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Prefa
e
This book presents my resear
h in the past four years during my stay in the Computational Physi
s Groupof the Fa
ulty of Applied S
ien
es (the �rst two years) and later in the Theoreti
al Physi
s Group at thesame Fa
ulty. It 
overs a number of subje
ts in the �eld of 
riti
al phenomena, in
luding 1), a systemati
test of the three-dimensional (3D) Ising universality 
lass, 2), 
luster simulations of quantum transverseq-state Potts models, 3), simulations in 
urved geometries and 
onformal symmetries in d > 2 dimensions,4), 
onstrained 
riti
al and tri
riti
al phenomena, 5), spontaneous edge order of the 2D Potts model, 6),Monte Carlo investigations of ba
kbone exponents, and 7), geometri
 properties of 2D and 3D Potts models,et
.During this resear
h, several novel 
omputer algorithms were developed and applied. Even though the
omputer power has in
reased rapidly over the past de
ades, eÆ
ient algorithms still play an important rolein the numeri
al study of phase transitions. On the other hand, I feel that numeri
al work is an eÆ
ientapproa
h to solve physi
al problems only if it is 
ombined with theoreti
al knowledge. Subje
ts 5) and 7),whi
h arose from my 
uriosity in predi
tions by the Coulomb gas theory and 
onformal �eld theory, serveas two good examples. Naturally, my insight in the renormalization group theory and in 
riti
al phenomenahas in
reased over time and by the resear
h a
tivities.These s
ienti�
 a
tivities and a
hievements make my life full of joy and happiness.

Youjin Deng
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1Introdu
tion and outline
1.1 Examples of phase transitionsNature is full of phase transitions. Well-known examples are 
ontained in the phase diagram in the materialH2O, as sket
hed in Fig. 1.1(a). The material H2O 
an be a solid (i
e), a liquid, or a vapor; transitionsbetween di�erent phases 
an be indu
ed by 
hanging the temperature T or the pressure P . From our every-day experien
e, the liquid and the vapor phase 
oexist at T = 373oK and P = 1 atm. Thus, at this point,the density � of H2O is not �xed but 
an have a high value (liquid) or a low value (vapor). The transitionis said to be �rst-order, be
ause �, whi
h 
an be expressed as the �rst derivative of the free energy density,has a dis
ontinuity. However, as T in
reases, this density di�eren
e be
omes smaller along the transitionline, and at some point it vanishes 
ompletely. This point is named the 
riti
al point, and the asso
iatedphenomena are referred to as 
riti
al phenomena. Another example is the ferromagneti
 state of materialslike iron and ni
kel, of whi
h the phase diagram is sket
hed in Fig. 1.1(b). At low temperature, the materialis in the ferromagneti
 state: a spontaneous magnetization m exists. The magnetization m 
an point indi�erent dire
tions when the external magneti
 �eld h is zero. As T in
reases, the magnitude of m be
omessmaller, and vanishes at the Curie temperature T
. For T > T
, the material be
omes paramagneti
: m = 0for h = 0. The Curie point is the ferromagneti
 
riti
al point.

ice

273K 647K
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atm , )
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vapor
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Figure 1.1: (a) The liquid-vapor 
riti
al point of H2O: T
 = 647oK and P
 = 218 atm. (b). The ferromagneti
point of Fe: T
 = 1044oK, h
 = 0.There are many other kinds of 
riti
al points, su
h as the antiferromagneti
 
riti
al point of Cs3CoCl5,the super
uid 
riti
al point of liquid helium, and the super
ondu
tivity 
riti
al points of many metals andalloys. It turns out that the asymptoti
 behavior near a 
riti
al point 
an be des
ribed by a limited number1



of 
riti
al indi
es. For instan
e, at the ferromagneti
 
riti
al point, the magnetization m, referred to as theorder parameter, vanishes algebrai
ally asjmj / (T
 � T )� ; (T " T
; h = 0) ; and m / h1=Æ ; (T = T
) : (1.1)The magneti
 sus
eptibility � = (�m=�h)T and the spe
i�
 heat C diverge with a power law� / (T
 � T )�
 and C / (T
 � T )�� (h = 0) : (1.2)The 
riti
al exponents, �, �, 
, and Æ, are generally not integers, i.e., 
riti
al behavior is singular. Moreover,it turns out that these exponents are universal: various kinds of 
riti
al models 
an share a 
ommon set of
riti
al exponents. For instan
e, the 
riti
al points in Fig. 1.1 (a) and (b) are believed to belong to the sameuniversality 
lass.The universal properties of the transitions in Fig. 1.1 (a) and (b) are named after the Ising model, andthose of the super
uid transitions are said to be des
ribed by the XY model.1.2 The renormalization group theoryFor the simpli�ed models su
h as the aforementioned Ising and the XY model, typi
ally, there are twoapproa
hes:(1), dire
t solution approa
h. This means 
al
ulation of physi
al quantities of interest in terms of pa-rameters, i.e., solving the model. The 
al
ulation may be done analyti
ally or numeri
ally, exa
tly orapproximately.(2), exploiting symmetries and/or approximations. This approa
h tries to dedu
e some 
hara
teristi
s ofphysi
al quantities from various symmetry operations, e.g., re
e
tions, translations, and rotations.The approa
h (1) is often a very diÆ
ult task. While (2) is not a substitute for (1), a great deal 
an belearned from (2) even without attempting (1). Onsager's solution of the two-dimensional Ising model is anexample of (1), and the mean-�eld theory is an example of (2).The 
ontemporary physi
s of 
riti
al phenomena started with the invention of the renormalization group(RG) theory. This te
hnique also takes approa
h (2): the renormalization group is a set of symmetrytransformations. The essen
e of the RG is the hypothesis of the s
ale invarian
e at a 
riti
al point. This 
anbe phenomenologi
ally understood as follows. Consider a sample of magneti
 material. At low temperature,a large fra
tion of magneti
 spins points in the same dire
tion. As T in
reases, this fra
tion is redu
ed, andit vanishes at the 
riti
al temperature T
. However, for T = T
, there are large pat
hes (mu
h larger than
rystal unit 
ells) in whi
h a net fra
tion of spins are lined up. The distribution of the sizes of these pat
heshas a diverse range, su
h that, in prin
iple, all length s
ales o

ur. Suppose that we look at this materialthrough a mi
ros
ope, and that our eyes 
an see spin variations down to a size b. If the sample is shrunk bya fa
tor s, we shall not see any 
hange at 
riti
ality if the sample is suÆ
iently large.In other words, 
riti
al 
u
tuations o

ur at all length s
ales, and the 
orrelation length, whi
h measuresthe size of the largest 
u
tuations, diverges. In the momentum spa
e, the RG deals with one length s
ale atone time: the short-distan
e 
u
tuations are integrated out, and then the remaining part of the Hamiltonianis res
aled. Upon iteration, this Hamiltonian approa
hes a �xed point, and universality emerges from theexisten
e of su
h �xed points in the spa
e of Hamiltonians.Sin
e the invention of the RG, enormous progress has been a
hieved in the understanding of phasetransitions. In two dimensions, an important appli
ation is the Coulomb gas theory. This theory transformsa number of two-dimensional models into an ele
tromagneti
 Coulomb gas model. Then, a hierar
hy of
riti
al exponents 
an be expressed in terms of a single parameter. These models in
lude the q-state Pottsmodel, the anti-ferromagneti
 Potts model, the O(n) model, and frustrated Ising models, et
.1.3 Conformal �eld theoryBesides RG transformations, a larger group of symmetry operations, the 
onformal transformations, 
anbe applied to 
riti
al phenomena. Roughly speaking, a 
onformal mapping is a generalization of a s
ale2



transformation in whi
h the length-res
aling fa
tor depends 
ontinuously on position; it 
an be furtherunderstood as a 
ombination of the lo
al s
ale and rotation transformations. The 
onne
tion between s
aleand 
onformal invarian
e has been known to �eld theorists for a long time. In two dimensions, the 
onformalgroup algebra had been studied in the late 1960s by parti
le theorists in the 
ontext of the dual string model,where it was known as the Virasoro algebra. The 
onne
tion of su
h quantum �eld theories and statisti
alme
hani
s 
lose to a 
riti
al point has been proved to be very fruitful. It was shown, by Belavin, Polyakov, andZamolod
hikov, that ea
h `primary' s
aling operator of a two-dimensional system at 
riti
ality 
orrespondsto a representation of the Virasoro algebra. If these representations are of a parti
ularly simple kind,
orresponding to the vanishing of a 
ertain quantity 
alled the Ka
 determinant, then not only the 
riti
alexponents but all the multi-point 
orrelation fun
tions at 
riti
ality 
an be obtained. Further, Friedan, Qiu,and Shenker showed that these representations are indeed allowed, if the theory is to be unitary and ifa 
ertain quantity 
 
alled the 
onformal anomaly satis�es 
 < 1. In two dimensions, the 
onformal �eldtheory has already predi
ted a series of exa
t values, listed in the so-
alled Ka
 table, for a number of 
riti
alsystems.Despite of their great su

ess, the renormalization group approa
h and the 
onformal �eld theory stillla
k a �rm mathemati
al foundation. There has been a lot of work re
ently by mathemati
ians in the
ontext of the so-
alled Sto
hasti
 Loewner Evolution (SLE). The basi
 idea is to try to prove the physi
ists'predi
tions for the 
riti
al exponents.Naturally, neither the RG te
hnique, the Coulomb gas theory, or the 
onformal �eld theory 
ould supplythe immediate solution of all outstanding problems in the �eld of 
riti
al phenomena. In the �rst pla
e, theRG theory relies on several nontrivial assumptions, and the formalism is thus not rigorously justi�ed, asmentioned above. Se
ond, in general, these theories do not provide information on nonuniversal aspe
ts of
riti
al phenomena. Third, although the basi
 abstra
t ideas of the RG are easy to understand, to 
arry outthese ideas and verify them turns out to be diÆ
ult. Furthermore, although these theories have yielded alarge amount of exa
t information for two-dimensional 
riti
al systems, exa
t information is still very s
ar
efor spatial dimensionality d > 2. An alternative tool is provided by 
omputer simulations, of whi
h theappli
ation has been greatly stimulated by the rapid development of the 
omputer te
hnology. It is even
onsidered that, together with theoreti
al and experimental physi
s, 
omputational physi
s form a triangularframework in the resear
h of modern physi
s.However, sin
e numeri
al investigations are restri
ted to systems with �nite extent, the diverging 
or-relation length at a 
riti
al point is trun
ated, su
h that 
riti
al singularities are rounded o�. Due to thes
ale invarian
e at 
riti
ality, the linear size of a �nite system 
an be simply regarded as a s
aling �eld inthe RG approa
h. The 
orresponding theory is 
alled the �nite-size s
aling theory, in whi
h the �nite-sizedependen
e of physi
al quantities is derived at and near a 
riti
al point.1.4 OutlineThis thesis is organized on the basis of a number of drafts whi
h have been published or are intended forpubli
ation. As a 
onsequen
e, there exists some redundan
y in related 
hapters.In Chapter 2, the universality hypothesis is systemati
ally tested for eleven three-dimensional latti
emodels believed to be in the Ising universality 
lass by means of Monte Carlo methods and �nite-size s
aling.After veri�
ation of this hypothesis within narrow numeri
al margins, we assume that universality holdsexa
tly. Then, we 
an analyze the numeri
al data near the 
riti
al points of these systems simultaneouslysu
h that the universal parameters o

ur only on
e. As an example, we 
onsider the dimensionless ratioQ = hm2i2=hm4i, where m is the pro�le of order parameter. The �nite-size dependen
e of this ratio near
riti
ality 
an be expressed asQ(t; v; L) = Q(0;0) +Q(1;0)tLyt +Q(2;0)t2L2yt +Q(0;1)vLyi + � � � ; (1.3)where L is the linear system size, and t and v are the relevant and irrelevant thermal �elds, respe
tively.The renormalization exponents of t and v are denoted as yt and yi, respe
tively. The s
aling �elds, t and v,are analyti
al fun
tions of physi
al parameters, and the amplitudes 
an assume di�erent values in di�erent3



systems. The symbol Q(i;j) represents i and j di�erentiations of Q with respe
t to t and v, respe
tively.In addition to the 
riti
al exponents yt and yi, the numbers Q(i;j) are also universal. Thus, they o

uronly on
e in the simultaneous �t of the Monte Carlo data. The 11 systems in
luded in this 
hapter are
hosen su
h that they re
e
t a wide range of positions on the 
riti
al surfa
e in the language of the Landau-Ginzburg-Wilson des
ription of the Ising model. This parti
ular 
hoi
e, together with the simultaneous�tting te
hnique, yields the thermal, magneti
, and irrelevant exponents as yt = 1:5868(3), yh = 2:4816(1),and yi = �0:821(5), respe
tively.In Chapter 3 we formulate a 
luster Monte Carlo simulations of the quantum transverse Ising model(TIM), whi
h is believed to be relevant to the super
ondu
tivity phase transitions. It is known that the d-dimensional quantum TIM is equivalent with the anisotropi
 limit of a (d+1)-dimensional latti
e Ising model.This equivalen
e was displayed by S
hultz and Mattis in 1964, and later was shown in a reverse path by Suzukiusing the Trotter formula. However, the numeri
al appli
ation of this equivalen
e leads to pra
ti
al diÆ
ultiesdue to singular behavior in the anisotropi
 limit of the 
lassi
al Ising model. When the Hamiltonian limit isapproa
hed, the 
oupling 
onstant and the 
orrelation length diverge in one dire
tion, while the 
ouplingsin other dire
tions vanish. In this Chapter, we in
rease the number of spins in the strong-
oupling dire
tionand meanwhile res
ale it by a divergent number. This res
aling renders this dire
tion 
ontinuous, whilethe weak-
oupling dimensions remain dis
rete. A 
ontinuous 
luster algorithm is then developed, and theeÆ
ien
y is 
omparable to the Swendsen-Wang and the Wol� method for dis
rete latti
es. Appli
ations ofthis algorithm yield the 
riti
al points of the TIMs on several two- and three-dimensional latti
es with thestatisti
al un
ertainties in the �fth de
imal pla
e.Chapter 4 investigates the 
riti
al properties of the Ising model in 
urved geometries by applying 
on-formal transformations. In parti
ular, the 
onformal invarian
e of the Ising model is 
on�rmed in threedimensions. In two dimensions, the 
onsequen
es of 
onformal invarian
e in 
riti
al systems have been stud-ied extensively, and a large amount of results has been a
hieved. A well-known example is Cardy's mappingbetween an in�nite plane and the surfa
e of an in�nitely long 
ylinder, whi
h 
ovariantly transforms, at 
rit-i
ality, the algebrai
 de
ay of 
orrelations in the plane into an exponential de
ay along the 
ylinder. Sin
e a
ylinder pseudo-one-dimensional, its numeri
al investigation is simpler than that of a two-dimensional plane.For spatial dimensionality d > 2, however, 
onformal transformations generally lead to 
urved geometriesor geometries with 
urved boundaries. For instan
e, in three dimensions, Cardy's mapping transforms thein�nite spa
e R3 into a pseudo-one-dimensional geometry S2 � R1 . This geometry 
an be obtained by ex-tending the surfa
e of a sphere S2 into another dimension R1 , and is referred to as the sphero
ylinder inthis 
hapter. Another example is the 
onformal mapping between the semi-in�nite spa
e R(d�1) � R+ andthe interiors of a unit d-dimensional sphere. This mapping 
an be expressed as~r 0=r02 = ~r=r2 + Î=2 ; (1.4)where Î is an arbitrary �xed unit ve
tor in d dimensions. This formula maps spheres onto spheres, so thatthe d-dimensional spa
e Rd is transformed into itself. Under the mapping (1.4), the (d � 1)-dimensionalplane Î � ~r = 0, whi
h 
orresponds to a spheri
al surfa
e of an in�nite radius, is 
onformally mapped ontothe surfa
e of a unit d-dimensional sphere with the 
enter at Î . Meanwhile, the half spa
es Î � ~r > 0 andÎ � ~r < 0 are transformed respe
tively into the interior and exterior of this unit sphere, whi
h redu
es to aunit 
ir
le for d = 2.For the geometries like the sphero
ylinder or the unit sphere, the nonzero net 
urvature poses a seriousobsta
le for numeri
al investigations: a sequen
e of regular latti
es 
annot be readily a

ommodated. Fordis
rete spin models, this problem 
an be solved by using the Hamiltonian limit of the latti
e model andthe 
ontinuous 
luster Monte Carlo algorithm developed in Chapter 2. The key ingredient of this in�nitelyanisotropi
 model is that one of its dimensions is 
ontinuous, so that the problem of dis
retization for oneof the latti
e dimensions is avoided.In Se
. 4.1, we des
ribe a 
onformal mapping of an in�nite plane in two dimensions onto a spheroid. Byrotating an ellipse about the minor or the major axis, one obtains an oblate or prolate spheroid, respe
tively.The spe
ial 
ases in
lude the surfa
e of an in�nitely long 
ylinder, of a sphere, and of a two-sided 
at dis
.The latter 
ase is obtained when the polar diameter of the spheroid approa
hes zero, so that one has theinteriors of two 
ir
les 
onne
ted at their perimeters. Thus, this transformation in
ludes Cardy's mapping as4



a spe
ial 
ase. From the known two- and four-point 
orrelation fun
tions in the plane, and the assumption of
ovarian
e of the multipoint 
orrelations under 
onformal mappings, the 
riti
al value of the dimensionlessratio Q is 
al
ulated for the Ising model on the sphere and on the 
at dis
. Further, 
luster Monte Carlosimulations are performed, and the numeri
al estimations of Q, determined from the �nite-size s
aling, agreepre
isely with the above exa
t 
al
ulations. At 
riti
ality, we also sampled two- and one-point 
orrelationfun
tions on spheroids and half spheroids, respe
tively. The thermal and magneti
 exponents, as obtainedfrom the numeri
al data and the predi
tion of 
onformal invarian
e, are in good agreement with the exa
tresults.In Se
. 4.2, we simulate the Hamiltonian limit of the 
riti
al three-dimensional Ising model. First, fromthe ratio of the magneti
 
orrelations in the strong- and weak-
oupling dire
tions, we numeri
ally determinedthe length ratio relating the isotropi
 Ising model and the anisotropi
 limit. On this basis, we simulate the
riti
al Ising model on a sphero
ylinder S2 � R1 . From the predi
tion of 
onformal invarian
e and thesampled 
orrelation lengths along the sphero
ylinder, we determine the magneti
 and thermal exponents asyh = 2:4818(6) and yt = 1:581(7), respe
tively. Then, free boundary 
onditions are imposed on the equatorsof the sphero
ylinder, and we obtain the surfa
e magneti
 exponent y(o)hs = 0:737(5), with the supers
ript (o)for the ordinary phase transition. The pre
ision of these results reveals that, as in two dimensions, 
onformalmappings provide a powerful tool to investigate three-dimensional 
riti
al phenomena.Chapter 5 investigates the anisotropi
 limit of the bond-per
olation model in two and three dimensions,in whi
h the 
riti
al bond-o

upation probability pk in one of the dire
tions (longitudinal) approa
hes 1,and the probability p? in the other (d� 1) dimensions (transverse) vanishes. Thus, near 
riti
ality, one haspk = 1�� and p? = �=t, where �! 0 is an in�nitely small 
onstant and t is a temperature-like parameter. Inthe same way as for the Hamiltonian limit of the Ising model, we res
ale the system with an in�nite fa
tor inthe longitudinal dire
tion, so that a 
ontinuous per
olation model is obtained. It 
an be simply reformulatedas follows. Suppose that a sequen
e of lines originate from the verti
es of a (d � 1)-dimensional latti
e,through whi
h a 
urrent 
an 
ow. For ea
h pair of nearest-neighboring lines, they are 
onne
ted through aset of 
ondu
ting `bridges', whi
h are uniformly distributed; moreover, a fra
tion of `barriers', whi
h havein�nite resistan
e, is uniformly distributed on these lines. Thus, if a potential di�eren
e is applied to a pairof points with a large distan
e r, the probability P (r) that a 
urrent 
an 
ow between these two pointsis determined by the relative abundan
e of the bridges and the barriers. For t >> 1, there are so `many'barriers that P (r) ! 0 as r !1; for t << 1, one has a nonzero probability P (r) as r !1. A 
ontinuousphase transition o

urs at some point t
. This transition is referred to as the 
riti
al point of the transverseper
olation model. It 
an be shown that a d-dimensional version is equivalent with the limit q ! 1 of thequantum q-state Potts model in (d� 1) dimensions.We formulate an eÆ
ient Monte Carlo method for this model, and its appli
ation 
on�rms that it �tswell in the per
olation universality 
lass of the isotropi
 
ase. In two dimensions, the dual symmetryyields the 
riti
al point as t
 = 1. For the three-dimensional re
tangular geometry, we numeri
ally obtaint
 = 8:6429(4).Next, we simulate 
riti
al systems in several two- and three-dimensional 
urved geometries in
ludinga spheroid and a sphero
ylinder. Using �nite-size s
aling and the predi
tions of 
onformal invarian
e, wedetermine the bulk and surfa
e magneti
 exponents, in agreement with the existing results.Chapter 6 summarizes the in
uen
e of two types of annealed 
onstraints on a number of 
riti
al andtri
riti
al systems. The �rst type of 
onstraint is energy-like and �xes the total number of va
an
ies orparti
les. We �nd that these 
onstraints a�e
t the leading �nite-size behavior of energy-like quantities,while the e�e
t on magneti
 quantities is restri
ted to 
orre
tion terms. The se
ond type applies to themagnetization, and appears to suppresses the �nite-size divergen
es of a quantity that normally s
ales asthe magneti
 sus
eptibility.In an attempt to explain the observed �nite-size s
aling properties, we make use of the well-known Fisherrenormalization me
hanism. However, we do not always �nd a satisfa
tory agreement with our numeri
al re-sults for 
onstrained 
riti
al systems. For instan
e, for most energy-like 
onstraints, the exponents des
ribingthe �nite-size dependen
e of the spe
i�
 heat are twi
e the expe
ted values.We also sample spe
i�
-heat-like and sus
eptibility-like quantities, whi
h a

ount for large-s
ale spa-tial inhomogeneities of energy and magnetization 
u
tuations. The �nite-size behavior of these quantities5



resembles that of the spe
i�
 heat and the sus
eptibility of un
onstrained systems.In Chapter 7, we investigate the three-dimensional tri
riti
al Blume-Capel model under an energy-like
onstraint. Sin
e three is the upper tri
riti
al dimensionality of the Ising model, we expe
t that the mean-�eld theory 
orre
tly predi
ts a number of universal parameters in
luding the 
riti
al exponents and theBinder ratio. Therefore, we 
al
ulate the partition sum of the mean-�eld tri
riti
al Blume-Capel model, anda

ordingly obtain the exa
t value of the Binder ratio. Further, we show that, under the 
onstraint, thismean-�eld tri
riti
al system redu
es to the mean-�eld 
riti
al Ising model. However, our three-dimensionaldata do not agree with this mean-�eld predi
tion. Instead, they are su

essfully explained by the Fisherrenormalization me
hanism generalized to in
lude the e�e
t of the subleading thermal �eld.Chapter 8 systemati
ally investigates the 
onstrained phenomena of the tri
riti
al Potts model in twodimensions. Some of the results have been in
luded in Chapter 6. Near a d-dimensional tri
riti
al point, weshow that the leading thermal exponent yt1 is renormalized to d � yt1, while the subleading exponent yt2remains un
hanged.Chapter 9 determines the ba
kbone exponents of several 
riti
al and tri
riti
al q-state Potts models intwo dimensions and the per
olation and the Ising model in three dimensions. For the general q-state Pottsmodel, the nature of the bulk 
riti
al singularities is well established in two dimensions. Nevertheless, thePotts model 
ontinues to be a subje
t of mu
h resear
h interest. There is still a number of 
riti
al exponents,of whi
h the exa
t values have not been obtained even in two dimensions. These exponents 
hara
terizegeometri
 properties of the Potts model at 
riti
ality, and seem to have no analog in the thermodynami
s.One of them is the fra
tal dimension of \ba
kbones", whose de�nition 
an be illustrated as follows. Considerthe random-
luster representation of a Potts model, the probability that a pair of points with distan
e rbelongs to the same Kasteleyn-Fortuin 
luster, denoted as P1(r), behaves asymptoti
ally as P1(r) / r�2Xh at
riti
ality, where Xh = d�yh is the magneti
 s
aling dimension. In other words, P1(r) 
an be understood asthe probability that these two points are 
onne
ted by at least one path whi
h 
onsists of o

upied bonds inthe random-
luster model. Analogously, one 
an ask the question what is the asymptoti
 
riti
al behavior ofthe probability Pk(r) that these two points are 
onne
ted via at least k independent paths without any bondin 
ommon. At 
riti
ality, the behavior of Pk(r) is governed by a family of exponents Xk, of whi
h X2 is theso-
alled ba
kbone s
aling dimension Xb. In per
olation theory the ba
kbone problem is 
onsidered to be ofsome physi
al relevan
e. In the past de
ades, this subje
t has attra
ted mu
h resear
h attention. Numeroustheoreti
al attempts have been 
arried out to predi
t the exa
t values of Xb for the two-dimensional Pottsmodel, parti
ularly for the per
olation model. In parallel, several numeri
al te
hniques have been developedfor the determination of Xb, in
luding Monte Carlo simulations and transfer-matrix methods.In this 
hapter, we formulate an eÆ
ient numeri
al pro
edure to sample the probability P2(r), and thus todetermine the ba
kbone dimension Xb for several two- and three-dimensional models from a �nite-size s
alinganalysis of P2(r). The pre
ision of these results is favorable in 
omparison with the existing determinations.Moreover, from a s
aling argument, we derive that, for two-dimensional tri
riti
al Potts models, Xb redu
esto the magneti
 exponent Xh. This is 
on�rmed by the numeri
al results.In Chapter 10, we investigate geometri
 properties of several systems. It is known that a se
ond-orderphase transition is generally a

ompanied by diverging 
orrelation lengths both in time and spa
e. It hasbeen suspe
ted long time ago that, near a 
riti
al point, thermodynami
 singularities 
an be represented bysome sort of `geometri
' 
lusters. Consider a Potts model with ferromagneti
 intera
tions between nearest-neighboring (NN) Potts variables, for ea
h pair of NN sites in the same Potts state, one pla
es a bondwith probability 0 � p � 1. Thus, the whole latti
e is de
omposed into groups of spins 
onne
ted via theo

upied bonds, to whi
h we refer as the geometri
 
lusters. For the spe
ial 
ase p = pr = 1 � exp(�K)with the Potts intera
tion strength K these geometri
 
lusters redu
e to the well-known Kasteleyn-Fortuin(KF) 
lusters. The 
riti
al Potts singularities 
an be 
orre
tly represented by the size distribution of theKF 
lusters (the so-
alled random-
luster model). For instan
e, the fra
tal dimension of KF 
lusters at the
riti
al point K
 is just the magneti
 s
aling dimension Xh of the Potts model. In the parameter spa
e(p;K), the point (pr
;K
), pr
 = 1� exp(�K
), 
an be generally regarded as a �xed point, whi
h is referredto as the random-
luster �xed point. For K = K
, renormalization 
ows in the p dire
tion are governed bythe bond-dilution �eld, whose exponent is 
alled the red-bond exponent yr.Se
tion 10.1 investigates the general q-state Potts model in two dimensions. We �nd that, in addition6



to the random-
luster �xed point (K
; pr
), there exists another �xed point on the 
riti
al line K = K
, towhi
h we refer as the geometri
 
luster �xed point pg
. For the 
riti
al bran
h, the �xed point pr
 is unstable(yr > 0) and the point pg
 > pr
 is stable. In 
ontrast, for the tri
riti
al Potts model, the �xed points pr
 andpg
 are stable and unstable, respe
tively. In this 
ase, one has pg
 < pr
, so that the per
olation thresholdof the geometri
 
lusters does not 
oin
ide with the KF 
lusters. We 
onje
ture that the �xed point pg
 ofa 
riti
al and a tri
riti
al q-state Potts model 
an be regarded to 
orrespond to pr
 of a tri
riti
al and a
riti
al q0-state Potts model, respe
tively. In terms of the 
oupling 
onstant g of the Coulomb gas parti
le,these two models are related as gg0 = 16. This 
onje
ture is 
on�rmed by the numeri
al results.Along similar lines, Se
. 10.2 investigates the 
riti
al Ising and the tri
riti
al Ising model in three dimen-sions. For the 
riti
al Ising model, exa
t information is s
ar
e. Nevertheless, many numeri
al te
hniqueshave been developed, and a 
onsiderable amount of results has been obtained. Sin
e the upper tri
riti
aldimensionality of Ising systems is three, many universal parameters 
an be exa
tly obtained. However, thenumber of resear
h a
tivities 
arried out thus far for the geometri
 properties of both models is rather limited.By means of Monte Carlo simulations, we observe that, unlike two-dimensional tri
riti
al Potts systems, theper
olation threshold of geometri
 
lusters 
oin
ides with KF 
lusters in three dimensions. We determine the
orresponding red-bond exponents as yr = 0:757(2) and 0:501(5) for the 
riti
al Ising and the tri
riti
al Isingmodel, respe
tively. On this basis, we 
onje
ture yt = 1=2 for the latter model, whi
h is further 
on�rmedby the numeri
al determination of yr for the mean-�eld version of the tri
riti
al Blume-Capel model (notreported in this se
tion).Chapter 11 investigates 
riti
al and tri
riti
al surfa
e phenomena of the general q-state Potts model intwo dimensions. Near a 
riti
al point, the e�e
t of a surfa
e 
an be drasti
, sin
e the bulk 
orrelationlengths be
ome long-ranged. For instan
e, for the Ising model in a semi-in�nite three-dimensional spa
e,as the surfa
e 
oupling Ks is varied, the bulk transition K = K
 
an o

ur in the absen
e or the presen
eof a spontaneous surfa
e magnetization: the `ordinary' or the `extraordinary' transition, respe
tively. Fordisordered bulkK < K
, there is a 
riti
al line of `surfa
e' transitions terminating atK = K
 in a multi
riti
alpoint, the so-
alled `spe
ial' transition.In two dimensions, the `surfa
es' are just one-dimensional edges, it may then seem natural that surfa
e
riti
al phenomena are less ri
h than those in three dimensions. In parti
ular, for systems with short-rangeintera
tions only, it may seem plausible that spontaneous edge order 
annot exist. However, our numeri
alresults show otherwise. Using suitable Monte Carlo methods and �nite-size s
aling, we show that, for thetwo-dimensional tri
riti
al Potts model, appli
ation of a suÆ
iently strong surfa
e 
oupling or a surfa
emagneti
 �eld 
an indu
e a 
ontinuous phase transition. At even larger surfa
e 
ouplings, pseudo-one-dimensional order o

urs on the edges. We determine several 
riti
al exponents des
ribing these edgestransitions. On the basis of these results and 
onformal �eld theory, we 
onje
ture exa
t expressions of theseexponents.List of publi
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2Simultaneous analysis of three-dimensional Ising models
We investigate several three-dimensional latti
e models believed to be in the Ising universality 
lass, bymeans of Monte Carlo methods and �nite-size s
aling. These models in
lude spin- 12 models with nearest-neighbor intera
tions on the simple-
ubi
 and on the diamond latti
e. For the simple-
ubi
 latti
e, we alsoin
lude models with third-neighbor intera
tions of varying strength, and some 'equivalent-neighbor' models.Also in
luded are a spin-1 model and a hard-
ore latti
e gas. Separate analyses of the numeri
al data
on�rm the Ising-like universal 
riti
al behavior of all these systems. On this basis, we analyze all these datasimultaneously su
h that the universal parameters o

ur only on
e. This leads to an improved a

ura
y.The thermal, magneti
, and irrelevant exponents are determined as yt = 1:5868(3), yh = 2:4816(1), andyi = �0:821(5), respe
tively. The Binder ratio is estimated as Q = hm2i2=hm4i = 0:62341(4).2.1 Introdu
tionThe Ising model has been investigated extensively, and thus serves as a testing ground for theories of phasetransitions. Many physi
al systems 
an be des
ribed by this simple but nontrivial model. It is believed that
ontinuous phase transitions in systems with short-range intera
tions and a s
alar order parameter belong tothe Ising universality 
lass. These in
lude a variety of magneti
 systems, alloys, gas-liquid systems, and liquidmixtures. For instan
e, magneti
 systems 
an be des
ribed by a spin- 12 or spin-1 Ising model depending onthe nature of the elementary magneti
 moments; gas-liquid systems 
an be modeled by means of hard-
oreparti
les, whi
h ex
lude one another within a non-zero range. Furthermore, the parti
le 
oordinates may berestri
ted to the verti
es of regular latti
es.In two dimensions, the eviden
e supporting the universality hypothesis is rather solid. One underlyingreason is that exa
t results are available. For instan
e, exa
t analysis of Onsager's spin- 12 model [1℄ andrelated models yields the thermal and magneti
 s
aling exponents as yt = 1 and yh = 15=8 [2℄, respe
tively.In three dimensions, however, su
h exa
t results are absent. Therefore, investigation of 
riti
al behaviorhas to depend on approximations. These in
lude te
hniques su
h as �- and series expansions, the 
oherent-anomaly method, and Monte Carlo methods et
. Extensive studies have been 
arried out [3{14℄, and thereis some 
onsensus that the values of yt and yh are, respe
tively, 1:587 and 2:482, with di�eren
es only in thelast de
imal pla
e. Compared to the 
ase of two dimensions, the three-dimensional results are indeed lesssatisfa
tory. Apart from the limited a

ura
y, the absen
e of exa
t results leaves, at least in prin
iple, someroom for severe disagreements. For instan
e, a very re
ent investigation by Gar
��a and 
oworkers [15℄ 
laimsthat yt = 1:600(2) and yh = 2:501(5).Many fa
tors are responsible for this unsatisfa
tory situation. First, due to the restri
tion of 
urrent
omputer 
apa
ity, one 
an only explore rather limited system sizes in three dimensions. Se
ond, 
orre
tions-to-s
aling are mu
h more serious than that in two dimensions. For the two-dimensional Ising model, theexponent of the leading irrelevant thermal �eld is yi = �2, while in three dimensions yi ' �0:82. Moreover,11



the determination of yi is not very a

urate so far. A better estimation of yi thus seems justi�ed and is oneof the purposes of the present work.In the language of renormalization group te
hnique, the 
riti
al behavior of systems within a universality
lass is governed by a 
ommon �xed point. In terms of s
aling �elds, the fun
tion of the free energy, and thusof physi
al observables, is universal near the 
riti
al points. By means of �nite-size s
aling, su
h universalfun
tions are extended to �nite systems. As an example, we 
on
ern the dimensionless ratioQ = hm2i2=hm4i,where m is the pro�le of order parameter. The quantity Q is related to Binder 
umulant [16℄, and has beenreported [11℄ to be a good 
hoi
e to estimate yi and lo
ate 
riti
ality. Near the 
riti
al points Q behaves asQ(t; v; L) = Q(tLyt ; vLyi ; 1) + � � � ; (2.1)where L is the linear system size, t is the thermal s
aling �eld, and the irrelevant �eld v re
e
ts the distan
eof 
riti
ality of 
orresponding systems and the �xed point. Here, we have not yet spe
i�ed 
ontributions dueto the analyti
 part of the free energy. Taylor-expansion of the right-hand-side of Eq. (2.1) yieldsQ(t; v; L) = Q(0) +Q(1;0)tLyt +Q(2;0)t2L2yt +Q(0;1)vLyi + � � � ; (2.2)where the derivatives of the universal fun
tion Q with respe
t to t and v are denoted as Q(i;j). Apartfrom the s
aling exponents yt and yi, the amplitudes of Q(0) and Q(i;j) are equal for systems in the sameuniversality 
lass.However, from the Monte Carlo data of a single model only, the estimation of yi is rather diÆ
ult. Thereason is as follows. In Eq. (2.2), the amplitude v is 
oupled to the exponent yi, and thus a reasonableestimation of yi requires systems with a large value of v. However, the large value of v ex
ludes an a

uratedetermination of Q(0), so that the a

ura
y of yi is also limited. On the other hand, although a system witha small amplitude v helps to estimate Q(0), it does not allow a good determination of yi either. This is oneof the reasons why, in many numeri
al investigations, the exponent yi is �xed at a 
onstant taken from othersour
es.This problem 
an be avoided by a simultaneous analysis of several systems with a diversity of the irrelevant�elds v. Given a reasonable value of yi, Monte Carlo data of systems with a small irrelevant �eld v determineQ(0) with a narrow margin; this information, together with models with a signi�
ant amplitude v, greatlyhelps the estimation of yi, whi
h in return improves the determination of Q(0).In the present work, we investigate eleven Ising-like latti
e models in three dimensions, of whi
h theamplitudes v have a wide range of values. These models in
lude the spin- 12 Ising model with nearest-neighbor intera
tions Knn on the simple-
ubi
 and on the diamond latti
e. On the simple 
ubi
 latti
e,models with further-neighbor intera
tions are also investigated. In parti
ular, third-neighbor intera
tionsK3n are in
luded in several models with various ratios K3n=Knn. Further, we study some 'equivalent-neighbor' models, originally introdu
ed by Domb and Dalton [17{19℄. In su
h systems, ea
h spin intera
tsequally strongly with all its neighbors within a 
ertain distan
e. The model with the intera
tions till therth shell of neighbors is referred to as the equivalent-neighbor model of order r. Also in
luded are a spin-1model [20℄ and a hard-
ore latti
e gas with nearest-neighbor ex
lusion.For these models, we analyze the numeri
al data both separately and simultaneously. The separate anal-yses are in a good agreement with the Ising universality hypothesis for all these systems. This provides thebasis of the simultaneous analysis, in whi
h we assume that universality is exa
tly satis�ed so that universalparameters o

ur only on
e. This feature of the simultaneous analysis, 
ombined with the aforementioneddis
ussion in Se
. 2.1, leads to a signi�
antly improved estimation of the 
riti
al points of these systems andthe universal quantities in
luding s
aling exponents and the Binder ratio Q(0).A diÆ
ulty is that su
h a simultaneous analysis requires a large amount of a

urate Monte Carlo data.Fortunately, some numeri
al data are already available and were published elsewhere [9{11,21{24℄. The datagenerated by the Cluster Pro
essor [11℄ are not in
luded and will be published elsewhere. Our new MonteCarlo simulations mainly fo
us on larger system sizes, and were performed on a 
luster of 6 PCs with afrequen
y of 2100 MHz. 12



Table 2.1: De�nitions of the models.Model K2nKnn K3nKnn K4nKnn D Latti
e Des
ription of models1 0 0 0 �1 d. Spin- 12 with nn 
ouplings2 0 0 0 �1 s.
. Spin- 12 with nn 
ouplings3 0 0:1 0 �1 s.
. Spin- 12 with nn and 3n 
ouplings4 0 0:2 0 �1 s.
. Spin- 12 with nn and 3n 
ouplings5 0 0:3 0 �1 s.
. Spin- 12 with nn and 3n 
ouplings6 0 0:4 0 �1 s.
. Spin- 12 with nn and 3n 
ouplings7 1 0 0 �1 s.
. Equivalent-neighbor of order two8 1 1 0 �1 s.
. Equivalent-neighbor of order three9 1 1 1 �1 s.
. Equivalent-neighbor of order four10 0 0 0 ln 2 s.
. Spin-1 with nn 
ouplings11 { { { { s.
. Latti
e gas with nn ex
lusiond. { diamond latti
e; s.
. { simple-
ubi
 latti
e.2.2 Models and algorithmsAs mentioned earlier, the present Monte Carlo analyses in
lude eleven Ising-like models. Ex
ept the hard-
ore latti
e gas, these models 
an be represented in terms of a spin-1 HamiltonianH=kBT = �Knn Xhnni�i�j �K2nX(2n)�i�j �K3nX[3n℄ �i�j �K4n Xf4ng�i�j +DXi �2i ; (2.3)where the sums hnni, (2n), [3n℄, and f4ng are respe
tively over nearest-, se
ond-, third-, and fourth-neighborpairs, and the asso
iated 
ouplings are denoted as Knn, K2n, K3n, and K4n, respe
tively. The spins 
anassume three dis
rete values si = 0;�1, where spins s = 0 may be referred to as va
an
ies. The detailedde�nitions are spe
i�ed in Tab. 2.1, where ten models are de�ned on the simple 
ubi
 latti
e, and one onthe diamond latti
e. We de�ne the �nite-size parameter L by its relation with the total number N of latti
esites as N = L3. Thus, the linear size of the 8-site elementary 
ell of the diamond latti
e is taken to beL = 2. Periodi
 boundary 
onditions are applied. The systems sizes were taken in the range 4 � L � 128.For D = �1, the va
an
ies are ex
luded, so that the model redu
es to the spin- 12 model. This applies tothe �rst nine models in Tab. 2.1. Models 1 and 2 have nearest-neighbor intera
tions Knn only. Models 3-6in
lude, in addition, third-neighbor intera
tions K3n. Various ratios are applied: K3n=Knn = 0:1; 0:2; 0:3,and 0:4. Models 7-9 are the equivalent-neighbor models [17{19℄ of order two, three, and four, respe
tively.We 
hoose these models be
ause they 
over a wide range of amplitudes of the irrelevant �eld v in Eq. (2.2).In parti
ular, v is positive for models 1-4 and negative for models 5-9. This re
e
ts that the 
riti
al pointsof these systems lie on opposite sides of the Ising �xed point in the dire
tion of v on the 
riti
al surfa
e.Moreover, the absolute value of v is relatively large for models 1, 2, 8, and 9, and relatively small for models4, 5 and 7. This will be shown later in the numeri
al analysis.During the Monte Carlo simulations, one 
an in prin
iple apply the standard form of the Swendsen-Wangor of the Wol� 
luster algorithm. However, the eÆ
ien
y of these methods de
reases rapidly as the numberof intera
ting neighbors in
reases. This diÆ
ulty is avoided by an algorithm des
ribed in Ref. [9℄. Here, wesummarize the essential points. During the formation of a 
luster, a bond between equal spins 
oupled withstrength K is frozen with probability p = 1�exp(�2K), or broken with probability 1�p. Sites 
onne
ted byfrozen bonds belong to the same 
luster. The distribution P (k) = p(1� p)k�1 expresses the probability that(k� 1) subsequent bonds are broken while the kth bond is frozen. The algorithm generates this distributionfrom a uniformly distributed random number 0 < r < 1 as followsk = 1 + [ln(r)= ln(1� p)℄ ; (2.4)where the square bra
kets denote the integer part. By repeated evaluation of k, one may set up a 
ompletelist of frozen bonds, and thus a 
luster is formed. The eÆ
ien
y of this pro
edure is almost independent of13



the range of the intera
tions. An example was shown in Ref. [21℄ by simulating the mean-�eld Ising model,in whi
h ea
h spin is intera
ting with every other spin.We also in
lude a spin-1 model with D = ln 2, whi
h is important to our purposes due to its very smallamplitude of v [9℄. However, for a general spin-1 model, it is not obvious how 
luster algorithms 
an produ
etransitions between va
an
ies and non-va
an
ies. One 
an in prin
iple follow a hybrid algorithm in whi
hMetropolis sweeps alternate with 
luster steps. As long as the spin-1 model is not 
lose to the tri
riti
alpoint where the ordered Ising phases meet the phase dominated by va
an
ies, serious 
riti
al slowing downis not expe
ted.Here, due to the spe
ial 
hoi
e D = ln 2 (model 10), a full 
luster algorithm [9,11, 21℄ be
omes possible.First, the spin-1 model is mapped onto a spin- 12 model with two variables, of whi
h the Hamiltonian isH=kBT = �M1Xhiji(ti + ui)(tj + uj)�M2Xm tmum ; (2.5)where two s = 12 spins ti = �1 and ui = �1 sit on ea
h site i of the simple-
ubi
 latti
e. Using thetransformations �i = (ti+ui)=2 and vi = (1+ ti)(1�ui)=4, it has been shown [9℄ that the partition fun
tionis, up to a 
onstant fa
tor, Z =X�k exp244M1Xhiji �i�j + (2M2 � ln 2)Xm �2m35 : (2.6)This is pre
isely the partition fun
tion of the spin-1 model. The spe
ial 
hoi
e D = ln 2 leads to M2 = 0so that there are no intera
tions between variables on the same site. On this basis, the Wol� algorithmis applied to 
ip the variables ti and/or ui. This 
osts a little pri
e, i.e., two arrays have to be stored in
omputer memory for the variables ti and ui. In the present work, we improve this algorithm by using onevariable only. This improvement is based on the equivalen
e of the variables ti and ui. Be
ause of thissymmetry, only the sum of ti and ui on the same site needs to be stored. This leads to a 
luster algorithmfor D = ln 2, whi
h allows 
ips between nonzero and zero spins.Another model (model 11) investigated in the present work is the hard-
ore latti
e gas on the simple-
ubi
latti
e, of whi
h the Hamiltonian isH=kBT = �KXhnni�i�j � �Xm �m : (2.7)Here, the variable �i = 1; 0 represents the presen
e and the absen
e of a parti
le, respe
tively. The nearest-neighbor 
ouplingK ! �1 implies that no nearest-neighbor sites are allowed to be o

upied simultaneously.The 
hemi
al potential of the parti
les is denoted as �. This latti
e gas was Monte Carlo simulated bymeans of a 
ombination of the Metropolis and a geometri
 
luster method. This 
luster algorithm is basedon geometri
 symmetries, su
h as the spatial inversion symmetry of the simple-
ubi
 latti
e. The fulldes
ription of this algorithm is given in Refs. [22{24℄.As mentioned in Se
. 2.1, the 
riti
al behavior of the hard-
ore latti
e gas is expe
ted to belong tothe Ising universality 
lass. Surprisingly, signi�
ant di�eren
es have been reported. The investigationsby Yamagata [25, 26℄ yielded 
riti
al exponents �=
 = 0:311(8) and 
=� = 2:38(2), whi
h would implyyh = 2:689(8). These results, however, 
ould not be 
on�rmed by later investigations whi
h did reveal arelatively large irrelevant �eld, but no deviations from the Ising universality 
lass [22, 23℄.2.3 Dimensionless ratio QFor the aforementioned eleven systems, Monte Carlo simulations took pla
e very 
lose to 
riti
al points forL > 20, while ranges of temperature-like parameters are wider for smaller systems. Table 2.2 presents thenumber of ten millions of samples taken per system size and the number of simulation sweeps before takingea
h sample. 14



