAW has a few advantages. The regular terms,
Cr(x) and χr(x), in Eq. (7) vanish for x ≤ xc, as the av-
erage walk length per site, N/Ld = ⟨N⟩/Ld, approaches
zero as L increases (N is the energy-like quantity with a
zero regular part). Further, the simulation can reach a
relatively large linear size, whereas it is mostly restricted
to L < 40 for the 5D Ising model.

We sampled the average walk length, N , the specific-
heat-like quantity, C = L−d(⟨N 2⟩ − ⟨N⟩2), and the re-
turning probability, D0 = ⟨D0⟩, which is the inverse of
magnetic susceptibility, D0 = 1/χ [30]. The Taylor ex-
pansion of Eq. (7) leads to

N = L1/ν∗

[
n0 +

2∑
k=1

nk(x− xc)
kLk/ν∗

+ bnL
y1

]
,

C = c0 +

2∑
k=1

ck(x− xc)
kLk/ν∗

+ bcL
y1 , (8)

where the term with exponent y1 accounts for finite-size
corrections and the coefficients of each term are non-
universal. Besides the renormalized exponent, 1/ν∗ =
d/2, the leading correction exponent is predicted as
y1 = (du − d)/2 = −1/2 [29, 31]. The FSS behavior
of C in Eq. (8) is based on the prediction α/ν∗ = 0.
The data of N and C are shown in Fig. 4, in which xc

Fig. 4 Walk length N/L5/2 (top) and the specific heat C
(bottom) for the 5D SAW. The right panels use (x− xc)L

5/2

as the horizontal scale so that the data for different L collapse
approximately into a single curve.
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Table 3 Fit results for the walk length N and specific heat C of the 5D SAW.

xc 1/ν∗ n0 n1 n2 b1 Lmin χ2/DF

N 0.113 140 840(2) 2.500(6) 1.03(4) 5.4(3) 16(7) 0.13(8) 32 4/11

0.113 140 840(2) 5/2 1.025 6(10) 5.37(2) 15(6) 0.138(6) 32 4/12

xc 1/ν∗ c0 c1 c2 bc Lmin χ2/DF

C 0.113 140 843(2) 2.50(2) 0.602 6(11) 4.0(3) 9(3) 0.034(6) 32 12/13

0.113 140 843(2) 5/2 0.602 6(11) 4.03(2) 10(2) 0.034(6) 32 12/14

is represented by the approximate intersection point for
different sizes, and the rescaled plots in the right panels
imply the correctness of Eq. (8). The MC data were fit-
ted to Eq. (8) according to the least-squared criterion,
and the results are shown in Table 3. The correction
exponent, y1, is fixed at a predicted value of −1/2 in
the fits. As a precaution against correction-to-scaling
terms not included in the fit ansatz, we imposed a lower
cut off, L ≥ Lmin, on the data points, and observed
the change in χ2/DF , where “DF” represents the num-
ber of degrees of freedom. The estimates of 1/ν∗ agree
well with the predicted value, 5/2. We take the final
determination, xc = 0.113 140 843(5), which is signifi-
cantly improved compared to the best available result,
xc = 0.113 140 81(4) [24]. The reliability of the estimate
of xc is further demonstrated in Fig. 5, which clearly
shows that x = 0.113 140 823 and 0.113 140 863 are
below and above the critical point, respectively.

At the critical point, xc, the FSS behavior of the re-
turning probability, D0, should be

D0 = L−γ/ν∗
(d0 + d1L

y1) , (9)

with a mean-field value of γ = 1. This is confirmed by
Fig. 6.

Fig. 5 Walk length N/L5/2 versus L for the 5D SAW. The
curves correspond to fitting results of the Monte Carlo data.

Fig. 6 Returning probability D0L
5/2 versus L at xc for

the 5D SAW. The curve corresponds to fitting results of the
Monte Carlo data.

6 Conclusion and discussion

We develop an irreversible MCMC algorithm for the
SAW. It violates the DBC, and satisfies the weaker BC.
In comparison with the standard MH algorithm and one
of its variants, i.e., the BS algorithm, the irreversible
method is considerably more efficient. While the BS
algorithm is approximately d times more efficient than
the standard MH algorithm, the irreversible algorithm is
considerably superior to the BS algorithm. The higher is
the spatial dimension, the more is the gain in efficiency.
This is because the critical SAW is more similar to the or-
dinary random walk in higher dimensions, and thus, the
diffusive feature is more suppressed in the irreversible
algorithm.

Using the irreversible MCMC algorithm for the SAW,
we perform an independent and accurate test of the
renormalized exponents, 1/ν∗ = d/2 and γ/ν∗ = d/2,
in the FSS behavior of systems in the O(n) universality
class with periodic boundary conditions. Additionally,
we calculate an estimate, xc = 0.113 140 843(5), for the
5D SAW, which is 8 times more precise than the best
available estimate.

We believe that the irreversible MCMC algorithm for
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the SAW will make an important contribution toward a
deeper understanding of the FSS behavior above the up-
per critical dimension, particularly for systems with free
boundary conditions. Moreover, this algorithm will be
considerably valuable in the study of interacting SAWs
[3], polymeric systems, and other soft matters. Similar
irreversible techniques can be introduced into other al-
gorithms such as the worm algorithm [30, 32, 33]. These
are ongoing research activities.

Several efficient Monte Carlo methods exist for sim-
ulating SAWs [3, 34–36]. In particular, the pivot algo-
rithm [35] and the pruned-enriched Rosenbluth method
(PERM) [36] are known to be considerably efficient in
the canonical ensemble where the SAW chain has a fixed
length. For example, the critical point, xc, for d = 3, 4, 5
in Table 1 was obtained using the PERM [23, 24]. It
would be interesting to study whether it is possible to
implement the irreversible technique in these state-of-
the-art algorithms for SAWs.
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