Table 2.2: Number of samples (in ten millions) and simulation steps per sample. We use the notationM�Nto indi
ate that 107M samples have been taken at intervals of N Monte Carlo steps. Smallersystem sizes L < 20 are also in
luded in the analysis. For the latti
e gas, simulations steps in
ludeone Metropolis sweep for ea
h sample.ModelnL 20 22 24 28 321 50� 10 50� 10 50� 10 50� 10 40� 102 10� 10 10� 10 10� 10 12� 10 20� 103 10� 10 10� 10 10� 10 10� 10 10� 104 10� 10 10� 10 10� 10 10� 10 10� 105 10� 10 10� 10 10� 10 10� 10 10� 106 10� 10 10� 10 10� 10 10� 10 10� 107 20� 20 15� 22 17� 24 15� 28 12� 328 20� 20 15� 22 12� 24 10� 28 8� 329 20� 20 17� 22 12� 24 10� 28 7� 3210 128� 6 92� 6 92� 6 92� 6 87� 811 150� 7 20� 8 52� 10 50� 10 30� 1240 48 64 1281 40� 10 20� 20 10� 20 5� 402 10� 10 5� 20 5� 32 1:8� 643 10� 10 5� 20 5� 32 2� 644 10� 10 5� 20 5� 32 2� 645 10� 10 5� 20 5� 32 2� 646 10� 10 5� 20 5� 32 2� 647 8� 40 6� 48 5� 64 3� 1288 6� 40 4� 48 3� 64 2� 1289 6� 40 4� 48 3� 64 1:5� 12810 55� 10 22� 12 2� 16 5:4� 2511 15� 14 12� 16 15� 64 4:4� 128
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During the simulations, the universal ratioQ = hm2i2=hm4i was sampled, wherem is the order parameter.For the spin systems (models 1 - 10) and the latti
e gas (model 11), the magnetization density and thestaggered parti
le density assume this role, respe
tively. Near the 
riti
al points, we analyzed Q bothseparately and simultaneously.I. Separate analysesThe �nite-size behavior of Q near the 
riti
al points is des
ribed by Eq. (2.2). Here, the thermal s
aling�eld t depends on temperature-like parameters. For the spin- 12 models (models 1-9), these are the spin-spinintera
tions Knn, K2n, K3n, and K4n. Sin
e �xed ratios apply between these 
ouplings, it is suÆ
ient tosele
t Knn as the only temperature parameter Ki for the ith model. For the spin-1 model (model 10),both the nearest-neighbor 
ouplings Knn and the 
hemi
al potential D are temperature-like parameters.In this work, D is �xed at ln 2 so that Ki is again represented by Knn. For the hard-
ore latti
e gas(model 11), the 
hemi
al potential � of the parti
les assumes this role. For later 
onvenien
e, near the
riti
al points, we express the dependen
e of the s
aling �eld t on the physi
al temperature parameter Kias t = ai(Ki �K
i) + bi(Ki �K
i)2 + � � � . The amplitudes of the quantities with the subs
ript i depend onspe
i�
 models. On this basis, Eq. (2.2) be
omesQ = Q(0) +Q(1)ai(Ki �K
i)Lyt +Q(2)a2i (Ki �K
i)2t2L2yt +Q(3)a3i (Ki �K
i)3t3L3yt +Q(4)a4i (Ki �K
i)4t4L4yt +
i(Ki �K
i)2Lyt + b1iLy1 + b2iLy2 + b3iLy3 + � � � : (2.8)Here, we have written Q(i;0) as Q(i) for simpli
ity. The term with the 
oeÆ
ient 
i re
e
ts the nonlineardependen
e of t on Ki. The exponents of the 
orre
tion terms, as obtained in earlier analyses of Q inRefs. [9, 11℄, are y1 = yi = �0:82(3), y2 = d � 2yh = �1:963(3), and y3 = yt � 2yh = �3:375(3). The
orre
tion with the exponent y2 is due to the �eld dependen
e of the analyti
 part of the free energy. Thelast term arises from nonlinear dependen
e of the temperature s
aling �eld on the physi
al magneti
 �eld.Finite-size s
aling also predi
ts further 
ontributions. For a single model, sin
e both the quantities Q(i) andother parameters su
h as ai and K
i are unknown, we may simplify Eq. (2.8) asQ = Q0 + q1i(Ki �K
i)Lyt + q2i(Ki �K
i)2L2yt + q3i(Ki �K
i)2L3yt +q4i(Ki �K
i)2L4yt + 
i(Ki �K
i)2Lyt + b1iLy1 + b2iLy2 + b3iLy3 : (2.9)where qij is the produ
t of Q(j) and aji .A

ording to the least-squares 
riterion, Eq. (2.9) was �tted to the Monte Carlo data separately for theaforementioned eleven models. First, we �xed y1, y2, and y3 at the aforementioned values with the errormargins negle
ted, and yt was taken as 1:587 [3{13℄. We applied a 
uto� for small system sizes L < 10 formodel 8, L < 12 for model 9, and L < 8 for the rest. For the equivalent-neighbor model of order three andfour, the Monte Carlo data for small system sizes may be a�e
ted by 
rossover e�e
ts due to the proximityof the mean-�eld �xed point [21℄. This is the reason why we applied di�erent 
uto�s at small systemsizes for models 8 and 9. The results are shown in Tab. 2.3. The numeri
al un
ertainties quoted betweenparenthesis represent one standard deviation. The ex
ellent agreement of the universal quantity Q(0) inthe third 
olumn 
on�rms that these eleven systems belong to the Ising universality 
lass. Furthermore,a

ording to Eqs. (2.8) and (2.9), the quantity q21=q2 = [Q(1)℄2=Q(2) is the same for all Ising-like models.This is 
on�rmed by the last 
olumn of Tab. 2.3, whi
h reveals that the values q21=q2 are 
onsistent withea
h other within two standard deviations.The amplitudes of the irrelevant �eld for these models are shown, up to a 
onstant fa
tor, in the sixth
olumn of Tab. 2.3. As mentioned in Se
. 2.1, they re
e
t the positions of the 
riti
al points of these systemson the 
riti
al surfa
e. For 
larity, we start from the Landau-Ginzburg-Wilson des
ription [27℄ of the Isingmodel: �H(�)=kBT = Z d r[r�2(r) + v�4(r) +r2�(r) + h�(r℄ ; (2.10)where the square-gradient term represents short-range intera
tions, r and v together determine the temperature-like and irrelevant parameters, and h is the magneti
 �eld. For spatial dimensionality d < 4, a renormalization16



Table 2.3: Separate �ts of the dimensionless ratio Q with y1 �xed.K
 Q(0) q1 q2 b1 q21=q21 :36973976(16) :62338(8) 0:4906(5) 0:19(1) 0:1150(10) 1:26(7)2 :22165452(8) :62327(10) 0:885(10) 0:58(5) 0:097(2) 1:35(15)3 :18562459(10) :62351(10) 0:995(1) 0:80(3) 0:051(2) 1:24(4)4 :16073242(15) :62364(15) 1:128(13) 1:07(4) 0:0118(20) 1:19(5)5 :14230189(10) :62355(14) 1:250(13) 1:26(5) �0:018(2) 1:24(5)6 :12800424(12) :62350(16) 1:385(30) 1:85(18) �0:048(2) 1:03(15)7 :06442225(5) :62338(10) 2:854(40) 7:5(2) �0:019(2) 1:08(19)8 :04303818(3) :62324(15) 4:02(30) 15:1(9) �0:107(2) 1:07(16)9 :03432687(4) :62337(26) 4:99(40) 23:2(15) �0:212(4) 1:08(23)10 :3934222(2) :62344(5) 0:6617(8) 0:360(2) �0:0015(7) 1:21(6)11 :0544853(20) :62316(20) 0:0593(1) :0027(4) 0:212(4) 1:29(12){ the �rst 
olumn is the number of the modelsTable 2.4: Some results of separate �ts of Q with y1 as a free parameter.Model 1 2 8 9 11K
 0:3697399(4) 0:2216545(2) 0:0430382(7) 0:0343268(1) 0:05449(3)Q0 0:6238(7) 0:6231(8) 0:625(1) 0:623(2) 0:625(3)yi �0:87(6) �0:800(15) �0:68(16) �0:80(2) �1:0(3)analysis [28℄ shows that there are two �xed points, i.e., the mean-�eld (0; 0) and the Ising �xed points (r�; v�)(Fig. 2.1). The 
rossover behavior of the Binder ratio Q(0) is displayed by a data 
ollapse in Fig. 10 inRef. [29℄. This provides a s
ale for the irrelevant Ising �eld v on the whole range from the Ising to themean-�eld �xed point. Using this s
ale and the value of b1i for the ith model (Tab. 2.3), we s
hemati
allyillustrate the positions of the 
riti
al point of the eleven systems in the present work (Fig. 2.1).
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Figure 2.1: S
hemati
 illustration of positions of models 1-11 in the parameter spa
e (r; v), where r is atemperature-like parameter and u re
e
ts the amplitude of the irrelevant �eld. The mean-�eldand Ising �xed points, denoted as 
, sit at (0; 0) and (r�; v�), respe
tively.The results in Tab. 2.3 rely on the 
hoi
e that the irrelevant exponent yi was �xed at �0:82. As dis
ussedin Se
. 2.1, without su
h an assumption of the value of yi, the a

ura
y of Q(0) and yi will be very limited.As a test, we left the exponent y1 as a free parameter. We �nd that the un
ertainties of y1 are then almostas big as the absolute value of y1 itself for models with relatively small amplitude b1. For the rest, the resultsin Tab. 2.3 are also a�e
ted in the sense that the a

ura
y de
reases signi�
antly, as shown in Tab. 2.4.II. Simultaneous analysis 17



Table 2.5: Simultaneous �t of the ratio Q.Q(0) Q(1) Q(2) Q(3) Q(4)0:62342(3) 1 (�xed) 0:826(6) �3:32(9) �9:4(14)yi K(1)
 K(2)
 K(3)
 K(4)
�0:821(5) 0:36973981(8) 0:22165455(5) 0:18562452(6) 0:16073229(5)K(5)
 K(6)
 K(7)
 K(8)
 K(9)
0:14230186(5) 0:12800417(5) 0:06442222(2) 0:04303821(2) 0:03432687(2)K(10)
 K(11)
 a1 a2 a30:39342225(9) 0:0544876(8) 0:5203(8) 0:853(1) 0:9930(12)a4 a5 a6 a7 a81:132(2) 1:261(3) 1:390(3) 2:77(3) 4:031(14)a9 a10 a11 b1 1 b1 24:92(3) 0:6603(3) 0:05944(4) 0:114(2) 0:094(2)b1 3 b1 4 b1 5 b1 6 b1 70:052(1) 0:0147(7) �0:016(1) �0:046(1) �0:014(1)b1 8 b1 9 b1 10 b1 11�0:113(2) �0:219(4) �0:0012(5) 0:207(4)On the basis of the universality hypothesis, we analyze the Monte Carlo data of these systems simul-taneously. The data were �tted, instead of to Eq. (2.9), to Eq. (2.8). As a result, ea
h of the amplitudesqji is de
omposed in a universal fa
tor Q(j) and a nonuniversal fa
tor ai. Sin
e the Q(j) are shared by allthe systems, the number of unknown parameters de
reases signi�
antly, in 
omparison of the total numberin the separate �ts. This de
omposition also leads to an additional free parameter sin
e numeri
al data
an only determine the produ
t of Q(1) and ai, so that one of the parameters Q(j) (j 6= 0) and ai has tobe �xed as an arbitrary 
onstant. Here, we simply set Q(1) = 1. Together with the me
hanism dis
ussedin Se
. 2.1, this e�e
t leads to a substantially improved a

ura
y of the unknown parameters, despite thatyi was left as a free parameter. This in
ludes the determination of the 
riti
al points, the universal ratioQ(0), the irrelevant exponent yi, and the amplitudes b1i. The results are shown in Tab. 2.5. The amplitude[Q(1)℄2=Q(2) = 1=0:826(6) = 1:211(9) is in good agreement with those in the separate �ts (Tab. 2.3).2.4 Other quantitiesThe Monte Carlo simulations also yielded the sus
eptibility as � = L3hm2i. Furthermore, we sampled theenergy density and its 
ross produ
ts with hm2i and hm4i. Thus, we obtained derivative of Q, denoted as Qp.Analysis of � and Qp yields an estimation of the magneti
 and thermal exponents, yt and yh, respe
tively.I. Simultaneous analysis of �A

ording to �nite-size s
aling, the magneti
 sus
eptibility � behaves as�(t; v; L) = x(t) + L2yh�d� �h�H�2 �(Lytt; Lyiv; 1) ; (2.11)where x(t) arises from the di�erentiation of the analyti
al part of the free energy density, h is the magneti
s
aling �eld, and H is the physi
al magneti
 �eld. The dependen
e of h onH is not universal and is linearizedas h = pwiH . Taking into a

ount that t = ai(Ki�K
i)+bi(Ki�K
i)2+� � � , Taylor-expansion of Eq. (2.11)yields � = xi + si(Ki �K
i) + L2yh�d wi[�(0) + �(1)ai(Ki �K
i)Lyt +�(2)a2i (Ki �K
i)2L2yt + �(3)a3i (Ki �K
i)3L3yt +�(4)a4i (Ki �K
i)4L4yt + biLyi + 
i(Ki �K
i)Lyt+yi ℄ : (2.12)18



Table 2.6: Simultaneous �t of the magneti
 sus
eptibility �.�(0) �(1) �(2) �(3) �(4)1 (�xed) 1 (�xed) 0:409(2) �0:043(1) �0:075(2)yh K(1)
 K(2)
 K(3)
 K(4)
2:4816(1) 0:3697398(1) 0:22165457(3) 0:18562459(7) 0:16073233(6)K(5)
 K(6)
 K(7)
 K(8)
 K(9)
0:14230183(12) 0:12800422(5) 0:06442225(3) 0:04303821(2) 0:03432690(3)K(10)
 K(11)
 w1 w2 w30:3934221(1) 0:054487(1) 1:75(2) 1:55(2) 1:38(2)w4 w5 w6 w7 w81:266(2) 1:187(2) 1:127(2) 1:156(2) 0:989(2)w9 w10 w11 a1 a20:875(1) 0:933(1) 0:2192(4) 2:00(4) 3:32(2)a3 a4 a5 a6 a73:87(2) 4:45(4) 4:96(6) 5:63(6) 10:64(4)a8 a9 a10 a1116:16(3) 19:7(2) 2:65(8) 0:2236(2)Table 2.7: Results for the ratio ri.Model 1 2 3 4 5r 0:259(5) 0:258(5) 0:257(6) 0:256(6) 0:254(7)6 7 8 9 10 110:253(8) 0:259(7) 0:252(8) 0:252(8) 0:259(6) 0:258(6)Here, the jth thermal derivative of � at 
riti
ality is denoted as �(j). For the ith model, the amplitude ai isthe same as in Eq. (2.8). This will be 
on�rmed later. Equation (2.12) was �tted to the Monte Carlo data,and the result is shown in Tab. 2.6. A

ording to similar arguments as mentioned above, there are two extrafree parameters in Eq. (2.12) during the �t. Here, we simply �xed �(0) and �(1) equal to 1. The magneti
renormalization exponent is estimated as yh = 2:4816(1). This is in ex
ellent agreement with most availableresults [3{13℄, and its pre
ision is 
omparable with the best known value yh = 2:48180(15), obtained from a25th-order high-temperature expansion [30℄. The 
riti
al points are 
onsistent with those in Tab. 2.5. Wealso 
al
ulated the ratio ri = (ai)(Q) = (ai)(�), where the supers
ripts Q and � represent that the value of aiis taken from Tabs. 2.5 and 2.6, respe
tively. The result is shown in Tab. 2.7. The 
onsisten
y of ri amongthese eleven models 
on�rms that the fun
tion of t of K is independent of the type of physi
al observable.II. Simultaneous analysis of QpDuring the Monte Carlo simulations, the energy density e was sampled as the nearest-neighbor sum formodels 1-10: e = hSnni = Xhnnih�i�ji : (2.13)For the hard-
ore latti
e gas (model 11), the nearest-neighbor 
ouplings are in�nitely repulsive, and thequantity e is thus de�ned, instead, as a sum over the next-nearest-neighbor pairs. On this basis, we sampleda quantity Qp whi
h 
orrelates the magnetization distribution with the energy density:Qp = 2 hm2Snnihm2i � hm4Snnihm4i � hSnni = 1Q �Q�t �t�Knn : (2.14)Little additional e�ort is required for this task sin
e m2 and e are already sampled during the Monte Carlo19



Table 2.8: Result of simultaneous �t of Qp.Lmin Q(0)p Q(1)p Q(2)p Q(3)p Q(4)p8 1 (�xed) 0:1 (�xed) �4:4(5) �1:2(2) 9:3(23)yt p1 p2 p3 p4 p51:58684(14) 0:825(5) 1:355(2) 1:335(2) 1:334(2) 1:343(2)p6 p7 p8 p9 p10 p111:351(2) 1:422(1) 1:428(1) 1:441(2) 1:058(1) 0:662(1)simulations. The quantity Qp has been reported [9{11℄ to be a good 
hoi
e in determining the thermal s
alingdimension. The reason will be dis
ussed later on the basis of its s
aling behavior. For models 3-10, apartfrom nearest neighbors, the spin-spin intera
tions o

ur between se
ond-, third- and fourth-neighbor pairs.In those 
ases, the amplitude of �t=�Knn is di�erent from the value of ai in the fun
tion t = ai(Ki �K
i).A

ording to Eq. (2.1), near the 
riti
al point the quantity Qp behaves asQp(t; v; L) = Lyt �t�KnnQp(Lytt; Lyiv; 1) : (2.15)Taking into a

ount 
ontributions of diLy2 due to the analyti
 part of the free energy, we Taylor-expand thisequation as Qp = Lyt pi[Q(0)p +Q(1)p ai(Ki �K
i)Lyt +Q(2)p a2i (Ki �K
i)2L2yt +Q(3)p a3i (Ki �K
i)3L3yt +Q(4)p a4i (Ki �K
i)4L4yt +biLyi + diLy2 + 
i(Ki �K
i)℄ ; (2.16)where the parameters Q(j)p are universal, and �t=�Knn is denoted as pi for the ith model. Compared tothe spe
i�
 heat, the divergen
e of Qp with respe
t to the system size L at 
riti
ality is mu
h stronger.A

ording to �nite-size s
aling, the 
riti
al spe
i�
 heat C behaves approximately as C � C0 / L2yt�3,where C0 arises from the analyti
al part of free energy. The exponent 2yt � 3 ' 0:174 is so small that theterm with this exponent is normally diÆ
ult to separate from the ba
kground 
ontribution C0 in numeri
alanalyses. Therefore, the quantity Qp serves as a better 
hoi
e than C to estimate the thermal exponent yt.We �tted Eq. (2.16) to the Monte Carlo data, using the 
riti
al points as taken from Tab. 2.5. This is in linewith the relatively weak dependen
e of Qp on the temperature-like parameters K. The results are shown inTab. 2.8. As possible alternatives, we have in
luded more terms su
h as Lyt+yi(Ki �K
i) within the squarebra
kets of Eq. (2.16). However, this does not improve the residual �2 of the �t. The dependen
e on the
uto� at small system sizes in the �t was also determined. Taking into a

ount these dependen
es and theun
ertainties of the 
riti
al points, we estimate the thermal exponent as yt = 1:5868(3).2.5 Dis
ussionWe have performed extensive Monte Carlo simulations of several Ising-like models in three dimensions. Thesemodels were sele
ted su
h that they span a wide range of the irrelevant �eld, as illustrated in Fig. 1. In orderto enable a meaningful test of universality, the models are also 
hosen a

ording to quite di�erent mi
ros
opi
Hamiltonians. On the basis of �nite-size s
aling, we analyze the Monte Carlo data both separately andsimultaneously. These systems are 
on�rmed to be within the Ising universality 
lass. Compared to othermethods, our simultaneous analyses yield more a

urate estimations for the 
riti
al points, renormalizationexponents, and the Binder 
umulant. In parti
ular, we determine the irrelevant exponent as yi = �0:821(5).Tables 2.9 and 2.10 show a 
omparison between some existing results and our estimations.In order to interpret numeri
al data 
orre
tly, it is ne
essary to in
lude appropriate 
orre
tions to s
aling.We �nd that, normally, a single power-law 
orre
tion is not suÆ
ient to a

ount for all �nite-size 
orre
tions.20



Table 2.9: Summary of results of the s
aling exponents and the universal quantity Q(0) for the three-dimensional Ising universality 
lass.Year yt yh yi Q(0) Method[5℄ 1980 1:587(4) 2:485(2) �0:79(3) RG[31℄ 1990 1:587(4) 2:4821(4) �0:83(5) HTE[32℄ 1991 1:587 2:4823 �0:84 HTE[33℄ 1992 1:602(5) 2:4870(15) �0:8 MCRG[34℄ 1994 1:590(2) 2:482(7) MC[7℄ 1995 1:586(4) 2:482(4) CAM[9℄ 1995 1:587(2) 2:4815(15) �0:82(6) 0:6233(4) MC[11℄ 1996 1:585(2) 2:4810(10) MCRG[14℄ 1998 1:586(3) 2:483(2) �0:799(11) HTE[10℄ 1999 1:5865(14) 2:4814(5) �0:82(3) 0:62358(15) MC[30℄ 2002 1:5869(4) 2:48180(15) �0:82(5) HTENow 2003 1:5868(3) 2:4816(1) �0:821(5) 0:62341(3) MCRG { renormalization of �4 model; HTE { high-temperature series expansion; MC { Monte Carlo and�nite-size s
aling; MCRG { Monte Carlo renormalization; CAM { 
oherent-anomaly method.For instan
e, if one negle
ts the term b3Ly3 in Eq. (2.9), whi
h is de
aying relatively fast, one �nds a
onsiderable in
rease of the residual �2 both in the separate and simultaneous �ts. In three dimensions,Monte Carlo simulations are restri
ted to linear system sizes L in the order of 100. Even for L � 100,
orre
tions-to-s
aling are still signi�
ant. For instan
e, we 
onsider the 
ontribution of b1Lyi in Eq. (2.9) forthe spin- 12 model on the simple-
ubi
 latti
e (model 2). From Tab. 2.3 ( b1 � 0:094), we �nd that the termb1Lyi 
ontributes about 0:002 to Q for L = 90. Compared to the a

ura
y 0:00003 of Q(0) in Tab. 2.5, this
ontribution is huge and may not be negle
ted. Another example of 
orre
tions due to the irrelevant �eldis provided in Ref. [8℄, where the spontaneous magnetization density M was analyzed as M(t) = f(t)t� forthe Ising model on simple-
ubi
 latti
es with linear sizes up to L = 256. Here, t is the redu
ed temperaturet = (K �K
)=K
, the exponent � is equal to (3 � yh)=yt, and f(t) is some fun
tion of t that 
ontains the
orre
tions to s
aling. It was found that, without in
luding a 
orre
tion � tyi=yt due to the irrelevant �eld inthe fun
tion f(t), one 
annot su

essfully des
ribe the numeri
al data (0:0005 < t < 0:26), even when f(t) isde�ned as f(t) = p0 + p1t+ p2t2 + p3t3. Another analysis involving the spontaneous magnetization densitywas re
ently 
arried out by Gar
��a et al [15℄. Remarkably, they 
laimed that, for L > 90 and t > 0:004,
orre
tions to s
aling are invisible. They did not 
omment on the nature of the dis
repan
y with Ref. [8℄,and did not provide details about their error estimation. Therefore, some doubt 
on
erning the pre
ision oftheir results (yt = 1:600(2) and yh = 2:501(5)) seems justi�ed.For the spin-1 model and the latti
e gas, another quantity of interest is the density of va
an
ies �vat the 
riti
al points. Finite-size analysis yields �v = 0:400694(1) and 0:789516(1) for these two models,respe
tively.Bibliography[1℄ L. Onsager, Phys. Rev. 65, 117, (1944).[2℄ B.M. M
Coy and T.T. Wu, The Two-Dimensional Ising Model (Harvard University Press, Cambridge,Massa
husetts, 1968), and referen
es therein.[3℄ J.H. Chen, M.E. Fisher, and B.G. Ni
kel, Phys. Rev. Lett. 48, 630 (1982).[4℄ J. Adler, J. Phys. A 16, 3585 (1983). 21



Table 2.10: Summary of results for the 
riti
al pointsModel K
 (present) K
 K
1 0:36973980(9) 0:36978(4) [35℄ 0:3697(8) [36℄2 0:22165455(3) 0:221656(10) [9℄ 0:2216576(22) [34℄3 0:18562452(6) 0:18562466(52) [11℄4 0:16073229(5) 0:16073235(12) [11℄5 0:14230186(5) 0:14230187(12) [11℄6 0:12800417(5) 0:12800393(40) [11℄ 0:1280039(4) [9℄7 0:06442222(2) 0:0644220(5) [29℄ 0:06450 [17{19℄8 0:04303821(2) 0:0430381(5) [29℄ 0:0432 [17{19℄9 0:03432687(2) 0:03432685(15) [29℄10 0:39342225(5) 0:3934220(7) [9℄11 0:0544876(8) 0:05443(7) [23℄ 0:057136(8) [25℄[5℄ J.C. Le Guillou and J. Zinn-Justin, J. Physique 48, 19 (1987).[6℄ A.J. Guttmann and I.G. Enting, J. Phys. A 27, 8007 (1994).[7℄ M. Kolesik and M. Suzuki, Physi
a A 215, 138 (1995).[8℄ A.L. Talapov and H.W.J. Bl�ote, J. Phys. A 29, 5727 (1996).[9℄ H.W.J. Bl�ote, E. Luijten, and J.R. Heringa, J. Phys. A 28, 6289 (1995).[10℄ H.W.J. Bl�ote, J.R. Heringa, A. Hoogland, E.W. Meyer, and T.S. Smit, Phys. Rev. Lett. 76, 2613 (1996).[11℄ H.W.J. Bl�ote, L.N. Sh
hur, and A.L. Talapov, Int. J. Mod. Phys. C 10, 1137 (1999).[12℄ M. Hasenbus
h, K. Pinn, and S. Vinti, Phys. Rev. B 59, 11471 (1999).[13℄ P. Butera and M. Comi, Phys. Rev. B 56, 8212 (1997).[14℄ R. Guida and J. Zinn-Justin, J. Phys. A 31, 8103 (1998).[15℄ J. Gar
��a, J.A. Gonzalo, and M.I. Marqu�es, preprint, 
ond-mat/0211270.[16℄ K. Binder, Z. Phys. B 43, 119 (1981).[17℄ C. Domb, in Phase Transitions and Criti
al Phenomena, edited by C. Domb and M.S. Green (A
ademi
Press, London, 1974), Vol. 3, p.357.[18℄ N.W. Dalton and C. Domb, Pro
. Phys. So
. 89, 873 (1966).[19℄ C. Domb and N.W. Dalton, Pro
. Phys. So
. 89, 859 (1966).[20℄ J.W. Essam and M.F. Sykes, Physi
a 29, 378 (1963).[21℄ E. Luijten, Intera
tion Range, Universality and the Upper Criti
al Dimension (Delft University Press,1997), p.16.[22℄ J.R. Heringa and H.W.J. Bl�ote, Physi
a A 232, 369 (1996).[23℄ J.R. Heringa and H.W.J. Bl�ote, Physi
a A 251, 224 (1998).[24℄ J.R. Heringa and H.W.J. Bl�ote, Phys. Rev. E 57, 4976 (1998).[25℄ A. Yamagata, Physi
a A 222, 119 (1995). 22



[26℄ A. Yamagata, Physi
a A 231, 495 (1996).[27℄ For an introdu
tion, see e.g., S.K. Ma, Modern Theory of Criti
al Phenomena (Addison-Wesley, Red-wood, California, 1976), and referen
es therein.[28℄ K.G. Wilson and M.E. Fisher, Phys. Rev. Lett. 28, 240 (1972).[29℄ E. Luijten, Phys. Rev. E 59, 4997 (1999).[30℄ M. Campostrini, A. Pelissetto, P. Rossi, and E. Vi
ari, Phys. Rev. E 65, 066127 (2002).[31℄ B.G. Ni
kel and Rehr, J. Stat. Phys. 61, 1 (1990).[32℄ B.G. Ni
kel, Physi
a A 177, 189 (1991).[33℄ C.F. Baillie, R. Gupta, K.A. Hawi
k, and G.S. Pawley, Phys. Rev. B 45, 10 438 (1992).[34℄ L.D. Landau, Physi
a A 205, 41 (1994).[35℄ M.F. Sykes and D.S. Gaunt, J. Phys. A 6, 643 (1973).[36℄ O.G. Mouritsen, J. Phys. C 13, 3909 (1980).

23





3Cluster simulation of the transverse Ising model
We formulate a 
luster Monte Carlo method for the anisotropi
 limit of Ising models on d + 1-dimensionallatti
es, whi
h in e�e
t, are equivalent with d-dimensional quantum transverse Ising models. Using thiste
hnique, we investigate the transverse Ising models on the square, triangular, Kagome, honey
omb, andsimple-
ubi
 latti
es. The Monte Carlo data are analyzed by �nite-size s
aling. In ea
h 
ase we �nd,as expe
ted, that the 
riti
al behavior �ts well in the d + 1-dimensional Ising universality 
lass. For thetransverse Ising model on the square latti
e, we determine the Binder 
umulant of the 
lassi
al 
ounterpartfor a range of aspe
t ratios between the system sizes in the third or `
lassi
al' dire
tion and that in the othertwo dire
tions. Mat
hing this universal fun
tion with the 
ase of the isotropi
 Ising model yields the lengthratio relating the isotropi
 Ising model with the anisotropi
 limit. The eÆ
ien
y of the present algorithm isre
e
ted by the pre
ision of its results, whi
h improves signi�
antly on earlier analyses.3.1 Introdu
tionIt is well known that the d-dimensional quantum transverse Ising model (TIM) is equivalent with theanisotropi
 limit of d + 1-dimensional latti
e Ising model. As early as in 1964, S
hultz and Mattis [1℄ dis-played this equivalen
e by mapping the 
lassi
al Ising model on a quantum model that redu
es to the TIM.The reverse path, i.e. from quantum spin models to anisotropi
 latti
e models, was shown by Suzuki [2, 3℄,by using the Trotter formula [4℄.This equivalen
e enables one to explore the properties of the TIM by the study of its 
lassi
al 
ounterpart.In this way, one 
an take advantage of the insight and results that have been obtained from the theory of
lassi
al 
riti
al phenomena, in
luding the renormalization theory. For instan
e, one 
an study the TIM inany number of dimensions, by means of the dis
retized path integral approa
h [5,6℄, or by applying standardMonte Carlo te
hniques to its 
lassi
al 
ounterpart [7℄.However, these numeri
al te
hniques lead to pra
ti
al diÆ
ulties due to singular behavior in the anisotropi
limit of the 
lassi
al Ising model. When this Hamiltonian limit is approa
hed, the 
oupling strengths andthe 
orrelation length in one of the dire
tions in the 
lassi
al model diverge, while the 
ouplings in the otherdire
tions approa
h zero. Possibilities to deal with this problem are to approximate the anisotropi
 limitby a properly strong anisotropy, or extrapolate by taking the anisotropy stronger and stronger [7℄. Su
hsimulations tend to be diÆ
ult as a 
onsequen
e of the 
onsiderable requirements of 
omputer time andmemory.In this work, we ta
kle this problem by means of the dire
t appli
ation of a 
ontinuous 
luster algorithmin the anisotropi
 limit of the Ising model. As the 
orrelation length in the strong-
oupling dire
tion divergeswhen the Hamiltonian limit is approa
hed, we in
rease the number of spins in this dire
tion and meanwhileres
ale it by a divergent number su
h that the physi
al size of the system remains 
onstant. This res
alingrenders the strong-
oupling dimension 
ontinuous, while the other dimensions remain dis
rete. Thus, thereis an in�nite number of spins per physi
al length unit along the strong-
oupling dire
tion. In this 
ontinuous25



limit, 
luster algorithms 
an be formulated [8℄ whose eÆ
ien
ies are 
omparable to the 
onventional 
lustermethods for the isotropi
 
ase.The pre
ision of the results obtained by this 
ontinuous algorithm indi
ates that it is eÆ
ient in 
om-parison with other methods that have been used to investigate transverse Ising models. These results are inagreement with the expe
tation that quantum transverse Ising models belong to the universality 
lass of the
lassi
al Ising model with one more dimension. An interesting property of this 
ontinuous 
luster algorithmis that it 
an be applied to systems in 
urved geometries [9℄.3.2 Anisotropi
 limit of the Ising modelUsing d = 1 as an example, we brie
y re
all the relation between the d+1-dimensional 
lassi
al Ising modeland the d-dimensional TIM. In view of its relevan
e for Monte Carlo analyses, we put some emphasis onthe behavior of the length s
ale in the d+1-st dire
tion. The Hamiltonian of a 
lassi
al 2-dimensional Isingmodel on a N �M square latti
e with periodi
 boundary 
onditions is de�ned byH=kBT = �Xx;y [Kx sx;y sx+1;y +Ky sx;y sx;y+1℄ ; (3.1)where the integer 
oordinates x and y, whi
h are de�ned modulo N and M respe
tively, label the latti
esites, and Kx, Ky are the 
oupling strengths in the x- and y-dire
tions respe
tively. The spins 
an assumethe values sx;y = �1. The 
riti
al line of this model is given by [10℄sinh (2Kx) sinh (2Ky) = 1 : (3.2)Therefore, in the anisotropi
 limit �! 0, the 
ouplings 
an be writtenKx = �=t; exp(�2Ky) = � ; (3.3)where t parametrizes the temperature; the 
riti
al point is t
 = 1.The evaluation of the partition fun
tion Z(M;N) of this model by means of the transfer matrix T isexpressed by Z(M;N) = X~s1;~s2;��� ;~sM < ~s1jTj~s2 >< ~s2jTj~s3 > � � � < ~sM jTj~s1 > ; (3.4)where the transfer dire
tion is taken along the strong bonds Ky, and the elements of T are< ~skjTj~sk+1 >=Yx exp [Kxsx;y sx+1;y +Kysx;y sx;y+1℄ : (3.5)Here ~sk and ~sk+1 are the spin 
on�gurations in two adja
ent rows respe
tively. Eq. (3.4) is just the tra
e ofTM , so that the partition fun
tion is the sum over the M -th powers of the eigenvalues of T. For large M ,the 
ontribution from the largest eigenvalue dominates. Sin
e every di�erent spin 
ontributes a fa
tor �, ~skand ~sk+1 must be nearly identi
al. Thus, up to order � we may represent the transfer matrix as< ~skjTj~sk+1 >=< ~skj exp(��tHqm)j~sk+1 > exp (NKy) ; (3.6)in whi
h Hqm is the 1-dimensional quantum HamiltonianHqm = �Xx (szxszx+1 + tsxx) ; (3.7)where sz and sx are Pauli matri
es. Hqm 
ontains non-
ommuting operators and represents a quantumsystem with Ising intera
tions between the nearest-neighboring spins along the 
hain, and a transverse �eld tin the x-dire
tion. This establishes the relation between the 2-dimensional Ising model and the 1-dimensionalTIM. 26



As mentioned earlier, one 
an also derive this equivalen
e by using the Trotter formula [4℄, whi
h 
an bewritten as: exp[��Hqm℄ = limM!1fexp[� �MHqm℄gM ; (3.8)where � is the inverse temperature of the quantum system.A 
omparison of Eqs. (3.6) and (3.8) yields the relation between the inverse temperature � of the TIMand the latti
e size M for the 
lassi
al Ising model asM = �t=� : (3.9)The equivalen
e of the TIM and the 
lassi
al model thus requires that M diverges as 1=� even at nonzerotemperatures. This is a serious 
ompli
ation for simulations, espe
ially at low quantum temperatures � !1.For d � 2, we use the example of the Ising model on the simple 
ubi
 latti
e. Its Hamiltonian isH=kBT = � NXx=1 NXy=1 MpXz=1[Kxy sx;y;z(sx+1;y;z + sx;y+1;z) +Kz sx;y;zsx;y;z+1℄ ; (3.10)where 1 � x; y � N and 1 � z � Mp label the latti
e sites. The label p emphasizes that Mp refers to thephysi
al system size; its ratio with N de�nes the aspe
t ratio of the 3-dimensional system. Periodi
 boundary
onditions apply. The 
oupling strengths Kxy and Kz in the xy-plane and in the z-dire
tion respe
tivelyare initially 
hosen to be of order one. The behavior of the length s
ales in the Hamiltonian limit, whereKz diverges while Kxy approa
hes zero, is illustrated by means of a Migdal-type renormalization [11℄ in thez-dire
tion, without res
aling the x- and y-dire
tions. We expe
t that this pro
edure, although only valid asan approximation, will yield a qualitatively 
orre
t pi
ture. Ea
h bond in the z-dire
tion is de
orated withn�1 Ising spins and the bond strength Kxy is distributed a

ordingly among the newly inserted spins. Thisleads to a model with a latti
e spa
ing along the z-dire
tion whi
h is smaller by a fa
tor n. It is des
ribed bythe same Hamiltonian Eq. (3.10) but with new 
ouplings K(n)xy and K(n)z , and the z-
oordinate is representedby integers z0 = nz whi
h run from 1 to M 0 = nMp:H0=kBT = � NXx=1 NXy=1 M 0Xz0=1[K(n)xy sx;y;z0(sx+1;y;z0 + sx;y+1;z0) +K(n)z sx;y;z0sx;y;z0+1℄ ; (3.11)The new 
ouplings satisfy K(n)xy = Kxy=n and tanh K(n)z = [tanh Kz℄1=n : (3.12)For large n, one may write exp [�2K(n)z ℄ = �, and substitute tanh K(n)z in Eq. (3.12) a

ordingly. One �nds1=n = a [ln(1 + �)� ln(1� �)℄ ' a�[2 +O(�2)℄, where a = �1= ln(tanh Kz). This leads toK(1)xy = �t [1 +O(�2)℄; exp[�2K(1)z ℄ = � ; (3.13)whi
h has a same form as Eq. (3.3). It also suggests that for nonzero � the 
riti
al point t
(�) deviates fromt
(0) as �2.This model is equivalent with the TIM on the square latti
e with HamiltonianHqm = �Xx;y [szx;y(szx+1;y + szx;y+1) + tsxx;y℄ : (3.14)The inverse proportionality of n and �, together with Eq. (3.9), shows that the physi
al size Mp =M 0=n isproportional to the inverse quantum temperature �. 27



3.3 AlgorithmAs mentioned earlier, a Monte Carlo method for the Hamiltonian limit will have to deal with singular aspe
tssu
h as the divergent 
oupling strength Kz, the vanishing 
oupling strength Kxy, and the divergen
e of thesystem size M . Using ideas from existing 
luster methods [12{14℄, we introdu
e pro
edures to improve theeÆ
ien
y for the system des
ribed by Eqs. (3.1) and (3.3) with small but nonzero �. Then we dis
uss how todeal with the divergen
e of the system size M in the y-dire
tion, and �nally des
ribe the 
ontinuous Wol�algorithm (CWA) for the limit � = 0.Now, let us re
all the 
luster algorithm for the isotropi
 latti
e Ising model with nearest-neighbor in-tera
tions. If two nearest-neighboring spins on sites m and n, 
oupled with strength Kmn, have the samesign the algorithm will `freeze' the bond between m and n with a probability pmn = [1� exp (�2Kmn)℄, or`break' the bond with the probability 1� pmn. Sites 
onne
ted by `frozen' bonds are in
luded in the same
luster. One 
an introdu
e bond variables bmn = 0 or 1; frozen bonds have bmn = 1 and broken bonds havebmn = 0. A pair of opposite spins always has bmn = 0. The 
onventional way to simulate this is to draw auniformly distributed random number r (0 < r < 1) for ea
h bond bmn, set bmn = 1 if the spins on sites mand n have the same sign and r < pmn.For the anisotropi
 model de�ned by Eqs. (3.1) and (3.3), there are two types of bond variables bmn. Forsmall �, the bond probability between a pair of equal spins in the y-dire
tion is py = 1� exp (�2Ky) / 1� �,so one has to draw of order 1=� random numbers r before �nding a bond variable by = 0. For the weak bondsin the x-dire
tion, the probability px = 1� exp (�2Kx) / � that a pair of equal neighbors is 
onne
ted by afrozen bond is small, and many random numbers are needed before su
h a `bridge' is found.A more eÆ
ient pro
edure follows. We �rst write bmn = ~bmnÆsmsn where the ~bmn are independentrandom variables equal to 0 or 1; ~bmn = 1 with probability px = 1� exp (�2Kx) or py = 1� exp (�2Ky) forbonds in the x or y dire
tion respe
tively. Counting the bond variables sequentially in the y-dire
tion, thedistribution Py(ky) � (1� py) py ky�1 expresses the probability that (ky � 1) subsequent bond variables ~bmnare equal to one, while the ky-th variable is zero: a `break' o

urs at the ky-th position. Thus the 
umulativedistribution is Cy(ky) = kyXk=1Py(k) = 1� (py)ky ; (3.15)and by mapping the probability distribution Cy(ky) on the uniform distribution of the random number r,one 
an transform r into an integer ky: ky = 1 + [ln(r)= ln(py)℄ ; (3.16)where 0 < r < 1 and the square bra
kets denote the integer part. In 
ontrast, in the x-dire
tion, one usesthe distribution Px(kx) � p (1� px) kx�1 to express the probability that (kx � 1) subsequent variables ~bmnare zero, while the kx-th bond variable is one. Also in this 
ase, one transforms a uniformly distributedrandom number r into an integer kx: kx = 1 + [ln(r)= ln(1� px)℄ : (3.17)This method avoids the problem that many random numbers have to be drawn before adding a new bridgeor a new break.For purpose of 
larity, we des
ribe in detail the steps in the formation of a Wol� 
luster a

ording to thedes
ription above.1. Choose the origin (x; y) of the 
luster randomly (see Fig. 3.1), denote its sign s � sx;y.2. Count the neighboring sites on the left-hand side as (x; y � 1), (x; y � 2), � � � , (x; y � a) till thenearest interfa
e sx;y�a�1 = �s (see Fig. 3.1). Draw a random number r and 
ompute ky a

ordingto Eq. (3.16). De�ne l� as the smaller number of a and ky � 1, and 
ip the spins from (x; y � l� +1)to (x; y). Do the same for the right-hand side su
h that the spins from (x; y + 1) to (x; y + l+) are
ipped. Thus, a range of l� + l+ strongly 
oupled spins on the x-th row is in
luded in the 
luster and
ipped. 28
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xFigure 3.1: Illustration of the anisotropi
 Ising model on anN�M latti
e. The verti
al dashed line representsthe weak 
oupling Kx, the horizontal line represents the strong 
oupling Ky. The bla
k 
ir
lesare + spins, and the open 
ir
les are �pins.3. In
lude into the 
luster spins on (x � 1)-th and (x + 1)-th rows 
onne
ted to the above range bybridges in the weak-
oupling dire
tion. Compute kx a

ording to Eq. (3.17). If kx > l� + l+, go to4. Otherwise, if sx�1;y�l�+kx = s, in
lude this spin in the 
luster and store its position in the `sta
k'memory. Find a new random value kx till all the l� + l+ bonds between x-th and (x � 1)-th rows area

ounted for. Do the same for the neighboring sites on the (x+ 1)-th row.4. If the sta
k is empty, go to 5. Otherwise, read a site (x; y) from the sta
k, and erase it from the sta
k.Go to 2.5. The 
luster is 
ompleted and 
ipped.Although the above pro
edures 
an improve the eÆ
ien
y of the 
onventional Wol� algorithm, we stillhave to solve the problem of the divergen
e of the expe
tation values of kx and ky in parallel with that ofM as �! 0: hkyi = h �1ln(py) i / 1� ; hkxi = h �1ln(1� px) i / 1� : (3.18)hkyi and hkxi 
an be re
ognized as the average distan
es, in the y-dire
tion, of the breaks and of the bridgesrespe
tively.To deal with the divergen
e of the system size M one 
an res
ale the y-dire
tion as yp = � y, so thatthe total physi
al size Mp = �M and the 
orrelation length in this dire
tion remain approximately 
onstant(see Fig. 3.2). In the limit � = 0, the strong-
oupling dimension be
omes 
ontinuous, i.e., there are in�nitenumber of spins per physi
al length unit, and the +=� spins are repla
ed by ranges of sign +=�. Thus, theN �M square latti
e redu
es to N lines of physi
al length Mp = �M (see Fig. 3.2), and Eqs. (3.16) and(3.17) 
hange into ly = � ky = � ln(r) ; (3.19)and lx = � kx = � ln(r) t=2; (3.20)whi
h indi
ate that the breaks and the bridges o

ur on a length s
ale of 1 so that the numbers of thesebreaks and bridges are �nite in this 
ontinuous limit. These breaks 
an be re
ognized as interfa
es separatingthe ranges of + and � spins, and the bridges serve as the 
onne
tions between nearest-neighboring lines.Instead of the individual spins one may use the lo
ations of these interfa
es as the dynami
al variables, andde�ne a 
ontinuous Wol� algorithm (CWA) on this basis.In the 
onventional Wol� algorithm, the spins are simply stored in an array. Sin
e this information isno longer available, one has to determine the sign of a parti
ular position (x; y) from the positions of theinterfa
es, supplemented with additional information on the sign at a given position on ea
h 
ontinuous line,e.g. at the origin y = 0. The sign at position (x; y) is given by sx (�1)n, where n is the number of interfa
esbetween the origin and position y on the x-th line, and sx is the sign at the origin of this line.The steps involved in the 
ontinuous Wol� algorithm (CWA) 
an now be expressed as follows:1. Choose a random position (x; y) randomly, whi
h means it is at x-th line and its y-
oordinate is y,and obtain its sign s a

ording to the dire
tions given above.29



spin +1 spin −1 range of sign −1 range of sign +1Figure 3.2: Illustration of the pro
edure leading to the Hamiltonian limit of the 
lassi
al Ising model. Thephysi
al length s
ale is approximately 
onserved by redu
ing the horizontal size of N�M=� spinswith a fa
tor �. This leads to N 
ontinuous lines of length M in the Hamiltonian limit. The left�gure shows an anisotropi
 Ising model with small but nonzero �, and the right one illustratesthe � = 0 
ase.2. Determine the distan
e dl from y to the �rst interfa
e on the left-hand side of y, and similarly thedistan
e dr on the right-hand side.3. In
lude a range around (x; y) into the 
luster as follows. Draw a random number r and obtain ly fromEq. (3.19). If ly < dl, 
reate an interfa
e at position (x; y � ly); otherwise, annihilate the interfa
eat (x; y � dl). So the left-hand end of the range to be 
ipped is set at (x; y � 
l), where 
l is thesmaller number of dl and ly (
l = min (dl; ly)). Find another number from Eq. (3.19) and obtain theright-hand end of the range (x; y + 
r) analogously. Thus, the range from (x; y � 
l) to (x; y + 
r) isin
luded in the 
luster and 
ipped.4. Create bridges between this range and its nearest-neighboring lines. For the (x � 1)-th line, draw arandom number and 
ompute lx by Eq. (3.20). If lx > 
l+
r, go to 5. Otherwise, if the sign at position(x� 1; y� 
l + lx) is equal to s, store the position into the sta
k. Repeat this pro
edure till the wholerange has been visited. Do the same for the (x+ 1)-th line.5. If the sta
k is empty, go to 6. Otherwise, read (x; y) from the sta
k, and erase it from the sta
k. Goto 2.6. The 
luster is 
ompleted and 
ipped.In the CWA a spin range is 
ipped by the 
reation or annihilation of interfa
es. When a range is 
ipped,there are three possibilities: two interfa
es are 
reated, two interfa
es are annihilated, or one new interfa
eis 
reated and an existing one is annihilated. In all these 
ases, the number of interfa
es per line remainseven. One detail to be mentioned is that, if a 
ipped range in
ludes the origin of that line, the 
orrespondingarray element 
ontaining the signs at the origins, should be 
hanged.It is straightforward to generalize the CWA for appli
ations to d-dimensional TIM's with d � 2. Related
ontinuous 
luster algorithms, su
h as the Swendsen-Wang variety, 
an also trivially be formulated on thebasis of the above des
ription.3.4 Test of the algorithmTo test the CWA, we investigated the anisotropi
 limit of the 2-dimensional Ising model de�ned by Eqs. (3.1)and (3.3), sin
e it has been solved exa
tly [10℄. The CWA was applied to simulate su
h systems with L linesof length L and with periodi
 boundary 
onditions, where L = 8; 12; 16; 22 and 24. During the simulations,the dimensionless quantity QL, whi
h is related to the Binder 
umulant [15℄, was sampled:30



Table 3.1: Results of the least-square �ts of QL(t) for the TIMs de�ned on the triangular, Kagome, honey-
omb, square and 
ubi
 latti
es.triangular Kagome honey
omb square 
ubi
Lmin 6 8 10 2 7Lmax 20 20 20 48 14Q 0.6238 (7) 0.6041 (4) 0.6149 (7) 0.6206 (2) 0.456947 (�xed)t
 4.76811 (9) 2.95265 (4) 2.13250 (4) 3.04438 (2) 5.15813 (6)a1 0.03138 (5) 0.0894 (1) 0.1027 (8) 0.0497 (2) 0.0235 (2)a2 0.0010 (1) 0.0082 (2) 0.0088 (2) 0.00207 (2) 0.0020 (4)a3 -0.00023 (7) -0.0035 (5) -0.0040 (2) -0.00043 (6) -0.0024 (6)b1 0.061 (5) 0.066 (2) 0.097 (4) 0.093 (2) 0.205 (2)b2 0.14 (2) - - 0.018 (6) -0.118 (3)QL(t) = < m2 >2L< m4 >L (3.21)where m is the magnetization density.A

ording to universality of the Binder 
umulant, the asymptoti
 value of Q in su
h a system is equalto that for the latti
e Ising model, with isotropi
 
ouplings Kx = Ky and system sizes L � �L, where� = lim�!0 1=(� sinh 2Ky) = 2 [10,16℄.In the language of renormalization, the �nite-size dependen
e of the singular part of the free energydensity f is formulated as f(t; h; v; � � � ;L) = L�df(tLyt ; hLyh ; vLyi ; � � � ; 1) ; (3.22)where t is the transverse �eld, h the magneti
 �eld, v the irrelevant �eld; yt; yh and yi are the 
orrespondingexponents, and d is the dimensionality. Therefore, one expe
ts the following �nite-size behavior of QL(t)near 
riti
al point [17℄: QL(t) = Q+ a1(t� t
)Lyt + a2(t� t
)2L2yt + � � �+b1Lyi + b2Ly2 + 
1Ly3(t� t
) + � � � ; (3.23)where y2 = d� 2yh, y3 = yi + yt, and a1; a2; b1; b2 and 
1 are unknown parameters. The Monte Carlo datawere �tted on the basis of this formula, a

ording to the least-squares 
riterion. The exponents yt, yh andyi were set to the exa
t Ising values 1; 15=8 and �2 respe
tively. So y2 = d� 2yh = �7=4 and y3 = yi+ yt =�1. A �t in
luding 
orre
tions with amplitudes a1; a2; a3; a4; b1 and 
1 shows that t
 = 0:99998 (6) andQ = 0:80976 (22), in a good agreement with the known results t
 = 1 and Q = 0:809678 (3) [16℄. When weset t
 = 1 and Q = 0:809678, and leave yt to be �tted, we obtain yt = 1:01 (1), in agreement with the knownuniversal properties of the isotropi
 Ising model.In order to 
ompare the eÆ
ien
y of the CWA with the 
onventional Wol� method, we investigatedthe d = 2 TIM on a L � L square latti
e with periodi
 boundary 
onditions. The CWA was applied tosimulate for the model de�ned by Eqs. (3.10) and (3.13) at the 
ontinuous limit � = 0. The length of thethird dire
tion is taken as L. The 
onventional Wol� algorithm was used to study su
h anisotropi
 latti
emodels with small but nonzero � (1=150 � � � 1=6). The latti
e size in the z-dire
tion is taken as L=�,and the 
ouplings Kxy and Kz are obtained by substituting � in Eq. (3.13). The transverse �eld was set ast = 3:04440, whi
h is very 
lose to the 
riti
al point t
 (see Table 3.1), and the system size at L = 4.For several values of �, the 
omputer time needed for 5 million 
onventional Wol� steps, was 
omparedto the time needed by the CWA for the same number of steps (see Fig. 3.3). As expe
ted, the eÆ
ien
y ofthe 
onventional Wol� method de
reases proportionally for �! 0. The eÆ
ien
y of the CWA is lower thanbut still 
omparable to that of the 
onventional Wol� method for the isotropi
 Ising model. The reasons are31
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tion of �2, for a system with sizes L�L=�, with L = 4. Thetransverse �eld t = 3:04440 is set near its 
riti
al value. Error bars are approximately equal tothe thi
kness of the lines.as follows: �rst, 
oating-point operations are ne
essary in the anisotropi
 limit sin
e the third dimension is
ontinuous; and se
ond, to �nd the sign at a parti
ular position, one has to �nd the number of interfa
esbetween this position and the origin of the line where it is lo
ated. The time 
onsumption to �nd the signsis however still a

eptable for the system sizes used in this work.During these simulations, also the quantity QL(�) was sampled as a fun
tion of �. The results obtained bythe 
onventional Wol� method as �! 0, display satisfa
tory 
onvergen
e to QL(0) as obtained by the CWA(see Fig. 3.4). The 
onvergen
e takes pla
e approximately as �2. The data for QL(�) were �tted a

ordingto the least-squares 
riterion by the formulaQL(�) = QL(0) + q1�+ q2�2 + q3�3 + � � � ; (3.24)where q1, q2 and q3 are unknown parameters. The largest � in
luded in the �t is 0.4, and we also let QL(0)to be �tted. The resulting �t satis�ed the �2 
riterion (�2 = 18 for 17 degrees of freedom); we obtainq1 = �0:0006 (8), q2 = �0:1322 (5), q3 = �0:0076 (10) and QL(0) = 0:65194 (7), whi
h is 
onsistent withthe Monte Carlo data obtained by the CWA QL(0) = 0:65188 (6). This �t suggests that the term with theamplitude q1 vanishes.This 
an be explained by Eq. (3.13). Sin
e the 
riti
al points t
(�) for nonzero � is expe
ted to deviatefrom t
(0) as �2, while the transverse �eld was always set as t
(0) during the simulations, it is not surprisingthat QL(�)�QL(0)) / �2. 32
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jFigure 3.5: The two-dimensional latti
es on whi
h the TIM's are investigated. From left to right: square,triangular, Kagome and honey
omb latti
es with �nite size 2 � 2. The geometries of the 
or-responding anisotropi
 limit of the 
lassi
al Ising models are parallel lines whi
h originate fromthese latti
e sites and perpendi
ular to the planes.3.5 Appli
ations3.5.1 Criti
al points of several TIM'sBy means of the CWA, we have investigated the d = 2 TIMs on the square, triangular, honey
omb, andKagome latti
es (see Fig. 3.5), and the d = 3 TIM on the simple 
ubi
 latti
e. System sizes were 
hosen asLd, so that the physi
al length �M of the 
ontinuous dire
tion is equal to L. Periodi
 boundary 
onditionswere imposed. During the simulations, the Binder parameter QL(t) was sampled.For the d = 2 TIMs, the �nite-size behavior of QL(t) is expe
ted to follow the usual s
aling behaviorof 3-D Ising system as expressed by Eq. (3.23). Moreover, we expe
t that the d = 2 TIMs on di�erentlatti
es share the same exponents for the s
aling �elds t, h, and v, although the unknown amplitudes 
an bedi�erent. The Monte Carlo data for the systems on these di�erent latti
es were independently �tted on thebasis of Eq. (3.23), a

ording to the least-square 
riterion. The exponents yt and yi are set to the knownvalues 1:587 (2) and �0:815 (4) respe
tively as reported in the literature, for instan
e [18{20℄ and in papersreferen
ed therein. Results of these �ts are shown in Table 3.1.To test the universality of the d = 2 TIMs, we set Q = 0:6206 and t
 = 3:04438 as in Table 3.1 for thesquare latti
e, and thus obtained yt = 1:583 (6), whi
h is in agreement with the known value 1:587. The
orre
tions with amplitudes a1, a2, a3, a4, b1 and b2 were in
luded, and the smallest system size used in the�t is L = 2.For the d = 3 TIM, we have to deal with the numeri
al diÆ
ulties asso
iated with the 
orre
tions dueto the marginally irrelevant �eld as o

ur in 4-dimensional Ising-like models [21, 22℄. The anomalously slowrenormalization 
ow near the �xed point translates into a similarly slow �nite-size 
onvergen
e of the Binderratio QL(t), and leads to 
orre
tion fa
tors in
luding small powers of logarithms of the linear system size L.Under these 
ir
umstan
es it is not feasible to determine many independent parameters in the �t. We thusmake use of the theoreti
al predi
tions for the universal value Q at the 
riti
al point and the values of theexponents of the s
aling �elds. Expanding the �nite-size s
aling fun
tion for QL(t), we expe
t the followingbehavior [22℄: QL(t) = Q+ Xk akfLyt(lnL)�t �t� t
 + v L�yt(lnL)2=3 �gkb1Ly2 + b2(lnL)�1 + b3(lnL)�2 � � � ; (3.25)where k = 1; 2; � � � , �t = 16 , yt = 2 and y2 = 4 � 2yh = �2. The `shift' term with amplitude v seemsunimportant, and was taken to be zero. The universal value Q is taken as the analyti
al value: Q =0:456947 [21, 23℄. Results are shown in Table 3.1.Thus, by applying the CWA to these 2- or 3-dimensional TIMs, we obtained the 
riti
al values of thetransverse �elds t
 (see Table 3.1). Table 3.2 
ompares these values to those obtained by other methodswhi
h in
lude e�e
tive-�eld approximation [24, 25℄, e�e
tive-�eld renormalization group (EFRG) [26, 27℄,series expansion [28,29℄ and density-matrix renormalization [31℄ results. The pre
ision of the present resultsindi
ates that our algorithm 
ontributes a useful tool for numeri
al studies of transverse Ising models. Thetotal 
omputer time 
onsumed by the present simulations is about 5 pro
essor-months at 750 MHz.33



Table 3.2: Comparison of the 
riti
al values of the transverse �eld t
, as obtained by several di�erent methods,for the d = 2 TIMs on the square, Kagome, honey
omb and triangular latti
es, and the d = 3TIM in the simple 
ubi
 latti
e.latti
e Present EFA? EFRGy SE
 PI� S-Wz DMRGxwork [24,25℄ [27℄ [28, 29℄ [6℄ [30℄ [31℄Square 3.04438 (2) 2.742 3.021 3.08 3.225 3.044 (1) 3.046Kagome 2.95265 (4) 2.742 2.333 { { { {Honey
omb 2.13250 (4) { { { { { {Triangular 4.76811 (9) 4.704 4.200 4.118 { { {Cubi
 5.15813 (6) 4.704 5.059 5.153 { { {? : E�e
tive Field Approximation; y: E�e
tive Field Renormalization Group; 
: Series Expansion; �: PathIntegral Monte Carlo simulation; z: Swendsen-Wang in 
ontinuous time; x: Density Matrix RenormalizationGroup.3.5.2 The Binder ratio and the determination of the length s
aleFor the isotropi
 Ising model on the simple 
ubi
 latti
e, i.e. Kxy = Kz in Eq. (3.10), the ratio Q de�ned byEq. (3.23) is a universal fun
tion Q(�) of the aspe
t ratio � =M=N . On the basis of symmetry argumentsit is plausible that a maximum o

urs at � = 1.For the 
orresponding anisotropi
 system, as obtained by extending the TIM on the square latti
e in theTrotter dire
tion, we expe
t a di�erent dependen
e of the Binder ratio Qa(�) on the aspe
t ratio � =Mp=N ,where Mp = �M is the physi
al size in the 
ontinuous dimension. This 
an be attributed to the spatialanisotropy of the Hamiltonian density at the �xed-point of the anisotropi
 Ising model. However, theanisotropy of the �xed-point Hamiltonian 
an be suppressed by an anisotropi
 res
aling in the strong-
ouplingdire
tion, i.e., z ! z0 = �z so that 0 < z0 � �Mp. Thus we expe
t that Qa(�) of the anisotropi
 Ising modelfollows the same universal fun
tion Q, but with � repla
ed by �0 = �� = �Mp=N , i.e. Qa(�) = Q(��). Usinginstead the logarithm of the aspe
t ratio as the independent variable, one �nds that Qa(ln�) = Q(ln�+ln�),whi
h expresses a shift on the ln� s
ale with respe
t to the isotropi
 
ase.We determined Qa(ln�) by means of Monte Carlo simulations for system sizes L�L� �L, with L = 8,12, 16, 20 and 24, and several values of � in the range from 0.3 to 3.0. These data were analyzed on thebasis of the s
aling formulaQL(ln�+ ln�) = Q1(0) + viLyi + v2Ly2 + (1 + dLyi)Xk�2 ak(ln � + ln�+ 
Lya)k ; (3.26)obtained by Taylor expansion in the argument of QL to whi
h a �nite-size 
orre
tion with amplitude 
 hasbeen added. This term des
ribes an L-dependent shift of the maximum of QL. The value of Q1(0) isknown to be 0:62358 (15) [19℄. Corre
tions with amplitudes vi and v2 des
ribe the �nite-size dependen
e ofQ near its maximum. The term with amplitude d des
ribes the in
uen
e of the anisotropy on the irrelevant�nite-size 
orre
tion.Although the �nite-size 
orre
tion with amplitude 
 is 
learly observable, we 
ould not satisfa
torilydetermine the asso
iated exponent ya. We have assumed that ya = yi whi
h is 
onsistent with the data.First, we negle
ted the term with amplitude d and �xed the value of Q1(0) at 0:62358. A reasonable �t isobtained when we in
lude terms up to k = 7 in the expansion. We then �nd � = 0:880 (6), whi
h is slightlylower than the value � = 0:8881 (2) whi
h was obtained from the spin-spin 
orrelation fun
tion and quotedin Ref. [9, 20℄. A reasonable data 
ollapse of the numeri
al �nite-size data for Q is thus obtained in theQ0L = QL � viLyi � v2Ly2 versus x0 = ln� � 
Lyi diagram, shown in Fig. 3.6. However, when we in
ludethe term with amplitude d in Eq. (3.26), we obtain a more satisfa
tory (on the basis of the �2 
riterion) �tyielding � = 0:886 (7). 34
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4Conformal invarian
e: The Ising model
We apply 
onformal transformations to the two-dimensional Ising model (4.1) and to the three-dimensionalIsing model (4.2).4.1 The Ising model on a spheroidWe formulate 
onformal mappings between an in�nite plane and a spheroid, and one between a semi-in�niteplane and a half spheroid. Spe
ial 
ases of the spheroid in
lude the surfa
e of an in�nitely long 
ylinder,of a sphere, and of a 
at dis
. These mappings are applied to the 
riti
al Ising model. For the 
ase ofthe sphere and the 
at dis
, we derive analyti
al expressions for the se
ond and the fourth moments of themagnetization density, and thus for the Binder 
umulant. Next, we investigate Ising models on spheroids andhalf spheroids by means of a 
ontinuous 
luster Monte Carlo method for simulations in 
urved geometries.Fixed and free boundary 
onditions are imposed for half spheroids. The Monte Carlo data are analyzedby �nite-size s
aling. Criti
al values of the Binder 
umulants and other ratios on the sphere and on the
at dis
 agree pre
isely with the exa
t 
al
ulations mentioned above. At 
riti
ality, we also sample two-and one-point 
orrelation fun
tions on spheroids and half spheroids. The magneti
 and temperature s
alingdimensions, as determined from the Monte Carlo data and the theory of 
onformal invarian
e, are in goodagreement with exa
t results.4.1.1 Introdu
tionIn two dimensions, the 
onsequen
es of 
onformal invarian
e for 
riti
al systems have been studied ex-tensively. These studies have produ
ed a large amount of results for both bulk and surfa
e 
riti
al phe-nomena [1{4℄. One of the reasons is that the 
onformal group in two dimensions is an in�nite-parametergroup, so that the restri
tions imposed by 
onformal invarian
e are strong. As a result, the forms of thebulk and surfa
e 
orrelation fun
tions, and thus the 
riti
al exponents are limited by 
onformal invarian
e.Under Cardy's mapping between an in�nite plane and the surfa
e of a 
ylinder [5℄, the algebrai
 de
ayof 
orrelations in the plane is transformed into an exponential de
ay along the 
ylinder. By utilizing theS
hwarz-Christo�el formula, Burkhardt et al. 
onformally mapped the in�nite plane onto a re
tangulargeometry [2℄. Furthermore, Cardy and Burkhardt investigated the semi-in�nite plane and the parallel-plategeometry with uniform or mixed boundary 
onditions [4, 6℄. The universal properties of a system inside a
ir
le with free or �xed boundary 
onditions have been studied both exa
tly and numeri
ally [2, 3, 7℄.However, as far as we know, no appli
ations of 
onformal mappings onto 
urved geometries have beenreported in two dimensions. In this work, we use a 
onformal mapping of an in�nite plane onto a spheroid.By rotating an ellipse about the minor or the major axis, one obtains an oblate or a prolate spheroid,respe
tively. Spe
ial 
ases in
lude the surfa
e of an in�nitely long 
ylinder, of a sphere, and of a 
at dis
.The latter 
ase is rea
hed when the polar diameter of the spheroid approa
hes zero, so that one obtains the37



interiors of two 
ir
les 
onne
ted at their perimeters. Thus, this transformation in
ludes Cardy's mappingas a spe
ial 
ase. We also perform a di�erent 
onformal mapping from a semi-in�nite plane onto a halfspheroid.We apply these mappings to the 
riti
al Ising model. From the known bulk two- and four-point 
orrelationfun
tions in the plane, and the assumption of 
ovarian
e of the multi-point 
orrelations under 
onformalmappings, the se
ond and the fourth moments of the magnetization density � on the sphere and on the 
atdis
 
an be expressed in terms of integrals. Sin
e a dire
t analyti
 
al
ulation of most of these integrals isnot feasible, we evaluated them by means of Monte Carlo integration. As a result, we obtain the universalquantity Q = h�2i2=h�4i, and ratios r2 = h�2is=h�2id and r4 = h�4is=h�4id, where the subs
ripts s and drepresent the sphere and the 
at dis
, respe
tively.The nonzero net 
urvature of a spheroid poses a problem for numeri
al appli
ations of 
onformal invari-an
e. The diÆ
ulty is that a system de�ned on the spheroid seems to defy any a

eptable dis
retization.Even if the net 
urvature of a given geometry is zero, numeri
al simulations may be 
ompli
ated due tothe presen
e of 
urved boundaries. An example is a system inside a 
ir
le. Badke and Re�s et al. haveapproximated this geometry for the Ising model. A 
ir
le is drawn on a square latti
e and then free or �xedboundary 
onditions are imposed by removing or freezing the spins outside the 
ir
le, respe
tively [3,7℄. Thee�e
tivity of this approximation is, however, somewhat limited be
ause of irregular �nite size behavior, asshown later.Re
ently, a 
ontinuous 
luster Monte Carlo algorithm has be
ome available for the anisotropi
 limit ofthe latti
e Ising model [8, 9℄. One of the interesting properties of this model is that one of its dimensionsis 
ontinuous, whi
h enables one to apply the 
ontinuous 
luster method to 
urved geometries su
h as aspheroid. Using a Wol�-like version of this algorithm [9℄, we investigate the Ising model on several spheroids,in
luding a sphere, a 
at dis
, and a prolate spheroid. Near the 
riti
al point, we sampled the moments ofthe magnetization density and the quantity Q. The Monte Carlo data were analyzed by means of �nite-sizes
aling. For the sphere and the 
at dis
, the numeri
al results for the ratios Q, r2 and r4 are in ex
ellentagreement with the aforementioned exa
t 
al
ulations, whi
h will be presented in detail in Se
. 4.1.5. At
riti
ality, the two-point magneti
 
orrelations were sampled. Moreover, the Ising model on half spheroidswas studied, in
luding that on a half sphere and inside a 
ir
le. Both �xed and free boundary 
onditionswere used. The density pro�les of the magnetization and of the energy, i.e., one-point 
orrelations, weresampled. From the Monte Carlo data and the theory of 
onformal invarian
e, we determined the magneti
and temperature s
aling dimensions with a satisfa
tory pre
ision.4.1.2 Conformal mappingsIn three-dimensional Cartesian 
oordinates (x; y; z), a spheroid 
an be de�ned byx2a2 + y2a2 + z2b2 = 1 ; (a; b > 0) ; (4.1)where a and b are the equatorial and the polar radii, respe
tively. The parametri
 equations for the spheroidare therefore x = a sin � sin ; y = a sin � 
os ; z = b 
os � ; (4.2)in whi
h 0 � � � � and 0 <  � 2�. Thus, the line element of the spheroid isds02 = dx2 + dy2 + dz2 = (a2 
os2 � + b2 sin2 �) d�2 + a2 sin2 � d 2= dw2 + f(w) d 2 : (4.3)Here, we have de�ned a new 
oordinate w to spe
ify the distan
e along the ellipse from the 'north pole' as afun
tion of � (see Fig. 4.1). The 
oordinatew is related to the parameter � by w = R �0 pa2 
os2 v + b2 sin2 v dv,whi
h is an ellipti
 integral of the se
ond kind, and f(w) = a2 sin2 �.In polar 
oordinates (r; '), the line element in an in�nite plane isds2 = dr2 + r2 d'2 : (4.4)38
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Figure 4.1: Example of an ellipse with 1=e = a=b = 2. The 
orresponding oblate spheroid is obtained by therotation of the ellipse about the z dire
tion. The new 
oordinate w spe
i�es the distan
e alongthe ellipse from the north pole.A 
onformal transformation from the in�nite plane into the spheroid is thus established by the equationsr = e�g(�); and ' =  ; with g(�) = Z � q(b=a)2 + 
ot2 v dv ; (4.5)and by the requirement that the points r = 0 and r =1 are mapped onto points � = � and 0, respe
tively.The transformation (4.5) is 
onformal, be
ause the line elements (4.4) and (4.3) di�er only by a position-dependent fa
tor: ds2 = ds02 [e�2g(�)=a2 sin2 �℄ : (4.6)Under a 
onformal mapping (~r ! ~r 0), a multi-point 
orrelation fun
tion 
ovariantly transforms as [1℄h�1(~r1)�2(~r2) � � � i~r = b(~r1)�X1 b(~r2)�X2 � � � h�1(~r 01)�2(~r 02) � � � i~r 0 ; (4.7)where �i is a s
aling operator (e.g., asso
iated with the magnetization density or the energy density), Xi isthe 
orresponding s
aling dimension, and b(~r) is the res
aling fa
tor, whi
h reads b(~r)2 = ds2=ds02.In the in�nite plane, the bulk two-point 
orrelation fun
tion at 
riti
ality behaves as [10℄h�(~r1)�(~r2)iplane = Bj~r2 � ~r1j�2X ; (4.8)where B is a 
onstant. Thus, a

ording to Eqs. (4.5)-(4.8), one obtains the 
orrelation fun
tion g1(�) of twopoints (�;  ) and (�;  + �) on a spheroid ( � �)g1(�) = B(2a sin �)�2X : (4.9)The evaluation of the mapping formula (4.5) is 
ompli
ated in general. However, for the spe
ial 
asesmentioned above, it simpli�es and yields more results.I. Surfa
e of a 
ylinderAs the polar radius b ! 1, the spheroid approa
hes the surfa
e of an in�nitely long 
ylinder. Thesubstitutions of a new 
oordinate u = b� and the radius R = a of the 
ylinder lead tods02 = du2 +R2 d 2 ; (�1 < u <1; 0 <  � 2�) ; (4.10)and the mapping formula (4.5) simpli�es tor = e�u=R ; and ' =  : (4.11)Thus, Cardy's mapping is restored [5℄. The 
riti
al two-point 
orrelation fun
tions along the 
ylinder arethen h�(u1;  )�(u2;  )i = BR�2Xe�Xju1�u2j=R(1� e�ju1�u2j=R)�2X : (4.12)39
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Figure 4.2: Illustration of the 
onformal mapping of an in�nite plane on the surfa
e of a sphere.So the 
orrelations de
ay exponentially for ju1 � u2j � 0.II. Surfa
e of a sphereOne obtains a sphere when the polar and the equatorial radii are equal, i.e., b = a = R. The lineelement (4.3) redu
es to ds02 = R2 (d�2 + sin2 � d 2), and the mapping formula be
omesr = 2R 
ot(�=2) ; and ' =  : (4.13)A geometri
 pi
ture of this mapping involves the pla
ement of a sphere with radius R on top of an in�niteplane (Fig. 4.2). The mapping of a point ~r in the plane on the sphere is de�ned as the interse
tion betweenthe sphere and the line 
onne
ting the north pole and the point ~r. Here, the ve
tor ~r stands for the point(r; ') in Eq. (4.13). A

ording to Eqs. (4.7), (4.8), and (4.13), one has the pair 
orrelation fun
tion on thesphere as h�(�1;  1)�(�2;  2)i = BR�2X2�X [1� sin �1 sin �2 
os( 1 �  2)� 
os �1 
os �2℄�X : (4.14)If one introdu
es ~R to represent the ve
tor from the 
enter of the sphere to the point (�;  ), equation (4.14)redu
es to h�(~R1)�(~R2)i = Bj~R1 � ~R2j�2X ; (4.15)whi
h, interestingly, has the same form as Eq. (4.8).III. Surfa
e of a 
at dis
In the limit b ! 0 of an oblate spheroid, a 
at-dis
 geometry is rea
hed. The 
oordinate w and theelement (4.3) respe
tively redu
e tow = a sin � and ds02 = dw 2 + w 2d 2 ; (w � R = a) ; (4.16)and the mapping formula be
omes r = � w=R 0 � r < 1R=w r � 1 : (4.17)This mapping 
an be generalized to any number of dimensions.Under the mapping (4.17), one �nds two formulas for g( ~w1; ~w2) = h�( ~w1)�( ~w2)i, of whi
h the appli
a-bility depends on whether or not the two points ~r1 and ~r2 lie in the same fa
e of the 
at dis
:g( ~w1; ~w2) = � B[w21 + w22 � 2w1w2 
os( 1 �  2)℄�X ( ~w1; ~w2 : same fa
e)B[(w1w2)2 +R2 � 2w1w2 
os( 1 �  2)℄�X ( ~w1; ~w2 : opposite fa
es) (4.18)40
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Figure 4.3: Illustration of the 
onformal mapping from a semi-in�nite plane on a single dis
.where we have introdu
ed ~w to represent the ve
tor from the 
enter of the dis
 to the point (w; ).The derivative �r=�w in Eq. (4.17) is dis
ontinuous at the edge w = R. One may thus expe
t that�nite-size 
orre
tions arise for the 
riti
al behavior near the edge.Next, we des
ribe the 
onformal transformation between a semi-in�nite plane and a half spheroid. Thelatter obje
t is de�ned by Eq. (4.1) but with z � 0. The mapping 
an 
onveniently be des
ribed in twosteps. First, one parameterizes the plane 
omplex numbers z = x + iy, so the formula z0 = (z � i)=(z + i)maps the semi-in�nite plane R �R+ onto the interior of a unit 
ir
le (Fig. 4.3) [1℄. This 
onformal mappingyields the pro�le of a s
aling operator inside a unit 
ir
le ash�(r0)i = (1� r02)�2X : (4.19)This result 
an be generalized to any number of dimensions [1, 2℄. Se
ond, the interior of the unit 
ir
le is
onformally mapped on the half spheroid under the transformation (4.5). In the limit b!1, a semi-in�nite
ylinder (Eq. (4.10) but with u � 0) is rea
hed, on whi
h the pro�le of a s
aling operator behaves ash�(u)i / R�X e�uX=R (1� euX=2R)�X : (4.20)For b = a = R a half spheroid redu
es to a half sphere, and one hash�(�)i / (R 
os �)�X : (4.21)4.1.3 Exa
t 
al
ulationsSin
e the transformations between the plane and the spe
ial 
ases of the spheroid (Eqs. (4.11), (4.13), and(4.17)) are relatively simple, it is possible to derive the expressions for h�2i and h�4i from the exa
t solutionof the Ising model in the in�nite plane [10℄. For the 
ase of an in�nitely long 
ylinder, Burkhardt hasevaluated these expressions by means of Monte Carlo integration [11℄. The result is 
onsistent with thatobtained from dire
t simulations of systems on the 
ylinder [11℄. Here, we follow analogous pro
edures forthe surfa
e of a sphere and of a 
at dis
.In the 
ontinuum limit, the se
ond and fourth moments of the magnetization density h�2i and h�4i 
anbe given in terms of the two- and four-spin 
orrelation fun
tions, respe
tively:h�2i = �2 Z dS1 dS2 g(~r1; ~r2) ; and h�4i = �4 Z dS1 � � � dS4 g(~r1; ~r2; ~r3; ~r4) ; (4.22)41



where � is the areal density of the spins, and dSi represents the number of spins in an in�nitesimal area.For a sphere, � and dSi 
an be written as 1=(4�R2) and R2 sin �i d�i d i, respe
tively. For a 
at dis
,� = 1=(2�R2) and dSi = ri dri d i. R is the radius of the sphere or the 
at dis
. g(~r1; ~r2) and g(~r1; ~r2; ~r3; ~r4)are the two- and four-spin 
orrelation fun
tions.The two-point 
orrelation fun
tion is known exa
tly (Eq. (4.8)). An exa
t result is also available forthe bulk four-spin 
orrelation of the two-dimensional 
riti
al Ising model, whi
h is given in terms of pair
orrelations by [12℄g(1; 2; 3; 4) = 12 (�g(1; 2)g(2; 3)g(3; 4)g(4; 1)g(1; 3)g(2; 4) �2 + (2$ 3) + (3$ 4))1=2 : (4.23)Here, for simpli
ity, we have written g(~r1; ~r2) and g(~r1; ~r2; ~r3; ~r4) as g(1; 2) and g(1; 2; 3; 4), respe
tively. Thenotation (i$ j) represents the expression between square bra
kets [ ℄ with i and j inter
hanged.The universal amplitude ratio Q = h�2i2=h�4i is simply related to the Binder 
umulant [13℄.I. Surfa
e of a sphereThe substitution of the pair 
orrelation on a sphere ( Eq. (4.14)) leads toh�2i = �24�R2 Z 2�0 d 2 Z �0 d�2 R2 sin �2 g(0; 0; �2;  2)= BR�2X2�X�1 Z �0 d�2 sin �2(1� 
os �2)�X= BR�2X2�2X=(1�X) ; (4.24)For the Ising model, X = 2� yh = 1=8 so that h�2i = (211=4=7)BR�2X � 0:961 024 5BR�2X .Eqs. (4.22) and (4.23) and substitutions of the integration variables xi = �i=� and yi =  i=2� lead toh�4i = BR�4X�32�2X�3 Z 10 dx2 dx3 dx4 dy3 dy4 f(x2;x3; y3;x4; y4) ; (4.25)with f(x2;x3; y3;x4; y4) = sin(�x2) sin(�x3) sin(�x4)g(1; 2; 3; 4), where the 
oordinates of these four pointsare (0; 0), (�x2; 0), (�x3; 2�y3), and (�x4; 2�y4). This equation was evaluated with a Monte Carlo pro
edure,whi
h approximates the integral byh�4i = BR�4X�32�2X�3N�1 NXi=1 f(x(i)2 ;x(i)3 ; y(i)3 ;x(i)4 ; y(i)4 ) ; (4.26)where x(i) and y(i) are uniformly distributed random numbers in the interval (0; 1). It yields h�4i =BR�4X(1:198 78� 0:000 02), where the two de
imal numbers are the average and standard error obtainedfrom 1000 determinations of the integral. Ea
h integral involves 106 Monte Carlo steps.Thus, the value of the dimensionless quantity is obtained as Q = 0:770 42� 0:000 01.II. Surfa
e of a 
at dis
The 
riti
al pair 
orrelations on a 
at dis
 are given by Eq. (4.18). The evaluations both of h�2i andh�4i were done by means of Monte Carlo pro
edures be
ause in this 
ase the symmetry lower than that ofa sphere. The 
al
ulation must allow for the fa
t that the form of the pair 
orrelation depends on whetheror not the two points are in the same fa
e (Eq. (4.18)). Taking into a

ount all possible distributions of thefour 
orrelated points, one �ndsh�4i = �4 Z R0 dr1 � � � dr4 Z 2�0 d 1 � � �d;  4 r1r2r3r4[2g0(1; 2; 3; 4) + 8g1 + 6g2℄ ; (4.27)42



where g0(1; 2; 3; 4) de�nes 
orrelations of four points on the same fa
e, g1 applies to three points on one fa
eand one on the other, and g2 applies to two points on one fa
e and two on the other. From this 
al
ulation, weobtain h�2i = R�2X(1:04156�0:00001), h�4i = R�4X(1:41273�0:00005), and thus Q = 0:76791�0:00003.The ratios of moments of the magnetization density on the sphere and on the 
at dis
 are thus:r2 = h�2is=h�2id = 0:922 68(2) ; and r4 = h�4is=h�4id = 0:848 57(4) ; (4.28)where the number between parentheses stands for the estimated error in the last de
imal pla
e.4.1.4 Models and algorithmsAs mentioned before, simulations on a spheroid are diÆ
ult due to the in
ompatibility of regular latti
es with
urved geometries. Here, we ta
kle this problem by using the Hamiltonian limit of a two-dimensional latti
eIsing model. For su
h a system, an eÆ
ient 
ontinuous Wol�-like method has been explained in detail [9℄.Here, we des
ribe the appli
ation of this algorithm to simulations in 
urved geometries.The Hamiltonian of an Ising model on a L� L square latti
e with periodi
 boundary 
onditions readsH=kBT = �Xx;y [Kx �x;y �x+1;y +Ky �x;y �x;y+1℄ (4.29)where the integers 1 � x; y � L label the latti
e sites. Kx and Ky are the 
oupling strengths along the xand y dire
tion, respe
tively. The spins 
an assume the values �x;y = �1. The 
riti
al line of this model isgiven by [10℄ sinh (2Kx) sinh (2Ky) = 1 : (4.30)In the anisotropi
 limit �! 0, the 
ouplings therefore areKx = �=t; exp(�2Ky) = � ; (4.31)where t is a temperature-like parameter whose 
riti
al point is t
 = 1. It is known that in this limit thesystem is equivalent to the quantum transverse Ising 
hain [14, 15℄ with nearest-neighbor 
ouplings and anexternal �eld t: HQM = �Xx (�zx�zx+1 + t�xx) ; (4.32)with �z and �x Pauli matri
es.Sin
e our purpose is the appli
ation of 
onformal invarian
e, we have to restore isotropy asymptoti
allyfor the system with Kx < Ky. This 
an be done by in
reasing the number of spins in the y dire
tion bya fa
tor Ly=Lx = sinh 2Ky = 1=2� [16℄. Meanwhile, one res
ales the y dire
tion as y0 = 2y=� so that thesystem sizes along the x and y dire
tion are equal again: L0y = Lx. As a result, the y dimension be
omes
ontinuous as �! 0, i.e., there is an in�nite number of spins per physi
al length unit, and the latti
e stru
turetransforms into L lines of length L. The spins form ranges of +=� signs, and the number of interfa
es inthe system is of order L2.For this anisotropi
 limit, a full des
ription of the aforementioned 
ontinuous Wol�-like algorithm hasbeen given in Ref. [9℄. For the 
onvenien
e of the reader, we summarize the essential points. During theformation of a 
luster, a bond between nearest-neighboring spins with the same sign is 'frozen' with aprobability P = 1 � exp(�2K) or 'broken' with 1 � P . Sites 
onne
ted by 'frozen' bonds are in
luded inthe same 
luster. For the anisotropi
 limit, the probability P in the x and y dire
tion will be of order � and1 � �, respe
tively. Thus, the strong-
ouping bonds will 
ontinue to 
onne
t spins in the y dire
tion untila 'break' o

urs with a probability of order � per bond. Therefore, after the res
aling dis
ussed above, the
onne
ted spins along the lines in the y dire
tion form ranges of +=� signs with lengths of order 1, and thebreaks are just the aforementioned interfa
es. Moreover, the average distan
e of the bonds between adja
entlines is also of order 1. These weak-
oupling bonds serve as 'bridges' between neighboring lines to 
onne
tranges of the same sign, and help to build 
lusters. Analogous to 
luster methods for the dis
rete models, theaforementioned 
ontinuous 
luster algorithm 
ips one or more 
lusters during a Monte Carlo step depending43
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ln rFigure 4.4: De
ay of the di�eren
e dm(r) of the magneti
 
orrelation fun
tions in the x and y dire
tion,shown as ln dm vs ln r. The system size is 40� 40.on whether it is Wol�-like or Swendsen-Wang-like. The 
orre
tness and eÆ
ien
y of this method has beendemonstrated both in two and three dimensions [9℄.Although the long-distan
e behavior of su
h an anisotropi
 system is the same in the x and y dire
tion,
orre
tions may exist at short distan
es. We investigate this problem in a system with size L = 40. Wesampled the di�eren
e dm(r) of the magneti
 
orrelation fun
tions over distan
es r in the x and y dire
tiondm(r) = 1V Xx Z dy h�x;y �x+r;y � �x;y �x;y+ri ; (4.33)where V =Px R dy = L�L is the area of the square. A plot of dm as a fun
tion of r is shown in Fig. 4.4.The fa
t that the line be
omes approximately straight at the right-hand side indi
ates that the leading
orre
tion behaves as rya . From Fig. 4.4, we estimate the asso
iated exponent ya � �2:25, so we simplyassume that ya = �2Xh + yi, where yi = �2 is the 
orre
tion-to-s
aling exponent in the two-dimensionalIsing model, and Xh = 1=8 is the magneti
 s
aling dimension. Taking into a

ount the periodi
 boundary
onditions, we �tted the Monte Carlo data a

ording to the least-squares 
riterion on the basis ofdm = r�2Xhfa1 [ryi + (L� r)yi ℄ + a2 [ry1 + (L� r)y1 ℄g ; (4.34)where a1; a2 are unknown parameters, and the term with y1 = �3 is another signi�
ant 
orre
tion. Weobtain a1 = 0:0228(6) and a2 = 0:027(3).Sin
e the model is now 
ontinuous in the y dire
tion, one 
an investigate it in 
urved geometries su
h asa spheroid. As an example, we 
onsider the 
ase of a sphere S2. The stru
ture of the anisotropi
 model inthe 
at geometry de�ned by Eqs. (4.29) and (4.31) 
onsists of L lines of length L. Ea
h of these lines 
anbe understood as a 
ir
le S1 be
ause of the periodi
 boundary 
ondition. As a result, one 
an represent the'latti
e stru
ture' on a sphere S2 by L uniformly distributed 
ir
les with varying radius (Fig. 4.5), su
h thatthere are strong 
ouplings along the 
ir
les while weak 
ouplings o

ur between adja
ent 
ir
les. The lo
ationof the kth 
ir
le is �k = (k � 12 )�=L, with k = 1; 2; � � � ; L (Fig. 4.5), and the 
orresponding 
ir
umferen
eis 
k = 2L sin �k, whi
h a

ounts for the S2 
urvature. Sin
e the probability of a weak-
ouping bond isde�ned per unit of length, and the adja
ent 
ir
les on a sphere have di�erent radii, the distribution of theseweak-
oupling bonds still requires a length s
ale. It was 
hosen as the average length s
ale of both 
ir
les.Self-intera
tions via weak bonds over the poles � = 0 or � 
ould, in prin
iple, o

ur at the 
ir
les with k = 1and L, respe
tively. But these intera
tions may be set to zero be
ause the 
ir
les at � = 0 and � have a zerolength. By means of the 
ontinuous Wol�-like algorithm, we simulated the above model on a sphere. Themagneti
 
orrelation of diametri
ally opposite points was sampled,g0(�) = 1� Z �0 d h�(�;  )�(� � �;  + �)i : (4.35)44
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Figure 4.5: Example of 'latti
e stru
ture' on a sphere, on whi
h L = 5 
ir
les represent 
ontinuous lines ofspins in the strong-
oupling dire
tion. The full and dash-dotted parts of the 
ir
les represent(arbitrarily 
hosen) ranges of spins with di�erent signs.
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orrelation fun
tions g0(�) on spheres vs �. The Monte Carlo data are shownfor system sizes L = 8 (
), L = 12 (�), L = 16 (4), and L = 20 (�). The lines show the
orresponding �ts. The angle � is given in radians.An example for systems without self-intera
tions at � = 0 and � is shown in Fig. 4.6. As the number of the
ir
les L in
reases, the pole � = 0 is approa
hed, and the spa
ing of adja
ent 
ir
les de
reases. The linesare quite straight, whi
h indi
ates that the spheri
al symmetry is restored asymptoti
ally. We have alsoinvestigated the system with self-intera
tions over the poles. Signi�
ant deviations from isotropy o

ur inthis 
ase.On a mi
ros
opi
 s
ale, the 'latti
e' stru
ture on a sphere is the same as that on a 
at plane. However, for�nite L, apart from mi
ros
opi
 deviations from the uniformity, the dis
retization in � may lead to a globale�e
t on the 
oupling strength. A

ording to the trapezium rule, we expe
t that this deviation vanishesas L�2. Under renormalization this e�e
t leads to 
orre
tions proportional to Lyt�2, where yt = 1 is thetemperature renormalization exponent. Thus, this e�e
t vanishes when L!1, and the 
riti
al point on asphere is identi
al to the one on the 
at plane. Moreover, sin
e the exponent of the irrelevant �eld yi = �2,it is expe
ted that the term with Lyt�2 dominates over the 
orre
tions of order Lyi , as will be 
on�rmedlater.As an alternative way for the distribution of L 
ir
les on a sphere, the lo
ation of the kth 
ir
le 
an begiven by �k = (k � 1)�=(L� 1), so that in this 
ase the 
ir
umferen
e of the sphere is 
 = 2(L� 1). It was45
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R-1Figure 4.7: The dimensionless quantity QR at 
riti
ality vs R�1.found numeri
ally that the spheri
al symmetry is less well restored in this 
ase. That may be due to thesingularity of the zero radii of the 
ir
les with k = 1 and L.The same pro
edure 
an be applied to the dis
 geometry. The kth 
ir
le is simply lo
ated at rk = (k�1)and its 
ir
umferen
e is given by 
k = 2�(k� 1), with k = 1; 2; � � � ; L. For a general spheroid with 
onstantratio e = b=a, the problem that the 
ir
les should be evenly distributed is solved in two steps. First, sin
e the
ir
umferen
e of the 
orresponding ellipse is 2L, the value of the parameter a 
an be numeri
ally 
al
ulatedfrom the equation L = a R L0 dw = a R �0 d�p
os2 � + e2 sin2 �. Se
ond, the lo
ation of the kth 
ir
le 
an beobtained by solving for �k in equation k� 12 = a R �k0 d�p
os2 � + e2 sin2 �. The 
orresponding 
ir
umferen
eis 
k = 2�a sin �k (k = 1; 2; � � � ; L).4.1.5 Numeri
al resultsBy means of the 
ontinuous Wol�-like algorithm, we performed simulations of the Ising model on a sphere,on a 
at dis
, on a spheroid with e = 2, on a half sphere, and inside a 
ir
le.I. Surfa
e of a sphereFor systems on a sphere, we sampled h�2i, h�4i, and QR(t) near the 
riti
al point. In addition, thetwo-point magneti
 
orrelation fun
tion g1(�) = h�(�;  )�(� � �;  )i was determined at 
riti
ality. Thesystem sizes are taken as 15 values ranging from L = 8 to 96.A

ording to �nite-size s
aling, in the 
riti
al region, QR(t) behaves asQR(t) = Q
 + a1Ryt(t� t
) + a2R2yt(t� t
)2 + � � �+ b1Ry
 + b2Ryi + � � � ; (4.36)where a1; a2; b1, and b2 are unknown parameters, and Q
 is the universal value for the in�nite system at
riti
ality. The 
orre
tion with exponent y
 = yt � 2 = �1 is due to the dis
retization of the sphere asexplained above. An example is shown in Fig. 4.7. The approximate linearity indi
ates that the approa
h ofQR(0) to Q
 o

urs as R�1. Formula (4.36) was �tted to Monte Carlo data a

ording to the least-squares
riterion. The value of the temperature parameter is �xed at t
 = 1. We obtain Q
 = 0:770 43(3), whi
h is
onsistent with the exa
tly 
al
ulated value 0:770 42(1) in Se
. 4.1.3.Similarly, the �nite-size behavior of h�2i ish�2i = R�2Xh [m2 + a1Ryt(t� t
) + a2R2yt(t� t
)2 + � � �+ b1Ry
 + b2Ryi + � � � ℄ ; (4.37)and that of h�4i ish�4i = R�4Xh [m4 + a1Ryt(t� t
) + a2R2yt(t� t
)2 + � � �+ b1Ry
 + b2Ryi + � � � ℄ : (4.38)46
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ay of the magneti
 
orrelation fun
tion g1(�), shown as ln g1(�) vs ln sin �. The number of
ir
les on the sphere is L = 96. The line shows the 
orresponding �t.Table 4.1: Fits of the 
orrelation fun
tions g1(�) on spheres.Lmin Lmax �max Xh a0 a1 a28 96 1.40 0.12497(4) 0.72215(5) -0.026(2) -0.023(4)a3 b0 b1 
 � � � � � � � � �-0.0006(1) -0.427(3) 0.21(2) -0.209(3) � � � � � � � � �The exponents �2Xh and �4Xh of R are obtained by the substitution of Xh = 1=8. The �ts yield m2 =0:619 88(3) and m4 = 0:498 75(5).A

ording to Eq. (4.14), g1(�) / (L 
os �)�2Xh , whi
h is 
on�rmed numeri
ally in Fig. 4.8. On the basisof �nite-size s
aling and 
onformal invarian
e, the 
orrelation fun
tion g1(�; L) is expe
ted to behave asg1(�; L) = L�2Xhf(
os �)�2Xh+
Ly
 [a0 + a1(L� � L�)y
 + a2(L� � L�)yi +a3(L sin �)y
 ℄ + b0Ly
 + b1Lyig ; (4.39)where a0; a1; a3; b0; b1; 
 are unknown parameters. The 
orre
tions with amplitudes a1 and a2 are due tothe deviations from isotropy at short distan
es; the term with a3 a

ounts for the inhomogeneity be
ause ofthe dis
retization of the � dire
tion. Equation (4.39) was �tted to the Monte Carlo data. As a 
onsisten
ytest, we 
hoose Xh as a free parameter. We obtain Xh = 0:124 97(4), whi
h is in a good agreement with theexa
t result Xh = 1=8 (see Table 4.1). Although the parameter a3 is quite small, it is ne
essary to obtain areasonable residual.II. Surfa
e of a 
at dis
The system sizes on the 
at-dis
 geometry were taken as values of 12 odd numbers ranging from L = 13to 91. The 
orresponding radii are L=2. Near the 
riti
al point, we sampled QR, h�2i, and h�4i. The�nite-size behavior of these quantities also follows from Eqs. (4.36), (4.37), and (4.38), respe
tively. The�ts yield that m2 = 0:671 9(1), m4 = 0:587 9(1), and Q
 = 0:768 02(15), whi
h agrees well with the exa
t
al
ulation Q
 = 0:767 91(3). Thus, we also obtain the ratios r2 = 0:922 63(13) and r4 = 0:848 41(14), whi
hare 
onsistent with Eq. (4.28).At 
riti
ality, three types of two-point magneti
 
orrelation fun
tions were sampled. We denote g1(r) asthe one between two points with same 
oordinates (r;  ) but on opposite fa
es, and g2(r) and g3(r) as thosebetween two points (r;  ) and (r;  + �) on opposite and on the same fa
es, respe
tively. On the basis ofEq. (4.18), one expe
ts thatg1(r) / (L� 4r2=L)�2Xh ; g2(r) / (L+ 4r2=L)�2Xh ; g3(r) / r�2Xh : (4.40)47
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ay of the magneti
 
orrelation fun
tion g2(r), shown as ln g2(r) vs ln(1 + 4r2=L2). The�nite-size parameter of the 
at dis
 is L = 17.A plot for g2(r) is shown in Fig. 4.9. The 
urvature near r = L=2 is due to the dis
rete property of thederivative �~r=�w in the mapping formula (4.17). We assume that this e�e
t de
ays as in order of (L=2�r)y
when r approa
hes zero. Thus, one 
an obtain the �nite-size behavior of these quantities by in
luding
orre
tions in Eq. (4.40). For instan
e, the quantity g3(r) followsg3(r) = r�2Xh+
Ly
 [a0 + a1ry
 + a2ryi + d1(L=2� r)y
 + b0Ly
 + � � � ℄ : (4.41)By introdu
ing a 
uto� at large r, we made �ts for g1(r), g2(r), and g3(r) independently, and obtainXh = 0:124 92(9), Xh = 0:125 01(16), and Xh = 0:125 05(7), respe
tively, in good agreement with the exa
tresult.III. Spheroids with e = 2As an example, we performed Monte Carlo simulations for a prolate spheroid with the ratio e = b=a = 2.We sampled the universal ratio QR and the magneti
 
orrelation fun
tion g1(�) = h�(�;  )�(�;  +�)i. Theanalysis of the �nite-size behavior of QR leads to the result Q
 = 0:764 3(1). From the Monte Carlo data forg1(�) and Eq. (4.9), we obtain Xh = 0:124 9(2).We also sampled the 
orrelation fun
tions g2(�) = h�(�;  )�(���;  )i. The mapping formula is relatively
ompli
ated in this 
ase, and we did not work out the expression of g2(�). But we observe that a plot of theMonte Carlo data ln[g2(�)℄ versus ln(1+pe2 + 1 tan2 �) approximately follows a straight line (Fig. 4.10). Bymeans of �nite-size s
aling, we obtain the value of the slope as 0:124 1(8), whi
h is 
lose to the exa
t resultXh = 1=8.IV. Half surfa
e of a sphere with �xed boundary 
onditionsWe also investigated the anisotropi
 limit of the Ising model on a half sphere. An in�nite ordering�eld was applied at the equator. The system sizes are taken as 10 values ranging from L = 4 to 40. The
orresponding radius is R = (2L� 1)=�. We sampled the magnetization density m = h�(�)i and the energydensity e as a fun
tion of �. Sin
e the intera
tions along the � and  dire
tion are of di�erent forms, theenergy density 
an be represented in two ways: the intera
tions due to the weak 
ouplings h�(�) �(� + 1)i,or the density of interfa
es along the strong 
ouplings hn(�)i. We 
hose the latter be
ause it needs mu
hless 
omputer time. The behavior of the magnetization density follows Eq. (4.20), and the energy densitybehaves as e(�) = hn(�)i = n0 + a (L 
os �)�Xt ; (4.42)where n0 is the bulk density, and Xt is the temperature s
aling dimension. An example is shown in Fig. 4.11.Finite-size analyses of the quantities h�(�)i and he(�)i yield Xh = 0:12499(2) and Xt = 0:995(6) respe
tively,whi
h are again in ex
ellent agreement with the exa
t values.48
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ir
le was 
ut from a L� L square latti
e with L = 24.V. Interior of a 
ir
leConformal invarian
e on the interior of a 
ir
le with free and �xed boundary 
onditions has been numer-i
ally tested by Badke and Re�s et al. [3, 7℄. They approximated this geometry by drawing the 
ir
le from asquares latti
e. In this way, the symmetry along the  dire
tion is broken, and irregular �nite-size e�e
tsarise (Fig. 4.13). Thus, it seems appropriate to simulate the interior of a 
ir
le by means of the 
ontinuousalgorithm. We used both free and �xed boundary 
onditions. The system sizes are taken as 10 values rangingfrom L = 8 to 40. An example is shown in Fig. 4.12, and no irregular e�e
ts are observed. Analyses yieldthat Xh = 0:124 994(15) and Xt = 1:002(7).4.1.6 Dis
ussionConformal invarian
e is known as a powerful tool to investigate 
riti
al behavior. Its appli
ations in twodimensions have thus far been fo
used on 
at systems. We have shown how one 
an apply it in 
urvedgeometries. The validity of our method is 
on�rmed by the agreement between predi
tions based on 
onformalinvarian
e and our numeri
al results. Moreover, in the 
ase of the Ising model, the diÆ
ulty of numeri
alsimulations in 
urved geometries is solved by the re
ently developed 
ontinuous 
luster algorithm. Trivialmodi�
ations 
an generalize this algorithm to Potts models, in
luding the per
olation model [18℄.Furthermore, sin
e 
onformal mappings of three-dimensional systems usually lead to 
urved geometries,this algorithm enables us to investigate appli
ations of 
onformal invarian
e in three dimensions [9, 17, 18℄.50



4.2 Bulk and surfa
e 
riti
ality: three-dimensional Ising modelUsing a 
ontinuous 
luster Monte Carlo algorithm, we investigate the 
riti
al three-dimensional Ising modelin its anisotropi
 limit. From the ratio of the magneti
 
orrelations in the strong- and the weak-
ouplingdire
tions, we determine the length ratio relating the isotropi
 Ising model and the anisotropi
 limit. On thisbasis, we simulate the 
riti
al Ising model on a sphero
ylinder S2�R1 , i.e., a 
urved geometry obtained froma 
onformal mapping of the in�nite spa
e R3 . From 
orrelation lengths along the sphero
ylinder, 
ombinedwith the predi
tion of 
onformal invarian
e, we estimate the magneti
 and thermal s
aling dimensions asXh = 0:5182(6) and Xt = 1:419(7), respe
tively. The behavior of the Binder 
umulant is also determinedin the limit of an in�nitely long sphero
ylinder. Next, free boundary 
onditions are imposed on the equa-tors of the sphero
ylinder, and thus the geometry S1 � S+ � R1 is obtained. The surfa
e magneti
 s
alingdimension is estimated as X(s)h = 1:263(5). The 
onsisten
y of the aforementioned estimations and existingresults 
on�rms the three-dimensional Ising model is 
onformally invariant. Further, the pre
ision of theseresults reveals that, as in two dimensions, 
onformal mappings provide a powerful tool to investigate 
riti
alphenomena. With the 
ontinuous 
luster algorithm, we also perform simulations of systems inside a 
onven-tional solid 
ylinder. The surfa
e magneti
 
orrelation length di�ers, within the estimated error margin, bya fa
tor �=2 from that along a half sphero
ylinder S1 � S+ � R1 with the same radius.4.2.1 Introdu
tionAppli
ations of 
onformal invarian
e in two dimensions have been explored extensively and produ
ed fruitfulresults both for bulk and surfa
e 
riti
al phenomena [1, 4, 19, 20℄. Conformal mappings provide relationsbetween 
riti
al systems in di�erent geometries. A well-known and parti
ularly useful example is Cardy'smapping between an in�nite plane and the surfa
e of an in�nitely long 
ylinder, whi
h transforms thealgebrai
 de
ay of 
orrelations in the plane into an exponential de
ay along the 
ylinder [5, 6℄. Be
ause a
ylinder is pseudo-one dimensional, its numeri
al investigation is simpler than that of a two-dimensionalplane. This mapping 
an be generalized to any number of dimensions [6℄. In three dimensions, Cardy'smapping transforms an in�nite spa
e R3 into a pseudo-one-dimensional geometry S2 � R1 , i.e., a 
urvedgeometry extending the surfa
e of a sphere S2 into another dimension R1 . Thus, one also expe
ts that, as intwo dimensions, Cardy's mapping also provides a signi�
ant help in numeri
al studies of 
riti
al phenomena.In parti
ular, we need su
h studies be
ause exa
t results are s
ar
e in three dimensions. However, thenonzero net 
urvature of the geometry S2 � R1 poses a serious obsta
le for numeri
al investigations.Re
ently, we solved this problem for the 
ase of the Ising model by using the Hamiltonian limit ofthe latti
e Ising model and a 
ontinuous 
luster Monte Carlo algorithm [9, 17℄. The key ingredient of thisin�nitely anisotropi
 model is that one of its dimensions is 
ontinuous, so that the problem of dis
retizationfor one of the latti
e dire
tions is avoided. In two dimensions, we have numeri
ally studied a 
onformalmapping between an in�nite plane and a spheroid [21℄. Spe
ial 
ases of the spheroid in
lude the surfa
es ofan in�nitely long 
ylinder, of a sphere, and of a 
at dis
. Thus, this mapping in
ludes Cardy's transformationas a spe
ial 
ase. A brief report has also been published about the 
on�rmation of Cardy's mapping in threedimensions [17℄, in whi
h the aforementioned geometry S2�R1 was named a `sphero
ylinder'. In the presentwork, the te
hniques involved in Ref. [17℄ will be des
ribed in more detail. Moreover, by mapping the semi-in�nite spa
e R2 �R+ onto the half sphero
ylinder S2 �R+ and S1 � S+ �R1 , respe
tively, we investigatethe surfa
e 
riti
ality of the Ising model in three dimensions.The present work also in
ludes simulations of the Ising model inside a 
onventional solid 
ylinder. Com-pared to the aforementioned half sphero
ylinder, the 
onventional solid 
ylinder has a zero net 
urvature.However, numeri
al simulations su�er from 
ompli
ations due to its 
urved surfa
e. Su
h a diÆ
ulty isavoided by using the Hamiltonian limit of the latti
e Ising model and the 
ontinuous 
luster algorithm. Freeboundary 
onditions are imposed on the surfa
e of the 
onventional solid 
ylinder, and 
orrelation fun
tionsalong the 
ylinder are sampled. In fa
t, the 
onventional solid 
ylinder is 
losely related to the half sphero-
ylinder S1 � S+ � R1 . The former obje
t is obtained by repla
ing the half-sphere of the latter obje
t bythe interior of a 
ir
le. 51



4.2.2 Conformal mappingsIn two dimensions, one may parametrize the in�nite plane as a 
omplex number z = x + iy. Cardy'stransformation is then expressed as z0 = R ln z [5℄. The geometry of z0 
an be interpreted as the surfa
eof an in�nitely long 
ylinder or a 
at strip with periodi
 boundary 
onditions. For a 
riti
al system with as
aling dimension X , Cardy's mapping yields the 
orrelation length along the 
ylinder as�R = R=X ; (4.43)where R is the radius of the 
ylinder [1℄.This mapping 
an be generalized to any number of dimensions [6℄. In three dimensions, one may expressthe 
at spa
e R3 in spheri
al 
oordinates (r; '). Cardy's mapping is then des
ribed by the 
oordinatetransformation: (r; �; ') = (eu=R; �; ') (�1 < u <1) ; (4.44)where R is a free parameter. Thus a geometry expressed by the variables (u; �; ') in Eq. (4.44) is rea
hed.It is obvious that this geometry is analogous to the surfa
e of an in�nite 
ylinder as mentioned earlier. Thelatter obje
t 
an be re
ognized as the extension of a 
ir
le S1 into another dimension R. Analogously, theformer geometry 
an be obtained by extending a sphere S2 into another dimension R. This dimension isperpendi
ular to the surfa
e of the sphere, whi
h, unfortunately, 
annot be visualized in three-dimensionalspa
e. Taking into a

ount this analogy, we named in Ref. [17℄ the three-dimensional geometry S2 � R a`sphero
ylinder'.The reason why equation (4.44) is 
onformal is as follows. First, the metri
 of the 
at spa
e R3 isexpressed, in spheri
al 
oordinates, by the invariant line elementds2 = dr2 + r2 (d�2 + sin2 � d'2) ; (0 � � � �; 0 � ' < 2�) : (4.45)Under the formula (4.44), equation (4.45) transforms as [6℄ds2 = R�2e2u=R [du2 +R2 (d�2 + sin2 � d'2)℄ ; (4.46)where ds0 2 = du2 + R2 (d�2 + sin2 � d'2) re
e
ts the natural metri
 of the sphero
ylinder S2 � R1 . Equa-tion. (4.46) shows that the line elements ds 2 and ds0 2 di�er only by a position-dependent fa
tor R�2e2u=R.Thus, the mapping (4.44) is 
onformal.Under a 
onformal mapping (~r ! ~r 0), a multipoint 
orrelation fun
tion 
ovariantly transforms as [1℄h�1(~r1)�2(~r2) � � � i~r = b(~r1)�X1 b(~r2)�X2 � � � h�1(~r 01)�2(~r 02) � � � i~r 0 ; (4.47)where �i is a s
aling operator (e.g., asso
iated with the magnetization density or the energy density), andb(~r) is the res
aling fa
tor, whi
h reads b(~r)2 = ds2=ds0 2.In the in�nite spa
e R3 , the 
riti
al two-point 
orrelation fun
tion behaves ash�(~r1)�(~r2)iR3 / j~r2 � ~r1j�2X : (4.48)Equations (4.44), (4.47) and (4.48) yield the 
orrelation fun
tion along the sphero
ylinder ash�(u1; �; ')�(u2; �; ')iS2�R1 / R�2X �eju1�u2j=2R � e�ju1�u2j=2R��2X : (4.49)For ju1 � u2j � 0, equation (4.49) redu
es toh�(u1; �; ')�(u2; �; ')i / R�2Xe�Xju1�u2j=R ; (4.50)so that the relationship (4.43) follows again.However, appli
ations of Eq. (4.43) in three dimensions are rather s
ar
e so far. The reason is thatthe sphero
ylinder S2 � R1 has a non-zero net 
urvature. For numeri
al investigations, a 
urved geometry52



does not readily a

ommodate a sequen
e of regular latti
es. For the spe
ial 
ase of the spheri
al model,equation (4.50) has been veri�ed analyti
ally by Cardy [6℄. Weigel and Janke approximated the S2 sphereby the surfa
e of a 
ube [22℄. Their results for the Ising model with �nite size R satisfy Eq. (4.50) up to aproportionality 
onstant, whi
h has to be determined empiri
ally.Under the mapping (4.44), the half in�nite spa
e R2 � R+ 
onformally transforms into the half sphero-
ylinder S1 � S+ � R, i.e., a geometry also des
ribed by the natural metri
 ds0 2 in Eq. (4.46), but with0 � � � �=2. Thus, this geometri
 obje
t has a surfa
e at the equators (� = �=2) of the spheres. Thepair 
orrelation on the surfa
e of the half spa
e R2 � R+ follows from the formula (4.48), ex
ept that thebulk s
aling dimension X is repla
ed by the surfa
e dimension X(s) [1℄. Thus, the surfa
e 
orrelation at theequators of the half sphero
ylinder is also des
ribed by Eq. (4.49) but with a substitution of X by X(s).Next, we 
onsider another 
onformal mapping between the semi-in�nite spa
e R2�R+ and a half sphero-
ylinder S2�R+ , also des
ribed by the metri
 ds0 2 in Eq. (4.46), but with u � 0. This mapping is di�erentfrom Eq. (4.44) and is 
onveniently des
ribed in two steps. First, the formula [2℄~r 0=r02 = ~r=r2 + Î=2 ; (4.51)maps spheres onto spheres in three dimensions, and the spa
e R3 is transformed into itself [2℄. Here, Î is anarbitrary �xed unit ve
tor. Under the mapping (4.51), the plane Î � ~r = 0, whi
h 
orresponds to a spheri
alsurfa
e of an in�nite radius, is 
onformally mapped onto the surfa
e of a unit sphere with the 
enter at Î .Meanwhile, the half spa
es Î � ~r > 0 and Î � ~r < 0 are transformed respe
tively into the interior and exteriorof this unit sphere. The homogeneous translation~r 00 = ~r � Î (4.52)shifts the 
enter of the sphere to the origin of the double-primed 
oordinate system.The pro�le of a s
aling operator � in the semi-in�nite spa
e R2 � R+ behaves as [1℄h�(~r)iR2�R+ / y�X ; (4.53)where y >> 0 is the distan
e of a point ~r to the surfa
e. Equations (4.51) and (4.52) yield the res
alingfa
tor b(~r) of the 
onformal mapping ( ~r ! ~r 00) as [2℄b(~r) = 1 + Î � ~r + r2=4 = 4=(~r 00 � Î)2 : (4.54)From Eqs. (4.47) and (4.51)-(4.54), the quantity h�(~r 00)i inside a unit sphere follows from [1,2℄h�(~r 00)i / j1� (r00)2jX ; (4.55)where r00 � 1 is the distan
e of the point ~r 00 to the 
enter of sphere.Next, we apply Eq. (4.44) to 
onformally map this unit sphere onto the half sphero
ylinder S2 � R+ .The pro�le (4.55) is then 
ovariantly transformed intoh�(u; �; ')iS2�R+ / R�X �eju1�u2j=2R � e�ju1�u2j=2R��2X ; (4.56)whi
h di�ers from Eq. (4.49) by a fa
tor R�X .Moreover, equations (4.51), (4.52) and (4.44) transform the quarter-in�nite spa
e R1 � R+ � R+ into aquarter of the in�nite sphero
ylinder S1 � S+ � R+ , des
ribed by ds0 2 in Eq. (4.46) but with 0 � � � �=2and u � 0. Therefore, the pro�le of the surfa
e s
aling operator at the equators should follow from Eq. (4.56)ex
ept that the exponent X is repla
ed by the surfa
e s
aling dimension X(s).4.2.3 Models and algorithmsIn this se
tion, we brie
y re
all the Hamiltonian limit of the Ising model and the 
ontinuous 
luster algo-rithm [9℄. The appli
ations to the sphero
ylinder and the 
onventional solid 
ylinder are also des
ribed.53



The three-dimensional Ising model with anisotropi
 
ouplings is des
ribed by the HamiltonianH=kBT = �Xx;y;z[Kxy sx;y;z (sx+1;y;z + sx;y+1;z) +Kz sx;y;z sx;y;z+1℄ ; (4.57)where the integers 1 � x; y � L and 1 � z � L0 label the sites of a 
ubi
 latti
e, Kxy and Kz are the 
ouplingstrengths along bonds perpendi
ular and parallel to the z dire
tion, respe
tively. The spins 
an assume thevalues sx;y;z = �1.In the limit that the intera
tions in the z dire
tion are in�nitely strong, the 
ouplingsKxy andKz be
omeKxy = �=t ; exp[�2Kz℄ = � ; (�! 0) ; (4.58)where t parametrizes the temperature and � is an in�nitely small number. The anisotropi
 model de�ned byEqs. (4.57) and (4.58) is equivalent to the quantum transverse Ising model on the square latti
e [14, 15℄:Hqm = �Xx;y [szx;y(szx+1;y + szx;y+1) + tsxx;y℄ ; (4.59)where szx;y and sxx;y are Pauli matri
es, and t represents a transverse �eld in the x dire
tion.For su
h an in�nitely anisotropi
 system, the physi
al size in the z dire
tion diverges as 1=�, be
ause the
orrelation length in this dire
tion is of order 1=� [14, 15℄. In order to keep the 
orrelation length �nite, onemay res
ale as z0 = z� so that the z0 dimension be
omes 
ontinuous. This means that there is an in�nitenumber of spins per physi
al length unit. As a result, the simple-
ubi
 latti
e redu
es to L2 lines originatingfrom the sites of a L � L square latti
e. The spins on these lines form ranges of +=� signs, and the totalnumber of interfa
es between these ranges is of order L3.Monte Carlo simulations of this 
ontinuous system are realized by the appli
ation of a 
ontinuous 
lusteralgorithm. This algorithm uses the positions of the aforementioned interfa
es as the dynami
al variables.The full des
ription has been given in Ref. [9℄. Here, we summarize the essential points. We start froma dis
rete Ising model and use bond variables as de�ned in the random 
luster model [23℄. During theformation of a 
luster, the bond between nearest-neighbor spins of the same sign is `frozen' with a probabilityP = 1�exp(�2K) or `broken' with the probability 1�P . A 
luster is then formed by spins 
onne
ted to oneanother by these frozen bonds. The formation and 
ipping of these 
lusters leads to highly eÆ
ient MonteCarlo methods, whi
h suppress the 
riti
al slowing down that is prominent in the Metropolis algorithm. Inthe Swendsen-Wang 
luster method [24℄, the whole latti
e is de
omposed into a sequen
e of 
lusters. In theWol� version of the 
luster algorithm [25℄, only one 
luster is formed and 
ipped during a Monte Carlo step.For the anisotropi
 Ising model de�ned by Eqs. (4.57) and (4.58), the probability P in the xy plane and zdire
tion is of order � and 1� �, respe
tively. Thus, the strong-
oupling bonds 
onne
t many spins in the zdire
tion until a `break' o

urs with a probability of order � per bond. Spins between these breaks in the zdire
tion form 
lusters of +=� signs of with lengths of order 1=�. After the res
aling des
ribed above, these zdire
tion 
lusters redu
e to ranges of +=� signs, of whi
h the length is now of order 1. Moreover, the averagedistan
e of the frozen weak-
oupling bonds along the z dire
tion is also of order 1. These weak-
ouplingbonds serve as `bridges' between neighboring lines to 
onne
t ranges of the same sign, and help to build
lusters in the xy plane. As a result, 
ontinuous Wol�-like and Swendsen-Wang-like 
luster algorithms 
anbe formulated for this anisotropi
 limit. The appli
ation of a 
ontinuous Wol�-like algorithm, 
ombined with�nite-size-s
aling analysis, yields [9℄ the 
riti
al point as t
 = 3:04438(2) for the model de�ned by Eqs. (4.57)and (4.58). The pre
ision is good in 
omparison with existing results [8,26℄, and re
e
ts the eÆ
ien
y of theaforementioned 
ontinuous 
luster algorithm.Sin
e our purpose is the appli
ation of 
onformal mappings, we have to restore isotropy asymptoti
ally.This 
an be done by 
hoosing an appropriate aspe
t ratio � = L0z=Lxy, where L0z and Lxy = L are linearsystem sizes in the z0 dire
tion and the xy plane, respe
tively. In Ref. [9℄, we determined the 
riti
alBinder 
umulant as a fun
tion of the length ratio �. Mat
hing this universal fun
tion with the 
ase of theisotropi
 Ising model [27{29℄, we showed that the asymptoti
 isotropy of this Hamiltonian limit is restoredfor �0 = 0:886(7). Here, we pro
eed di�erently. We sampled the 
riti
al magneti
 
orrelations over half54



linear system sizes in the strong- and weak-
oupling dire
tions, respe
tively, of whi
h the amplitude ratiodm is de�ned as dm(�;L) = Px;y R dz0 h2 �(x; y; z0)�(x; y; z0 + �L=2)iPx;y R dz0 h�(x; y; z0) [�(x + L=2; y; z0) + �(x; y + L=2; z0)℄i : (4.60)This amplitude ratio dm is a fun
tion of the length ratio � and the linear size L. The aforementioned isotropymeans that the magneti
 
orrelations in the z dire
tion are equal to those in the x and y dire
tions, and thusdm(�0; L) = 1. Taking into a

ount �nite-size e�e
ts, we Taylor-expand dm(�;L), using logarithmi
 s
alesfor dm and �, asln dm(�;L) = a1(ln�� ln�0) + a2(ln�� ln�0)2 + bLya + 
Lya(ln�� ln�0) + � � � ; (4.61)where a1; a2; b and 
 are unknown parameters, and the 
orre
tion with the exponent ya is due to themi
ros
opi
 deviations from isotropy of the Hamiltonian limit of the Ising model. In two dimensions, su
ha 
orre
tion has been investigated in detail [21℄. It was found that ya � �2 = yi, where yi is the exponentof the irrelevant �eld for the two-dimensional Ising model. Here, we assume that this relation also holds inthree dimensions so that ya = yi = �0:821(5), where the value of yi was taken from Refs. [21, 27{29℄. Onthe basis of the least-squares 
riterion, equation (4.61) was �tted to the Monte Carlo data. We �nd thata1 = 0:505(2), a2 = 0:06(1), b = 0:375(7), 
 = 2:8(3), and �0 = 0:8881(2), whi
h provides a signi�
antimprovement over our previous result �0 = 0:886(7) [9℄.As a result, the new 
oordinate z00 = z0=�0 restores the isotropy asymptoti
ally for systems 
onsisting ofL2 lines with physi
al length L in the large-L limit. Due to periodi
 boundary 
onditions, ea
h of these lines
an be re
ognized as a 
ir
le S1. This enables one [17, 21℄ to represent the `latti
e stru
ture' on a sphereS2 by L evenly spa
ed 
ir
les with varying radius, su
h that the strong 
ouplings are along the ' dire
tionwhile the weak 
ouplings are between the adja
ent 
ir
les. The lo
ation of the kth 
ir
le is �k = (k� 12 )�=L(k = 1; 2; � � � ; L), and the 
orresponding 
ir
umferen
e is 2L sin �k, whi
h a

ounts for the S2 
urvature.Sin
e the probability of a weak-
ouping bond is de�ned per unit of length, and the adja
ent 
ir
les on asphere have di�erent radii, the distribution of these weak-
oupling bonds still requires a length s
ale. It was
hosen as the average length s
ale of both 
ir
les. Therefore, the 
ir
umferen
e of the sphere is 2L, and theradius is L=� [17,21℄. The validity of this method, i.e., asymptoti
 spheri
al symmetry of su
h systems, hasbeen 
on�rmed in Ref. [21℄. Extension of this latti
e stru
ture of a sphere into another dimension yields theapproximation of the sphero
ylinder S2 � R1 [17℄.The 
riti
al point for systems on the sphero
ylinder is identi
al to that in the 
at spa
e R3 . Argumentsare a), the latti
e stru
tures in these two geometries are same on a mi
ros
opi
 s
ale; b), for �nite systems L,the dis
retization in � leads to an integrated e�e
t on the average 
oupling strength, whi
h is proportionalto L�2 a

ording to the trapezium rule. Under renormalization, this e�e
t leads to 
orre
tions proportionalto Lyt�2. Sin
e the thermal s
aling exponent yt < 2 for the two- and three-dimensional Ising model, thise�e
t will vanish for L ! 1. In two dimensions, we have studied the Ising model on a sphere [17, 21℄, and
on�rmed that the leading 
orre
tions for �nite systems are of order Lyt�2.Analogous pro
edures 
an be applied to the interior of a 
ir
le, i.e., a dis
 geometry. In this 
ase,the latti
e stru
ture on the dis
 is also represented by L evenly distributed 
ir
les, but the kth 
ir
le issimply lo
ated at rk = (k � 12 ). Thus, the radius of the dis
 is just that of the largest 
ir
le �(2L � 1).The 
onventional solid 
ylinder is obtained by extending this dis
 geometry into another dimension with adis
rete latti
e stru
ture.4.2.4 Numeri
al resultsBy applying the aforementioned 
ontinuous Wol�-like 
luster algorithm, we have simulated the Hamiltonianlimit of the Ising model in the following geometries.I. Sphero
ylinder with periodi
 boundary 
onditionsFor systems on a sphero
ylinder, the values of L were taken as 4; 6; 8; 10; 12; 14; 16; 20. The �nite size inthe R dire
tion was taken as nL = 8L. Periodi
 boundary 
onditions were imposed in the u dire
tion (u = 055



and u = 8L). Later, we will show that n = 8 is large enough to approximate the geometry S2 � R1 . Wesampled the magneti
 
orrelation fun
tion gm(r) in the u dire
tion, whi
h is de�ned by [17℄gm(r) = 1V Xu;� Z 2�0 d'L� sin � h�(u; �; ')�(u + r; �; ')i : (4.62)Sin
e the 
ouplings are di�erent in the ' dire
tion and in the other two dire
tions, there are two waysto represent the energy density: the density of the interfa
es and the nearest-neighbor intera
tions in theweak-
oupling dire
tions. We 
hose the latter oneenn = 1V Xu;� Z 2�0 d'L� sin � h�(u; �; ')�(u + 1; �; ')i ; (4.63)in order to sample the energy-like 
orrelation ge(r)ge(r) = 1V Xu;� Z 2�0 d'L� sin � h�(u; �; ')�(u + 1; �; ')� �(u+ r; �; ')�(u + r + 1; �; ')i � e2nn : (4.64)For �nite systems, there is a 
orre
tion / Lyt�2 as mentioned earlier. Compared to the irrelevant s
alingexponent yi = �0:821(5) in three dimensions [21,27{29℄, the 
orre
tion with the power y
 = yt�2 = �0:413is expe
ted to dominate over that with yi.In the 
ontinuum limit, the behavior of the magneti
 energy-like 
orrelations, gm(r) and ge(r) respe
tively,follows from Eq. (4.49). Taking into a

ount �nite-size e�e
ts yields the 
orrelation length �L as��1L = XR (1 + aLy
 + bLyi) = �XL (1 + aLy
 + bLyi) : (4.65)Due to the periodi
ity in the u dire
tion, 
orrelations build up over two distan
es r and nL� r. Thus, the
orrelation fun
tion g(r; L) for �nite systems behaves asg(r; L) = L�2X [Y (r) + Y (nL� r)℄ (A+BLy
 + CLyi) ; (4.66)with the fun
tion Y (r) = (ehr=2R � e�hr=2R)�2X ; (h = 1 + aLy
) : (4.67)Here, the radius is R = L=� as mentioned before.Equations (4.66) and (4.67) was �tted to the Monte Carlo data. The value of y
 is �xed at �0:413as spe
i�ed above. For the magneti
 and the energy-like 
orrelations, the exponent X represents the bulkmagneti
 and thermal s
aling dimensions, Xh and Xt respe
tively. We obtain Xh = 0:5178(12) and Xt =1:423(19), in a good agreement with the existing results Xh = 0:5185(3) and Xt = 1:413(1) [21,27{29℄. This
on�rms the assumption of 
onformal invarian
e [17℄. In
luding another 
orre
tion 
Lyi in the fun
tion hdoes not improve the residual �2 of the �t signi�
antly.II. Binder 
umulant on a sphero
ylinderThe dimensionless quantity originally introdu
ed by Binder plays an important role in the study of 
riti
alphenomena [13℄. An example is Ref. [9℄, in whi
h we obtains the length ratio �0 = 0:881(6) by samplingthe Binder 
umulant. For a system on a hyper-
ubi
 latti
e in general d dimensions, the universal ratio Q,whi
h is 
losely related to the Binder 
umulant [13℄, is de�ned asQ(K) = h�2i2=h�4i : (4.68)For a system on a hyper
ylinder-like geometry Sd�1 � R1 , however, another de�nition is desirable. Thereason is as follows. If the length of the geometry Sd�1 � R1 is mu
h larger than the 
orrelation length,56
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tion of n, where n� is the ratio of the length andthe radius of the sphero
ylinder. System size is L = 8.i.e., 
 = L=R ! 1, the 
riti
al magnetization density is normally distributed, and thus the value of Q(K)approa
hes 1=3. The same value applies to a disordered system. As a 
onsequen
e, little information 
an beobtained for 
riti
al phenomena. In this 
ase, a useful dimensionless quantity 
an be de�ned as [1, 11℄G(K; 
) = (3� h�4i=h�2i2) 
=3 ; (4.69)whi
h plays a similar role as the aforementioned 
orrelation length �R. A

ording to �nite-size s
aling, the
riti
al quantity G is universal for in�nite systems R and 
 !1.In two dimensions, the 
riti
al bulk two- and four-point 
orrelation fun
tions are exa
tly known for theIsing model [10℄. On this basis, the value of G for the surfa
e of an in�nitely long 
ylinder 
an be 
al
ulateda

ording to the predi
tion of 
onformal invarian
e. This 
al
ulation has been performed by Burkhardt andDerrida [11℄ who evaluated the resulting integrals by a Monte Carlo method. Their result isG(K
;1)=2� = 2:46044(2) : (4.70)For an arbitrary model, it was shown by Cardy [30℄ that for the in�nitely long stripG(K
;1)=2� � (�Xh)�1 ; (4.71)if Xh is small.In three dimensions, no result for the quantity G is available yet. Here, we sampled both quantities Q=�and G=� on a sphero
ylinder as a fun
tion of the size L and the ratio 
=� = n. The system sizes were takenas L = 8; 10; 12; 16; 20; 24; 30; 40 and the largest value of n is 20. Periodi
 boundary 
onditions were appliedin the u dire
tion. Part of the results are shown in Figs. 4.15 and 4.14. The latti
e �gure suggests that n = 8already provides a good approximation of the geometry S2 � R1 .For �nite systems at the 
riti
al point, we �tted the following formula to the Monte Carlo data:G(L; n)=� = G1 + a1n + a2n2 + v(nL)y
 + � � � : (4.72)In order to obtain an a

eptable residual �2 of the �t, we applied a 
uto� by ex
luding small system sizesL � 6 and n � 5. The result is G=� = 0:6458(5), whi
h di�ers signi�
antly from that for a two-dimensionalstrip [11℄.III. Sphero
ylinder with �xed boundary 
onditionsFixed boundary 
onditions, i.e., in�nitely strong �elds, were imposed on both ends of the sphero
ylinder(u = 0 and u = nL). The �nite system sizes were taken as L = 4; 6; 8; 10; 12; 14; 16; 20; 24 and n = 8. Themagnetization and the energy densities,m(r) = 1V X� Z 2�0 d'L� sin �h�(r; �; ')i (4.73)57
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tion of lnn, where n� is the ratio of the length andthe radius of the sphero
ylinder. Systems sizes are L = 8 (+), L = 12 (5), L = 16 (�), L = 20(
), L = 24 (4), and L = 40 (�). The data 
ollapse indi
ates that 
orre
tions-to-s
aling aresmall.and e(r) = 1V X� Z 2�0 d'L� sin �hn(r; �; ')i ; (4.74)were sampled. Here, we have 
hosen the density of the interfa
es n(r; �; ') as the energy density. Comparedto the alternative de�nition of e in Eq. (4.63), sampling the density of the interfa
es 
onsumes mu
h less
omputer time. This is due to the fa
t that, during the Monte Carlo simulations, the positions of theseinterfa
es are stored in 
omputer memory as the dynami
al variables.The s
aling behavior of m(r) and e(r) follows from Eq. (4.56). A

ording to Eqs. (4.56) and (4.49), themagnetization density m(r) and the 
orrelation gm(r) de
ay in a similar way with respe
t to the distan
e r.An example is shown in Fig. 4.16. For a given sphero
ylinder with radius R, however, the prefa
tor of gm(r)is R�2Xh [Eq. (4.49)℄ while that of m(r) is R�Xh [Eq. (4.56)℄. This e�e
t, 
ombined with the fa
t that less
omputer time is needed, shows that m(r) is a better quantity than gm(r) to determine the magneti
 s
alingdimension. A similar argument holds for the energy density. Taking into a

ount �nite-size 
orre
tions and�xed boundary 
onditions at both ends, we havem(r; L) = L�Xh [Y (r) + Y (nL� r)℄ (A+BLy
) ; (4.75)and e(r; L) = n0 + L�Xt [Y (r) + Y (nL� r)℄ (A+BLy
) ; (4.76)where n0 is the bulk density of the interfa
es at 
riti
ality, and the fun
tion Y (r) is given in Eq. (4.67).Formulas (4.75), (4.76) and (4.67) were �tted to the Monte Carlo data. An example of the energy densityis shown in Fig. 4.17. The value of n0 is �xed at 0:90160(5), as obtained from numeri
al simulations in a
at geometry. We obtain Xh = 0:5182(6) and Xt = 1:419(7). The pre
ision of these results is 
omparableto that of other methods [21, 27{29℄.IV. Half sphero
ylinder S1 � S+ � R1For the half sphero
ylinder, �xed and free boundary 
onditions were applied on both ends (u = 0and u = nL) and the equators (� = �=2) of S1 � S+, respe
tively. The systems sizes were taken asL = 8; 10; 12; � � � ; 26 and n = 8. The radius of the half sphero
ylinder is R = (2L� 1)=�, di�erent from theformula R = L=� for the sphero
ylinder. The magnetization density on the equators was sampled, de�ned58
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onventional solid 
ylinder (4) and a sphero
ylinder (
). The radii of these twoobje
ts are R = 19:5 and 19:5� 2=�, respe
tively; the ratio is n = 8.as m(s)(r) = 12� Z 2�0 d' h�(r; �=2; ')i : (4.77)The �nite-size s
aling behavior of this surfa
e magnetization densities also follows from Eq. (4.75), ex
eptthat the exponent Xh is repla
ed by the surfa
e s
aling dimension X(s)h . Equations (4.75) and (4.67) were�tted to the Monte Carlo data, and a short-distan
e 
uto� was applied. The minimum system size in
ludedin the �t is L = 14. The result is X(s)h = 1:263(5), of whi
h the pre
ision is good in 
omparison with theknown value obtained by a di�erent method X(s)h = 1:259(15) [31℄.V. Conventional solid 
ylinderWe have also performed simulations inside a 
onventional solid 
ylinder with �xed and free boundary
onditions on both ends (u = 0 and u = nL) and the surfa
e, respe
tively. The system sizes are L =8; 10; 12; 16; 18 and n = 8. The radius of the 
ylinder is given by R = L� 1=2 in this 
ase, whi
h di�ers by afa
tor �=2 from that of the half sphero
ylinder with the same L. The surfa
e magnetization density m(s)(r)along the 
ylinder was sampled. We found, empiri
ally, that the de
ay of m(s)(r) along the 
onventional
ylinder is very similar to that on the half sphero
ylinder S1 � S+ � R1 with the same �nite size L. Anexample is shown in Fig. 4.18. Thus, we also �tted the Monte Carlo data on the basis of Eqs. (4.75) and(4.67), but with h = � +aLy
 . Here, the fa
tor � a

ounts for the di�eren
e of the surfa
e 
orrelation lengthalong the solid 
ylinder and that along the aforementioned half sphero
ylinder. The value of X(s)h is �xedat 1:263 as spe
i�ed earlier, and we obtain � = 1:585(9), very 
lose to �=2 ' 1:571.4.2.5 Dis
ussionWe have shown how one 
an simulate the Ising model in 
urved geometries by means of a 
ontinuous 
lusterMonte Carlo algorithm. We 
on�rm that the three-dimensional Ising model in 
onformally invariant. Thesatisfa
tory pre
ision of the numeri
al results presented in this work shows that, as in two dimensions,
onformal mappings also provide a useful tool to investigate 
riti
al phenomena (at least, if one takes theassumption of 
onformal invarian
e for granted). Further appli
ations to other models, su
h as the bondper
olation model, are also possible [32℄.We have used the same algorithm for Monte Carlo simulations of a system inside a 
onventional solid
ylinder. We found that the 
orresponding surfa
e 
orrelation length di�ers by a fa
tor 
lose to �=2 fromthat along a half sphero
ylinder. However, it is not obvious that this result 
an be supported by means ofa 
onformal transformation. 60
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5Conformal invarian
e: The per
olation model
We investigate the anisotropi
 limit of the bond-per
olation model in d dimensions, whi
h is equivalent witha (d� 1)-dimensional quantum q ! 1 Potts model. We formulate an eÆ
ient Monte Carlo method for thismodel. Its appli
ation shows that the anisotropi
 model �ts well with the per
olation universality 
lass in ddimensions. For three-dimensional re
tangular geometry, we determine the 
riti
al point as t
 = 8:6429(4),and determine the length ratio as �0 = 1:5844(3), whi
h relates the anisotropi
 limit of the per
olationmodel and its isotropi
 version. On this basis, we simulate asymptoti
ally isotropi
 
riti
al systems in several
urved geometries in
luding a spheroid and a sphero
ylinder. Using �nite-size s
aling and the assumption of
onformal invarian
e, we determine the bulk and surfa
e magneti
 exponents in two and three dimensions.They are in good agreement with the existing results. This 
on�rms that the per
olation model is 
onformallyvariant.5.1 Introdu
tionSin
e their introdu
tion in 1957 [1℄, per
olation problems have been studied extensively, and a variety ofappli
ations has also been reported (see, e.g., Refs. [2,3℄). Per
olation provides a simple pi
ture of a se
ond-order phase transition, and remains an a
tive resear
h subje
t [4{6℄. We illustrate the problem of thebond-per
olation on a regular latti
e. Between ea
h pair of latti
e sites, a bond is o

upied or empty witha probability p or 1 � p, respe
tively. Two sites 
onne
ted through a 
hain of o

upied bonds are said tobe in the same 
luster. Then, various questions 
an be asked 
on
erning the 
riti
al 
luster distributionand the per
olation probability et
. Su
h per
olation problems are now rather well understood; this 
an atleast partly attributed to the well-known relationship [7℄ between the bond-per
olation and the Potts model(for a review of the Potts model, see Ref. [8℄). In this way, the phase transition that o

urs in per
olationproblems 
an be des
ribed in the language of 
riti
al phenomena in statisti
al physi
s. As a 
onsequen
e,a 
onsiderable number of 
riti
al exponents has exa
tly been obtained in two dimensions. For instan
e, thethermal and magneti
 s
aling exponents are yt = 3=4 and yh = 91=48. These exponents 
an be 
al
ulatedfrom the Coulomb gas theory [9, 10℄ and are also predi
ted by the 
onformal �eld theory [11{13℄.Besides the above isotropi
 per
olation model, it is of interest to understand the behavior of anisotropi
systems in the per
olation theory. For instan
e, an anisotropi
 random per
olation model was demonstratedto be governed by new, random �xed points [14℄. In the present paper, we shall 
onsider the anisotropi
bond-per
olation model, whi
h is de�ned on a d-dimensional re
tangular latti
e with a bond probability p?within (d�1)-dimensional layers perpendi
ular to the z dire
tion, and with the probability pk = Rp? parallelto z. For R = 0, the system de
ouples into independent (d � 1)-dimensional layers, so that the per
olationproblem redu
es to (d � 1) dimensions. Models with a �nite and nonzero R have already re
eived someattention [15℄, and it was shown that they are within the same universality 
lass as the isotropi
 per
olationmodel in d dimensions. In the present paper, we shall fo
us on the limit R!1. In this anisotropi
 limit ofthe bond-per
olation model, the probability p? in the (d�1)-dimensional layers approa
hes 0 near 
riti
ality,63



and thus one 
an express p? and pk aspk (pz) = 1� � ; and p? = �=t (�! 0) ; (5.1)where t is a temperature-like parameter. When � is pre
isely zero, the system be
omes one-dimensionaland this per
olation problem is trivial. However, as we shall argue later, the anisotropi
 per
olation modelde�ned by Eq. (5.1) is equivalent with a quantum q ! 1 Potts model in (d� 1) dimensions, whi
h �ts in thed-dimensional per
olation universality 
lass.For the anisotropi
 model de�ned by Eq. (5.1), the 
orrelation length in the z dire
tion is of the order of1=�. In order to maintain the d-dimensional 
hara
ter of the system, the latti
e size in this dire
tion mustalso diverge as 1=�. Thus, we apply a res
aling z0 = z�, so that the 
orrelation length in the new unit andthe physi
al size remain approximately 
onstant. As � ! 0, the z0 dimension be
omes 
ontinuous, and werefer to the resulting 
ontinuous per
olation problem as the transverse per
olation model.Next, we formulate a Monte Carlo method for the transverse per
olation model. The numeri
al results
on�rm that the transverse per
olation model belongs to the same universality 
lass as the 
onventionalper
olation problem on a dis
rete latti
e.Another purpose of the present paper is the appli
ation of 
onformal mappings in 
urved geometries.In two dimensions, the theory of 
onformal invarian
e has yielded substantial results [11{13℄. Conformalmappings yield relations between 
riti
al systems in di�erent geometries, and thus provide useful tools forthe determination of universal properties of 
riti
al models. A well-known example is Cardy's mappingbetween an in�nite plane and the surfa
e of an in�nitely long 
ylinder [16℄. Sin
e a 
ylinder is pseudo-one-dimensional, its numeri
al investigation is simpler than that of a two-dimensional plane. Cardy's mapping
an be generalized to any number of spatial dimensions, and in three dimensions it transforms an in�nitespa
e R3 into a pseudo-one-dimensional geometry S2 � R. However, the nonzero 
urvature of the geometryS2 � R poses a serious obsta
le for numeri
al simulations.In appli
ations to the Ising model, this problem was solved re
ently in Refs. [17{19℄. The solution makesuse of the Hamiltonian limit of the latti
e Ising model, whi
h renders one of the latti
e dire
tions 
ontinuous.Thus, one 
an perform Monte Carlo simulations in 
urved geometries, su
h as the surfa
e of a sphere S1�S1in two dimensions and the 
ylinder-like geometry S2�R1 in three dimensions. It was reported [17,18℄ that,in three dimensions, the Ising model is 
onformally invariant and the 
orresponding estimations of 
riti
alexponents are 
ompatible with existing results. In Ref. [17℄ the three-dimensional geometry S2 � R1 wasnamed a sphero
ylinder. Here, we simulate the transverse per
olation model in 
urved geometries, whi
hprovides another appli
ation of 
onformal mappings to investigate bulk and surfa
e 
riti
al phenomena.5.2 Models and algorithms5.2.1 Quantum transverse q-state Potts modelsThe partition sum of the q = 1 Potts model is just a 
onstant, so that its equivalen
e to the bond-per
olationmodel has to be formulated [7℄ in terms of geometri
 properties of the random-
luster representation of thePotts model in the limit q ! 1. To explore the anisotropi
 limit of the bond-per
olation model de�ned byEq. (5.1), we start with the Hamiltonian limit of an Ising model on a N�M re
tangular latti
e with periodi
boundary 
onditions H=kBT = �Xi;j [Kx si;j si+1;j +Ky si;j si;j+1℄ : (5.2)The spins 
an assume the values si;j = �1, the integer 
oordinates i and j label the latti
e sites, and Kxand Ky are the 
oupling strengths in the x and y dire
tions, respe
tively. The 
riti
al line of this model isgiven by [20℄ sinh(2Kx) sinh(2Ky) = 1 : (5.3)Thus, in the anisotropi
 limit �! 0, the 
ouplings 
an be written asKx = �=t ; and exp(�2Ky) = � ; (�! 0) ; (5.4)64



where t parametrizes the temperature; the 
riti
al point is t
 = 1.The Hamiltonian limit of the latti
e Ising model de�ned by Eqs. (5.2) and (5.4) 
an be exa
tly mappedonto the one-dimensional quantum Ising model [21℄. This equivalen
e was formulated in the reverse dire
tionby Suzuki [22℄, using the Trotter formula [23℄. The Hamiltonian of the quantum Ising 
hain readsHqm = �Xi (�zi�zi+1 + t�xi ) ; (5.5)where �z and �x are the Pauli matri
es for the z and x spin 
omponents, respe
tively. The HamiltonianHqm
ontains non
ommuting operators and represents a quantum system with nearest-neighbor Ising intera
tions,and the temperature-like parameter t a
ts as a transverse �eld in the x dire
tion.This equivalen
e 
an be readily generalized to spatial dimensions d > 2, i.e., the Hamiltonian limit of ad-dimensional latti
e Ising model is equivalent with the transverse Ising model in (d� 1) dimensions.In
luding the transverse Ising model as a spe
ial 
ase, one 
an de�ne a general quantum q-state Pottsmodel [24, 25℄. For instan
e, the Hamiltonian of a quantum q-state Potts 
hain (with integer q) 
an bewritten as Hqm = �Xi q�1Xk=0 ( S ki S q�ki+1 + tR ki ) ; (5.6)where S and R are q � q matri
es satisfying the Z(q) algebra[Si;Sj ℄ = [Ri;Rj ℄ = [Si;Rj ℄ = 0 ; i 6= j ;SjRj = exp(i2�=q)RjSj ; and R qj = S qj = I : (5.7)For the 
ase of q = 2, the operators S and R redu
e to the Pauli matri
es �z and �x, respe
tively, andEq. (5.6) simpli�es to Eq. (5.5). The eigenspe
tra of these 
riti
al quantum q-state Potts 
hains (0 < q � 4)with free and periodi
 boundary 
onditions have already been explored in Refs. [24, 25℄, and it was shownthat, indeed, they share the same 
riti
al exponents as the 
orresponding 
lassi
al q-state Potts models intwo dimensions.For noninteger q or the limiting 
ase q ! 1, equations (5.6) and (5.7) are not suitable to des
ribe theHamiltonian limit of the q-state Potts model. In this 
ase, one 
an instead apply the transfer matrix of therandom 
luster model [26℄. The evaluation of the partition fun
tion uses the transfer matrix asZ = Xs(1);s(2);���hs(1)jT js(2)i � � � hs(y)jT js(y+1)i � � � ; (5.8)where s(y) is the bond 
on�guration at the yth row and the transfer is in the dire
tion of the strong 
oupling.For the anisotropi
 bond per
olation model des
ribed by Eq. (5.1), the transfer matrix readshs(y)jT js(y+1)i = I � � Xx [B(y;y+1)x � 1tC(y)x;x+1℄ +O(�2) ; (5.9)where I is the unit matrix. The symbol B(y;y+1)x represents that, between the yth and (y + 1) rows, a`broken' bond o

urs at the site x while the remaining bonds are o

upied, and C(y)x;x+1 means that only onebond exists between x and x+ 1 at the yth row. On
e q is not pre
isely equal to 1, the operators B and Cdo not 
ommute, and thus are quantum operators. For t << 1, most sites are 
onne
ted so that the systemis in an 'ordered' state; while for t >> 1, they are independent of ea
h other and the system is 'disordered'.A phase transition o

urs at t = 1.Therefore, we simply expe
t that the anisotropi
 limit of the bond per
olation model by Eq. (5.1) is withinthe same universality 
lass with the 
orresponding isotropi
 version. This will be demonstrated further bymeans of Monte Carlo simulations. 65



5.2.2 AlgorithmsWe 
onsider the anisotropi
 limit of the bond-per
olation model [Eq. (5.1)℄ on a N �M re
tangular latti
ewith periodi
 boundary 
onditions. The bond o

upation probabilities in the x and y dire
tions are p? andpk in Eq. (5.1), respe
tively. For su
h a system, the 
orrelation length in the y dire
tion is of order 1=�, asmentioned earlier. Thus, we have to take the latti
e size M proportional to 1=� while if N is kept 
onstant.Sin
e 
omputer memories are �nite, it may not immediately be obvious how a Monte Carlo algorithm 
anbe formulated.Let us start with the pro
edures 
ommonly used for the 
luster de
omposition of the isotropi
 version ofthe per
olation model with the bond probability p. First, one introdu
es a bond variable bij for ea
h bondbetween nearest-neighboring sites i and j. O

upied and empty bonds are represented by bij = 1 and 0,respe
tively. For ea
h bond variable bij , one draws a uniformly distributed random number r (0 � r < 1),and sets bij = 1 if r < p. The whole latti
e is then de
omposed into 
lusters of 
onne
ted sites throughthe o

upied bonds. These per
olation 
lusters are analogous to the Swendsen-Wang 
lusters in the Pottsmodel [27℄.For the anisotropi
 limit of the per
olation model de�ned by Eq. (5.1), the bond probability in the ydire
tion is py = 1� �, so that one has to draw of order 1=� random numbers r before �nding an empty bondby = 0. This indi
ates that empty bonds are sparsely distributed in the y dire
tion. In the x dire
tion, thebond probability px / �, so that the task to �nd the next o

upied bond bx = 1 again involves of order 1=�random numbers.A more eÆ
ient pro
edure follows [28℄. Counting the bond variables sequentially in the y dire
tion, thedistribution Py(m) � (1� py)pm�1y expresses the probability that (m� 1) subsequent bond variables bij areequal to 1, while the mth variable is zero, i.e., an empty bond o

urs at mth position. Thus, the 
umulativedistribution 
an be written as Cy(m) = mXj=1 Py(j) = 1� pmy = 1� (1� �)m ; (5.10)whi
h represents the probability that an empty bond bj = 0 o

urs in the range 1 � j � m. Thus, by mappingthe distribution 0 < Cy(m) < 1 on the uniform distribution of the random number r, one transforms r intoan integer m m = 1 + [ln(r)= ln(1� �)℄ ; (5.11)where 0 < r < 1 and the square bra
kets denote the integer part of the number in between. The numberm represents the distan
e of the 
urrent empty bond to the one to be generated. Thus, onlyone randomnumber is needed to generate the next empty bond in the y dire
tion.In the x dire
tion, one instead uses the distribution Px(n) � px(1 � px)n�1 to express the probabilitythat (n� 1) subsequent variables bij are zero, while the nth bond variable is 1. We mention that, althoughthe bond variables are now in the x dire
tion, they are still 
ounted sequentially along the y dire
tion.Analogously, one 
an transform a uniformly distributed random number r into an integer nn = 1 + [ln(r)= ln(1� px)℄ (px = �=t) : (5.12)The average number of the y-dimensional empty bonds and that of the o

upied bonds in the x dire
tionare m � Z 10 dr ln(r)= ln(1� �) / 1� ; and n / t� ; (5.13)respe
tively. Now, suppose the N �M square latti
e represents a 
ondu
ting network, and the o

upiedbonds a
t as the elementary 
ondu
ting units. A

ording to Eq. (5.13), in the y dire
tion, the 
urrent isallowed to 
ow along the 
ondu
ting `lines' until it o

asionally en
ounters an empty bond, to whi
h we shallrefer as a barrier with an in�nitely large resistan
e. In the x dire
tion, sin
e most bonds are empty, the areasbetween the neighboring 
ondu
ting lines 
an be 
onsidered to be �lled with an insulating material, and theele
tri
al 
urrent has to rely on sparsely distributed `bridges' (o

upied bonds). If a potential di�eren
e is66



x

y’Figure 5.1: The anisotropi
 limit of the per
olation model after the res
aling y0 = �y. The horizontal linesrepresent `
ondu
ting' lines in the y0 dire
tion, and the bla
k bars are barriers with an in�nitelylarge resistan
e on these lines; the verti
al lines serve as `bridges' between neighboring lines. Oneper
olating 
luster is shown by solid lines. This �gure shows that the 
ondu
ting lines on theleft- and right-hand sides of a barrier may belong to the same 
luster, but in that 
ase they arevia a detour. If this barrier is removed, the 
luster size will remain un
hanged.applied to the up and down sides of the N�M network, the 
orresponding 
ondu
tivity of this network thendepends on the relative abundan
e of the bridges and barriers. A

ording to Eq. (5.13), the average totalnumbers of the barriers and the bonds are NM� and NM�=t, respe
tively, so that they remain �nite in thelimit � ! 0. Thus, the 
ondu
tivity of the network depends only on the temperature-like parameter t. Fort >> 1, the sizes of 
ondu
ting 
lusters are small, and the up and down sides are dis
onne
ted, so that no
urrent exists; if the temperature t is suÆ
iently low, a per
olating 
luster whi
h 
arries 
urrent may o

urin the system.Although one now needs only a �nite number of random numbers, one still has to solve the problem ofthe in�nite size M in the y dire
tion, re
e
ted by the divergen
e of m and n. This 
an be done by res
alingthe y dire
tion as y0 = �y, so that the physi
al size M 0 = M� remains approximately a 
onstant. In thelimit �! 0, the y dimension be
omes 
ontinuous, i.e., there is an in�nite number of latti
e sites per physi
allength unit, and the N �M square latti
e redu
es to N lines of physi
al length M 0. Meanwhile, Eqs. (5.11)and (5.12) 
hange intom0 = �m = � ln(r) ; and n0 = �n = �t ln(r) ; (�! 0) ; (5.14)whi
h indi
ates that the average distan
es of the barriers and bridges, m0 and n0, are now of the order of 1.As a result, after the res
aling y0 = y�, the anisotropi
 limit of the per
olation model de�ned by Eq. (5.1)redu
es to a 
ontinuous per
olation model, to whi
h we shall refer as the transverse per
olation model. Atypi
al 
on�guration is shown in Fig. 5.1, where the horizontal lines are the aforementioned 
ondu
ting linesand the verti
al lines are the bridges in the transverse dire
tion. The bla
k bars represent the barriers,through whi
h the 
urrent 
annot penetrate. For 
larity, in Fig. 5.1 we have outlined a 
luster by means ofsolid lines.Conventional Monte Carlo methods for dis
rete latti
e per
olation problems store the latti
e sites simplyin an array. For the transverse per
olation, this is no longer appli
able, sin
e one of the dimensions is now
ontinuous. However, as mentioned above, the total number of the barriers and bridges still remains �nite,so that one 
an make use of their positions as the dynami
al variables. On this basis, a pro
edure for the
luster de
omposition and the sampling is formulated as:First, randomly distribute barriers and bridges over the N �M 0 geometry. Starting from an arbitrarily
hosen origin, the positions of the barriers and the bridges are sequentially generated by Eq. (5.14). Forinstan
e, suppose the 
urrent Monte Carlo step arrives at the ith barrier, whose position is stored as (xi; yi).Here, the 
oordinates (xi; yi) represent that the ith barrier sits at the position yi of the xith line. Then,67



one draws a random number 0 < r < 1 and evaluates m0 by Eq. (5.14). If yi + m0 � M 0, the (i + 1)thbarrier is pla
ed at the same line as the ith one, and thus xi+1 = xi and yi+1 = yi + m0; otherwise ifM 0 < yi +m0 � 2M 0, the (i+ 1)th barrier is at (xi + 1; yi +m0 �M 0); � � � . Repeat this pro
edure until thewhole N �M 0 geometry is visited. The same pro
edure is applied to the distribution of the bridges, and thetotal numbers of the barriers and the bridges are denoted as Bl and Br, respe
tively.Se
ond, sample the sizes of the 
lusters. After the �rst step, the geometry is now de
omposed into 
lusterswhi
h 
onsists of 
ondu
ting lines 
onne
ted through the bridges. The size of the ith 
luster is the sum ofthe lengths of the 
ondu
ting lines in it, whi
h 
an be 
al
ulated from the positions of the barriers stored inthe 
omputer memory. If the size of the ithe 
luster is denoted as Si, a quantity resembling the magneti
sus
eptibility � and the 
orresponding Binder-like ratio Q [29℄ 
an be de�ned as� = 1V hXi S2i i � V hm2i ; and Q = hPi S2i i2h(PS2i )2i ; (5.15)where V � NM 0 is the volume of the system.During the �rst step of the above algorithm, the fun
tion, ln r, has to be frequently 
arried out, whi
hde
reases somewhat the eÆ
ien
y of the algorithm. A di�erent pro
edure 
an be applied as follows. FromEq. (5.14), the total number of the barriers and bridges is as hBli = V=hm0i = V and hBri = V=hn0i = V=t,respe
tively. Instead of allowing the 
u
tuations of Bl and Br during Monte Carlo simulations, one may�x them at their expe
tation values V and V=t, respe
tively. Sin
e these barriers and bridges are uniformlydistributed, their positions 
an now be independently 
al
ulated as li = rV with the random number 0 <r < 1. Then, the 
oordinates of the ith barrier is given by xi = [li=M 0℄ + 1 and yi = li � (xi � 1)M 0, wherethe square bra
kets represent the integer part. Here, the word `independently' means that the position ofthe (i+ 1)th barrier does not depend on that of the ith one.However, in this way, sin
e the 
u
tuations of the energy-like quantities Bl and Br are suppressed, anexternal 
onstraint is e�e
tively imposed on the system. A question arises how this energy-like 
onstrainta�e
ts the 
riti
al behavior of the system. For the per
olation model, sin
e the thermal s
aling exponentsatis�es 2yt � d < 0, it 
an be shown [30℄ that the leading s
aling behavior of the 
riti
al system is notmodi�ed. But new 
orre
tions to s
aling 
an arise due to this 
onstraint. To avoid this 
ompli
ation, westill use Eq. (5.14) to generate positions of the barriers and bridges in the present paper.5.3 Simulations in 
at geometries5.3.1 Two dimensionsFor the anisotropi
 limit of the per
olation model in the two-dimensional re
tangular geometry, the dualityargument yields that the 
riti
al point is t
 = 1, sin
e the 
riti
al bond probabilities satisfy px
 + py
 = 1.Furthermore, the thermal and magneti
 
riti
al exponents are exa
tly known, as mentioned earlier. Thus,this model provides a good test 
ase for the Monte Carlo algorithm des
ribed above and the universality ofthe transverse per
olation model.The simulations used a re
tangular geometry of L lines of length L in the range 6 � L � 32. Periodi
boundary 
onditions were applied, and the dimensionless Binder-like ratio Q and the sus
eptibility-likequantity � de�ned in Eq. (5.15) were sampled. Near the 
riti
al point, the numeri
al data of Q were�tted [31℄ by Q(t; L) = q0 + 4Xk=1 qi(t� t
)kLkyt + b1Ly1 + b2Ly2 + 
1(t� t
)Lyt+y1 : (5.16)The terms with y1 = �2 and y2 = �3 a

ount for 
orre
tions to s
aling. The �t with yt = 3=4 yieldst
 = 0:9994(5), in good agreement with the exa
t result t
 = 1. If t
 is kept �xed at 1 while yt is left free,we have yt = 0:752(3) � 3=4 [9{13℄. Moreover, we �tted the Monte Carlo data of � at t
 = 1 by the formula�(t
) = x0 + L2yh�2(b0 + b1Ly1 + b2Ly2) ; (5.17)from whi
h we obtain yh = 0:1043(4) � 5=48 [9{13℄. 68
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tFigure 5.2: The Binder-like ratio Q vs the temperature-like parameter t for the transverse per
olation modelon the L2 � L re
tangular geometry. The system size L is 12 (+), 16 (�), 20 (�), 24 (
), and28 (�), respe
tively.5.3.2 Three dimensionsAs mentioned earlier, three-dimensional per
olation models have been investigated extensively [2{6℄. Themost a

urate results are provided by Monte Carlo simulations. For instan
e, for the isotropi
 bond-per
olation model on the simple-
ubi
 latti
e, the per
olation threshold is estimated [4℄ as p
 = 0:248 821 6(5);the thermal and magneti
 exponents are reported [4℄ as yt = 1:13(2) and yh = 2:523(4), respe
tively.Using the aforementioned Monte Carlo algorithm, we simulated the transverse per
olation model on thethree-dimensional re
tangular geometry: L2 lines of length L originating from the L�L square latti
e. Thesystem sizes are in the range 6 � L � 40, periodi
 boundary 
onditions were applied, and the quantities Qand � in Eq. (5.15) were sampled. Part of the data for Q is shown in Fig. 5.2, indi
ating that the 
riti
al pointis lo
ated at t
 � 8:64. The 
lean interse
tion of these lines suggests that 
orre
tions to s
aling are rathersmall. Equation (5.16) was �tted to the data of Q, with y1 and y2 taken as �1:14 and �2 [4℄, respe
tively.For yt �xed at 1:13, we obtain t
 = 8:6428(2); if yt is left free, we �nd yt = 1:135(8) and t
 = 8:6429(4), withthe error margin twi
e the standard deviation.Moreover, the data for � were �tted by [31℄� = x0 + x1(t� t
) + x2(t� t
)2 + L2yh�2[ 4Xk=1 ak(t� t
)kLkyt+ b1Ly1 + b2Ly2 + 
1(t� t
)Lyt+y1 ℄ ; (5.18)where the terms with xi (i = 0; 1; 2) arise from the regular part of the free energy. With the thermal exponentyt = 1:13, we obtain yh = 2:519(1), where the estimated error margin in
ludes the un
ertainty of yt.These investigations 
on�rm the 
orre
tness of the Monte Carlo algorithm, and moreover 
on�rm that thetransverse per
olation model belongs to the same universality 
lass as the isotropi
 version of the per
olationmodel on dis
rete latti
es.5.3.3 Restoration of isotropyAlthough the transverse per
olation model de�ned by Eq. (5.1) is intrinsi
ally anisotropi
, the 
orrelationlengths in the longitudinal and transverse dire
tions are of the same order. This 
an be demonstrated bythe approximate isotropy of a 
luster in Fig. 5.3. This arises from the res
aling z0 = �z in the longitudinaldire
tion. In fa
t, one 
an asymptoti
ally restore the isotropy by 
hoosing an appropriate res
aling fa
tor,i.e., z0 = �z=�0 with �0 a 
onstant. The value of �0 is important in the present investigation, sin
e we arealso interested in appli
ations of 
onformal mappings, whi
h rely on isotropy.69



Figure 5.3: A 
luster for the transverse per
olation model on the L � L re
tangular geometry with freeboundary 
onditions and L = 100.In two dimensions, we simulated the transverse per
olation model pre
isely at t
 = 1 on the L � Lre
tangular geometry. The system sizes and the length ratio were taken as in the range 6 � L � 64 and0:65 � � � 0:80, respe
tively. Free boundary 
onditions were applied both in the x and y dire
tions. Duringthe Monte Carlo simulations, we sampled the per
olation probabilities in both dire
tions, denoted as Px andPy . A

ordingly, we de�ne a dimensionless ratior(�;L) = �PxPy� : (5.19)Thus, the aforementioned isotropy means r(�0; L) = 1. Taking into a

ount �nite-size e�e
ts, we �tted thedata of r(�;L) byr(�;L) = 1 + a1(�� �0) + a2(�� �0)2 + � � �+ b1Ly1 + b2Ly2 + 
1Ly1(�� �0) : (5.20)The terms with y1 and y2 des
ribe 
orre
tions to s
aling, due to small-s
ale deviations from isotropy of thetransverse per
olation model. The numeri
al data 
an be su

essfully des
ribed by Eq. (5.20) with y1 = �2and y3 = �3, and the �t yields �0 = 0:76978(7), in agreement with the number 4=3p3 [25℄.Similarly, for the three-dimensional re
tangular geometry L2�L with free boundary 
onditions, one 
ande�ne the ratio r(�;L) on the basis of the per
olation probabilities in the dis
rete and 
ontinuous dire
tions.Simulations were performed at the aforementioned estimated 
riti
al point t
 = 8:6429(4), and the systemsizes were taken in the range 6 � L � 40. The data of r(�;L) were �tted by Eq. (5.20) with yi = �1:14 [4℄.After a 
uto� for small system sizes L � 10, the �t yields �0 = 1:5844(4).5.4 Conformal invarian
eIn this se
tion, we summarize the 
onformal mappings and the 
orresponding transformations of the pair
orrelation fun
tions involved in the present paper. Most of these mappings have already been derived inRefs [13, 16{18℄. 70



Sphero
ylinder. In two dimensions, one may parametrize the in�nite plane as a 
omplex numberz = x + iy, Cardy's well-known mapping [13, 16℄ is then expressed as z0 = R ln z. The geometry z0 
anbe interpreted as the surfa
e of an in�nitely long 
ylinder S1 � R1 with a radius R. This mapping 
an begeneralized to any number of dimensions. For instan
e, in spheri
al 
oordinates (r; �; �), Cardy's mappingin three dimensions reads (r; �; �) = (eu=R; �; �) ; (�1 < u <1) (5.21)with R > 0 a free parameter. The geometry des
ribed by the variables (u; �; �) has a line element asd s2 = du2 +R2(d �2 + sin2 � d�2) ; (0 � � � �; 0 � � < 2�) (5.22)and thus 
an by re
ognized as the extension of a sphere S2 into another dimension R. In Ref. [17℄, thispseudo-one-dimensional geometry S2 � R was named a sphero
ylinder.In the in�nite 
at spa
e R3 , a 
riti
al two-point 
orrelation fun
tion g(r) behaves asg(r)R3 / r�2X ; (r >> 0) (5.23)where X is the appropriate s
aling dimension. Under the 
onformal mapping (5.23), this algebrai
 de
ay[Eq. (5.23)℄ is 
ovariantly transformed intog(u)S2�R / R�2X(eu=2R � e�u=2R)�2X ; (5.24)where u > 0 is the distan
e between a pair of points on the sphero
ylinder, (u0; �; �) and (u0 + u; �; �).For u >> 0, the 
orrelation fun
tion de
ays exponentially: g(u) / R�2Xe�Xu=R � R�2Xe�u=� , so that the
orrelation length along the sphero
ylinder is equal to � = R=X .Interior of a sphere. In two dimensions, the 
omplex fun
tion z0 = (z� i)=(z+ i) [13℄ maps the in�niteplane onto itself, and meanwhile transforms the semi-in�nite plane R � R+ into the interior of a unit 
ir
le.In fa
t, su
h a mapping 
an be generalized to spatial dimensions d > 2. It then reads~r 0=r0 2 = ~r=r2 + Î=2 ; (5.25)with Î an arbitrary �xed unit ve
tor. Under Eq. (5.25), the in�nite 
at spa
e Rd is mapped onto itself,and the plane Î � ~r = 0, whi
h 
orresponds to a spheri
al surfa
e with an in�nite radius, is 
onformallytransformed into the the surfa
e of a d-dimensional unit sphere with the 
enter at Î . The half spa
es Î �~r > 0and Î � ~r < 0 are transformed into the interior and exterior of this unit sphere, respe
tively.On the basis of the 
onformal transformation (5.25), it 
an be shown [13, 32℄ that, in the interior of asphere with free or �xed boundary 
onditions, the pro�le of an operator h i follows fromh (r)i / R�X [1� (r=R)2℄�X ; (5.26)where R is the radius of the sphere.Furthermore, Eq. (5.21) transforms the interior of a unit sphere Sd into a semi-in�nite sphero
ylinderSd�1�R+ , with an end at u = 0. Thus, a 
onformal mapping between the semi-in�nite 
at spa
e Rd�1�R+and the half sphero
ylinder Sd�1 � R+ is established, and the pro�le (5.26) is 
ovariantly transformed intoh (u)i / R�X(eu=2R � e�u=2R)�2X ; (5.27)whi
h di�ers from Eq. (5.24) only by a fa
tor R�X .Surfa
e of a sphere. By rotating an ellipse about the minor or major axis, one obtains an oblateor a prolate spheroid, respe
tively. In three-dimensional Cartesian 
oordinates (x; y; z), these spheroids arede�ned by x2a2 + y2a2 + z2b2 ; (a; b > 0) (5.28)71



where a and b are the equatorial and the polar radii, respe
tively. Spe
ial 
ases of the spheroids in
lude thesurfa
e of an in�nitely long 
ylinder, of a sphere, and of a 
at dis
. The latter obje
t is rea
hed in the limitof an oblate spheroid b ! 0. It is already known [18℄ that a 
onformal transformation exists between thein�nite plane R2 and the surfa
e of a spheroid. For simpli
ity, we here only introdu
e the mappings of thein�nite plane on the surfa
e of a sphere and on that of a 
at dis
. Further, we generalize su
h 
onformalmappings to spatial dimensions d > 2.The transformation between an in�nite plane R2 and the surfa
e of a sphere S2 
an be graphi
allyunderstood as follows. A sphere with radius R is pla
ed on the top of an in�nite plane, i.e., only the south`pole' of the sphere tou
hes the plane. From the north `pole', one draws an arbitrary line, su
h that thisline penetrates through the sphere at ~R and interse
ts with the plane at ~r. The 
onformal transformationis simply obtained by setting an one-to-one 
orresponden
e between the point ~r and ~R. If one expressesthe plane in polar 
oordinates (r; �), while parametrizes the surfa
e of the sphere in spheri
al 
oordinates(r = R; �; �), the transformation reads (r; �) = (2R 
ot �2 ; �) : (5.29)A

ording to Eqs. (5.23) and (5.29), the pair 
orrelation fun
tion g(~R1; ~R2) on the sphere follows fromg(~R1; ~R2) / 2�xR�2X [1� sin �1 sin �2 
os(�1 � �2)� 
os �1 
os �2℄�X= j~R1 � ~R2j�2X ; (5.30)whi
h, interestingly, has the same form as that in the in�nite plane des
ribed by Eq. (5.23).Appli
ation of Eq. (5.29) to the interior of a unit 
ir
le leads to the half sphere S�S+, so that a 
onformaltransformation between the semi-in�nite plane R � R+ and the half surfa
e of a sphere is established.A

ordingly, the pro�le of an operator in the geometry S � S+ behaves ash (~R)i / (R 
os �)�X : (5.31)In spheri
al 
oordinates (r;
), where 
 is a set of angular variables spe
ifying the surfa
e of a d-dimensional sphere, the line element of the 
at spa
e Rd 
an be written asd s2 = d r2 + r2d
2 : (5.32)In three dimension, one simply has d
2 = d �2+ sin2 � d�2. On this basis, one 
an express the line elementof the (d+ 1)-dimensional spa
e Rd+1 asd s0 2 = d r0 2 + r0 2(d �0 2 + sin2 �0 d
2) : (5.33)It is now obvious that, for d > 2, the generalization of Eq. (5.29) reads(r; 
) = (2R 
ot �02 ; 
) ; with r0 = R : (5.34)Therefore, Eq. (5.34) transforms an in�nite spa
e Rd into the surfa
e of a (d+1)-dimensional sphere Sd, onwhi
h the pair 
orrelation fun
tion follows from Eq. (5.30).Surfa
e of a hyper-dis
. As mentioned earlier, the dis
 geometry is obtained in the limit b! 0 of an oblatespheroid, 
omposed of the interiors of two 
ir
les 
onne
ted at their perimeters. This 
an be generalized tod > 2, and the surfa
e of a hyper-dis
 
onsists of the interiors of two d-dimensional spheres with the surfa
esof both spheres sewn together. Then, the 
onformal mapping between the spa
e Rd and the surfa
e of thehyper-dis
 reads � (r; 
) = (r0=R; 
) ; (0 � r < 1 ; r0 � R : positive fa
e)(r; 
) = (R=r0; 
) ; (0 � r < 1 ; r0 � R : negative fa
e) : (5.35)The �rst derivative of the mapping formula (5.35) is dis
rete at the edge of the hyper-dis
 (r0 = R). For apair of points on the same fa
e of the hyper-dis
, ~r1 0 and ~r2 0, the 
orrelation fun
tion has the same form asthat in the in�nite spa
e Rd , i.e., g(~r1 0~r2 0) / j~r1 0 � ~r2 0j�2X .72
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Figure 5.4: Example of transverse per
olation model on the interior of a 
ir
le.5.5 Simulations in 
urved geometriesFor spatial dimensions d > 2, 
onformal mappings normally lead to a 
urved spa
e or a geometry with
urved boundaries. Even in two dimensions, 
urved geometries, su
h as the surfa
e of a sphere, 
an also beobtained from 
onformal transformations. The nonzero 
urvature of these geometries poses a serious problemfor numeri
al appli
ations of 
onformal mappings, sin
e they defy dis
retizations into regular latti
es. As a
onsequen
e, the validity of Cardy's mapping was veri�ed only for the spe
ial 
ase of the spheri
al model [33℄.Re
ently, for the 
ase of the Ising model, this diÆ
ulty was avoided by making use of the Hamiltonian limitof the Ising model [17, 18℄, whi
h renders one of the dimensions 
ontinuous. Sin
e the aforementionedtransverse per
olation model also has one 
ontinuous dimension, we here provide further appli
ations of
onformal mappings to both the bulk and surfa
e 
riti
ality.5.5.1 Monte Carlo methods in 
urved geometriesAs an example, we sket
h a pro
edure for 
luster de
omposition of the interior of a 
ir
le. First, one dividesthe geometry into L 
on
entri
 
ir
les, with the Lth 
ir
le pre
isely at the edge (Fig. 5.4). The lo
ationof the kth 
ir
le reads rk = k � 12 , with the 
orresponding 
ir
umferen
e 
k = �(2k � 1). Then, let the
ontinuous longitudinal dimension of the transverse per
olation model be the � dire
tion, so that those
on
entri
 
ir
les just represent the 
ondu
ting lines mentioned above. Then, a

ording to Eq. (5.14), onegenerates and uniformly distributes barriers at the 
on
entri
 
ir
les. We mention that, at the kth 
ir
le, theaverage number of the barriers is 
ontrolled by the length of its perimeter. The distribution of bridges followsan analogous way, but the total number of the bridges between the kth and (k+1)th 
ir
les (1 � k � L� 1)is now governed by the 
ir
umferen
e of the 
ir
le in the middle. Furthermore, the diameter of the �rst 
ir
leis 1, and thus bridges 
an exhibit through the 
enter, 
onne
ting di�erent parts of the �rst 
ir
le. A typi
al
on�guration is shown in Fig. 5.4, where the bridges are denoted as the dashed lines.Similarly, the `latti
e' stru
ture on a sphere S2 
an be represented by L uniformly distributed 
ir
les withradii as 
hosen above. The transverse and longitudinal dimensions are the � and � dire
tions, respe
tively.The lo
ation of the kth 
ir
le is �k = (k� 12 )�=L, and its 
ir
umferen
e is 
k = 2L sin �k. Thus, the radius ofthe sphere is R = L=�. Analogously, the number of the barriers at the kth 
ir
le is dominated by the lengthof its perimeter, while that of the bridges is governed by the 
ir
umferen
e of the 
ir
le in the middle of thekth and (k + 1)th ones.On a mi
ros
opi
 s
ale, the latti
e stru
ture on a sphere or the interior of a 
ir
le is the same as thaton a 
at plane, i.e., both of them are obtained in the anisotropi
 limit of the square latti
e. Thus, oneexpe
ts that the 
riti
al point is still t
 = 1. However, a global e�e
t may arise due to the fa
t that the73
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ollapse of the quantity P2(�; L) for the transverse per
olation model on the sphere. Thesystem sizes are 8(+), 16(�), 24(�), 32(
), and 40(�).nonzero 
urvature 
annot be fully a

ounted for by 
ir
les with varying radius. This has been investigatedin Ref. [18℄, and it was argued that su
h a global e�e
t 
an be des
ribed by a 
orre
tion term proportional toLyt�2. Sin
e the two- and three-dimensional per
olation models have yt < 2, this e�e
t vanishes as L!1.It is now obvious that, in three dimensions, the sphero
ylinder S2 �R 
an be obtained by extending theaforementioned latti
e stru
ture of a sphere into another dimension. Meanwhile, in order to approximatethe pseudo-one-dimensional geometry of the sphero
ylinder, the size of the R dire
tion should be taken asnL with a suÆ
iently large integer n.5.5.2 Numeri
al resultsWith the Monte Carlo algorithms des
ribed above, we are now able to simulate the transverse per
olationmodel in the following 
urved geometries in two and three dimensions.Surfa
e of a sphere. The system sizes were taken in the range 8 � L � 48, with L the number ofthe 
ir
les on the sphere. The simulations o

ur pre
isely at the 
riti
al point t
 = 1, and the res
alinglength ratio was set at �0 = 0:76978, su
h that the isotropy of the transverse per
olation is asymptoti
allyrestored. We sampled the pair 
onne
tivity P2(�) of the points (�; �) and (�; �� �) on the same 
ir
le. Forboth points in the same 
luster, we say P2 = 1; otherwise P2 = 0. A

ording to Eq. (5.30), the 
onne
tivitybehaves as hP2(�)i / (L sin �)�2Xh with Xh the magneti
 s
aling dimension, graphi
ally shown in Fig. 5.5.The good quality of the data 
ollapse for di�erent system sizes (Fig. 5.5) indi
ates that 
orre
tions to s
alingare relatively small. The data for P2 were �tted byhP2(�)i = (L sin �)�2Xh+
Ly
 [a0 + a2Ly
 + a3(L sin �)y
 + � � � ℄ ; (5.36)where the exponent y
 = yt�2 = �5=4, as explained above. For �nite systems, the Hamiltonian may deviatefrom that at the �xed point, and we a

ount for this by the terms with 
oeÆ
ients 
 and a2. Furthermore,we also in
lude a term with a3, des
ribing the inhomogeneity of a �nite sphere. We found that the numeri
aldata for L � 12 are su

essfully explained by Eq. (5.36), and the term 
Ly
 
annot be well observed. The�t with 
 = 0 yields Xh = 0:10418(4), in good agreement with the exa
t result Xh = 5=48 = 0:104167 � � � .Interior of a 
ir
le. For the Ising model, the geometry inside a 
ir
le 
an be approximated [34℄ bydrawing a 
ir
le on the square latti
e. Appli
ations of free or �xed boundary 
onditions are realized byremoving or freezing the spins outside the 
ir
le, respe
tively. However, the symmetry along the � dire
tionis broken in this way, and thus irregular �nite-size e�e
ts arise. The aforementioned Monte Carlo algorithmavoids this diÆ
ulty. The systems sizes were taken in the range 6 � L � 48, and �xed boundary 
onditionswere imposed: the whole edge is set within the same 
luster. The fra
tion of the kth 
ir
le in this 
luster P1(r)74
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uFigure 5.6: Exponential de
ay of P1(u) along the sphero
ylinder for the transverse per
olation model. Thesystem size is L = 14 and n = 8.was sampled. The numeri
al data of P1(r) were �tted by Eq. (5.26) but with additional terms a

ountingfor 
orre
tions to s
aling. We obtain Xh = 0:10413(4) � 5=48.Sphero
ylinder S2 � R. The systems were taken as L = 5; 7; � � � ; 21, and the �nite-size in the Rdire
tion was set as nL = 8L. Fixed boundary 
onditions were imposed at both ends u = 0 and u = 8L.The simulations were performed at the estimated 
riti
al point t
 = 8:6429, and the length res
aling ratio was�xed at �0 = 1:5844. The quantity P1(u) was sampled at the `equators' only, in order to avoid inhomogeneityon �nite spheres. The behavior of P1(u) follows from Eq. (5.27), de
aying exponentially for u >> 0. This isdemonstrated in Fig. 5.6. The 
urved positions at the right-hand-side arise be
ause �xed boundary 
onditionswere applied at both ends, so that the 
orrelations P1(u) build up over two distan
es u and 8L� u.As dis
ussed above, there is a 
orre
tion / Ly
 in �nite systems, due to the dis
retization of the �dire
tion. Compared to the irrelevant s
aling exponent yi = �1:14 in three dimensions, the 
orre
tion withthe exponent y
 = yt � 2 = �0:87 is expe
ted to dominate over that with yi. Taking into a

ount thesee�e
ts, Eq. (5.27) yieldsP1(u; L) = L�X [Y (u) + Y (8L� u)℄(a0 + a1Ly
 + a2Lyi + a3L�2) ; (5.37)with the fun
tion Y (u) = (euX=2R � e�uX=2R)�2X ; (X = Xh + 
Ly
) (5.38)where the radius of the spheres is R = L� as mentioned earlier.Equations (5.37) and (5.38) were �tted to the Monte Carlo data of P1(u). The �t yields Xh = 0:479(1),whi
h is in agreement with the existing estimation yh = 2:523(4) [4℄ and with our earlier determinationyh = 2:519(1) on the L2 � L re
tangular geometry.Half sphero
ylinder S � S+ � R. As an example of the appli
ations of 
onformal mappings to surfa
e
riti
ality, we simulated the transverse per
olation model on the half sphero
ylinder S�S+�R. The systemsizes were taken as 6; 8; � � � ; 24, and n = 8. The �xed and free boundary 
onditions were imposed on theends of the sphero
ylinder and the equators, respe
tively. The quantity P1(u) was sampled. Analogously,the numeri
al data of P1(u) were �tted by Eqs.(5.37) and (5.38), but X = Xhs + 
Ly
 , where Xhs isnow the surfa
e magneti
 s
aling dimension. After a 
uto� for small system sizes L � 10, the �t yieldsXhs = 0:975(4), in good agreement with the existing results Xhs = 0:96(5) [35℄ and Xhs = 0:970(6) [36℄.
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5.6 Dis
ussionWe de�ne a 
ontinuous per
olation model: the transverse per
olation model. This model is obtained byapplying an in�nite res
ale fa
tor to the longitudinal dire
tion of the anisotropi
 limit of the bond per
olationmodel, and is equivalent with the quantum transverse q ! 1 Potts model. We formulate and apply an eÆ
ientMonte Carlo method, and 
on�rm that the transverse per
olation model belongs to the same universality
lass as the 
onventional per
olation problem on dis
rete latti
es. For the two-dimensional re
tangulargeometry, the 
riti
al point is exa
tly available as t
 = 1, and that in the three-dimensional re
tangulargeometry is determined as t
 = 8:6429(4). Furthermore, we restore the isotropy asymptoti
ally by requiringthat the 
orrelation lengths in all Cartesian dire
tions are identi
al to ea
h other.Moreover, the property that the longitudinal dire
tion is 
ontinuous enables simulations of the transverseper
olation model in 
urved geometries. The numeri
al data are analyzed by �nite-size s
aling a

ording tothe predi
tions of the theory of 
onformal invarian
e. It is shown that, in 
urved geometries, the predi
tionsof 
onformal invarian
e are a

urately satis�ed. On the other hand, assuming 
onformal invarian
e, outmethod provides a powerful tool to investigate bulk and surfa
e 
riti
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6Criti
al phenomena under energy-like and magneti
 
on-straints
We present a Monte Carlo study of several 
riti
al and tri
riti
al systems in two dimensions under two typesof 
onstraint. The systems in
lude Baxter's hard-square and hard-hexagon latti
e gases, the Blume-Capelmodel, and three- and four-state Potts models with va
an
ies. The �rst type of 
onstraint is energy-likeand �xes the number of parti
les or va
an
ies. We �nd that su
h 
onstraints a�e
t the leading �nite-size-s
aling properties of energy-like quantities, while the e�e
t on magneti
 quantities is restri
ted to 
orre
tionterms. The se
ond type of 
onstraint applies to the magnetization, and appears to suppress the �nite-sizedivergen
es of a quantity that normally s
ales as the magneti
 sus
eptibility.In an attempt to explain the observed �nite-size s
aling properties, we make use of the well-known Fisherrenormalization me
hanism. However, we do not always �nd a satisfa
tory agreement with our numeri
al re-sults for 
onstrained 
riti
al systems. For instan
e, for most energy-like 
onstraints, the exponents des
ribingthe �nite-size dependen
e of the spe
i�
 heat are twi
e the expe
ted values.We also sample spe
i�
-heat-like and sus
eptibility-like quantities on the basis of the 
u
tuations of thelong-wavelength Fourier 
omponents of the energy and magnetization densities of 
onstrained systems. Their�nite-size s
aling behavior resembles that of the spe
i�
 heat and the sus
eptibility of un
onstrained systemsrespe
tively.6.1 Introdu
tionIn experiments or in simulations, systems undergoing a phase transition may be subje
t to a 
onstraint. Forinstan
e, the total number of va
an
ies in the Blume-Capel (BC) model [1,2℄ 
an be kept 
onstant. Likewise,in Baxter's hard-square latti
e gas [3℄, the total number of parti
les may be �xed.Criti
al phenomena in these `annealed' 
onstrained systems have been of interest for de
ades. Inves-tigations date ba
k to 1965 when the exa
tly solvable Syozi model [4℄, a dilute spin- 12 Ising model, wasintrodu
ed. Syozi found that the 
riti
al indi
es �0, �0 and 
0 are related to the standard exponents of theIsing model as �0 = ��=(1� �) ; �0 = �=(1� �) ; 
0 = 
=(1� �) ; � � � : (6.1)Fisher suggested [5℄ that the relations (6.1) are not spe
i�
 to the Syozi model, but are satis�ed byequilibrium models with a divergent spe
i�
 heat (� > 0) in general. Sin
e then, Fisher's renormalized
riti
al exponents have gained 
onsiderable a

eptan
e. As a result of Eq. (6.1), the singularity of the
onstrained 
riti
al spe
i�
 heat C assumes the form of a �nite 
usp instead of being divergent. For themarginal 
ase of a logarithmi
 divergen
e (� = 0), Fisher showed that C � C0 / 1= ln t where t is thetemperature-like distan
e to 
riti
ality. 79



Later, more general theories were formulated [6℄ for 
onstrained systems, in
luding a theory of tri
riti
al
onstrained phenomena. Su
h restri
tions 
an, besides the total number of va
an
ies, also involve the volumeor pressure et
. It was 
on
luded [6,7℄ that, depending on the type or strength of the 
onstraint, a 
ontinuoustransition may get Fisher-renormalized, remain un
hanged, or be
ome �rst-order. The spe
ial point wherethe transition remains un
hanged 
orresponds to a `tri
riti
al' point [6℄, of whi
h the 
riti
al singularity isthe same as that of the un
onstrained 
riti
al system. This theory was tested on the Baker-Essam model [8℄,an exa
tly solvable 
ompressible Ising model.On the basis of a renormalization-type analysis using a generalized Landau-Ginzburg-Wilson Hamiltonianand the �-expansion te
hnique, Imry and 
oworkers found four distin
t �xed points [9℄. These are thetri
riti
al Ising (T ) and 
riti
al Ising (I) �xed points for un
onstrained systems, and the renormalizedtri
riti
al (RT ) Ising and the renormalized Ising (RI) 
riti
al �xed point for 
onstrained systems. In threedimensions, T and RT 
orrespond to Gaussian and spheri
al �xed points, respe
tively [9℄. The exponentrelations between these �xed points are: �RI = ��I=(1 � �I) and �RT = ��T =(1 � �T ), in agreementwith Eq. (6.1). These relations have, for the 3D 
ase, been used to explain experimental data for 3He-4Hemixtures [10℄.Sin
e the upper 
riti
al dimensionality of Ising-like tri
riti
al systems is three, one may expe
t thatmean-�eld theory yields a qualitatively 
orre
t s
enario for su
h systems. We have thus performed an exa
t
al
ulation for the tri
riti
al mean-�eld Blume-Capel (BC) model [11℄ with a large but �nite system size.We �nd that the �nite-size s
aling behavior of the 
onstrained version of this model 
orresponds with the
lassi
al (mean-�eld) 
riti
al Ising model.Although 
onsiderable work has already been done for 
riti
al 
onstrained behavior, further investigationsstill seem appropriate. The reasons are as follows. First, although Fisher's renormalized exponents have beenused extensively, few reports have been published about the �nite-size dependen
e of 
onstrained systems.Se
ond, it is not obvious how tri
riti
al systems behave under the 
onstraint. Third, it remains to beinvestigated how the 
onstraint a�e
ts the long-wavelength 
u
tuations of quantities whose 
riti
al behavioris 
onserved or renormalized. Sin
e the 
onstraint does not eliminate the spatial 
u
tuations, one mightexpe
t that the unrenormalized behavior will persist.Our investigations in
lude several 
riti
al and tri
riti
al 2D models: Baxter's hard square (HS) andhard-hexagon (HH) latti
e gases [3℄, the Blume-Capel (BC) model, and Potts models with va
an
ies. Alsoin
luded is the tri
riti
al BC model in three dimensions. The total number of va
an
ies (or parti
les) is�xed at the 
riti
al expe
tation value, while they still 
an move freely over the latti
e. These models arede�ned in Se
tion II. Here the problem arises what sort of Monte Carlo algorithm applies to su
h 
onstrainedsystems. The Swendsen-Wang and Wol� methods are not suitable or suÆ
ient, sin
e they do not operateon the zero spins or latti
e-gas parti
les. In prin
iple, one 
an apply a parti
le-
onserving Kawasaki-likeMonte Carlo algorithm. But this method su�ers from serious 
riti
al slowing down, so that su
h simulationsare limited to small system sizes. In the present work, we realize two types of 
onstraints by means of aparti
le-
onserving geometri
 
luster algorithm [12℄, whi
h moreover suppresses 
riti
al slowing down. ThisMonte Carlo method moves 
riti
al 
lusters of spins (both zero and nonzero) or parti
les over the latti
ein a

ordan
e with the Boltzmann distribution. It also imposes a magneti
 
onstraint: it 
onserves themagnetization. The latter 
onstraint 
an be eliminated by in
luding Wol� 
luster steps. The results for theenergy-like and for the magneti
 
onstraint are presented in Se
tions III and IV, respe
tively. Se
tion Vpresents an analyti
 approa
h to �nite-size s
aling in the presen
e of a 
onstraint. A brief dis
ussion andoverview is given in Se
tion VI.6.2 Models and sampled quantitiesAll simulations of the models des
ribed below used L� L systems with periodi
 boundary 
onditions.
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6.2.1 The Blume-Capel modelThe Hamiltonian of the BC model [1, 2℄ on the square latti
e isH=kBT = �KXhnni sisj +DXk s2k ; (6.2)where the sum hnni is over nearest-neighbor pairs, and the spins assume values s = 0 or �1. We refer tozero spins s = 0 as va
an
ies. The parameter D a
ts as the 
hemi
al potential of the va
an
ies. In theK�D parameter spa
e, the BC model has a 
riti
al line K
(D) and a tri
riti
al point (Kt; Dt). The 
riti
albehavior along the line K
(D) is Ising-like, and thus the magneti
, thermal and irrelevant s
aling exponentsare yh = 15=8, yt = 1, and yi = �2, respe
tively. At tri
riti
ality, the BC model has di�erent exponents,namely [13℄ yh = 77=40, y(1)t = 9=5, y(2)t = 1=5, and yi = �1. Using a sparse transfer-matrix method and�nite-size s
aling, we lo
ate the tri
riti
al point at Kt = 1:6431759 (1) and Dt = 3:2301797 (2). This resultis based on the requirement that two types of 
orrelation lengths (magneti
 and energy-like) simultaneouslyrea
h their theoreti
al values. The 
orresponding va
an
y density is �t = 0:4549506(2). Analogously, wedetermine an arbitrary 
riti
al point at K
 = 1 as D
 = 1:70271780(2), with �
 = 0:3495830(1). This pointappears to be suÆ
iently far from the tri
riti
al point; 
rossover e�e
ts were not seen in the s
aling analysisof the transfer-matrix results.6.2.2 Baxter's hard-
ore latti
e gasesWe 
onsider a latti
e gas on the square latti
e de�ned by the HamiltonianH = �KXhnni�i�j � J XfNEg�k�l �MX[SE℄�m�n + �Xk �k ; (6.3)where � = 0; 1 represents the absen
e and the presen
e of a parti
le, respe
tively, and the 
hemi
al potentialof parti
les is denoted as �. The sums labeled as fNEg and [SE℄ are over se
ond-neighbor pairs (diagonalsof the elementary fa
es) along the (x; y) = (1; 1) and (1;�1) dire
tions, respe
tively. We fo
us on twoexa
tly solved 
ases [3℄ in whi
h the nearest-neighbor intera
tion K ! �1, i.e., the parti
les are `hard'and nearest-neighbor sites 
annot be o

upied simultaneously. The �rst 
ase is Baxter's HS model atJt = Mt = ln(3 +p5) and �t = ln[8(1 +p5)℄ whi
h is known [14℄ to belong to the same universality 
lassas the tri
riti
al BC model. The 
orresponding va
an
y density is �t = (5 +p5)=10.In the se
ond 
ase, one of the diagonal 
ouplings be
omes in�nitely repulsive while the other one is zero:M ! �1 and J = 0. This leads to Baxter's hard-hexagon (HH) latti
e gas, whi
h has a 
riti
al point at�
 = ln[(11+p5)=2℄ that belongs to the three-state Potts universality 
lass. The 
riti
al exponents are givenby yh = 28=15, yt = 6=5 and yi = �4=5 [3, 15℄. The 
riti
al va
an
y density is again �
 = (5 +p5)=10 [3℄.6.2.3 Two-dimensional Potts model with va
an
iesWe 
onsider the Potts model on the square latti
e de�ned by the HamiltonianH=kBT = �KXhi;ji Æ�i;�j (1� Æ�i;0)�DXk Æ�k;0 (� = 0; 1; � � � ; q) : (6.4)Here, the sum h i is over all nearest-neighbor sites, and the site is o

upied by a Potts spin with � = 1; � � � ; qor by a va
an
y � = 0. Nonzero 
ouplings K o

ur only between equal Potts spins, i.e., spins with �k 6= 0.The abundan
e of the va
an
ies is 
ontrolled by the 
hemi
al potential D. For q < 4 the phase diagram inthe (K;D) plane resembles that of the Blume-Capel model: a tri
riti
al point o

urs between the 
ontinuousand the �rst-order range of the line of phase transitions. By means of a transfer-matrix method, we havelo
ated the q = 3 tri
riti
al point at K = 1:649913 (5), D = 3:152173 (1). The 
orresponding density of theva
an
ies is � = 0:34572 (5). 81



For the generi
 q = 4 Potts 
ase, analyses of the 
riti
al s
aling behavior are hampered by logarithmi

orre
tions indu
ed by the marginally irrelevant dilution �eld asso
iated with D. We suppress this dilution�eld by requiring that transfer-matrix results for both the temperature and the magneti
 exponent lead tothe exa
tly known values. Extrapolation of �nite-size estimates leads to our estimate of the q = 4 
riti
al�xed point in the (K;D) plane as K = 1:45790 (1), D = 2:47844 (2). The 
orresponding density of theva
an
ies is � = 0:21207 (2).6.2.4 Data sampledSeveral quantities were sampled during the Monte Carlo simulations, in
luding the order parameter and thedensities of the energy and the parti
les or va
an
ies when allowed to 
u
tuate. The magneti
 sus
eptibilityis obtained from the 
u
tuations of the order parameter m as � = L2hm2i. For the BC model, m is just themagnetization density. For the HH model, we de�ne m2 = 12 h(�1 � �2)2 + (�2 � �3)2 + (�3 � �1)2i in termsof the va
an
y densities �1, �2 and �3 on the three sublatti
es.Analogously, we have m2 = h(�1 � �2)2i for the HS model. A universal Binder ratio [16℄ is then de�nedas Q = hm2i2=hm4i. An energy-like density e was sampled as the nearest-neighbor 
orrelation for the BCmodel, and as the next-nearest-neighbor 
orrelation for the HH and HS latti
e gases. On this basis, a spe
i�
-heat-like quantity (equal to the se
ond derivative of the redu
ed free energy to the parameter 
onjugate toe) is de�ned as C = Ld(he2i � hei2), where d is the dimensionality of the latti
e.In addition we also sample quantities des
ribing the response of the model to spatially inhomogeneoustemperature or magneti
 �elds. Just as C and � they 
an be expressed in terms of 
u
tuations of the
onjugate densities. For these 
onjugate densities we use the long-wavelength Fourier 
omponents of theenergy or magnetization.First, we de�ne a sus
eptibility-like quantity �F on the basis of the 
u
tuations of the spatial orderparameter distribution m(x; y). The Fourier 
omponents of m(x; y) for systems of size L aremkx;ky = 1L2 Z L0 dx dy m(x; y) exp[2�i(xkx + yky)=L℄ ; (6.5)Obviously, the 
onventional sus
eptibility is just � = L2hm2i = L2hm20;0i, and the quantities mkx;ky , forkx 6= 0 or ky 6= 0, represent spatial inhomogeneity of m. Thus, We de�ne�F = L2hm�1;0m1;0 +m0;�1m0;1i: (6.6)We shall refer to �F as the stru
ture fa
tor of the sus
eptibility.Analogously, we de�ne a spe
i�
-heat-like stru
ture fa
tor as CF = L2he�1;0e1;0+e0;�1e0;1i, where ekx;kydenotes the Fourier 
omponents of the energy density e.6.3 Results for energy-like 
onstraintsThe following simulations are performed exa
tly at the 
riti
al or tri
riti
al point, unless spe
i�ed otherwise.A

ording to �nite-size s
aling, for un
onstrained 
riti
al systems, we expe
t, apart from �nite-size
orre
tions, e� e0 / Lyt�d ; � / L2yh�d ; and C � C0 / L2yt�d ; (6.7)where e0 and C0 arise from the analyti
 part of free energy. The s
aling behavior of � and C 
an beobtained by integration over spa
e of the magneti
 and energy-energy 
orrelation fun
tions respe
tively.These 
orrelation fun
tions depend on the distan
e r as r2yh�2d and r2yt�2d respe
tively. Sin
e �F and CFare determined by integrals with the same s
aling properties, we expe
t �nite-size behavior similar to � andC respe
tively.As a test, we simulated the un
onstrained HH model (yt = 6=5 and yh = 28=15). In order to allowtransitions between parti
les and va
an
ies, Metropolis sweeps were applied in addition to geometri
 
lustersteps [12℄. System sizes were taken as L = 6; 9; � � � ; 24. Results are shown in Fig. 6.1, whi
h 
on�rmsEq. (6.7) and our expe
tation that C and CF behave similarly.82
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L-6/5Figure 6.2: Energy-like quantity e for the 
onstrained HH model versus L�6=5.6.3.1 Hard-hexagon latti
e gasFor the 
onstrained HH model, only geometri
 
luster steps [12℄ were used. In prin
iple, the total numberof the va
an
ies should be taken as V
 = L2�
, with �
 = (5+p5)=10. For �nite systems, however, V
 is notan integer. Therefore simulations were performed at two numbers [V
℄ and [V
+1℄ where bra
kets [ ℄ denotethe integer part. Data at V
 are obtained by linear interpolation between [V
℄ and [V
 + 1℄. System sizeswere 
hosen as 33 values ranging from 9 to 960. Examples of the Monte Carlo results are shown in following�gures.Figures 6.2-6.4 suggest that e�e0 / L�6=5, C�C0 / L�4=5, and CF / L2=5. Compared to un
onstrainedsystems, the behavior of e and C is 
onsiderably modi�ed. In parti
ular, the spe
i�
-heat-like quantity Capproa
hes a 
onstant C0 when L in
reases. The stru
ture fa
tor CF remains, however, similar to that inthe un
onstrained system. It is also observed that the magneti
 sus
eptibilities, as expe
ted, approximatelybehave as � / �F / L2yh�d = L26=15 (not shown).Although the leading behavior of sus
eptibility-like quantities remains un
hanged, �nite-size 
orre
tionsdue to the 
onstraint appear. An example of su
h a quantity is the dimensionless Binder ratio (Fig. 6.5),indi
ating an asso
iated exponent y1 = �2=5.To be more spe
i�
, we �tted the formula Qm = Qm
 + aLy1 to the numeri
al data a

ording to theleast-squares 
riterion. Applying a 
uto� for small system sizes L � 15 we found that Qm
 = 0:7892(2),a = 0:1025(9) and y1 = �0:397(5). Sin
e the irrelevant exponent yi = �4=5 is 
learly di�erent, it appearsthat new 
orre
tions are introdu
ed by the 
onstraint.83
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i�
-heat-like quantity C for the 
onstrained 
riti
al BC model versus 1=(lnL)2.6.3.2 Criti
al Blume-Capel modelThe 
riti
al BC model in two dimensions is a marginal 
ase (� = 0). The simulations used a 
ombinationof Wol� and geometri
 
luster steps in order to leave the magnetization free and impose the 
onstraint thatthe number of va
an
ies is �xed. System sizes were 
hosen as 53 values ranging from 4 to 400. Under the
onstraint, the 
riti
al stru
ture fa
tor approximately behaves as CF �CF0 / lnL (Fig. 6.6), and the s
alingbehavior of � and �F is about / L2yh�d = L7=4 (not shown). This s
enario is analogous to that for the
onstrained HH model, i.e., the 
riti
al behavior of CF , � and �F is not a�e
ted by the 
onstraint.The Monte Carlo data for C and e are shown in Figs. 6.7 and 6.8, respe
tively. The suggest thatC � C0 / 1=(lnL)2, and that a single power law is not suÆ
ient to des
ribe the behavior of the energy-likequantity e.The Binder ratio Qm is shown in Fig. 6.9 as 1= lnL, the approximate linearity at left-hand-side indi
atesthat the leading �nite-size 
orre
tion may be of a logarithmi
 form. Compared to the irrelevant exponentyi = �2 for un
onstrained BC model, su
h a 
orre
tion may arise from the 
onstraint.6.3.3 Dilute q = 4 Potts modelThe simulations took pla
e at the `�xed point' where the logarithmi
 
orre
tions are absent. The va
an
ydensities were kept �xed, and square systems were 
hosen in the range 12 � L � 280. The numeri
al datafor of C were �tted by C = 
0 + 
1L�1 + 
2L�3=2 + 
3L�2 ; (6.8)85
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The amplitude 
3 was not signi�
ant. A two-parameter �t led to 
1 = �2:1(5) and 
2 = �23(1). It appearsthat the absolute value of 
2 is mu
h larger than that of 
1.6.4 Results for magneti
 
onstraintsIn the presen
e of a 
onstraint on the magnetization we still want to determine a sus
eptibility-like quantity.For the Ising model we may 
onsider a lo
al quantity de�ned asm0 � L�d Xtriang sisjsk (6.9)where the sum is over three-spin produ
ts. These three spins are pi
ked up from those on elementaryunits su
h as the elementary triangles and squares for the triangular and square latti
es, respe
tively. Thisquantity has the same symmetry property as the magnetization m, i.e., it 
hanges sign when all spins areinverted. Its 
u
tuations are obviously redu
ed when the 
onstraint m = 0 is imposed. We thus de�ne thesus
eptibility-like quantity �0 � Ldhm02i (6.10)In the more general 
ontext of the Potts model the magnetization is determined by the densities �i de�nedas �i � L�dXk Æ�k;i (6.11)where i = 1; 2; � � � ; q denotes the Potts state. The normal Potts magneti
 sus
eptibility � is de�ned as� = Ldhm2i = 12Ld qXi=1 qXj=i+1h(�i � �j)2i (6.12)Sin
e the terms in the double sum do not depend on i and j one 
an just take the term i = 1 and j = 2. Inthe presen
e of the 
onstraint �i = 1=q we may thus de�ne the magnetization-like quantitym0 = L�dXi;j;k(Æ�i;1 � Æ�i;2)(Æ�j ;1 � Æ�j ;2)(Æ�k;1 � Æ�k;2) ; (6.13)and the sus
eptibility-like quantity �0 = Ldhm02i (6.14)Without this 
onstraint, the �nite-size s
aling behavior of �0 and � is governed by the same exponents. Thiswas numeri
ally veri�ed for several models.6.4.1 Criti
al Ising modelThe model is de�ned on the triangular latti
e, and the system sizes were 
hosen in the range 8 � L � 660.The simulations took pla
e at the 
riti
al point K
 = 14 ln 3 and at zero magnetization. The results for thesus
eptibility-like quantity �0 are shown in Fig. 6.10. The data for �0 were �tted by the formula�0 = 
0 + Lp(a0 + a1Ly1) ; (6.15)a

ording to the least-squares 
riterion. The exponent p governs the leading singular behavior of �0, andthe term with y1 purportedly a

ounts for �nite-size 
orre
tions. We thus obtain p = �1:008(12) andy1 = �1:05(6).6.4.2 Criti
al q = 3 Potts modelThe model is also de�ned on the triangular latti
e, with system sizes ranging from 9 to 480. The densitiesof the three types of Potts variables were 
hosen equal and �xed. The data for �0 (not shown) were �ttedby Eq. (6.15), whi
h led to the results p = �0:77(5) and y1 = �0:51(20).87
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eptibility-like quantity �0 for the tri
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al Blume-Capel model versus L1=4.6.4.3 Tri
riti
al Blume-Capel modelThe simulations took pla
e at the tri
riti
al point as given above , at zero magnetization and with theva
an
y density �xed at its tri
riti
al value, using square latti
es with sizes in the range 8 � L � 360. Theresults for �0 are shown in Fig. 6.11. The �ts yielded that p = 0:253(2) and y1 = �1:96(6).6.4.4 Tri
riti
al q = 3 Potts modelThe simulations used the model on the square latti
e, and took pla
e at the tri
riti
al point as given above.The va
an
y density was �xed at its tri
riti
al value, with the three Potts densities equal and �xed. Thesystem sizes were in the range 10 � L � 480. The three spins in the produ
t sampled for �0 were 
hosenin the 
orners of ea
h elementary square. The data are shown in Fig. 6.12. The �t yields p = 0:126(2) andy1 = �2:0(3).6.4.5 Dilute q = 4 Potts modelThe simulations took pla
e at the `�xed point' where the logarithmi
 
orre
tions are absent. The va
an
yand Potts densities were kept �xed. Square systems were 
hosen in the range 12 � L � 480. The data for�0 are shown in Fig. 6.13. The �ts by Eq. (6.15) yields p = 0:224(4) and y1 = �1:8(1).
88



0

0.5

1

1.5

2

2.5

1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.1 2.2

χ’

L1/8Figure 6.12: Sus
eptibility-like quantity �0 for the tri
riti
al q = 3 Potts model versus L1=8.

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55

χ’

L-1/4Figure 6.13: Sus
eptibility-like quantity �0 for the tri
riti
al q = 4 Potts model versus L�1=4.
89



6.5 Finite-size s
aling in the presen
e of a 
onstraintAs mentioned above, 
onstrained 
riti
al behavior in in�nite systems is explained by Fisher's renormalizedexponents [5℄. On this basis, we perform some 
al
ulations for �nite-size 
onstrained 
riti
al behavior.6.5.1 Energy-like 
onstraintIn the language of the Potts model with va
an
ies [Eq .(6.4)℄, the s
aling behavior near the 
riti
al temper-ature of the redu
ed free energy density f = lnZ isf(t; L) = L�dfs(tLyt ; 1) + fa(D) ; (6.16)where t is the thermal s
aling �eld, and fs and fa are the singular and analyti
 parts of the free energyrespe
tively. Here, we have negle
ted the irrelevant �eld in fs. The analyti
 part fa is expressed in D whi
hparametrizes the 
riti
al line. The dependen
e of fa on the distan
e t to the 
riti
al line is negle
ted. The
onstraint is thus �(D;K;L) = �f=�D = 
onstant where t is expressed in K and D. Solving this equationyields the path in the (D;K) plane. The solution 
an be written as t / (K�K
)Ld�2yt if 2yt�d > 0, whereK
 is the value of K where the path 
rosses the 
riti
al line at t = 0. Substitution of t in Eq. (6.16) leads tof(t0; L) = Ldfs(t0Ld�yt ; 1) + fa(t0) : (6.17)where we have parametrized the distan
e to the 
riti
al point as t0 � K �K
. On this basis, we expe
t thatthe leading 
riti
al singularities for 
onstrained systems aree� e0 / L�yt ; and C � C0 / Ld�2yt + aL2(d�2yt) : (6.18)Equation (6.18) indi
ates that e � e0 / L�6=5 and C � C0 / L�2=5 + aL�4=5 for the 
onstrained HHmodel, and that e � e0 / L�1 and C � C0 / 1= lnL + a=(lnL)2 for the 
onstrained 
riti
al BC model.From a 
omparison with the numeri
al data in Se
. II, we �nd that the energy density is satisfa
torilyexplained. However, for the spe
i�
 heat, the amplitude of the leading term Ld�2yt is very small if notabsent. This result, as well as the aforementioned new �nite-size 
orre
tions, suggests that some morere
e
tion is desirable.Our �nite-size s
aling results for models with an energy-like 
onstraint, and our expe
tation on the basisof the Fisher renormalization s
heme, are listed in Tab. I.Tab. I: Summary of �nite-size s
aling properties in 
riti
al and tri
riti
al models under the energy-like
onstraint that the number of va
an
ies or parti
les is 
onserved.model quantity found expe
tedhard-hexagon e L�6=5 L�6=5hard-hexagon C � C0 L�4=5 L�2=5hard-hexagon CF L2=5 L2=5
rit. 2D Blume-Capel e L�1 (?) L�1
rit. 2D Blume-Capel C � C0 1=(lnL)2 1= lnL
rit. 2D Blume-Capel Q 1= lnL(?) L�2dilute 2D q = 4 Potts C � C0 L�1 (?) L�16.5.2 Magneti
 
onstraintFor Ising models we require m = 0, and for Potts models �1 = �2 = � � � = �q . Without this 
onstraint,the 
riti
al behavior of � and �0 as de�ned above is governed by the same magneti
 exponent. Under the
onstraint, � is 
ompletely suppressed, and we may thus raise the question about the s
aling behavior of�0. We �rst note that � and �0 
an be written as the se
ond derivatives of the free energy density f with90



respe
t to �elds H and H 0 respe
tively. The se
ond derivative of f to H 0 will depend on the `path' des
ribedby the 
onstrained system in the H;H 0 plane. To �nd this path, we �rst assume that the magneti
 s
aling�eld h and a subleading �eld h0 
an be expressed as linear 
ombinations of H and H 0, and that h is the onlyrelevant �eld governing the magneti
 
riti
al behavior. Following Fisher's pro
edure applied earlier in the
ase of thermal behavior, we �nd that the path is determined by balan
ing the 
ontributions of the singularand analyti
 parts of f to the magnetization so that the magneti
 s
aling dimension yh is renormalized asy0h = Xh = 2 � yh. Thus, for 
riti
al systems with a zero magnetization, one would expe
t �0 / Lp1 withp1 = 2y0h � 2 = 2� 2yh. We refer to this as `Me
hanism One'. It does not mat
h our results given in Se
tionIV: the observed singularities appear to be stronger.We therefore tentatively assume instead that there is another relevant magneti
 s
aling �eld that plays arole in the Potts model. For the exponents asso
iated with su
h s
aling �elds see e.g. Ref. [13℄. Normally, thisse
ond �eld is 
onsidered redundant. The value of the se
ond magneti
 dimension is X 0h = (g+1)(10�g)=8g,with q = 2 + 2 
os(g�=2), where 2 � g < 4 applies to the 
riti
al bran
h of the Potts model, and 4 � g � 6to the tri
riti
al bran
h. The parameter g is 
alled the 
oupling 
onstant of the Coulomb gas. If the se
ond�eld is not redundant, it will lead to a singularity a

ording to �0 / Lp2 with p2 = 2� 2X 0h. We will referto this as `Me
hanism Two'. Comparison with Se
tion IV tells us that it does not apply, as expe
ted forredundant operators.Next we investigate a third me
hanism based on the nonlinearity of the s
aling �elds. In parti
ularwe expe
t that quadrati
 terms in the magneti
 �eld may 
ontribute to the temperature �eld t, i.e., t =K �K
 + wH2 + w0H 02 + � � � . The s
aling equation for the free energy then be
omesf(t; � � � ; L) = L�df(Lyt(K �K
 + wH2 + w0H 0 2 + � � � ); � � � ; 1) + � � � (6.19)The se
ond derivative to H 0 will thus pi
k up 
ontributions proportional to Lp3 with p3 = yt � d. For the
ase of the 
riti
al q = 2 and q = 3 Potts models, this agrees well with the numeri
al results, but not so forq = 4 and the tri
riti
al systems.A fourth me
hanism is similar to the se
ond, but with a se
ond magneti
 dimension assumed to bedes
ribed by the Ka
 formula [17, 18℄Xp;q = [p(m+ 1)� qm℄2 � 12m(m+ 1) ; (1 � p < m ; 1 � q � p) (6.20)for rotationally invariant operators. For the tri
riti
al Blume-Capel model (m = 4), it is known [19℄ thatXh2 = X2;1 = 7=8 is a se
ond relevant magneti
 dimension. We assume that this 
an be generalized to thewhole tri
riti
al bran
h of the Potts model su
h thatXh2 = Xm=2;m=2�1 = (9m2 � 4)=8m(m+ 1) : (6.21)Thus, one has Xh2 = 20=21 and 9=8 for the tri
riti
al q = 3 (m = 6)and the q = 4 (m ! 1) Potts model,respe
tively. Substitution of g = 4(m+ 1)=m in Eq. (6.21) yieldsXh2 = [36� (g � 4)2℄=8g ; (6.22)where g is the 
oupling 
onstant of the Coulomb gas. We simply assume that Eq. (6.22) also applies to the
riti
al bran
h of the Potts model, for whi
h g = 4m=(m + 1). Thus, one has Xh2 = X(m+3)=2;(m+1)=2 =(3m+ 5)(3m+ 1)=8m(m+ 1) for the 
riti
al Potts model. For m = 5, i.e., the q = 3 Potts model, its valueis Xh2 = X4;3 = 4=3. The 
ase m = 3 applies to the 
riti
al Ising and tri
riti
al q = 1 Potts models, whi
hhave Xh2 = X3;2 and X3=2;1=2, respe
tively. Apparently, the 
oordinates of these exponents do not o

ur inthe aforementioned Ka
 table (6.20), and the exponents may not be observable in thermodynami
 quantities.The predi
tions of this me
hanism (Me
hanism Four) agree satisfa
torily with the numeri
al results, ex
eptfor the q = 4 Potts model and the tri
riti
al q = 3 model.The �ts a

ording to the above four me
hanisms are summarized in Tab. II.91



Tab. II: Summary of �nite-size s
aling results a

ording to Me
hanisms 1-4 outlined above. In those 
ases where p does not well agree with asingle me
hanism, better agreement is obtained by 
ombining Me
hanisms 3 and 4.q model Xh1 Xh2 p p1 p2 p3 p42 
rit. Ising 1=8 7=6 �1:008(12) �7=4 �1=3 �1 |{3 
rit. q = 3 2=15 13=12 �0:77(5) �26=15 �1=6 �4=5 �2=34 q = 4 with va
. 1=8 15=16 �0:224(4) �7=4 1=8 �1=2 �1=43 tri
r. q = 3 2=21 20=21 0:126(2) �38=21 8=21 �2=7 2=212 tri
r. q = 2 3=40 3=4 0:253(2) �37=20 1=2 �1=5 1=4Tab. III: Results of �ts for several q-state Potts models with va
an
iesFit1 (p4, p3 �xed) Fit2 Fit3model a0 a1 a2 p4 p3 p4 p3
rit. q = 3 0:4198(4) �0:83(5) �1:08(7) �0:7(2) �4=5 (�xed) �2=3 (�xed) �0:7(2)q = 4 with va
. 2:55(3) �4:67(2) 0:78(3) �0:249(5) �1=2 (�xed) �1=4 (�xed) �0:49(8)tri
r. q = 3 �5:54(2) 4:40(2) 0:67(2) 0:094(5) �2=7 (�xed) 2=21 (�xed) �0:30(5)tri
r. Ising �2:26(1) 1:356(2) 0:12(2) 0:250(5) �1=5 (�xed) 1=4 (�xed) �0:2(2)92



Table II indi
ates that not all the numeri
al data 
an be explained by a single me
hanism. It is obvious,however, that more than one me
hanisms 
an simultaneously exist under the magneti
 
onstraint. Thus, we�tted the data for �0 by �0 = a0 + a1Lp4 + a2Lp3 + a3Lp4+yi ; (6.23)where the term with yi arises from the irrelevant thermal s
aling �eld. For the 
riti
al q = 3 Potts model,it is diÆ
ult to distinguish p3 = �4=5 from p4 = �2=3. However, if p3 and p4 are �xed and yi is set to�4=5, both amplitudes a1 and a2 are indeed well determined as a1 = �0:83(4) and a2 = �1:08(5). Forthe tri
riti
al Blume-Capel model, we also �xed p3 = �1=5 and p4 = 1=4 and obtained a1 = 1:356(3) anda2 = 0:12(2). If we leave p4 free and keep p3 �xed, we �nd p4 = 0:249(3), in agreement with the expe
tedvalue. However, if p3 is left free while p4 is �xed at 1=4, the error margin of p3 is as big as the value itself.This may be due to the following. First, the amplitude a2 is mu
h smaller than a1 as mentioned earlier.Se
ond, the exponent p3 = �1=5 is 
lose to 0 su
h that the term with a2 is diÆ
ult to distinguish from theba
kground 
ontribution a0. The �ts of �0 for the q = 3 and q = 4 Potts models, and for the q = 2 tri
riti
almodel, are summarized in Tab. III.6.6 Dis
ussionFrom our numeri
al results for several 
riti
al and tri
riti
al systems under an energy-like 
onstraint, weobserve that a) the leading s
aling behavior of sus
eptibility-like quantities remains the same as in un
on-strained systems; b) 
riti
al behavior of stru
ture fa
tors, a

ounting for spatial 
u
tuations, is also notin
uen
ed by su
h a global 
onstraint; 
) the s
aling behavior of energy-like quantities is modi�ed signi�-
antly; and d) strong �nite-size 
orre
tions arise due to the 
onstraint.On the basis of Fisher's theory, we have performed some analyti
al 
al
ulations, in order to 
omparewith our numeri
al results. We �nd that 
onstrained tri
riti
al phenomena 
an be des
ribed satisfa
torily.However, our understanding of 
onstrained 
riti
al phenomena appears to be insuÆ
ient: the numeri
alresults indi
ate that, for a number of models, the amplitude of the leading term in Eq. (6.18) is very smallif not absent.Our derivation of the 
onstrained �nite-size behavior does not provide us with an obvious reason whythe leading term should vanish. Moreover, it has been observed [20℄ that the e�e
tive renormalization ofthe 
onstrained spe
i�
 heat in experiments is not as strong as the theoreti
al predi
tion, Eq. (6.1). Thisdeviation from the expe
ted s
aling behavior is just in the opposite dire
tion.Furthermore, we have shown that, in 
omparison with un
onstrained systems, new �nite-size 
orre
tionsfor magneti
 quantities arise due to the energy-like 
onstraint. It appears that these 
orre
tions are nota

ounted for by the me
hanism des
ribed in Ref. [21℄. Thus, further investigation, in parti
ular a theoreti
alanalysis, seems desirable.Our results for the 
onstrained three-dimensional Blume-Capel model, while in agreement with the Fisherrenormalization s
heme, do not agree with the mean-�eld des
ription [11℄ of the 
onstrained model. Can weunderstand this? In the mean-�eld model, ea
h spin intera
ts equally with every other spin. The presen
eof va
an
ies only redu
es the number of Ising spins, leading to a smaller e�e
tive intera
tion. Thus, theva
an
y 
u
tuations are 
oupled to the Ising 
u
tuations. The stability 
riterion of the 
oupled 
u
tuationsdetermines the tri
riti
al point. The 
onstraint suppresses the 
u
tuations of the va
an
ies, and thus redu
esthe model to an `ordinary' mean-�eld Ising model. It is 
lear that tri
riti
al behavior is suppressed in the
onstrained mean-�eld model, but we �nd it puzzling that this result di�ers from that for the tri
riti
alBlume-Capel model in three dimensions, the upper 
riti
al dimensionality.For the magneti
 
onstraint, the situation seems more satisfa
tory than for the energy-like 
onstraints,but still involves assumptions that need further justi�
ation. For instan
e, our assumption for the value ofthe se
ond magneti
 s
aling dimension of the Potts model deserves more attention, sin
e no solid numeri
aleviden
e for this exponent is available, as far as we know.For us the most remarkable result obtained above is the �nite-size behavior of the 
onstrained spe
i�
heat, whi
h displays twi
e the expe
ted exponent. In an attempt to obtain a further 
lue, we have done an93
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riti
al Ising model at a 
onserved and nonzero mag-netization. This 
ase of a magneti
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7Constrained tri
riti
al Ising model in three dimensions
Using the Wol� and geometri
 
luster Monte Carlo methods, we investigate the tri
riti
al Blume-Capelmodel in three dimensions. Sin
e these simulations 
onserve the number of va
an
ies and thus e�e
tivelyintrodu
e a 
onstraint, we generalize the Fisher renormalization for 
onstrained 
riti
al behavior to tri
riti
alsystems. We observe that, indeed, the tri
riti
al behavior is signi�
antly modi�ed under this 
onstraint. Forinstan
e, at tri
riti
ality, the spe
i�
 heat has only a �nite 
usp and the Binder ratio assumes a di�erent valuefrom that in un
onstrained systems. Sin
e three is the upper tri
riti
al dimensionality of Ising systems, weexpe
t that the mean-�eld theory 
orre
tly predi
ts a number of universal parameters in three dimensions.Therefore, we 
al
ulate the partition sum of the mean-�eld tri
riti
al Blume-Capel model, and a

ordinglyobtain the exa
t value of the Binder ratio. Under the 
onstraint, we show that this mean-�eld tri
riti
alsystem redu
es to the mean-�eld 
riti
al Ising model. However, our three-dimensional data do not agree withthis mean-�eld predi
tion. Instead, they are su

essfully explained by the generalized Fisher renormalizationme
hanism.7.1 Introdu
tionIn the development of the theory of 
riti
al phenomena and phase transitions, a spin-1 Ising model known asthe Blume-Capel (BC) model has played an important role. This model was originally introdu
ed by Blumeand Capel [1, 2℄, and the redu
ed Hamiltonian readsH=kBT = �KXhiji sisj +DXk s2k (si = �1; 0) ; (7.1)where the sum h i is over all nearest-neighbor pairs of latti
e sites. The spins assume values �1 and 0,and those in state 0 are referred to as va
an
ies. The abundan
e of va
an
ies is governed by the 
hemi
alpotential D, whi
h is also termed the 
rystal �eld parameter. The phase diagram is sket
hed in Fig. 7.1.For D ! �1, the va
an
ies are ex
luded, and the model (7.1) redu
es to Onsager's spin- 12 model [3℄. The
riti
al 
ouping K
(D) is an in
reasing fun
tion of D. For suÆ
iently large 
hemi
al potential, the transitionthen be
omes �rst-order, separating the va
an
y-dominated phase from those dominated by plus (+1) orminus (�1) spins. At the joint point, these three 
oexisting phases simultaneously be
ome identi
al, andthis point is then 
alled [4℄ the tri
riti
al point, denoted as (Kt; Dt) in Fig. 7.1.In two dimensions, the nature of 
riti
al singularities of the BC model is now well established. Forinstan
e, as early as in 1942, the exa
t expression of the free energy was obtained by Onsager [3, 5℄ for thespin- 12 model. The universal thermal and magneti
 exponents are yt = 1 and yh = 15=8, respe
tively. At thetri
riti
al point (Kt; Dt), exa
t values of the universal exponents follow from Baxter's exa
t results for thehard-square latti
e gas [6, 7℄, in the same universality 
lass with the tri
riti
al Blume-Capel model; further,these exponents 
an be 
al
ulated from the Coulomb gas theory [8,9℄ and are also in
luded in predi
tions of97
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Figure 7.1: Sket
h of the phase diagram of the BC model. The solid line represents the 
riti
al line, whi
hseparates the para- and ferromagneti
 phases; and the �rst-order transition is shown as a dashedline. The two lines join at a tri
riti
al point (bla
k 
ir
le).the 
onformal �eld theory [10,11℄. The leading and subleading thermal exponents at tri
riti
ality are [6{12℄yt1 = 9=5 and yt2 = 4=5, respe
tively, and the magneti
 ones are yh1 = 77=40 and yh2 = 9=8, respe
tively.In three dimensions, exa
t results are absent for the BC model along the 
riti
al line K
(D), and inves-tigations of 
riti
al behavior have to depend on approximations su
h as series and � expansions, and MonteCarlo simulations [13{16℄. However, the tri
riti
al Ising model is somewhat spe
ial, in the sense that it is oneof the rare 
ases in three dimensions that exa
t information is available about 
riti
al singularities [4℄. Thisis possible be
ause three is the upper tri
riti
al dimensionality of Ising systems. As a 
onsequen
e, 
riti
alexponents 
an be exa
tly obtained from renormalization 
al
ulations [17℄ of the Landau-Ginzburg-WilsonHamiltonian. The thermal and magneti
 tri
riti
al exponents [4℄ are yt1 = 2 and yt2 = 1, and yh1 = 5=2 andyh2 = 3=2, respe
tively.An experimental example of tri
riti
al phenomena in three dimensions is the super
uid transition in3He-4He mixtures [4℄, whi
h is sket
hed in Fig. 7.2. The transition at the tri
riti
al point is known asthe � transition. In fa
t, the order parameter in the 3He-4He mixtures is a ve
tor of two 
omponents, sothat the super
uid transition should in prin
iple be des
ribed by the O(2) model, the so-
alled XY model.Nevertheless, the renormalization 
al
ulations yield the same 
riti
al exponents for the O(n) model withn � 1, apart from logarithmi
 
orre
tions. Thus, in this sense, the BC model (7.1) is still qualitativelyappli
able [4℄ at the � point. One would then simply expe
t that the tri
riti
al spe
i�
 heat C is divergent,with a 
riti
al index � = 2 � d=yt1 = 1=2. However, this expe
tation does not agree with the existingexperimental results: C was observed [18℄ to have only a �nite 
usp with � = �0:9(1) at the � point.This la
k of agreement is the result of an important di�eren
e between the systems in the aforementionedtheoreti
al and experimental 
ontexts. This is re
e
ted by the distin
tion between Figs. 7.1 and 7.2, ofwhi
h the �rst deals with models in the spa
e (K;D). In 
ontrast, Fig. 7.2 uses the mole fra
tion x of 3Heas an independent parameter [18℄. The fra
tion x plays a similar role as the va
an
y density in Eq. (7.1).Therefore, a 
orre
t theoreti
al des
ription of the � transition in Fig. 7.2 should be based on a restri
tedpartition sum with a 
onserved number of va
an
ies. In other words, an external 
onstraint is imposed onthe system (7.1). This 
onstraint is of the `annealed' type [19℄ sin
e va
an
ies are allowed to move freelyover the latti
e a

ording to the Boltzmann distribution.Constrained 
riti
al behavior has already been studied for de
ades. As earlier as 1965, Syozi [20℄ intro-du
ed a de
orated Ising model on a d-dimensional latti
e, whi
h was shown [21℄ to be intimately 
onne
tedwith annealed systems. The Syozi model 
an be exa
tly transformed into the spin- 12 model, and 
riti
alexponents of these two systems are related as�s = ��=(1� �) ; �s = �=(1� �) ; and �s = �=(1� �) ; � � � (7.2)where � and � are the standard 
riti
al indi
es for the spe
i�
 heat C and the magnetization density m for98
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Figure 7.2: The s
hemati
 phase diagram of a 3He-4He mixture in the plane of temperature T and molefra
tion x of 3He. The temperature 
an be understood as the inverse 
oupling 
onstant 1=K inEq. (7.1).the spin- 12 model, respe
tively, and � = 1=yt is the inverse of the thermal exponent; those with the subs
ripts are for the Syozi model. It 
an be shown that the hypers
aling relations still hold among the 
riti
alindi
es �s; �s et
. In three dimensions, the spin- 12 model has � > 0, so that the spe
i�
 heat C of the Syozimodel does not diverge at 
riti
ality. In two dimensions, C of the spin- 12 model is divergent in a logarithmi
s
ale sin
e � = 0. For this marginal 
ase, C of the Syozi model rea
hes a �nite 
usp, also of a logarithmi
nature. Later, this was dis
ussed in a more general 
ontext by Essam and Gareli
k [22℄ and by Fisher [23℄.It was pointed out that relations (7.2) are not spe
i�
 to the Syozi model, but are more generally satis�ed byequilibrium models with a divergent spe
i�
 heat (� > 0). Sin
e then, the so-
alled Fisher renormalizationof 
onstrained 
riti
al systems has gained 
onsiderable a

eptan
e [24{27℄.A des
ription of 
onstrained tri
riti
al behavior was formulated by Imry and his 
oworkers [28℄ in the
ontext of the renormalization group (RG) te
hnique. Using the �-expansion and a generalized Landau-Ginzburg-Wilson Hamiltonian, they found four distin
t �xed points: the tri
riti
al Ising (TI), 
riti
alIsing (CI), renormalized tri
riti
al Ising (RTI), and renormalized 
riti
al Ising (RCI) �xed points. Renor-malization 
ows deviating from TI 
an move into the �xed points CI or RTI , and those from CI 
anend at RCI . The 
riti
al exponents at these �xed points are related as �RCI = ��CI=(1 � �CI) and�RTI = ��TI=(1 � �TI), in agreement with Eq. (7.2). For the spatial dimensionality d � 3, TI and RTI
orrespond to Gaussian and spheri
al �xed points, respe
tively. Thus, one has the 
riti
al indi
es �TI = 1=2and �RTI = ��TI=(1 � �TI) = �1 in three dimensions. If one assumes that 
onstrained behavior of anannealed tri
riti
al system is governed by the �xed point RTI , the theoreti
al predi
tion �RTI = �1 is thenin good agreement with the experimental observation [18℄ � = �0:9(1).At the upper 
riti
al dimensionality, the mean-�eld theory is generally believed to 
orre
tly des
ribe someuniversal aspe
ts of phase transitions. Indeed, for the tri
riti
al BC model in three dimensions, a number ofuniversal quantities, in
luding the thermal and magneti
 exponents yt1 and yh1, 
an be exa
tly 
al
ulated [4℄from a mean-�eld (MF) analysis. In the present paper, we also perform some exa
t 
al
ulations for the MFBC model. Under the 
onstraint that the total number of va
an
ies is �xed, we show that the tri
riti
al MFBC model redu
es to the 
riti
al MF Ising model. However, this MF result is not what one would expe
t forthe tri
riti
al BC model in three dimensions, sin
e the 
onstraint should not 
hange the universality 
lass.Thus, the present paper also takes another approa
h: following the basi
 ideas in Ref. [23℄, we generalize theFisher renormalization me
hanism for 
onstrained 
riti
al behavior to tri
riti
al systems. In Parti
ular, wederive �nite-size s
aling results based on this generalized me
hanism.In addition to these theoreti
al analyses, we perform a Monte Carlo study of the 
onstrained three-dimensional (3D) BC model. For systems with a 
onserved number of va
an
ies, eÆ
ient simulations haveonly be
ome possible after the introdu
tion of the geometri
 
luster method [29{31℄. This algorithm wasdeveloped on the basis of spatial symmetries, su
h as Hamiltonian invarian
e under spatial inversions and99



rotations. It moves groups of magneti
 spins and va
an
ies over the latti
e in a

ordan
e with Boltzmanndistribution, while the global magnetization and va
an
y densities are 
onserved. Then, the aforementioned
onstraint 
an be realized by a 
ombination of the geometri
 method and the Wol� algorithm [32℄, whi
ha
ts only on nonzero spins and thus allows magnetization 
u
tuations.7.2 Mean-�eld Blume-Capel modelIn this se
tion, we perform an asymptoti
 analysis of the �nite mean-�eld (MF) BC model. On this basis, wehope to obtain some exa
t results for universal parameters des
ribing 
onstrained behavior of the tri
riti
alBC model in three dimensions.The mean-�eld (MF) version of a �nite BC model (7.1) is expressed by the HamiltonianH=kBT = �KN NXi=1 NXj=i+1 sisj +DXk s2k (si = �1; 0) ; (7.3)where N is the total number of spins, and ea
h spin is intera
ting with ea
h other spin. Then, the lo
alHamiltonian of the ith spin, i.e., the terms in Eq. (7.3) involving that spin, readsHi=kBT = �Ksim+Ds2i + KN s2i with mN = NXi=1 si ; (7.4)where m is the global magnetization density. The last term in Eq. (7.4) vanishes as 1=N , and will benegle
ted. The tri
riti
al point [4℄ of this MF system 
an be 
al
ulated as follows. A

ording to theBoltzmann distribution, Eq. (7.4) determines the statisti
al probability w of the lo
al spin si asw(si = 1) = 1z eKm ; w(si = 0) = 1z eD ; and w(si = �1) = 1z e�Km ; (7.5)with a normalization fa
tor z = eKm + eD + e�Km. Thus, the lo
al magnetization hsii and the global onem are related as hsii = 2 sinh(Km)=[exp(D) + 2 
osh(Km)℄ : (7.6)At tri
riti
ality, the stability 
riterion requires that m = 0, �hsii=�m = 1, and �3hsii=�m3 = 0. FromEq. (7.6), solution of these requirements yields the tri
riti
al point as Kt = 3 and Dt = 2 ln 2, and the
orresponding va
an
y density as �v = �vt = 2=3.7.2.1 Un
onstrained systemsThe Hamiltonian (7.3) depends only on the numbers of down spins and va
an
ies, whi
h are denoted as Ndand Nv, respe
tively. Expression of the partition sum Z in these variables leads toZ = NXNd=0N�NdXNv=0 
(Nd; Nv) exp �K2 N(N �Nv � 2NdN )2 � (D + K2N )(N �Nv)� ; (7.7)where the 
ombinatorial fa
tor 
(Nd; Nv) 
ounts the total number of 
on�gurations with Nd minus spins andNv va
an
ies C(Nd; Nv) = N !Nd!Nv !(N �Nd �Nv)! : (7.8)After the substitution of the magnetization density m = (N � Nv � 2Nd)=N and the va
an
y density�v = Nv=N in Eqs. (7.7) and (7.8), one hasZ = 2N2 Z 10 dm Z 10 d�v 
(m; �v) exp[K2 Nm2 �DN(1� �v)℄ [1 +O(1=N)℄ ; (7.9)100



where we have repla
ed the sums in Eq. (7.7) by integrals over the magnetization and va
an
y density mand �v, and negle
ted 
orre
tion terms of order 1=N . Substitution of the tri
riti
al values of K and D,appli
ation of the Stirling's formula ln(N !) = (N + 12 ) lnN �N , and Taylor-expansion of ln 
(m; �v) yieldln 
(m; �v) = �94N(Æ�v +m2)2 � 814 NÆ�vm4 � 272 NÆ2�vm2 � 98NÆ3�v�8110Nm6 +NO " 4Xk=0m8�2k(Æ�v)k#+ � � � ; (7.10)where Æ�v = �v � �vt represents 
u
tuations of the va
an
ies. On this basis, the partition sum (7.9) 
an bewritten as Z = fN2 Z 10 dm e� 8110Nm6 [1 +NO(m8)℄ Z 1�1 d~� e� 94N ~�2 [1 + 638 Nm6 +NO(m8)℄= f 0N2 Z 10 dm e� 940Nm6 Z 1�1 d~� e� 94N ~�2 [1 +O(1=N)℄ (i+ 2j = 6) ; (7.11)where f and f 0 are 
onstants and we have introdu
ed a new variable ~� = Æ�v + m2. The integrationboundaries have been extended to in�nity, and this 
an be shown [33℄ to introdu
e only an error de
ayingexponentially with N . Equation (7.11) indi
ates that the tri
riti
al 
u
tuations of the MF BC model (7.3)
onsist of two parts: Gaussian (normal) 
u
tuations of a 
ombined variable ~� and those of the magnetizationdes
ribed by a weight exp(�9Nm6=40). The absen
e of m2 and m4 in Eq. (7.11) is an essential 
hara
teristi
of the �6 theory and the mean-�eld des
ription of tri
riti
al phenomena. For later 
onvenien
e, we rewriteEq. (7.11) in the variables xm = 9Nm6=40 and xv = 9N ~�2=4 asZ = B(N) Z 10 dxm x� 56m e�xm Z 10 dxv x� 12v e�xv [1 +O(1= 3pN)℄ ; (7.12)where B(N) is a fun
tion of N . Then, substitution of the � fun
tion, �(z) = R10 uz�1e�z dz, yields thepartition sum (7.11) as Z = B(N)�(16)�(12) : (7.13)In the study 
riti
al phenomena, several universal ratios of �nite-size s
aling amplitudes, 
losely relatedto the quantity originally introdu
ed by Binder [34℄, play an important role. Parti
ularly, these dimensionlessratios are very useful in Monte Carlo determinations of 
riti
al points. Here, we 
onsider two su
h ratios,whi
h are de�ned on the basis of 
u
tuations of the magnetization m and va
an
y density �v asQm = hm2i2hm4i and Qv = h(Æ�v)2i2h(Æ�v)4i ; (7.14)with Æ�v = �v � �vt, as mentioned earlier.From the probability distribution implied by the partition sum (7.12), the expe
tation values of themoments of the magnetization density m are then obtained ashm2i = B(N)Z Z 10 dxm m2x� 56m e�xm Z 10 dxv x� 12v e�xv= � 409N� 13 �( 12 )�( 16 ) +O(N� 23 ) ;hm4i = � 409N� 23 �( 56 )�( 16 ) +O(N�1) ;hm6i = � 409N� �( 76 )�( 16 ) +O(N� 43 ) ; andhm8i = � 409N� 43 �( 32 )�( 16 ) +O(N� 53 ) : (7.15)101



Therefore, the dimensionless ratio Qm isQm = �2(12)=�(16)�(56) +O(N� 13 ) = 12 +O(N� 13 ) ; (7.16)where we have used formula �( 12 + z)�( 12 � z) = �
os(�z) , so that �2( 12 ) = � and �( 16 )�( 56 ) = 2�.The exa
t value of Qv 
an be obtained as follows. From the de�nition ~� = Æ�v +m2, one hashÆ�vi = h~�i � hm2i ;h(Æ�v)2i = h~�2i � 2h~�ihm2i+ hm4i ; andh(Æ�v)4i = h~�4i � 4h~�3ihm2i+ 6h~�2ihm4i � 4h~�ihm6i+ hm8i : (7.17)At the tri
riti
al point, one has hÆ�vi = 0, so that h~�i = hm2i. A detailed 
al
ulation then yieldsQ�1v = ��3 + 6 hm4ihm2i2 � 4 hm6ihm2i3 + hm8ihm2i4� = � hm4ihm2i2 � 1�2 ; (7.18)so that Q�1v = 9� 16 ��( 16 )�( 12 )�3 ' 3:8348 ; (7.19)and Qv = 0:2608 � � � .The aforementioned 
al
ulations impli
itly yield the mean-�eld (MF) thermal and magneti
 exponents.Equation (7.4) indi
ates that the mean-�eld quantity hm2i 
an be regarded as a type of energy density. Fromthe de�nition of the magneti
 sus
eptibility � = Nhm2i, one has then the s
aling behavior at tri
riti
alityhm2i / N ~yt�1 = N2~yh�2. Here, we have introdu
ed the mean-�eld 
riti
al exponents ~yt and ~yh, whi
hare related to the standard leading thermal and magneti
 exponents in �nite dimensions as yt1 = d~yt andyh1 = d~yh with d � 3, respe
tively. The above s
aling formula gives the mean-�eld relation ~yt = 2~yh � 1,whi
h generally holds for mean-�eld systems. On this basis, Eq. (7.15) yields ~yt = 2=3 and ~yh = 5=6 for thetri
riti
al MF BC model, so that one has yt1 = 2 and yh1 = 5=2 in three dimensions, in agreement with theexisting RG results [4℄.7.2.2 Monte Carlo simulationsThe mean-�eld (MF) 
al
ulations in the above subse
tion rely on the limit N ! 1, and thus we haveperformed numeri
al tests for �nite N . Using the standard Metropolis method, whi
h is adequate for thispurpose, we simulated the un
onstrained model (7.3) for D = Dt = 2 ln 2 in the range 2:96 � K � 3:04.The system sizes were taken as N = 100, 200, 400, 600, 800, and 1000. The MF result for the tri
riti
alpoint is 
on�rmed by the 
lear interse
tion of the Qm versus K data, shown in Fig. (7.3) at K = 3. Then,we simulated pre
isely at the tri
riti
al point (Kt; Dt), with system sizes 10 � N � 16000. The sampledquantities in
lude the magneti
 sus
eptibility � = Nhm2i, the va
an
y density �v, and the Binder ratios Qmand Qv. Here, the quantity Qv is de�ned by Eq. (7.14), but Æ�v = �v��vt is repla
ed by Æ�v = �v�h�vi for�nite systems. The latter de�nition of Qv is more natural in the sense that, for �nite-dimensional systems,the exa
t value of �vt is generally unknown. Further, at tri
riti
ality, sin
e the quantity h�vi approa
hes �vtas N !1, these two de�nitions do not have qualitative di�eren
e. The data for �v, Qm, and Qv are shownin Tab 7.1. A

ording to the least-square 
riterion, we �tted the Monte Carlo data by�(N) = �0 +N2~yh�1(x0 + x1N ~yi + x2N2~yi + x3N3~yi) ;�v(N) = �vt +N ~yt�1(p0 + p1N ~yi + p2N2~yi + p3N3~yi) ;Qm(N) = Qmt + qm1N ~yi + qm2N2~yi + qm3N3~yi ; andQv(N) = Qvt + qv1N ~yi + qv2N2~yi + qv3N3~yi : (7.20)The terms with the exponent ~yi a

ount for �nite-size 
orre
tions, with ~yi = �1=3, as indi
ated fromEq. (7.16). Results are given in Tab. 7.2, where the estimation of ~yi was obtained from the �t of Qm with102
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Table 7.1: Monte Carlo data for �v, Qm, and Qv for the MF BC model at the tri
riti
al point Kt = 3 andDt = 2 ln 2. The numbers in in parentheses represent the error margins in the last de
imal pla
e.N 10 20 40 60 100�v :53364(3) :54314(3) :55756(3) :56666(2) :57804(2)Qm :45159(5) :45815(6) :46352(6) :46644(6) :46992(6)Qv :40132(5) :36988(6) :34546(7) :33388(7) :32129(8)N 200 300 400 600 1000�v :59251(2) :60027(2) :60541(2) :61211(2) :61970(1)Qm :47449(7) :47694(8) :47853(8) :4806(1) :4831(1)Qv :30746(8) :30099(9) :29683(9) :2918(1) :2865(1)N 2000 4000 8000 16000�v :62852(1) :63587(1) :64183(1) :64678(2)Qm :4862(1) :4886(1) :4910(2) :4922(2)Qv :2807(1) :2763(1) :2732(2) :2700(2)
Table 7.2: Results of a least-squares analysis of the Monte Carlo data for the MF BC model at the tri
riti
alpoint Kt = 3 and Dt = 2 ln 2. The numbers in parentheses represent the error margins in the lastde
imal pla
e.~yh ~yt ~yi �vt Qmt QvtTheory 5=6 2=3 �1=3 2=3 1=2 0:2608 � � �Fit 0:833(2) 0:667(2) �0:332(1) 0:66664(6) 0:4998(3) 0:2609(3)
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ality. The data Qv � qv2N�2=3 are shownvs. N�1=3, where qv2 = 0:26(2) was taken from the �t.Qmt �xed at 1=2. The theoreti
al predi
tions and the numeri
al determinations are in �ne agreement. For
larity, the data for Qv is shown in Fig. 7.4 as Qv � qv2N�2=3 versus N�1=3, with qv2 taken from the �t.These exa
t results are not only theoreti
ally interesting, but also pra
ti
ally useful. For instan
e, theexa
t values of Qmt and Qvt are very helpful in a Monte Carlo determination [35℄ of the tri
riti
al point ofBC models in three dimensions.7.2.3 Constrained systemsFor the MF BC model (7.3) with a 
onserved number of va
an
ies, the redu
ed partition sum is obtainedfrom Eq. (7.9) by ex
luding the integration over va
an
y 
u
tuations:Z 0 = N2 Z dm Æ�v;2=3 
(m; �v) exp[K2 Nm2 �DN(1� �v)℄ [1 +O(1=N)℄ : (7.21)Following the pro
edure in Ref. [33℄, it 
an be shown that,at the tri
riti
al point (Kt; Dt), Eq. (7.21) redu
esto Z 0 = N2 Z dm e� 94Nm4 [1 +O(Nm6)℄ ; (7.22)whi
h 
hara
terizes the 
riti
al mean-�eld Ising model [17, 33℄.The redu
tion to the 
riti
al MF Ising model 
an be further understood as follows. In mean-�eld systems,ea
h spin intera
ts with ea
h other spin. Only the number of va
an
ies, not their positions, matters. One
an then rearrange the labels of the Ising spins and those of the va
an
ies, su
h that all Ising spins are
ounted from 1 to N=3 and va
an
ies from N=3 + 1 to N . Then, the 
onstrained Hamiltonian readsH=kBT = �K 0N 0 N 0Xi=1 +2DN 0 N 0Xj=i+1 sisj (si = �1) ; (7.23)where the sum is now only over N 0 = N=3 Ising spins, and K 0 = K=3 is the 
oupling 
onstant in Eq. (7.23).For K = Kt = 3, Eq. (7.23) des
ribes a MF 
riti
al Ising model with N 0 spins, and the 
riti
al point is atK 0 = K 0
 = 1. In this 
ase, the Binder ratio Qm assumes 4�2( 34 )=�2( 14 ) = 0:4569 � � � [33℄.7.3 Fisher renormalization me
hanism at tri
riti
alityAs mentioned earlier, 
onstrained 
riti
al phenomena 
an be su

essfully explained by the Fisher renormal-ization me
hanism [23{27℄. The basi
 idea of this me
hanism is straightforward and fundamental. It is based104



on the thermodynami
 relation that, in the language of the BC model, the va
an
y density �v and the 
hem-i
al potential D are 
onjugate parameters. Let f be the redu
ed free energy of the un
onstrained 
riti
almodel as a fun
tion of K and D. The 
onstraint equation is then expressed as �v = ��f=�D =
onstant.This yields the path of the 
onstrained system in the parameter spa
e (K;D), whi
h appears to be singularat the 
riti
al point. In this se
tion, we follow a similar pro
edure and generalize the Fisher renormalizationme
hanism su
h that it 
an des
ribe 
onstrained tri
riti
al phenomena. Parti
ularly, sin
e the Monte Carlosimulations have to take pla
e at �nite systems, we shall �rst fo
us on the �nite-size s
aling behavior of
onstrained tri
riti
al systems.As a �rst step, we express the �nite-size s
aling formula of the redu
ed free energy f of an un
onstrainedsystem [4℄ near the tri
riti
al point asf(t1; t2; L) = L�dfs(t1Lyt1 ; t2Lyt2) + fa(t1; t2) : (7.24)Here, L is the linear system size, and it 
an also be re
ognized as a s
aling fa
tor in the 
ontext of therenormalization group theory. The leading and subleading thermal s
aling �elds t1 and t2 represent thedistan
e to the tri
riti
al point at t1 = t2 = 0. The fun
tions fs and fa are singular and analyti
al partsof the free energy f , respe
tively. We have negle
ted irrelevant s
aling �elds and also suppressed magneti
s
aling �elds in Eq. (7.24). For the BC model des
ribed by Eq. (7.1), the thermal �elds t1 and t2 are analyti
fun
tions of K and D. Thus, di�erentiation of Eq. (7.24) with respe
t to D yields�h�v(t1; t2)i = �f�D = a1Lyt1�df (1;0)s (t1Lyt1 ; t2Lyt2) + a2Lyt2�df (0;1)s (t1Lyt1 ;t2Lyt2) + a1f (1;0)a (t1; t2) + a2f (0;1)a (t1; t2) ; (7.25)where a1 = �t1=�D and a2 = �t2=�D are 
onstants. The supers
ripts (i; j) represent i di�erentiationswith respe
t to t1 and j di�erentiations to t2. Here, we mention that, for �nite systems L, the 
onjugatequantity of D is the expe
tation value of the va
an
y density h�v(t1; t2)i instead of �v(t1; t2) itself. Underthe 
onstraint h�v(t1; t2)i = h�v(0; 0)i, Taylor expansion of of Eq. (7.25) near the tri
riti
al point leads to0 = b1L2yt1�d t1 + b2Lyt1+yt2�d t2 + b3t1 + b4t2 ; (7.26)where b1, b2, b3, and b4 are 
onstants, and only the leading terms are kept in the expansions of fs and fa. The
onstraint equation (7.26) des
ribes the approa
h of the 
onstrained BC model to the tri
riti
al point in theparameter spa
e (t1; t2). However, the analyti
 form of the path still depends on the relative values of yt1,yt2, and d, and so does the 
riti
al exponents des
ribing the 
onstrained 
riti
al singularities for t1; t2 ! 0.It follows from Eq.(7.26) that, near the tri
riti
al point, the thermal �elds t1 and t2 are related as1. for 2yt1� d > 0 and yt1+ yt2� d > 0, the �rst two terms in the right-hand side of Eq. (7.26) dominateas L!1, so that one has Lyt1t1 / Lyt2t2, i.e., t2 >> t1 and K�Kt
 � t2. Thus, the leading thermalexponent of the 
onstrained system is equal to the subleading exponent yt2.2. for 2yt1�d > 0 but yt1+yt2�d < 0, one has Lyt1t1 / Ld�yt1t2. The leading exponent is renormalizedas yt1 ! d � yt1. This 
ase was already 
orre
tly in
luded as one of the possible out
omes of Imry'srenormalization 
al
ulations [28℄.3. for 2yt1 � d < 0, i.e., the un
onstrained spe
i�
 heat does not diverge at tri
riti
ality, t1 is linearlyrelated to t2 as t1 / t2, and no exponent renormalization o

urs.In short, for a system with a divergent spe
i�
 heat at tri
riti
ality, 
riti
al exponents are renormalizedunder the 
onstraint; otherwise, no renormalization o

urs. However, sin
e tri
riti
al systems have tworelevant thermal �elds t1 and t2, the tri
riti
al renormalizations 
an appear in di�erent ways, depending onwhether or not yt1 + yt2 > d.Then, the expression of the redu
ed free energy f 0 of the 
onstrained tri
riti
al BC model 
an be obtainedby substitution of the above renormalization in Eq. (7.24), whi
h yieldsf 0(t1; t2; L) = L�df 0s(t1Ly0t1 ; t2Lyt2 ; 1) + f 0a(t1; t2) ; (7.27)105



where y0t1 is equal to yt2, d � yt1, and yt1 for yt1 + yt2 > d, yt1 + yt2 < d but 2yt1 > d, and 2yt1 < d,respe
tively.Next, we 
onsider the e�e
t of the 
onstraint in an in�nite system. We interpret the parameter Lin Eq. (7.24) as a res
aling fa
tor that 
an be arbitrarily 
hosen. Thus, we may set the res
aling fa
torL = t�1=yt22 for 
ase 1 and L = t�1=(d�yt1)2 for 
ase 2, so that the thermal �elds t1 and t2 are relatedas t1 / tyt2=yt12 and t1 / t(d�yt1)=yt12 , respe
tively. Substitution of these relation in Eq. (7.27) yields the
onstrained redu
ed free energy f 0 of an in�nite system asf 0(t1; t2) / t2��01 	(t2=t�1 ) : (7.28)Here, the 
riti
al index is given by �0 = 2� d=y0t1 and the 
rossover exponent by � = yt2=y0t1, with y0t1 givenearlier, and 	 represents an analyti
al fun
tion. For the 
ase y0t1 = d � yt1, one has �0 = ��=(1 � �), inagreement with Eq. (7.2).During the derivation of these s
aling equations, we have used Taylor expansions, for instan
e, ofEq. (7.25), and kept only the leading terms. Therefore, in addition to those from irrelevant thermal �elds,we expe
t that new 
orre
tions are indu
ed by the 
onstraint.As generally expe
ted at the borderline dimensionality for mean-�eld-like behavior, logarithmi
 
orre
tions-to-s
aling o

ur in tri
riti
al BC systems (7.1) in three dimensions. This has already been obtained in renor-malization 
al
ulations of the Landau-Ginzburg-Wilson Hamiltonian. Near the tri
riti
al point, the redu
edfree energy of the 3D BC model reads [4℄f(t1; t2; h1; h2; v; L) = L�3fs(t1L2; t2LL�2=50 ; h1L5=2;h2L3=2L�1=100 ; vL�10 ) + fa(t1; t2) : (7.29)where the parameter v, also an analyti
al fun
tion of K and D, des
ribes the leading irrelevant thermal �eld.For 
ompleteness, we have also in
luded the leading and subleading magneti
 �elds h1 and h2. The amplitudeL0 = 1 + 25v lnL a

ounts for the aforementioned logarithmi
 
orre
tions. Equation (7.29) indi
ates thatthese 
orre
tions o

ur not only in the irrelevant �eld v but also in the subleading �elds t2 and h2.It follows from Eq. (7.29) that the un
onstrained spe
i�
 heat C in systems (7.1) is divergent (2yt1�3 > 0)at tri
riti
ality, and thus the 
riti
al exponents are renormalized under the 
onstraint. However, the 3Dtri
riti
al BC model (7.1) is a marginal 
ase in the sense the 
riti
al exponents yt1 + yt2 � 3 = 0, so that itis not immediately obvious how the renormalization o

urs. Taking into a

ount L�2=50 in Eq. (7.29) for thesubleading �eld t2, we 
on
lude that in 
onstrained systems the leading thermal exponent is renormalizedas y0t1 = 3� yt1 = 1.7.4 Monte Carlo simulations7.4.1 Un
onstrained BC modelThe tri
riti
al BC model (7.1) has been investigated on several three-dimensional latti
es, and variouste
hniques have been developed, in
luding the self-
onsistent Ornstein-Zernike approximation [36℄ and MonteCarlo simulations [35, 37℄.In 
omparison with the well-known Swendsen-Wang [38℄ and Wol� [32℄ algorithms for the spin- 12 Isingmodel, no 
luster algorithm has so far been developed to eÆ
iently 
ip between Ising spins and va
an
ies nearthe tri
riti
al point. Thus, Monte Carlo simulations of the un
onstrained tri
riti
al BC model (7.1) su�erfrom 
riti
al-slowing-down. Using a 
ombination of the Metropolis, Wol�, and aforementioned geometri

luster [29{31℄ steps, we simulated the BC model (7.1) on the simple-
ubi
 latti
e with periodi
 boundary
onditions. The 
u
tuations between va
an
ies and Ising spins are realized by the standard Metropolismethod; the Wol� algorithm 
ips between +1 and �1 Ising spins; and the geometri
 steps move groups ofspins and va
an
ies over the latti
e. In this way, 
riti
al-slowing-down is signi�
antly suppressed. Makinguse of the exa
t values of Qm and Qv. we lo
ated [35℄ the tri
riti
al point as as Kt = 0:7133(1) andDt = 2:0313(4); the expe
tation value of the tri
riti
al va
an
y density is �vt = 0:6485(2), rather 
lose the106
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onstrained energy density hei of the 3D BC model at tri
riti
ality, vs. Lyt1�3, withyt1 = 2.mean-�eld value 2=3. Consisten
y between these results and existing determinations [36,37℄, Kt = 0:706(3),Dt = 2:01(1), and �vt = 0:655(6), exists within a margin of about twi
e the quoted errors. Here, we haveapplied other te
hniques, in
luding a simultaneous analysis of various quantities for di�erent systems su
hthat parameters in 
ommon appear only on
e [16℄; the details of these numeri
al analyses will be presentedelsewhere [35℄.For a 
omparison of 
onstrained tri
riti
al behavior, we simulated the 
onstrained BC model at thetri
riti
al point (Kt; Dt), as determined earlier, with system sizes 6 � L � 32. We sampled the magneti
sus
eptibility �, the energy density hei, the spe
i�
 heat C, and the Binder ratios et
, respe
tively. Here,the energy density hei was de�ned as nearest-neighbor 
orrelations, and the spe
i�
 heat C readsC = L3K2(he2i � hei2) ; (7.30)representing the strength of 
riti
al 
u
tuations of hei. At tri
riti
ality, the s
aling behavior of these quan-tities 
an be derived from Eq. (7.29) as�� x0 / L2yh1�3 = L2 ; hei � e0 / Lyt1�3 = L�1 ; and C � 
0 / L2yt1�3 = L ; (7.31)where the terms x0, e0, and 
0 arise from the analyti
al part of the free energy. The Monte Carlo data for �,hei, and C are shown in Figs. 7.5, 7.6, and 7.7, respe
tively. The approximate linearity for large L in these�gures 
on�rms the tri
riti
al �nite-size s
aling behavior des
ribed by Eq. (7.31).107
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ture fa
tor of the spe
i�
 heat Cs of the 3D BC model at tri
riti
ality,vs. L2yt1�3, with yt1 = 2.Apart from the 
onventional spe
i�
 heat C, we also sampled a related quantity Cs on the basis of theFourier 
omponents of e(x; y; z) for systems of size L:ekx;ky ;kz = 1L3 Z L0 dx dy dz e(x; y; z) exp[2�i(xkx + yky + zkz)=L℄ : (7.32)Obviously, e0;0;0 is just the global energy density e; and quantities ekx;ky;kz for kx 6= 0, ky 6= 0, or kz 6= 0represent spatial inhomogeneities of e(x; y; z). Then, the quantity Cs 
an be de�ned in terms of ekx;ky;kz forthe smallest wave numbers asCs = L3K2he�1;0;0 e1;0;0 + e0;�1;0 e0;1;0 + e0;0;�1 e0;0;1i: (7.33)The physi
al meaning of Cs 
an be gleaned in 
omparison with the 
onventional spe
i�
 heat C. First,as indi
ated by Eq. (7.30) and (7.33), both quantities represent 
u
tuation strengths of ekx;ky ;kz , withkx = ky = kz = 0 for C and jkxj + jkyj + jkzj = 1 for Cs. Se
ond, both C and Cs 
an be expressed interms of a sum of energy-energy 
orrelation fun
tions. Thus, we expe
t that Cs behaves as a spe
i�
-heat-like quantity, and we refer to it as the stru
ture fa
tor of the spe
i�
 heat C. Then, the tri
riti
al s
alingbehavior of Cs is also governed by Eq. (7.31), and this is 
on�rmed by Fig. 7.8.7.4.2 Constrained BC modelFor the three-dimensional BC model (7.1) with a 
onserved number of va
an
ies, we used a 
ombination ofthe Wol� and geometri
 
luster steps only. The 
hemi
al potential D in Eq. (7.1) be
omes impli
it and does108
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onstrained energy density hei of the 3D BC model at tri
riti
ality, vs. L�2.not play a role in 
onstrained Monte Carlo simulations. One parti
ular feature is that these simulationshardly su�er from 
riti
al-slowing-down even near the tri
riti
al point. This may be attributed to the fa
tthat the 
onstrained spe
i�
 heat C does not diverge at tri
riti
ality, as dis
ussed later. Therefore, weextensively simulated systems in the range 6 � L � 128. The 
oupling 
onstant K and the va
an
y density�v were set at Kt
 = 0:7133(1) and �t
 = 0:6485(2) [35℄, respe
tively. For a �nite system, however, thenumber of va
an
ies Nvt = L3�t
 is not an integer, so that the a
tual simulations took pla
e at [Nvt℄ and[Nvt℄ + 1, where bra
kets [ ℄ denote the integer part. The value of a sampled quantity at Nvt was obtainedby a linear interpolation between [Nvt℄ and [Nvt℄ + 1.The Monte Carlo data for �, hei, and C are shown in Figs. 7.9, 7.10, and 7.11, respe
tively.As illustrated by Figs. 7.5 and 7.9, the magneti
 exponent des
ribing the divergen
e of the sus
eptibility�, i.e., yh1, remains un
hanged under the 
onstraint, whi
h indi
ates that the 
onstraint on va
an
ies doesnot qualitatively in
uen
e magneti
 quantities. However, the 
riti
al behavior of energy-like quantities issigni�
antly modi�ed. In parti
ular, the tri
riti
al spe
i�
 heat C is strongly suppressed so that it onlytakes a �nite value as L ! 1. This 
onstrained phenomenon is in agreement with the generalized Fisherrenormalization me
hanism. Further, from Eqs. (7.27) and (7.29), the quantitative �nite-size behavior of heiand C at tri
riti
ality is des
ribed byhei � e0 / Ly0t1�3 = L�2 ; and C � 
0 / L2y0t1�3 = L�1 ; (7.34)where y0t1 = 3� yt1 = 1, as mentioned earlier. These theoreti
al predi
tions, i.e., Eq. (7.34), are re
e
ted by109
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riti
ality, vs. L�1.the approximate linearity displayed by the data in Figs. 7.9 and 7.10. We �tted the data for hei and C byhei = e0 + e1Ly0t1�3(1 + b1= lnL+ b2=L+ b3=L2) ; (7.35)and C = 
0 + 
1Ly0t1�3(1 + d1= lnL+ d2=L+ d3=L2) ; (7.36)respe
tively. The logarithmi
 
orre
tions from the irrelevant �elds are des
ribed by the terms with amplitudesb1 and d1. The �ts of hei and C yield that y0t1 = 0:99(2) and 1:02(2), respe
tively, with error margins of twostandard deviations. This is 
onsistent with the expe
tation y0t1 = 3� yt1 = 1. We mention that Eqs. (7.35)and (7.36) are in fa
t neither 
omplete nor \
orre
t" in des
ribing the s
aling behavior of hei and C. First,one has not taken into a

ount the se
ond relevant thermal �elds t2, whi
h 
an in prin
iple introdu
e termswith L�2=50 in the bra
kets of Eqs. (7.35) and (7.36). Se
ond, the logarithmi
 
orre
tions should be des
ribedby terms with 1=L0 instead of 1= lnL. However, as indi
ated by the �ts of hei and C, this `bias' does notsigni�
antly a�e
t the results of y0t1 due to the following reasons. The repla
ement of 1= lnL by (lnL)�2=5does not signi�
antly 
hange the result for y0t1. Even negle
ting the 1= lnL term does not produ
e a large
hange. It appears that logarithmi
 
orre
tions are not very serious in 
onstrained tri
riti
al systems. Thisis also illustrated by the 
lean interse
tion of the Qm data for K = Kt = 0:7133(1) and 0:645 � �v � 0:651,partly shown in Fig. 7.12. The data for Qm in the range 6 � L � 128 were �tted byQm(K;L) = Qmt + 4Xk=1(�v � �vt)kLky0t1 + b1= lnL+ b2=L+ b3=L2 + 
(�v � �vt)Ly0t1=L ; (7.37)where �vt is the tri
riti
al va
an
y density. The renormalized thermal exponent was taken as y0t1 = 1, andwe obtain b1 = 0:066(5) and Qmt = 0:687(6), with two standard deviations again. The value of Qm
 isin agreement neither with Qt = 1=2 for un
onstrained systems nor with the mean-�eld 
riti
al Ising valueQ
 = 0:4567 � � � .The in
uen
e of the annealed 
onstraint on tri
riti
al spatial 
u
tuations 
an be re
e
ted by the 
on-strained Monte Carlo data for Cs at the tri
riti
al point, as shown in Fig. 7.13. As in un
onstrained systems,Cs diverges as Cs / L as L!1, so that the leading thermal exponent yt1 still governs the s
aling behaviorof Cs. This is rather di�erent from the 
onstrained behavior of the 
onventional spe
i�
 heat C, whi
h issuppressed to be 
onvergent at tri
riti
ality. We �tted the data for Cs byCs = 
s0 + 
s1Lyt1�3(1 + ds1= lnL+ ds2=L+ ds3=L2) ; (7.38)whi
h yields yt1 = 1:995(8), in �ne agreement with the exa
t value yt1 = 2. Therefore, one 
an 
on
ludethat the tri
riti
al spatial 
u
tuations remain un
hanged under the 
onstraint.110
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7.5 Dis
ussionDue to the geometri
 
luster algorithm, a full-
luster simulation be
omes possible for the tri
riti
al BCmodel with a 
onserved number of va
an
ies. We have performed an extensive investigation of 
onstrainedtri
riti
al behavior in three dimensions, and observe that� the leading �nite-size s
aling behavior of magneti
 quantities remains un
hanged under the 
onstraint.This is as expe
ted: the va
an
y density �v is 
onjugate to the 
hemi
al potential D, whi
h 
ontributesonly to the thermal �elds t1 and t2.� the 
riti
al behavior of energy-like quantities is renormalized; parti
ularly, the 
onstrained spe
i�
heat C has only a �nite 
usp at tri
riti
ality. The leading thermal exponent yt1 = 2 is renormalized asy0t1 = 3� yt1 = 1, while the se
ond one yt2 = 1 remains un
hanged under the 
onstraint;� the 
onstrained magneti
 Binder ratio at tri
riti
ality is Qmt = 0:687(6), apparently di�erent from theun
onstrained value Qmt = 1=2. This is understandable be
ause the universal ratio Qm still dependson boundary 
onditions, and the aspe
t ratios, et
, whi
h in
uen
e magneti
 
orrelation fun
tions.The 
onstraint also belongs to this 
ategory;� stru
ture fa
tors su
h as Cs, a

ounting for spatial inhomogeneities of 
onventional quantities, displaythe same s
aling behavior as in un
onstrained systems. This indi
ates that the divergen
e of the spatial
orrelation length, one essential 
hara
terization of 
riti
al phenomena, remains un
hanged under the
onstraint at least to a s
ale whi
h is small in 
omparison with system sizes. In this sense, one 
an
on
lude that the annealed 
onstraint does not modify the universality 
lass of a tri
riti
al system.It is 
lear that the 
onstrained tri
riti
al BC model in three dimensions is notmean-�eld 
riti
al Ising-like.This indi
ates that the mean-�eld theory is not 
omplete in des
ribing universal 
riti
al phenomena even atthe upper 
riti
al dimensionality. For a un
onstrained mean-�eld BC model, the va
an
y 
u
tuations are
oupled to the Ising 
u
tuations. Then, the stability 
riterion of the 
oupled 
u
tuations, depending on thevalue of K and D, yields distin
t types of phase transitions: a line of 
riti
al Ising points, a tri
riti
al point,and a �rst-order transition line. However, in 
onstrained mean-�eld systems, the 
u
tuations of va
an
iesare suppressed. Therefore, the presen
e of va
an
ies only serves to redu
e the number of Ising spins, leadingto a smaller e�e
tive intera
tion. As a 
onsequen
e, the whole line of phase transitions in the spa
e (K;D),in
luding the tri
riti
al point and the �rst-order transition, redu
es to mean-�eld 
riti
al Ising-like under the
onstraint. Sin
e this does not agree with the 
onstrained behavior of the investigated short-range model,we arrive at the somewhat surprising that mean-�eld theory does not des
ribe the universal properties ofthe 
onstrained tri
riti
al at its upper 
riti
al dimensionality.On the basis of the generalized Fisher renormalization me
hanism, we �nite-size analyzed several tri
rit-i
al quantities of the 
onstrained BC model in three dimensions. The agreement between the theoreti
alpredi
tions and the Monte Carlo results is quite satisfa
tory.The Fisher renormalization me
hanism is rather straightforward and fundamental. Nevertheless, Imry'srenormalization 
al
ulations [28℄ also give a 
orre
t predi
tion of the 
riti
al index � for tri
riti
al O(n)systems (n � 1) in three dimensions. However, we mention that the 
al
ulations in Ref. [28℄ did not takeinto a

ount the e�e
t of the subleading thermal �eld yt2. It is then justi�ed to ask the question how toin
lude yt2 in these 
al
ulations.A �nal remark follows. In a �nite system, the va
an
y density �v needs not be equal to its expe
tationvalue h�vi, although this di�eren
e vanishes as L!1. In the generalized Fisher me
hanism for 
onstrainedtri
riti
al behavior, it is only required that h�v(t1; t2)i is equal to h�v(0; 0)i. However, the Monte Carlosimulations take pla
e with �v = �vt, i.e., no 
u
tuation of �v is allowed. In this sense, the 
onstraint in ournumeri
al studies is `stronger' than the one in the generalized Fisher renormalization, although our presentnumeri
al results do not reveal the 
onsequen
es of this fa
t.
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8Constrained tri
riti
al phenomena in two dimensions
We investigate several tri
riti
al models on the square latti
e by means of Monte Carlo simulations. Thesein
lude the Blume-Capel model, Baxter's hard-square model, and the q = 1, 3, and 4 Potts models withva
an
ies. We use a 
ombination of the Wol� and geometri
 
luster methods, whi
h 
onserves the totalnumber of va
an
ies or latti
e-gas parti
les, and suppresses 
riti
al slowing down. Several quantities aresampled, su
h as the spe
i�
 heat C and the stru
ture fa
tor Cs whi
h a

ounts for the large-s
ale spatialinhomogeneity of the energy 
u
tuations. We �nd that the 
onstraint strongly modi�es some of the 
riti
alsingularities. For instan
e, the spe
i�
 heat C rea
hes a �nite value at tri
riti
ality, while Cs remainsdivergent as in the un
onstrained system. We are able to explain these observed 
onstrained phenomena onthe basis of the Fisher renormalizationme
hanism generalized to in
lude a subleading relevant thermal s
aling�eld. In this 
ontext, we �nd that, under the 
onstraint, the leading thermal exponent yt1 is renormalizedto 2� yt1, while the subleading exponent yt2 remains un
hanged.8.1 Introdu
tionIn experiments, many systems undergoing phase transitions are subje
t to external 
onstraints su
h as the
onversation of parti
le numbers in a mixture. Su
h systems are des
ribed in terms of the 
anoni
al ensemble,and thus typi
ally display a behavior di�erent from that of un
onstrained models, whi
h are des
ribed bythe grand ensemble. An example is the super
uid transition in the 3He-4He mixtures [1℄, whose universalproperties 
an be des
ribed by a dilute XY model. The Hamiltonian of the latti
e XY model readsH=kBT = �KXhi;ji~si~sj +DXk j~skj2 ; (8.1)where the spins 
an assume a unit ve
tor of two 
omponents, j~skj = 1, or a va
an
y j~sj = ~0. The sum h iis over nearest-neighbor latti
e pairs, and K and D are the 
oupling 
onstant and the 
hemi
al potential ofva
an
ies, respe
tively. The mole fra
tion of 3He in the experiment 
orresponds with the va
an
y density� = 1N Pk(1 � j~skj2), with N the total number of latti
e sites. For D ! �1, the va
an
ies are ex
luded,and the model (8.1) redu
es to the pure XY model. In three dimensions, this model undergoes a se
ond-order phase transition, and the 
riti
al 
oupling 
onstant K
(D) is an in
reasing fun
tion of D. The 
riti
alline terminates at a tri
riti
al point (Kt; Dt). Sin
e the upper tri
riti
al dimensionality of the O(n) model(n � 1) is equal to three, signi�
ant exa
t information is available [1℄. A set of universal parameters 
an beexa
tly obtained by means of mean-�eld analyses and also by renormalization group (RG) 
al
ulations of theLandau-Ginzburg-Wilson Hamiltonian. The leading and subleading thermal 
riti
al exponents are yt1 = 2and yt2 = 1 [1℄. Thus, as the tri
riti
al point is approa
hed, one simply expe
ts that the spe
i�
 heat Cdiverges with the index � = 2� 3=yt1 = 1=2. However, typi
al experiments take pla
e at a 
onstant density� instead at a 
onstant 
hemi
al potential D. It was reported [2℄ that, at the tri
riti
al point (Kt; �t), the115



spe
i�
 heat C has only a �nite value with � = �0:9(1), apparently di�erent from the aforementioned index� = 1=2. Thus, the theoreti
al des
ription of the experiment in Ref. [2℄ uses the dilute XY model witha 
onserved number of va
an
ies. This means that an external 
onstraint is imposed on the system (8.1).Sin
e the pertinent 3He and 4He mixtures are liquid, the 
onstraint is of the `annealed' type [3℄. Therefore,the va
an
ies should be able to move freely over the latti
e of model (8.1).The e�e
t of a 
onstraint on a 
riti
al systems has already been studied for de
ades [3{6℄. As early asin 1965, Syozi introdu
ed [4℄ a de
orated Ising model, whi
h is intimately 
onne
ted with annealed systems.The Syozi model 
an be exa
tly transformed into the spin- 12 model, and for dimensionality d > 2 
riti
alexponents of these two models are related as�s = ��=(1� �) ; �s = �=(1� �) ; and �s = �=(1� �) ; � � � (8.2)where � and � are the standard 
riti
al indi
es for the spe
i�
 heat C and the magnetization density m,respe
tively, and � = 1=yt is the inversion of the thermal exponent. The subs
ript s represents the Syozimodel. Later, this 
onstraint me
hanism was dis
ussed in a more general 
ontext by Essam and Gareli
k [5℄and by Fisher [6℄. It was argued [5, 6℄ that the relations (8.2) are not spe
i�
 to the Syozi model, but aremore generally satis�ed by equilibrium models with a divergent spe
i�
 heat C. Thus, Eq.(8.2) predi
ts that,as long as � > 0, the 
onstrained 
riti
al spe
i�
 heat C 
an at most rea
h a �nite value instead of beingdivergent. For systems with a 
onvergent spe
i�
 heat � < 0, Fisher [6℄ pointed out that no renormalizationof 
riti
al exponents as Eq. (8.2) o

urs, but additional 
orre
tions 
an be introdu
ed by the 
onstraint.Further, for the marginal 
ase � = 0, i.e., C normally diverges logarithmi
ally in un
onstrained systems, itwas shown [6℄ that, again, the 
onstraint leads to a 
onvergent spe
i�
 heat. Sin
e then, Fisher's renormalized
riti
al exponents have been used extensively [3, 7{10℄.More general theories were then formulated for 
onstrained systems, in
luding a theory of 
onstrainedtri
riti
al phenomena [11, 12℄. Besides va
an
ies, 
onstraints 
an be imposed on volumes or pressure, et
.It was argued [11, 12℄ that, depending on the type or strength of the 
onstraint, a 
ontinuous transitionmay be
ome Fisher-renormalized, remain un
hanged, or be
ome �rst-order. The spe
ial point, where thetransition remains un
hanged was referred to as a spe
ial 'tri
riti
al' point [11℄.In the 
ontext of the renormalization group (RG) theory, Imry and 
oworkers [13℄ applied the �-expansionte
hnique to a generalized Landau-Ginzburg-Wilson Hamiltonian. The e�e
t of the 
onstraint is a

ountedfor by an additional parameter, and they found four distin
t �xed points: the tri
riti
al Ising (TI), the 
riti
alIsing (CI), the renormalized tri
riti
al Ising (RTI), and the renormalized 
riti
al Ising (RCI) �xed point. The
riti
al exponents at these �xed points are related as: �RCI = ��CI=(1� �CI) and �RTI = ��TI=(1� �TI),in agreement with Eq. (8.2). For the spatial dimensionality d � 3, TI and RTI 
orrespond to Gaussian andspheri
al �xed points, respe
tively [13℄. Thus, at the �xed points TI and RTI, the 
riti
al index is equal to�TI = 1=2 and �RTI = �1, respe
tively. For the 3He-4He mixtures, if one assumes that 
onstrained tri
riti
albehavior is governed by the �xed point RTI, the theoreti
al predi
tion �RTI = �1 is in good agreement withthe experimental result � = �0:9(1) [2℄.However, to our knowledge, numeri
al tests of these theories are still s
ar
e; in parti
ular, the �nite-size behavior of 
onstrained 
riti
al systems has only attra
ted limited attention. Thus, very re
ently,we performed [14℄ a Monte Carlo investigation of the 
onstrained three-dimensional Blume-Capel (BC)model [15, 16℄. The phase diagram of the BC model is analogous to that of the dilute XY model, and,in three dimensions, the two tri
riti
al models share a 
ommon set of 
riti
al exponents. At the tri
riti
alpoint, the 
onstrained spe
i�
 heat rea
hes a �nite value with the index � = �0:99(3) [14℄, in agreementwith the experimental data [2℄ and the RG 
al
ulations in Ref. [13℄. Nevertheless, the exponent of thepower law des
ribing the de
ay of the 
orrelation fun
tion at tri
riti
ality remains un
hanged under the
onstraint. In this sense, the 
onstraint does not lead to a 
hange of the universality 
lass. In Ref. [14℄, wealso generalized Fisher's approa
h [6℄ for appli
ation to tri
riti
al systems. For the tri
riti
al BC model inthree dimensions, this me
hanism also predi
ts that the un
onstrained and 
onstrained indi
es are relatedas �
o = ��un=(1� �un) = �1, in agreement with the RG 
al
ulations in Ref. [13℄. Here, the supers
ripts`
o' and `un' are for 
onstrained and un
onstrained systems, respe
tively. However, for a general tri
riti
alsystem, it was predi
ted [14℄ that, in addition to the relation �
o = ��un=(1� �un), other 
ases 
an o

ur,116



depending on the relative magnitude of the leading and subleading thermal exponents yt1 and yt2, and thespatial dimensionality d.In order to verify these theoreti
al predi
tions, the present paper presents a more extensive study of
onstrained tri
riti
al phenomena in two dimensions. The systems investigated in
lude the Blume-Capel(BC) model [15, 16℄, Baxter's hard-square model [17, 18℄, and the q = 1, 3, and 4 Potts models withva
an
ies [19℄. In 
omparison with the three-dimensional 
ase, the investigation of two-dimensional systemshas some advantages. First, Monte Carlo simulations 
an be performed for larger linear systems sizes.Se
ond, the tri
riti
al points of the tri
riti
al q = 1 Potts model and Baxter's hard-square latti
e gas areexa
tly known, and those of the other systems have been determined with a pre
ision in the sixth or seventhde
imal pla
e. In 
ontrast, for the three-dimensional BC model, the error estimation of the tri
riti
al point isso far restri
ted to the fourth de
imal pla
e [14℄. Third, Baxter's hard-square latti
e gas [17,18℄ is in the sameuniversality 
lass as the tri
riti
al Blume-Capel model, so that the two models 
an serve for independenttests.The outline of the remaining part of this paper is as follows. Se
tion II reviews the models, the sampledquantities, and the geometri
 
luster algorithm, whi
h plays an important role in the present investigation.In Se
. III, we apply the Fisher renormalization me
hanism in the generalized 
ontext of tri
riti
al s
aling.Numeri
al results are presented in Se
. IV, and a brief dis
ussion is given in Se
. V.8.2 Models, simulations, and sampled quantities8.2.1 ModelsThe Blume-Capel model. In the development of the theory of tri
riti
al phenomena, the spin-1 model knownas the Blume-Capel (BC) model has provided the foundation. The model was independently introdu
ed byBlume and Capel [15, 16℄. The redu
ed Hamiltonian readsH=kBT = �KXhi;ji sisj +DXk s2k (s = 0;�1) : (8.3)This Hamiltonian is identi
al to Eq. (8.1) when the ve
tor order parameter ~s is repla
ed by a s
alar s. Further,in three dimensions, the phase diagram of Eq. (8.3) is analogous to that of the dilute XY model (8.1). Theuniversal tri
riti
al exponents of the two-dimensional BC model (8.3) are known from exa
t solutions [17,18℄;they 
an also be 
al
ulated in the 
ontext of the Coulomb gas theory [20, 21℄ and are in
luded in thepredi
tions of 
onformal �eld theory [22,23℄. The leading and subleading thermal exponents are yt1 = 9=5 andyt2 = 4=5, and the magneti
 ones are yh1 = 77=40 and yh2 = 9=8, respe
tively. Using a sparse transfer-matrixte
hnique and the �nite-size s
aling, we have lo
ated [24℄ the tri
riti
al point of the square-latti
e BC modelas Kt = 1:6 431 759(1) and Dt = 3:2 301 797(2); the tri
riti
al va
an
y density is �t = 0:4 549 506(2). Theseresults are based on the requirement that both the leading magneti
 and energy-energy 
orrelation lengthssimultaneously rea
h their theoreti
al values. They are 
onsistent with the existing estimate Kt = 1:64(2)and Dt = 3:22(4) [25℄, and the pre
ision is 
onsidered to be suÆ
ient in the present investigation.Baxter's hard-square model. We also investigate Baxter's tri
riti
al hard-square latti
e gas [17, 18℄,whi
h belongs to the same universality 
lass as the tri
riti
al BC model. The Hamiltonian of a generallatti
e gas on the square latti
e 
an be written asH = �KXhnni�i�j � J Xfnnng�k�l +DXk �k ; (8.4)where � = 0; 1 represents the absen
e and the presen
e of a parti
le, respe
tively. The sums hnni and fnnngare over nearest-neighbor and se
ond-nearest-neighbor sites, respe
tively. For the hard-square latti
e gas,it is required that K ! �1, i.e., the parti
les have a `hard'-
ore so that nearest-neighbor sites 
annot beo

upied simultaneously. For this 
ase, the tri
riti
al point is exa
tly known [17, 18℄: Jt = ln(3 +p5) andDt = ln[8(1 +p5)℄. The 
orresponding va
an
y density is �t = (5 +p5)=10.117



The tri
riti
al q = 3 Potts model. Just as the tri
riti
al BC model, the tri
riti
al q = 3 Potts model [19℄
an be obtained by in
luding va
an
ies in the `pure' q = 3 Potts model. The Hamiltonian of su
h a diluteq-state Potts model then readsH = �KXhnni Æ�i;�j (1� Æ�i;0)�DXk Æ�i;0 ; (� = 0; 1; � � � ; q) ; (8.5)where the latti
e site is o

upied by a Potts variable � = 1; � � � ; q or by a va
an
y � = 0. Nonzero
ouplings K o

ur only between nonzero Potts variables. For q < 4, the phase diagram in the (K;D) planeresembles that of the BC model: a tri
riti
al point o

urs between the 
ontinuous and the �rst-order line oftransitions. At the tri
riti
al point (Kt; Dt), the 
riti
al exponents are [20{23℄ yt1 = 12=7, yt2 = 4=7, andyh1 = 40=21. Also for this model we used the sparse transfer-matrix method to lo
ate [24℄ the tri
riti
alpoint: Kt = 1:649 913(5), Dt = 3:152 173(10), with a 
orresponding va
an
y density �t = 0:34572(5).The dilute q = 4 Potts model. The q = 4 Potts model is a marginal 
ase [19℄, sin
e the subleadingleading thermal exponent satis�es yt2 = 0. The leading thermal and magneti
 exponents are [21,22℄ yt1 = 3=2and yh1 = 15=8, respe
tively. The phase transition of a pure Potts model with q > 4 is of the �rst-ordertype [17℄. We investigate the dilute q = 4 Potts model at the point where the leading and the subleadingthermal �eld vanish. We have lo
ated [24℄ this '�xed' point as Kt = 1:45 790(1), Dt = 2:47 844(2), and the
orresponding va
an
y density is �t = 0:21 207(2).The tri
riti
al q = 1 Potts model. It is already known for a long time [26℄ that the tri
riti
al q = 1 Pottsmodel is equivalent with the 
riti
al Ising model. The Ising 
lusters of the 
riti
al Ising model, a group ofspins 
onne
ted by bonds between equal nearest-neighbor spins, are des
ribed by the magneti
 exponent ofthe tri
riti
al q = 1 Potts model. Here, we shall illustrate this equivalen
e, starting from the dilute q-statePotts model (8.5), whi
h, for the 
ase q = 1, simpli�es asH = �KXhnni�i�j +DXk �k ; (� = 0; 1) : (8.6)For D ! �1, the va
an
ies are ex
luded, and the random-
luster representation des
ribes the `pure' bond-per
olation problem. Thus, the random-
luster representation of Eq. (8.6) 
orresponds with a mixed site-bond per
olation model. Be
ause of the attra
tion between the non-va
an
ies, this dilute model is di�erentfrom the 
onventional site-bond per
olation model [27℄, in whi
h the va
an
ies are randomly distributed overthe latti
e, i.e., di�erent sites are un
orrelated. Nevertheless, in general, one expe
ts that the dilute q ! 1Potts model, des
ribed by Eq. (8.6), is still in the per
olation universality 
lass, and the question arises if ithas a tri
riti
al point. The answer follows after substituting the relation � = (s + 1)=2 in Eq. (8.6). Apartfrom a 
onstant, the Hamiltonian (8.6) redu
es to the Ising model in a magneti
 �eld:H = �K(I) Xhnni sisj �HXk sk ; (si = �1) ; (8.7)with the relations K(I) = K=4 ; and H = �D=2 + zK=4 ; (8.8)where z is the latti
e 
oordination number. Thus, the Ising 
riti
al point at K(I)
 and H = 0 appears inthe dilute q ! 1 Potts model (8.6) at Kt = 4K(I)
 and Dt = 2zK(I)
 . Sin
e the 
riti
al singularity is notper
olation-like, this point quali�es as the tri
riti
al point of the q ! 1 Potts model. The spin up-downsymmetry of the 
riti
al Ising model yields the va
an
y density of the dilute Potts model �t = 1=2 attri
riti
ality. The relation (8.8) shows that the temperature-like parameters, K and D, 
ontribute to K(I)and H in the Ising model. Therefore, the leading and subleading thermal exponents of the two-dimensionaltri
riti
al q = 1 Potts model simply follow asyt1 = y(I)h = 15=8 and yt2 = y(I)t = 1 : (8.9)The leading magneti
 exponent of the two-dimensional tri
riti
al q = 1 Potts model is yh1 = 187=96 [26℄.118



8.2.2 Monte Carlo methodsThe Hamiltonian for the q-state Potts model remains invariant under a global permutation of two of the qPotts states. Thus, one 
an apply the 
onventional Swendsen-Wang [28℄ and Wol� [29℄ 
luster algorithmsto simulate these models. However, for most tri
riti
al models de�ned above (ex
ept for the tri
riti
al q = 1Potts model), these 
luster algorithms are apparently not suitable or suÆ
ient, sin
e they do not operate onthe va
an
ies. For un
onstrained systems, a simple solution is to 
ombine these 
onventional algorithms andthe Metropolis method. However, the problem arises what sort of Monte Carlo algorithm is appropriate for
onstrained systems. In prin
iple, one 
an apply a Kawasaki-like Monte Carlo method [30℄, whi
h is parti
le-
onserving. Unfortunately, this method su�ers from serious 
riti
al-slowing-down, and thus simulations arerestri
ted to small system sizes. This may be one of the reasons why the number of numeri
al investigationsin this subje
t is rather limited.In the present work, we make use of the so-
alled geometri
 
luster method [31{33℄, whi
h is developed onthe basis of spatial symmetries, su
h as invarian
e under the spatial inversion and rotation operations. Thisalgorithm moves groups of spins/parti
les or va
an
ies over the latti
e in a

ordan
e with the Boltzmanndistribution, so that the total numbers of spins/parti
les and va
an
ies are 
onserved. It has been shown [31{33℄ for several models that the per
olation threshold of the geometri
 
lusters 
oin
ides with the phasetransitions, so that 
riti
al-slowing-down is e�e
tively suppressed.Then, the 
onstraint is fully realized by a 
ombination of the Wol� and geometri
 
luster methods, ofwhi
h the former 
ips between variables in di�erent Potts states. A parti
ular feature of su
h 
onstrainedsimulations is that they hardly su�er from 
riti
al-slowing-down even near tri
riti
ality.8.2.3 Sampled quantitiesConventional quantities. During Monte Carlo simulations, we sampled several quantities, in
luding themoments of the order parameter and the energy density et
. The magneti
 sus
eptibility is then obtainedfrom the 
u
tuations of the order parameter m as � = L2hm2i. For the BC model (8.1), m is just themagnetization density; for Baxter's hard-square latti
e gas,m is the di�eren
e of the va
an
y densities on thetwo sublatti
es of the square latti
e, i.e.,m = �(1)��(2); and for the tri
riti
al q = 3 and 4-state Potts models,we de�ne m2 = 12Pi 6=j(�i��j)2 where �i is the density of the ith Potts state. An energy-like quantity e wassampled as nearest-neighbor 
orrelations for the BC and the q = 1, 3, and 4-state Potts models with va
an
ies.For Baxter's hard-square latti
e gas, the nearest-neighbor sites 
annot be o

upied simultaneously, so thatwe sampled e as next-nearest-neighbor 
orrelations. On this basis, a spe
i�
-heat-like quantity is de�ned asC = L2(he2i�hei2), whi
h is proportional to the se
ond derivative of the redu
ed energy with respe
t to the
oupling 
onstant K. Moreover, we sampled energy-energy 
orrelations ge(r) = he0eri � hei2. For a latti
ewith linear system size L, the distan
e r was taken as the half diagonal distan
e, i.e., r = p2L=2. Sin
e theva
an
y density � also behaves energy-like, we de�ne a 
ompressibility-like quantity P = L2(h�2i � h�i2),whi
h is expe
ted to behave analogously as C.In Monte Carlo studies of 
riti
al phenomena, the universal Binder ratio [34℄ plays a useful role. Thus,we sampled several dimensionless quantities asQm = hm2i2hm4i ; Qe = h(e� e)2i2h(e� e)4i ; and Q� = h(�� �)2i2h(�� �)4i ; (8.10)where e = hei and � = h�i.Stru
ture fa
tors. Apart from the singular behavior of physi
al observables, a se
ond-order phasetransition is generally a

ompanied by long-range 
orrelations in time and spa
e, and thus large-s
ale spatial
u
tuations exist for the physi
al observables, su
h as the magnetization density m and the energy densitye. It is thus justi�ed to investigate the in
uen
e of the 
onstraint on these spatial 
u
tuations. For thispurpose, we de�ne a set of quantities on the basis of spatial inhomogeneities of the magnetization, the energy,and the va
an
y density. Consider the Fourier expansion of the order parameter m(x; y) for a system of sizeL: mk;l = 1L2 Z L0 dxdy m(x; y) exp[2�i(xk + yl)=L℄ : (8.11)119



Obviously, m0;0 is just the global magnetization density m, and the magneti
 sus
eptibility is � = L2hm2i =L2hm20;0i; the number mk;l (k 6= 0 or l 6= 0) represents spatial inhomogeneity of m(x; y). Sin
e we areespe
ially interested in 
u
tuations on the largest s
ales, we de�ne a sus
eptibility-like quantity �s in termsof mk;l for the smallest wave numbers:�s = L2hm�1;0 �m1;0 +m0;�1 �m0;1i = L2hm2si ; (8.12)where, for later 
onvenien
e, a quantity ms has been introdu
ed. We shall refer to �s as the stru
ture fa
torof the sus
eptibility �.Analogously, we sampled the stru
ture fa
tor of the spe
i�
 heat C as Cs = L2he�1;0 �e1;0+e0;�1 �e0;1i =L2he2si, and that of the 
ompressibility P as Ps = L2h��1;0 � �1;0 + �0;�1 � �0;1i = L2h�2si, where ek;l and �k;lare obtained from Fourier expansions of the energy and the va
an
y density, e(x; y) and �(x; y), respe
tively.On this basis, we sampled the following dimensionless ratiosQsm = hm2si2hm4si ; Qse = he2si2he4si ; and Qs� = h�2si2h�4si : (8.13)The physi
al meaning of these stru
ture fa
tors 
an be gleaned from a 
omparison with the 
onventionalquantities. For instan
e, both � and �s represent 
u
tuation strengths of the order parameter m, and 
anbe expressed in terms of a summation involving the magneti
 
orrelation fun
tion, whose s
aling behavioris des
ribed by the 
orrelation fun
tion exponents � and �. Thus, we expe
t that, in un
onstrained systems, the stru
ture fa
tors, �s, Cs, and Ps, display the same s
aling behavior as �, C, and P , respe
tively.However, as we shall see, there are interesting di�eren
es in 
onstrained systems.8.3 Finite-size s
aling behavior in 
onstrained systemsA �nite-size analysis of 
onstrained phenomena pre
isely at tri
riti
ality has re
ently been reported [14℄.This analysis follows the basi
 idea of the Fisher renormalization me
hanism, whi
h has been formulatedfor 
riti
al systems [6℄. In this se
tion, we shall brie
y review and moreover generalize the pro
edures inRef. [14℄, su
h that we 
an also a

ount for 
onstrained s
aling behavior due to deviations from the tri
riti
alva
an
y density.As a �rst step, we express the �nite-size s
aling formula of the redu
ed free energy near tri
riti
ality asf(t1; t2; L) = L�dfs(Lyt1t1; Lyt2t2; 1) + fa(t1; t2) ; (8.14)where t1 and t2 are the leading and subleading thermal �elds, respe
tively. In the language of the BC model,t1 and t2 are analyti
 fun
tions of the 
oupling 
onstant K and the 
hemi
al potential D. The symbolsfs and fa are the singular and analyti
al parts of the free energy, respe
tively. The expe
tation value ofva
an
y density h�i follows by di�erentiation as�h�(t1; t2)i = �f�D = a1Lyt1�df (1;0)s (t1Lyt1 ; t2Lyt2) + a2Lyt2�df (0;1)s (t1Lyt1 ; t2Lyt2)+ a1f (1;0)a (t1; t2) + a2f (0;1)a (t1; t2) ; (8.15)where a1 = �t1=�D and a2 = �t2=�D are 
onstants. The supers
ripts (i; j) represent i di�erentiations withrespe
t to t1 and j di�erentiations to t2. Linearization at the tri
riti
al point yields�Æ� = b1L2yt1�d t1 + b2Lyt1+yt2�d t2 + b3t1 + b4t2 + � � � ; (8.16)where b1, b2, b3, and b4 are 
onstants, and Æ� = h�(t1; t2)i � h�(0; 0)i is the deviation of the va
an
y densityfrom its tri
riti
al value. The 
onstraint that the va
an
y density is �xed at the tri
riti
al value yields Æ� = 0in Eq. (8.16). As a 
onsequen
e, the thermal �elds t1 and t2 are related, but in a way whi
h still dependson whi
h terms in the right-hand-side of Eq. (8.16) dominate. We 
onsider the 
ase of large L and thendistinguish three 
ases: 120



1. for 2yt1 � d > 0 and yt1 + yt2 � d > 0, one has Lyt1t1 / Lyt2t2, i.e., t2 >> t1 and K �Kt
 ' t2, sothat the leading thermal exponent of the 
onstrained systems is equal to the subleading exponent yt2;2. for 2yt1� d > 0 but yt1+ yt2� d < 0, one has Lyt1t1 / Ld�yt1t2. The leading thermal exponent is thusrenormalized as yt1 ! d� yt1. Again, we have t2 >> t1 and K �Kt
 ' t2.3. for 2yt1�d < 0, i.e., the un
onstrained spe
i�
 heat does not diverge at tri
riti
ality, t1 is approximatelyproportional to t2, and no exponent renormalization o

urs.Therefore, for a tri
riti
al system with a divergent spe
i�
 heat (2yt1 � d > 0), the leading thermalexponent yt1 is renormalized to d� yt1 under the 
onstraint, while the subleading one remains un
hanged.Thus, the �nite-size s
aling relation for the di�eren
e of K to the tri
riti
al point is (K � Kt) ! (K �Kt)Ld�yt1 + a0(K �Kt)Lyt2 , with a0 a 
onstant.Next, we 
onsider the 
ase that the �xed va
an
y density � di�ers slightly from the tri
riti
al value �t,i.e., Æ� = �� �t 6= 0 in Eq. (8.16). We �rst 
onsider 
ases 1 and 2, i.e., 2yt1 � d > 0. We rewrite Eq. 8.16 asLyt1 t1 = �b�11 [(Æ�+ b4t2)Ld�yt1 + b2t2Lyt2 + � � � ℄ ; (8.17)where we have omitted the term with amplitude b3 whi
h 
ontributes a smaller power of L than the left-handside. After substitution in Eq. (8.14), negle
ting less relevant terms, we obtainf(t1; t2; L) = L�dfs(�b�11 Ld�yt1(Æ�+ b4t2)� (b2=b1)Lyt2t2; Lyt2t2; 1) + fa(0; t2) ; (8.18)whi
h 
an be written more simply asf(t1; t2; L) = L�df 0s(Ld�yt1t01; Lyt2t2) + fa(0; t2) ; (8.19)where t01 � Æ� + b4t2. This means that the deviation (� � �t) from the tri
riti
al density 
ombines witht2 to a
t as a s
aling �eld with a renormalization exponent d � yt1, i.e., the �nite-size e�e
t of this linear
ombination is multiplied by Ld�yt1 .In the 
onstrained system, we wish to express the 
onstrained free energy in K and � instead of t2 and �.In 
ases 1 and 2, the 
onstraint equation (8.16) shows that t1 << t2 for large L. Sin
e t1 and t2 are writtenas linear 
ombinations of K and D, we may write K �Kt ' t2 apart from 
orre
tions with negative powersof L. Thus we have t01 = Æ�+ �(K �Kt) and t2 = K �Kt (8.20)Then, the s
aling behavior of 
onstrained quantities 
an be obtained from di�erentiations of Eq. (8.19)with respe
t to appropriate s
aling �elds.For 
ase 3, no exponent renormalization o

urs and Æ� approa
hes a linear 
ombination of t1 and t2, i.e.,the distan
e �� �t behaves in leading order as the s
aling �elds t1 and t2, independent of L.The essential element of the above pro
edure is the solution of the 
onstraint equation, Æ� =
onstant, interms of a relation between K and D. In the parameter spa
e (t1; t2), this solution is sket
hed in Fig. 8.1.The path of the 
onstrained system, the dashed line, is singular at tri
riti
ality, and for the 
ase 2yt1�d > 0,renormalization of 
riti
al exponents o

urs.As mentioned earlier, in addition to uniform 
u
tuations, a se
ond-order phase transition is also a
-
ompanied by inhomogeneous large-s
ale spatial 
u
tuations. Without the 
onstraint, these two types of
u
tuations display the same s
aling behavior. However, their behavior be
omes qualitatively di�erent in
onstrained systems when the uniform 
u
tuations are suÆ
iently strongly suppressed by the 
onstraint.A good test for su
h a di�eren
e is to 
ompare the 
riti
al behavior of the stru
ture fa
tors �s, Cs, andPs with �, C, and P , respe
tively. A

ording to Eq. (8.19), the exponents des
ribing the behavior of Cand P are modi�ed as long as 2yt1 � d > 0. In 
ontrast, sin
e the 
onstraint does not lead to a 
hangeof the universality 
lass, one may expe
t that the leading �nite-size s
aling behavior of Cs and Ps remainsun
hanged at tri
riti
ality. This will be 
on�rmed by our numeri
al data later.We 
on
lude this se
tion by pointing out the following impli
it assumption. In the derivation of Eq. (8.16),we require that the expe
tation value h�i of the va
an
y density is a 
onstant; while, in fa
t, we should require121
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2Figure 8.1: Illustration of the appli
ation of the Fisher renormalization me
hanism to tri
riti
al systems.The tri
riti
al point (Kt; Dt) is denoted as the bla
k 
ir
le, and the solid single and double linesrepresent the 
riti
al and the �rst-order-transition line, respe
tively. The variables t1 and t2 arethe leading and subleading thermal �elds at the tri
riti
al point, respe
tively. The 
onstraintthat the va
an
y density � is �xed at the tri
riti
al value �t is des
ribed by the dashed line, partof whi
h 
oin
ides with the �rst-order transition line. As a 
onsequen
e of the 
onstraint, thes
aling �elds t1 and t2 are related, and this relation is singular at tri
riti
ality.that � itself is a 
onstant. For L! 1, no di�eren
e exists between h�i and �. In a �nite system, however,� need not be equal to h�i, i.e., 
u
tuations of the va
an
y density are allowed even if h�i is a 
onstant.As mentioned earlier, the Monte Carlo simulations to be performed in this work 
onserve the number ofva
an
ies, whi
h leads to a `stronger' 
onstraint than h�i =
onstant. Thus, the appli
ation of the Fisherrenormalization me
hanism in this paper used the assumption that suppressing the 
u
tuations of � abouth�i does not lead to a qualitative 
hange in the leading s
aling behavior of the 
onstrained system.8.4 Results8.4.1 Tri
riti
al q = 1 Potts modelThe tri
riti
al q = 1 Potts model is parti
ularly suitable to illustrate the Fisher renormalization me
hanismfor 
onstrained tri
riti
al phenomena. The equivalen
e of this model with the Ising model in a magneti
�eld, as mentioned in Se
. II, makes it possible to use the known properties of the latter model, and thusthere is no obvious need for simulations. The energy density and the spe
i�
 heat in the two models arerelated as hei / he(I)i+ 2hm(I)i ; and C / C(I) + 4�(I) ; (8.21)where the supers
ript (I) is for the Ising model. Thus, the leading behavior of the Potts spe
i�
 heat Cis just that of the Ising magneti
 sus
eptibility �(I). This illustrates the fa
t that the leading q = 1 Pottstri
riti
al thermal exponent yt1 is equal to the magneti
 exponent y(I)h of the Ising model. However, theleading s
aling behavior of hei of the Potts model (8.6) is `a

identally' governed by the exponent y(I)t , thesubleading Potts thermal exponent yt2. This is due to the symmetry between plus and minus Ising spins.The dilute q = 1 Potts model with its va
an
y density � �xed at �t = 1=2, is equivalent with an Isingmodel with zero magnetization. Thus, the 
onstrained sus
eptibility �(I) vanishes in Eq. (8.21), and thePotts and Ising spe
i�
 heats, C and C(I), be
ome identi
al. Further, the 
onstraint on the Ising modelis of the magneti
 type, so that the s
aling behavior of C(I) is not qualitatively in
uen
ed. Thus, one 
an
on
lude that, under the 
onstraint, the Potts spe
i�
 heat C is governed by the se
ond thermal exponentyt2, i.e., the Ising thermal exponent y(I)t = 1. This is as predi
ted in Se
. III for the 
ase 2yt1 � d > 0,yt1 + yt2 � d > 0. 122
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L8/5Figure 8.2: Spe
i�
-heat-like quantities in the un
onstrained BC model at tri
riti
ality vs. L8=5. Thesequantities in
lude C=10 (+), 2P (�), Cs (�), and 10Ps (4). The approximate linearity of thedata illustrates that the leading behavior of these quantities is governed by the exponent 2yt1�2,with yt1 = 9=5.8.4.2 Tri
riti
al Blume-Capel modelUn
onstrained systemsFor the un
onstrained tri
riti
al systems in the present paper, the nature of the 
riti
al behavior is nowwell established [20, 21℄. The �nite-size expression of the redu
ed free energy is given by Eq. (8.14), andthe s
aling behavior of the aforementioned 
onventional quantities is obtained by di�erentiating Eq. (8.14)with respe
t to appropriate s
aling �elds. These quantities in
lude the energy density hei, the spe
i�
 heatC, the magneti
 sus
eptibility �, and the energy-energy 
orrelation fun
tion ge(r = L=p2) et
. Pre
isely attri
riti
ality, one has he(L)i = e0 + e1Lyt1�2 + e2Lyt2�2 + � � � ;C(L) = 
0 + 
1L2yt1�2 + 
2Lyt1+yt2�2 + 
3L2yt2�2 + � � � ;P (L) / C(L) ;�(L) = �0 + �0L2yh1�4 + � � � ; andge(L) = g1L2yt1�4 + g2Lyt1+yt2�4 + � � � : (8.22)The 
onstants, e0, 
0, and �0, arise from the analyti
 part of the free energy density. As dis
ussed above,we expe
t that the stru
ture fa
tors, Cs, Ps, and �s, behave in a similar way as the physi
al quantities, C,P , and �, respe
tively.For a 
omparison with 
onstrained phenomena investigated later, we simulated the tri
riti
al BC modelon the square latti
e pre
isely at the tri
riti
al point [24℄ Kt = 1:6 431 759(1) and Dt = 3:2 301 797(2). TheMonte Carlo simulations used a 
ombination of Metropolis and Wol� steps, whi
h allows 
u
tuations of themagnetization as well as the density of the va
an
ies. Periodi
 boundary 
onditions were applied, and thesystem sizes were taken in the range 4 � L � 32. The Monte Carlo data for C, P , Cs, and Ps are shownversus L8=5 in Fig. 8.2. The approximate linearity of these data lines indi
ates that all these quantities arespe
i�
-heat-like; the s
aling behavior is des
ribed by Eq. (8.22) with the exponent yt1 = 9=5. Further, weobserved that � / �s / L2yh1�2 = L37=20 (not shown). The data for the va
an
y density � is shown versusLyt1�2 = L�1=5 in Fig. 8.3, where we in
lude the L ! 1 tri
riti
al value �t = 0:4 549 506(2), taken fromRef. [24℄.For the universal ratios de�ned in Se
. II, in
luding Qm, Qe, Q�, Qsm, Qse, and Qs�, we �tted the dataa

ording to the least-squares 
riterion byQ(L) = Q+ b1Lyi + b2L2yi ; (8.23)123
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an
y density � of the un
onstrained BC model at tri
riti
ality vs. Lyt1�2 = L�1=5.Table 8.1: Fit results for the dimensionless quantities of the 
onstrained (Constr.) and the un
onstrained(Un
on.) Blume-Capel model.Quant. Qm Qe Q� Qsm Qse Qs�Un
on. :6620(5) :596(2) :597(2) :4349(5) :4720(8) :4705(8)Constr. :9821(1) :3331(2) { :81222(5) :84810(6) :84804(6)where the terms with amplitudes b1 and b2 a

ount for 
orre
tions with the irrelevant s
aling exponentyi = �1 for the q = 2 Potts tri
riti
al universality 
lass in two dimensions [17,18,21,22℄. The results, shownin Tab. 8.1, indi
ate that the universal asymptoti
 values of Qe and Qse are identi
al to those of Q� andQs�, respe
tively. This is as expe
ted, sin
e both hei and � are energy-like.Constrained systemsSimulations of the 
onstrained BC model used a 
ombination of Wol� and geometri
 
luster steps, as dis-
ussed earlier. Periodi
 boundary 
onditions were used, and the system sizes were taken in the range6 � L � 720. For ea
h system size, about 5� 107 samples were taken.Constrained behavior at the tri
riti
al point. The tri
riti
al point was taken from Ref. [24℄ as Kt =1:6 431 759(1), �t = 0:4 549 506(2). For a �nite system L, however, the total number of the va
an
iesVt = L2�t is generally not an integer. In that 
ase, the a
tual simulations were performed at V� = [Vt℄ andV+ = [Vt + 1℄, where bra
kets [ ℄ denote the integer part. For a sampled quantity A, its tri
riti
al value Atis then obtained by a linear interpolation as At = xA+ + (1� x)A�, with x = Vt � V�; the statisti
al errormargin of At is estimated as ÆAt = p(xÆA+)2 + [(1� x)ÆA�℄2. The data for the 
onstrained spe
i�
 heatC and the energy density hei are shown in Figs. 8.4 and 8.5. In 
omparison with Figs. 8.2 and 8.3, these�gures indi
ate that the s
aling behavior of C and hei is indeed modi�ed by the 
onstraint. In parti
ular, the
onstrained spe
i�
 heat C rea
hes only a �nite value instead of being divergent for L!1. The exponentsused for the horizontal axes in Figs. 8.4 and 8.5 are those predi
ted in Se
. III. For the tri
riti
al BCmodel in two dimensions, the Fisher me
hanism predi
ts that the leading thermal singularity in 
onstrainedsystem is determined by the subleading exponent yt2, be
ause the renormalized exponent 2 � yt1 = 1=5is smaller than yt2 = 4=5. Thus, one obtains the leading �nite-size behavior hei / Lyt2�2 = L�6=5 andC / L2yt2�2 = L�2=5, in agreement with Figs. 8.4 and 8.5, respe
tively. By di�erentiating Eq. (8.19) withrespe
t to the thermal �elds �1 and �2, the �nite-size dependen
e of C and hei follows asC = 
0 + a1L2yt2�2 + a2Lyt2�yt1 + a3L2�2yt1 + � � � ;hei = e0 + b1Lyt2�2 + b2L�yt1 + � � � ; (8.24)124
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 heat C of the 
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L-6/5Figure 8.5: Energy density hei of the 
onstrained BC model at tri
riti
ality vs. Lyt2�2 = L�6=5.where the 
onstants 
0 and e0 are equal to those in Eq. (8.22). The hei and C data were �tted by Eq. (8.24),with yt1 �xed at 9=5. In order to obtain a satisfa
tory �t, the data for small system sizes L � 8 weredis
arded. We obtain yt2 = 0:798(4) and 0:803(4) from the �t of C and hei, respe
tively. These results arein good agreement with the exa
t value yt2 = 4=5.The ge(r) data for r = p2L=2 at tri
riti
ality are shown in Fig. 8.6. The approximate linearity indi
atesthat the s
aling behavior of ge is still governed by the leading thermal exponent yt1, i.e., ge / L2yt1�4 = L�2=5as des
ribed by Eq. (8.22). This 
on�rms that, as expe
ted, the power law des
ribing the spatial 
orrelationsis not a�e
ted by the 
onstraint, although the amplitude be
ome negative. For an illustration of the in
uen
eof the 
onstraint on inhomogeneous 
u
tuations, we sampled the stru
ture fa
tors Cs and Ps, whi
h displaythe same s
aling behavior as C and P in the un
onstrained systems, as shown in Fig. (8.2). The 
onstraineddata for Cs and Ps are shown in Fig. 8.7. In 
ontrast to the 
onventional quantities C and P , the leadingbehavior of the tri
riti
al stru
ture fa
tors Cs and Ps remains the same as in the un
onstrained systems.The numeri
al data were �tted by Eq. (8.22) with the exponent yt2 �xed at 4=5. After a 
uto� for smallsystems sizes L � 8, we obtain yt1 = 1:799(2) and 1:798(2) from the �ts for Cs and Ps, respe
tively. Theseresults are in good agreement with the exa
t value yt1 = 9=5.As an illustration of the in
uen
e that the energy-like 
onstraint has on magneti
 quantities, we sampledthe quantities � and �s. The data are shown in Fig. 8.8, where the exponent 37=20 used for the horizontals
ale is equal to 2yh1� 2 with yh1 = 77=40 [20{22℄. Thus, the 
onstraint does not 
hange the leading s
alingbehavior of magneti
 quantities. This is apparently related to the fa
t that the 
hemi
al potential D, the
onjugate parameter of the va
an
y density �, is not dire
tly 
oupled to the magneti
 �eld.The data for the universal ratios, in
luding Qm, Qe, Q�, Qsm, Qse, and Qs�, were also �tted by Eq. (8.23).125
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riti
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onstraint, �nite-size 
orre
tions still mainly arise from the irrelevant �eld. Aftera 
uto� for small system sizes L � 10, satisfa
tory �ts 
an be obtained. The results are shown in Tab. 8.1,where the quoted error margins are two statisti
al standard deviations. Thus, although the dimensionlessratios are universal, they assume di�erent values in un
onstrained and 
onstrained systems. The reason isthat these ratios depend on the spatial pro�le of 
orrelation fun
tions. Here the 
onstraint plays a similarrole as the boundary 
onditions and the aspe
t ratios, et
. A parti
ular feature in Tab. 8.1 is that the
onstrained ratio Qe = 0:3331 (2) � 1=3. This indi
ates that the 
u
tuations of the energy density resemblethe normal (Gaussian) distribution. As re
e
ted by the fa
t that the spe
i�
 heat C remains �nite in
onstrained systems, this is be
ause singularities of energy-related quantities are strongly suppressed so thatthe `ba
kground' (the analyti
al part of the free energy) plays an enhan
ed role.Constrained behavior near the tri
riti
al point. In addition to the tri
riti
al point, the Fisher renormal-ization me
hanism also predi
ts the s
aling behavior as a fun
tion of the distan
es K�Kt and ���t. In this
ase, the dimensionless ratios serve a good 
hoi
e for su
h investigations. The Qm data at K = Kt are partlyshown in Fig. 8.9 as a fun
tion the va
an
y density. They indi
ate that the exponent y� of the deviationof the va
an
y density � � �t is mu
h smaller than one, i.e., y� << 1, in agreement with the predi
tion byEq. (8.19). The Qm data were �tted byQm(�; L) = Qm + 4Xk=1 ak(�� �t)kLk(2�yt1) + b1Lyi + b2L2yi +
1(�� �t)L2�yt1+yi + 
2(�� �t)2L2�yt1 + � � � ; (8.25)where the term with 
1 des
ribes the `mixed' e�e
t of the leading irrelevant �eld and the s
aling �eld �1in Eq. (8.19). The term with 
2 arises from the nonlinear dependen
e of �1 on the distan
e � � �t. Theirrelevant exponent was �xed at yi = �1. Dis
arding the data for for small system sizes L � 12, we obtainyt1 = 1:796(5), in agreement with the exa
t value yt1 = 9=5.As shown earlier, pre
isely at the tri
riti
al point, the leading s
aling behavior of the stru
ture fa
torsis not renormalized under the 
onstraint. However, we argue here that the 
onstrained s
aling behavior ofthese quantities as a fun
tion of the distan
e to the tri
riti
al point is still governed by Eq. (8.19). Thus,the leading �nite-size s
aling of C(�;K;L) and Cs(�;K;L) 
an be expressed asC(�1; �2; L) = 
(�1; �2) + L2yt2�2C(�1L2�yt1 ; �2Lyt2) ;Cs(�1; �2; L) = 
a(�1; �2) + L2yt1�2Cs(�1L2�yt1 ; �2Lyt2) ; (8.26)where �1 = (���t)+a(K�Kt) and �2 = (K�Kt) a
t as s
aling �elds. The terms 
(�1; �2) and 
a(�1; �2) arise127
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onstrained tri
riti
al BC model at a �xed tri
riti
al va
an
ydensity � = �t vs. 
oupling 
onstant K. The data points +, �, �, 
, 4, �, and � representL = 24, 32, 40, 48, 56, 64, and 80, respe
tively.from the analyti
al ba
kground. For the 
ase K = Kt, Taylor expansions of Eq. (8.26) yield the behavior ofCs(�; L) as Cs(�; L) = 
a0 + 
a1(�� �t) + 
a2(�� �t)2 + L2yt1�2[d0 +Xk ak(�� �t)kLk(2�yt1) + b1Lyi + b2L2yi ℄ : (8.27)We �tted Cs data for K = Kt by Eq. (8.27). After a 
uto� for small system sizes L � 10, we obtain theleading thermal exponent yt1 = 1:793(8) � 9=5.For an in�nite system with the 
oupling 
onstant K = Kt, the spe
i�
-heat-like quantities C and Csbehave as C / (�� �t)��� and Cs / (�� �t)��s� , respe
tively. The exponents �� and �s� 
an be obtainedby regarding L as a s
aling fa
tor, whi
h satis�es (� � �t)L2�yt1 = 1. From Eq. (8.26), one simply has�� = (2yt2 � d)=(d � yt1) = �2 and �s� = (2yt1 � d)=(d � yt1) = 8. Similarly, for the 
ase � = �t,the spe
i�
 heat C and the stru
ture fa
tor Cs behave C / (K � Kt)�� and Cs / (K � Kt)��s in anin�nite system, respe
tively. Following the same pro
edure, one 
an obtain � = (2yt2 � d)=yt2 = �1 and�s = (2yt1 � d)=yt2 = 2.As an illustration of the renormalization exponents due to the di�eren
e of K to the tri
riti
al point, theQsm data for � = �t are partly shown in Fig. 8.10 as a fun
tion of K. We �tted these Qsm data byQsm(K;L) = Qsm + 4Xk=1 a1k(K �Kt)kLkyt2 + b1Lyi + b2L2yi +
1(K �Kt)Lyt2+yi + 
2(K �Kt)2Lyt2 + � � � : (8.28)The exponent yi were �xed at �1, and the data for small system sizes L � 10 were dis
arded. We obtainyt2 = 0:806(7), in agreement with the exa
t value yt2 = 4=5.8.4.3 Baxter's hard-square modelWithin the same universality 
lass of the tri
riti
al BC model, we also investigate Baxter's hard-square latti
egas [17, 18℄, whi
h is des
ribed by Eq. (8.4). Constrained simulations used the geometri
 
luster algorithmonly, and took pla
e at the exa
tly known tri
riti
al point Jt = ln(3 + p5) and and �t = (5 + p5)=10.We used periodi
 boundary 
onditions and 24 system sizes in the range 4 � L � 360. Again, the a
tualsimulations were performed for two integer numbers of va
an
ies, and the tri
riti
al quantities are obtainedby a linear interpolation. This model serves an independent test for the 
onstrained behavior dis
ussed inthe above subse
tion. We observe that, as expe
ted, the 
onstrained tri
riti
al phenomena of this latti
e gas128
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i�
 heat C of the q = 3 Potts model at tri
riti
ality vs. L2yt2�2 = L�6=7.and of the BC model are very similar. For instan
e, the 
onstrained tri
riti
al spe
i�
 heat of the latti
egas also rea
hes a �nite value as L�2=5, illustrated in Fig. (8.11). For this reason, we do not give a detaileda

ount of the numeri
al results.8.4.4 Tri
riti
al q = 3 Potts modelUsing a 
ombination of Metropolis, Wol�, and geometri
 
luster steps, we �rst simulated the un
onstrainedq = 3 Potts model with va
an
ies at the tri
riti
al point [24℄ Kt = 1:649 913(5) and Dt = 3:15 217(1).The system sizes were taken in the range 6 � L � 32, and the spe
i�
 heat C and the energy density heiwere sampled. As expe
ted, we found that these data are well �tted by Eq. (8.22), with the exa
t thermalexponents yt1 = 12=7 and yt2 = 4=7.Next, we performed 
onstrained simulations at tri
riti
ality using the determined tri
riti
al va
an
ydensity [24℄ �t = 0:34572(5). The system sizes were 
hosen as 20 values in the range 6 � L � 280. TheMonte Carlo data for C and hei are shown in Figs. 8.12 and 8.13, respe
tively. Again, the tri
riti
al spe
i�
heat C is suppressed and remains �nite under the 
onstraint. These �gures 
on�rm that the leading behaviorof C and hei is governed by the exponents 2 � 2yt1 and �yt1, respe
tively, as predi
ted by Eq. (8.24). Fora quantitative 
on�rmation, the C data were �tted by Eq. (8.24). First, we �xed yt1 at 12=7 [20{22℄. Afterdis
arding the data for small system sizes L � 10, we obtain yt2 = 0:572(3) � 4=7. Next, we �xed yt2 at 4=7and obtain yt1 = 1:714(2) � 12=7.The s
aling behavior of magneti
 quantities and the stru
ture fa
tors also remains un
hanged under the
onstraint, as expe
ted. As an illustration, the Cs data are shown in Fig. 8.14, indi
ating that at tri
riti
ality129
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i�
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onstrained q = 3 Potts model at tri
riti
ality vs.L2yt1�2 = L10=7.Cs diverges indeed as L2yt1�2 = L10=7.8.4.5 Dilute q = 4 Potts modelThe q = 4 Potts model is a marginal 
ase of the tri
riti
al Potts model in the sense that the 
riti
al and thetri
riti
al bran
h merge at q = 4; a

ordingly, the subleading thermal exponent vanishes, i.e., yt2 = 0 [19℄.In this 
ase, we expe
t that the leading thermal exponent in 
onstrained systems is equal to 2� yt1 = 1=2.This 
orresponds with 
ase 2 in Se
. III. Constrained simulations were performed at the '�xed' point,i.e., [24℄ Kt = 1:45 790(1) and �t = 0:21 207(2), where logarithmi
 
orre
tions due to the marginal �eldasso
iated with yt2 are absent. The system sizes took 20 values in the range 12 � L � 280. The Cs dataare plotted in Fig. 8.15. They show no indi
ation that the 
onstraint introdu
es slowly-
onvergent �nite-size
orre
tions. A

ording to Eq. (8.24), the C and hei data are plotted versus 1=L and L�3=2 in Fig. 8.16 and8.17, respe
tively. In 
ontrast to the tri
riti
al systems dis
ussed above, the leading terms in Eq. (8.24) areinsuÆ
ient even to approximately des
ribe these numeri
al data. Remarkably, the energy density hei has amaximum when the system size L in
reases. The data were �tted byhei = e0 + e1L�3=2 + e2L�2 + e3L�5=2 ; (8.29)where the exponents were �xed as �3=2 = �yt1, �2 = yt2 � 2, and �5=2 = �yt1 � 1. After dis
ardingthe data for small system sizes L � 12, the �t yields e0 = 1:329377(4), e1 = 1:53(2), e2 = �11:0(2), ande3 = 12:2(4), where we quote error margins of two standard deviations. The 
onstants e1 and e2 have130
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i�
 heat C of the 
onstrained dilute q = 4 Potts model at the �xed point vs. L2�2yt1 = 1=L.opposite signs. Similarly, we �tted the C data byC = 
0 + 
1L�1 + 
2L�3=2 : (8.30)and obtain 
0 = 3:960(4), 
1 = �2:1(4), and 
2 = �23(1). The amplitude 
1 is relatively small in 
omparisonwith 
2, whi
h explains the strong nonlinearity in Fig. 8.16.8.5 Dis
ussionThe geometri
 
luster method serves well for a detailed investigation of the �nite-size s
aling behavior of 
on-strained tri
riti
al systems. For the q = 4 Potts model with va
an
ies and the other systems, the 
onstraineddata 
an be explained by the se
ond and the �rst 
ase of the Fisher renormalization des
ribed in Se
. III,respe
tively. For 
larity, a 
omparison of the un
onstrained and 
onstrained tri
riti
al s
aling behavior ofseveral quantities is listed in Tab. 8.2. These in
lude the energy density hei, the spe
i�
 heat C, the stru
turefa
tor Cs, and the magneti
 sus
eptibility �. These data illustrate that the s
aling behavior of 
onventionalenergy-like quantities is signi�
antly modi�ed under the 
onstraint, while that of magneti
 quantities andstru
ture fa
tors remains un
hanged. Generally speaking, the agreement between the numeri
al results andthe theory is quantitatively satisfa
tory.During the derivations of the s
aling formulas in Se
. III, the Fisher renormalization me
hanism makesessential use of the universal renormalization exponents in the un
onstrained free energy density as des
ribed131
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Table 8.2: Leading �nite-size s
aling behavior of hei, C, and Cs of un
onstrained (un) and 
onstrained (
o)tri
riti
al systems, in
luding dilute q = 1, 3, and 4-state Potts models, the Blume-Capel (BC)model, and Baxter's hard-square (HS) model.Model q = 1 BC HS q = 3 q = 4heiun L�1 L�1=5 L�1=5 L�2=7 L�1=2hei
o L�1 L�6=5 L�6=5 L�9=7 L�3=2C un L7=4 L6=5 L6=5 L10=7 LC 
o lnL L�2=5 L�2=5 L�6=7 L�1Cs un L7=4 L6=5 L6=5 L10=7 LCs 
o L7=4 L6=5 L6=5 L10=7 L� un L91=48 L77=10 L77=40 L38=21 L7=4� 
o L91=48 L77=10 L77=40 L38=21 L7=4
132



by Eq. (8.14). This simply means that the present annealed type of 
onstraint does not modify the uni-versality 
lass, and thus the 
riti
al exponents in the 
onstrained and un
onstrained systems are dire
tlyrelated. We further demonstrate this point by investigating the s
aling behavior of the stru
ture fa
torsCs and Ps, whi
h remains un
hanged under the 
onstraint. Therefore, on the basis of the summary in theabove paragraph, we 
on
lude that the Fisher renormalization me
hanism straightforwardly and 
ompletelydes
ribes the essential physi
s of the 
onstrained s
aling behavior. It then seems that there is no apparentneed to apply other theories. Nevertheless, in this 
ontext, we mention Imry's theory [11, 12, 36℄ for 
on-strained 
riti
al phenomena, whi
h is more general and in
ludes the Fisher renormalization me
hanism [6℄as a spe
ial 
ase. This theory has been applied to the Baker-Essam model [35℄, a 
ompressible Ising model,where a `spe
ial' tri
riti
al point was reported. Su
h a point, where no renormalization of 
riti
al exponentso

urs even for systems with � > 0, has not been observed in the present investigation. For the experimentaldata [2℄ at the � transition in the 3He-4He mixtures, both the Fisher approa
h and the renormalization group(RG) 
al
ulations of Imry and 
oworkers [13℄ 
an be employed. This has been further 
on�rmed [14℄ by theMonte Carlo simulations of the tri
riti
al Blume-Capel model in three dimensions. Although the RG 
al
u-lations [13,36℄ 
an be regarded to 
orrespond with the se
ond 
ase of the Fisher renormalization me
hanism,as des
ribed in Se
. III, the 
onne
tion of these two theories is not always obvious. Thus, it seems justi�ed toask the following questions: 1) in addition to the Baker-Essammodel [35℄, 
an one further test the theoreti
alpredi
tions in Refs. [11, 12℄ in other systems? In parti
ular, 
an one observe the aforementioned `spe
ial'tri
riti
al point? 2) how are the RG 
al
ulations [13℄ related to the Fisher renormalization me
hanism? 3)how 
an the e�e
t of the subleading thermal �eld be in
luded in the RG 
al
ulations [13℄?Although the mean-�eld theory is `unrealisti
' in general, it 
an yield an intuitive physi
al pi
ture of aphase transition. Moreover, for a suÆ
iently high spatial dimensionality, the mean-�eld theory 
an 
orre
tlypredi
t universal parameters. Therefore, we investigated [14℄ the in
uen
e of the 
onstraint on the mean-�eldversion of the Blume-Capel (BC) model. Just as in �nite spatial dimensions, the mean-�eld BC model hasa line of se
ond and �rst-order transitions and a tri
riti
al point. However, under the 
onstraint, it 
an beshown that the whole transition line redu
es to mean-�eld 
riti
al Ising-like.Finally, we remark that, in our appli
ation of the Fisher renormalization me
hanism, only the leadingterms are kept, as mentioned in Se
. III. It is obvious that in
luding subleading terms leads to additional�nite-size 
orre
tions besides those arising from the irrelevant s
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9Monte Carlo study of ba
kbone exponents
By means of Monte Carlo simulations and �nite-size analyses, we determine the ba
kbone exponent of severalq-state Potts model in two and three dimensions.9.1 The q-state Potts model in two dimensionsWe determine the ba
kbone exponent Xb of several 
riti
al and tri
riti
al q-state Potts models in twodimensions. The 
riti
al systems in
lude the bond per
olation, the Ising, the q = 2 � p3, 3, and 4-statePotts, and the Baxter-Wu model, and the tri
riti
al ones in
lude the q = 1 Potts model and the Blume-Capelmodel. For this purpose, we formulate several eÆ
ient Monte Carlo method and sample the probability P2of a pair of points 
onne
ted via at least two independent paths. Finite-size-s
aling analysis of P2 yields Xbas 0:3566(2), 0:2696(3), 0:2105(3), and 0:127(4) for the 
riti
al q = 2�p3, 1; 2, 3, and 4-state Potts model,respe
tively. At tri
riti
ality, we obtain Xb = 0:0520(3) and 0:0753(6) for the q = 1 and 2 Potts model,respe
tively. For the 
riti
al q ! 0 Potts model it is derived that Xb = 3=4. From a s
aling argument, we�nd that, at tri
riti
ality, Xb redu
es to the magneti
 exponent, as 
on�rmed by the numeri
al results.9.1.1 Introdu
tionThe integer q-state Potts model [1℄ is an extension of the Ising model, and has been a subje
t of intenseresear
h interest for de
ades. It 
an be generalized to the random-
luster model of all q � 0 [4℄. For a reviewsee [5℄. This model has been shown to be very ri
h in its behavior. In two dimensions, the nature of the
riti
al singularities is now well established. In the study of 
riti
al phenomena, the Potts model has be
omean important testing ground for various methods and approa
hes.However, there is still a number of 
riti
al exponents, of whi
h the exa
t values have not been obtained.These exponents 
hara
terize geometri
 properties of the 
riti
al Potts models, and seem to have no analoguein the thermodynami
s. Among them there are fra
tal dimensions of `ba
kbones' [7℄ and of `
hemi
al'paths [18℄.Here, we shall brie
y review de�nitions of these quantities, in the language of the per
olation model [3℄,a spe
ial 
ase of the Potts model for q ! 1. Consider a bond per
olation model on the square latti
e; ea
hedge of the latti
e is o

upied by a `
ondu
ting' bond with probability p, or is `empty' with probability 1�p.At the 
riti
al point p
 = 1=2 [3℄, a per
olating 
luster, whi
h 
onsists of sites 
onne
ted via these 
ondu
tingbonds, will grow arbitrarily large. Suppose one has a per
olating 
luster, whi
h 
ontains two sites S1 andS2 separated by a distan
e r. The ba
kbone [7℄ is then de�ned as the set of sites from whi
h 
ondu
tingpaths exist both to S1 and S2, su
h that both paths have no bonds in 
ommon, i.e., the paths are mutuallyindependent. Thus, if a potential di�eren
e is applied to S1 and S2, the ba
kbone 
onsists exa
tly of thosesites through whi
h 
urrent would 
ow, apart from the so-
alled `Wheatstone bridges'. At 
riti
ality, thetotal number of sites or bonds in the ba
kbone s
ales as Nb / rd�Xb , where d = 2 and Xb are the spatial135



and the ba
kbone s
aling dimension, respe
tively. The 
hemi
al path [18℄ is de�ned as the shortest pathbetween S1 and S2. Its average length at 
riti
ality behaves as l / rd�Xmin , with Xmin the 
orrespondings
aling dimension. Another exponent of interest is related to the so-
alled `red' bonds. Suppose a bondin the per
olating 
luster 
arries all the 
urrent and thus be
omes `hot' after some time, then this bondis named a red bond [7, 18℄. A 
luster with one or more red bonds will, if any red bond is 
ut, split intodis
onne
ted sub-
lusters. The total number of red bonds in the per
olating 
luster behaves as Nr / rd�Xr ,with Xr the red-bond s
aling dimension.As mentioned earlier, the `geometri
' exponents, su
h as Xb, Xr, and Xmin, 
hara
terize geometri
stru
tures of 
riti
al systems, and are thus of some physi
al relevan
e. For instan
e, the ba
kbone andred-bond s
aling dimensions Xb and Xr are related to the ele
tri
 
ondu
tivity of a random network [26℄.The 
hemi
al path dimension Xmin is the analogue in per
olation of the dynami
 s
aling exponent of 
riti
alphenomena [19℄.Among these exponents, the red-bond dimensionXr has been identi�ed with another exponentXp [10,11℄,whi
h governs the RG 
ow of the bond probability p for 
riti
al systems. As a result, exa
t values of Xr 
anbe 
al
ulated from the theory of the Coulomb gas [9℄; these values are also in
luded in the predi
tion of the
onformal �eld theory [10, 14, 42℄. However, ex
ept for the spe
ial 
ase q ! 0, exa
t values have not beenobtained for Xb and Xmin. Numerous theoreti
al attempts have been 
arried out. For the per
olation modelq ! 1, a relation was assumed by Herrmann and Stanley [18℄ as Xb = Xr �Xmin, whi
h satis�es numeri
altests quite well so far. However, this 
onje
ture apparently 
annot be generalized to the 
riti
al q ! 0 Pottsmodel, where Xb = Xr = Xmin, as shown later. It was also assumed that Xb(q ! 1) = 7=16 [15, 16℄, whi
his, however, not 
onsistent with 
urrent estimations. More re
ently, Xb(q ! 1) has been related to a partialdi�erential equation [17℄, whi
h, unfortunately, appears to be intra
table, even numeri
ally.In parallel with these theoreti
al attempts, several numeri
al determinations of Xb have been a
hieved.Signi�
ant progress is obtained by Monte Carlo simulations [18{20℄. The basi
 idea of these simulations isto 
ount the total number of sites or bonds in the ba
kbones. For instan
e, for the per
olation model inthe `bus-bar' geometry, Grassberger [19℄ determined Xb = 0:3569(8). Slow 
onvergen
e applies to Xb in this
ase. For the q = 2 and 3-state Potts models, it has been estimated [20℄ that Xb = 0:25(1) and 0:25(2),respe
tively.Another approa
h was taken by Ja
obsen and Zinn-Justin [22℄ re
ently. They applied a transfer-matrixmethod, and obtained Xb = 0:3569(6) for the per
olation model. Instead of the total number of sites in theba
kbones, they investigated the 
orrelation length of k-
onne
ted 
lusters [43℄, where k � 1 is an integer. A
luster is 
onsidered to be k-
onne
ted if, by eliminating any k� 1 sites or 
ondu
ting bonds, no separationinto dis
onne
ted sub-
lusters is possible. This means that any two sites in the 
luster are 
onne
ted via atleast k independent paths without any bond in 
ommon. At 
riti
ality, the behavior of these k-
onne
ted
lusters is dominated by a family of exponents Xk. Moreover, it has been shown that X2 = Xb [44℄, so thatone 
an estimate Xb by studying 2-
onne
ted 
lusters.In su
h transfer-matrix 
al
ulations, the �nite system sizes are restri
ted to relatively small values, sin
ethe 
omputer memory required in
reases exponentially with linear size L. For instan
e, in Refs. [22℄, L islimited to 2 � L � 10. This e�e
t, together with the aforementioned slow �nite-size 
onvergen
e, makes itdiÆ
ult to determine Xb a

urately.In this paper, we present another Monte Carlo study of the ba
kbone exponents. However, in 
omparisonwith the earlier Monte Carlo studies [18{20℄, we apply a new sampling pro
edure. As mentioned above, theearlier methods involve 
ounting pro
edures for the number of sites or bonds in the ba
kbone. In otherwords, for a 
luster of interest, all dangling bonds have to be identi�ed and ex
luded. This appears to bea time-
onsuming task. Instead, in the present work, we sample the probability P2(r) that a pair of sites,separated by a distan
e r, are 
onne
ted via at least two independent paths. For later 
onvenien
e, we shallrefer to the quantity P2(r) as the `ba
kbone 
orrelation fun
tion'. The sampling pro
edure for P2(r), whi
hwill be des
ribed in detail later, has a speed at least of the same order as the well-known Wol� 
lustermethod [45℄. We note that, in 
omparison with Refs. [18{20℄, our pro
edure to sample P2(r) is more in linewith that used in Ref. [22℄.The sampling pro
edure for P2(r) 
an be applied to the general q-state Potts model with any valueof q � 0. Further, with this te
hnique, we simply investigate systems with periodi
 boundary 
onditions136



rather than in the `bus-bar' geometry [19,20℄. Thus, one avoids any �nite-size 
orre
tion asso
iated with thesurfa
es in the `bus-bar' geometry. This will be 
on�rmed later.In the present work, several 
riti
al and tri
riti
al q-state Potts systems are investigated. The values ofq are 
hosen as q = 2 � p3, 1, 2, 3, and 4 for the 
riti
al systems, and q = 1 and 2 at tri
riti
ality. The
riti
al q = 1 and 2 Potts models are just the bond per
olation and the Ising model, respe
tively, and thetri
riti
al q = 2 system is the Blume-Capel model [46, 47℄. For q = 4, we avoid slow �nite-size 
onvergen
eby investigating a dilute q = 4 Potts model and the Baxter-Wu model [48℄.For these systems, extensive simulations were performed to determine Xb. In order to suppress 
riti
alslowing down, we make use of various eÆ
ient 
luster Monte Carlo algorithms. For instan
e, for the diluteq = 4 Potts and the Blume-Capel model, a geometri
 
luster method [49℄ was used to move va
an
ies onlatti
es. Another example is the simulation of the 
riti
al q = 2�p3 Potts model. For this this purpose, weformulate a Monte Carlo method for the Potts model with non-integer q > 0. This method hardly su�ersfrom 
riti
al slowing down for small q > 0.9.1.2 ModelsWe start from the Hamiltonian of the dilute q-state Potts model on the square latti
e [5℄, whi
h readsH=kBT = �KXhi;ji Æ�i;�j (1� Æ�i;0)�DXk Æ�k;0 (� = 0; 1; � � � ; q) : (9.1)Ea
h site is o

upied by a Potts variable with � = 1; � � � ; q or by a va
an
y � = 0, and the sum h i is over allnearest-neighbor sites. The abundan
e of the va
an
ies is 
ontrolled by the 
hemi
al potential D. Nonzero
ouplings K o

ur only between equal Potts variables, i.e., variables with nonzero values of �.Just as the `pure' Potts model, this model 
an be represented by Kasteleyn-Fortuin (KF) 
lusters [4,50℄,with ea
h site of the latti
e also o

upied by a va
an
y or a Potts variable. A nearest-neighbor bond is pla
edbetween ea
h pair of equal, nonzero Potts variables with the probability p = 1� exp(�K). We emphasizethat, for any pair of nearest-neighbor sites, no bond is present if any of them is a va
an
y. The whole latti
eis then de
omposed into 
lusters, i.e., the aforementioned KF 
lusters. This model is also referred to as arandom-
luster model with a partition sumZ = Xfv;bgunb qn
 wnv ; (u = eK � 1 and w = eD) ; (9.2)where the sum is over all mutually 
onsistent va
an
y and bond 
on�gurations, and nb, n
, and nv are thetotal number of bonds, KF 
lusters, and va
an
ies, respe
tively. A

ording to �nite-size s
aling, the averagesize of these KF 
lusters at 
riti
ality is governed by the magneti
 s
aling dimension Xh. With the partitionsum (9.2), the Potts model is now also well de�ned for any non-integer q � 0.For D = �1, the va
an
ies are ex
luded, and the system redu
es to the `pure' Potts model. In this 
ase,the model is self-dual, and the 
riti
al point follows [5℄ as u
 = exp(K
) � 1 = pq on the square latti
e.With suÆ
iently abundant va
an
ies, tri
riti
al systems, des
ribed by Eqs. (9.1) and (9.2), 
an be obtained.Apart from these KF 
lusters, we also investigate so-
alled `Potts' 
lusters [10, 11, 42℄, de�ned as sets ofPotts variables in the same state, 
onne
ted by nearest-neighbor bonds. In other words, 
ondu
ting bondsare always present between nearest-neighbor Potts variables as long as they are in the same state. Exponentsdes
ribing Potts 
lusters are normally di�erent from those for KF 
lusters. For instan
e, the q = 2 Potts
lusters, i.e., Ising 
lusters, are des
ribed by the magneti
 exponent of the tri
riti
al q = 1 Potts model [9{11℄,di�erent from that of the 
riti
al Ising model. Exponents for q = 3 and q = 4 Potts 
lusters have also beenpredi
ted as Xh = 7=80 and 1=8 [42℄.Among the systems in
luded in the present work, most of the systems 
an be des
ribed by Eqs. (9.1) or(9.2), ex
ept the Blume-Capel, and the Baxter-Wu model, whi
h will be des
ribed later.For the q = 4 Potts model, logarithmi
 
orre
tions arise due to the marginal �eld asso
iated with thefuga
ity of va
an
ies [5℄. In order to avoid su
h 
orre
tions, we investigate a dilute system at the pointwhere this marginal �eld vanishes. We shall refer to this point, although somewhat impre
isely, as the137



`�xed' point. By means of a transfer-matrix 
al
ulation [51℄, we lo
ate this �xed point as Kt
 = 1:45790(1),Dt
 = 2:478438(2), and �t
 = 0:21207(2) for the va
an
y density. The pre
ision of this result is 
onsideredsuÆ
ient for our later investigation of the ba
kbone exponents.For the 
ase of q = 4, besides the aforementioned dilute system, we also investigate the Baxter-Wumodel [48℄, whi
h is de�ned on the triangular latti
e asH=kBT = �KX�;r�i�j�k ; (� = �1) ; (9.3)where the sum is over every up- and down-triangular fa
e of the latti
e. It has been shown that this modelbelongs to the universality 
lass of the q = 4 Potts model, and that logarithmi
 
orre
tions are absent [48℄.This means that the Baxter-Wu model also sits at the aforementioned �xed point. The 
riti
al point is givenby K
 = ln(1 +p2)=2 [48℄.For the Ising and the Blume-Capel model, instead of Eq. (9.1), the Hamiltonian readsH=kBT = �K(I)Xhi;ji�i�j +D(I)Xk �2i ; (� = �1; 0; 1) ; (9.4)where va
an
ies are also denoted as � = 0. We mention that, instead p = 1�exp(�K), the bond probabilityfor the KF 
lusters is now p = 1 � exp(�2K(I)). Analogously, for the 
hemi
al potential D(I) = �1, thesystem redu
es to the `pure' Ising model, with the 
riti
al point at K(I)
 = ln(1 + p2)=2. By means of atransfer-matrix 
al
ulation [51℄, we lo
ate, with a suÆ
ient pre
ision, the tri
riti
al point of the Blume-Capelmodel as K(I)t
 = 1:6431759(1), D(I)t
 = 3:2301797(2), and �t
 = 0:4549506(2).9.1.3 AlgorithmsThe Monte Carlo investigation of the ba
kbone exponents of the aforementioned systems involves two parts,i.e., the simulation and the sampling pro
edure.Monte Carlo simulationsFor pure Potts systems with integer q, one 
an simply use the standard Wol� pro
edure [45℄. In the presentpaper, these systems in
lude the bond per
olation, the Ising, and the q = 3 Potts model. For the dilutesystems, i.e., the Blume-Capel and the q = 4 Potts model, 
luster algorithms to 
ip between va
an
iesand Potts variables are generally not available. For this reason, we �x the global va
an
y density at itsequilibrium value, so that 
riti
al slowing down due to 
u
tuations in the number of va
an
ies is avoided.Cluster steps satisfying this 
onservation law are realized by a geometri
 
luster algorithm [49℄. It movesgroups of va
an
ies and Potts variables over the latti
e in a

ordan
e with the Boltzmann distribution. Thisgeometri
 
luster method is based on spatial symmetries, su
h as the spatial inversion symmetry. A detaileda

ount 
an be found in Ref. [49℄.Simulations of the Baxter-Wu model [48℄, whi
h involves three-spin intera
tions, 
an be performed asfollows [52℄. The triangular latti
e is divided into three sublatti
es, one of the sublatti
es is randomly 
hosen,and its spins are `frozen'. Sin
e ea
h elementary triangle 
ontains one spin from ea
h sublatti
e, only two-spin intera
tions remain e�e
tively. Further, the Hamiltonian (9.3) is un
hanged if all spins on these twosublatti
es are 
ipped. Due to this symmetry, one 
an now apply the Wol� 
luster method on these twosublatti
es.For the 0 < q < 1 Potts model, we formulate a Monte Carlo method on the basis of the random-
lusterrepresentation Eq. (9.2), whi
h uses bond variables l = 0 or 1. For simpli
ity, we illustrate this methodpre
isely at the 
riti
al point u
 = pq:1. Randomly 
hoose a bond variable l, 
onne
ting sites i and j.2. Draw a uniformly distributed random number 0 � r � 1,(a) if r < pq=(1 +pq), the edge l is o

upied by a bond, i.e., l = 1.138
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(3)Figure 9.1: Relative weights of the bond variables between neighboring sites i and j for the 
riti
al Pottsmodel. Existing paths or bonds are represented by solid lines, while dashed lines means that nopath or bond is present. The relative weights between state (1) and (2) and those between (3)and (4) are spe
i�ed as Wi with � = pq.(b) if r > 1=(1 +pq), no bond is present at the edge l, i.e., l = 0.(
) if pq=(1 + pq) � r � 1=(1 + pq), set l = 0, and 
he
k whether sites i and j are 
onne
ted. Ifthey are not l = 1; otherwise l = 0.3. Current Monte Carlo step is 
ompleted, and goto 1.Figure 9.1 illustrates possible 
onne
tivities of sites i and j and their relative weights. A

ording to thepro
edure des
ribed above, the transition probability from (1) to (2) is T1!2 = pq=(1+pq), and that from(2) to (1) is T2!1 = 1=(1+pq). Sin
e equilibrium statisti
s implies that the probability p1=p2 is 1=pq, onehas p1T1!2 = p2T2!1. Thus, the 
ondition of detailed balan
e is satis�ed between states (1) and (2). Thesame argument applies to states (3) and (4).For small values of q, we observe that this method hardly su�ers from 
riti
al slowing down. A similarpro
edure for q > 1 has already been published [53℄. Using the pro
edure des
ribed in Ref. [53℄, we simulatedthe q = 2 +p3 Potts model. In this 
ase, we did observe serious 
riti
al slowing down, in agreement withthe Li-Sokal bound [54℄ for the dynami
 exponent. This is due to the rather strong energy 
u
tuations forq > 2, espe
ially when the marginal 
ase q
 = 4 is approa
hed. In Ref. [53℄, this Monte Carlo te
hnique wasused to lo
ate the marginal value of q
 in three dimensions, and it was 
laimed that no 
riti
al slowing downo

urs. This stands, however, in a remarkable 
ontrast with our �ndings near q
 = 4 in two dimensions.Sampling pro
edureHere, we illustrate, in the language of the bond per
olation model, the sampling pro
edure of the ba
kbone
orrelation fun
tion P2(r).Step 1, form a KF 
luster. We shall illustrate the 
onstru
tion of a KF 
lusters as follows. Suppose aper
olation model is de�ned on a L�L square latti
e with periodi
 boundary 
onditions, and there are twosites A and B separated by a distan
e L=2. The task of this step is to form a KF 
luster F from site A, andthen to 
he
k whether B is also in
luded in F, so that A and B are 
onne
ted via 
ondu
ting bonds. Forthe Potts model with integer q, the sites in this KF 
luster just form the Wol� 
luster [45℄. In the standardWol� algorithm, if two nearest-neighbor sites are already in the 
luster, it is not ne
essary to 
he
k whetherthe bond between them is present or absent. However, we are interested in the ba
kbone 
orrelation fun
tionhere. If A and B are 
onne
ted, one then asks how many mutually independent paths exist between A andB. Thus, all edges between nearest-neighbor sites within F have to be 
he
ked. We introdu
e a variableC = 0; 1, and 2, representing that there is no path, only one path, and at least two mutually independentpaths between A and B, respe
tively. First, the edge variables on the latti
e are initialized as ei = �1 with1 � i � 2L2. The value ei = 1 represents that the ith edge is o

upied by a bond, and ei = 0 standsfor an empty edge. Sin
e only one KF 
luster is formed, not all edges of the square latti
e are ne
essarilyvisited during the formation of F. The edges, whi
h are not visited, keep their value ei = �1. After thisinitialization, uniformly distributed random numbers are drawn for ea
h edge 
onne
ting to a neighbor in139
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Figure 9.2: Outline of the pro
edure to determine the 
onne
tion variable C. The path W is shown as thethi
k line, and the remaining 
ondu
ting bonds are shown as the thin lines. The bonds on Ware temporarily eliminated �rst. In �gure (a), the remaining path stops at 5. After the bondsbetween A, 1; � � � , and 5 are restored, the path 
onne
ts to B, so that C = 2. In �gure (b), thebond between 3 and 4 is a red bond, and thus the path stops at site 3, so that C = 1.the same state. The edge is o

upied by a bond if r � p
 and is empty if r > p
. The sites 
onne
ted viathese bonds are in
luded in F, as stored in a sta
k memory S. Next, a site j is read and erased from S. Then,the edges 
onne
ting to site j are 
he
ked. If they have not been visited (ei = �1), new random numbersare used to determine whether they are o

upied. Repetition of this pro
edure 
reates a list of o

upiededges and sites, and thus a 
luster F is formed. The determination of the ba
kbone between A and B indeedrequires that ea
h bond between sites in F is visited. This pro
edure 
osts some additional 
omputer timein 
omparison with the algorithm growing a Wol� 
luster [3℄.If the site B is not in the 
luster F, i.e., A and B are not 
onne
ted, one has C = 0, and the 
urrentMonte Carlo step is 
ompleted; otherwise, it 
ontinues as follows.Step 2, a path W is formed between A and B. This 
an be done by an `ant' walking from A throughthe 
ondu
ting bonds. Suppose the ant is 
urrently at site j, it 
ontinues its journey by randomly 
hoosinga 
ondu
ting bond 
onne
ting to j, ex
luding the one it just passed. The ant does not pass a bond twi
eunless it arrives at a `dead' end. The `dead end is de�ned as a site whose 
onne
ted nearest-neighbor siteshave all been visited. In this 
ase, the ant walks ba
k along the `old' road until it �nds a `new' bond whi
h ithas not visited. Sin
e site B is also in F, the ant will always arrive at site B. The aforementioned path W isjust 
omposed of the bonds through whi
h the ant has passed on
e and only on
e. An example is shown inFig. 9.2a, where the path W is represented the thi
k solid line, and the sites on it are spe
i�ed as 1; 2; � � � ; n.The next task is to 
he
k whether there is any red bond on W . If only one independent path 
an beformed between A and B, then at least one red bond o

urs on the path W . Furthermore, if any of thesebonds is 
ut o�, the ant 
annot arrive at site B. An ineÆ
ient way is as follows. Temporarily eliminate abond b on W , and then let the ant restart its journey. If the ant 
an still arrive at B, the bond b 
annotbe a red bond, and thus is restored. Suppose all the bonds on the path W pass this test, then no red bondo

urs between A and B, so that C = 2; Otherwise, C = 1. In this way, however, the ant may be
ome tootired to walk. Therefore, we apply a more eÆ
ient pro
edure.Step 3, temporarily eliminate all the bonds on W , and let the ant restart its journey from A to B. Supposethe ant 
annot arrive at B; this does not ne
essarily mean, however, that there are red bonds. For instan
e,in Fig. 9.2a, after the elimination of the whole path, the ant 
an only arrive at site 5. This indi
ates thatthe bonds between A; 1; � � � , and 5 are not red bonds, and may thus be restored. Then, the ant 
ontinuesits journey and arrives at B. In this 
ase, no red bond o

urs on the path W , and C = 2. An example ofopposite 
ase is given in Fig. 9.2b. Following the same steps the ant 
annot go beyond site 3, sin
e the bondbetween sites 3 and 4 is a red bond. In this 
ase, one has C = 1.In pra
ti
al appli
ations of this pro
edure, one 
an still improve the eÆ
ien
y by some tri
ks. Forinstan
e, during the formation of the path W , the site B may a
t as an `attra
tor', so that W will not gotoo far from B and the ant need not 
ontinue its journey randomly. Furthermore, after the elimination ofW , instead of having the ant restart the journey, one 
an form a new 
luster from A on the basis of theremaining bonds, and then 
he
k whether it in
ludes B. In the 
ase that B is not in
luded, one restore the140
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omputer time for steps 2 and 3 and the total time (steps 1, 2, and3 
ombined), vs. L�5=24 for the per
olation model. Every data point involves 105 Monte Carlosweeps, and the system sizes are in the range 8 � L � 800. The ratio r extrapolates to 0 forL!1.`temporarily eliminated' bonds on W whi
h 
onne
t sites in A, and then 
ontinue to grow 
luster A. Thispro
edure ends when either B is in
luded or no growth of A is possible. This avoids the situation that theant has to walk ba
k from a dead end.With the 
onne
tion variable C, the normal magneti
 
orrelation fun
tion P1 and the ba
kbone 
orrelationfun
tion P2 between sites A and B 
an be de�ned asP1 = h1� ÆC;0i ; P2 = hÆC;2i ; (9.5)where the symbol h i means the statisti
al average.EÆ
ien
y of the sampling pro
edure. As des
ribed above, the sampling of P2 involves up to three steps;the probability that steps 2 and 3 are performed is just the magneti
 
orrelation fun
tion P1. Step 1 is justa standard Wol� step with a small amount of added 
omputer time, as mentioned above. Steps 2 and 3involve a number of sites with an upper limit equal to the size of the 
luster F, so that their 
omputer timeis also of the same order as the Wol� step. Moreover, the probability P1 that they are performed de
ays asL�2Xh , and ea
h sample is only taken between several simulation steps. As a result, the sampling pro
edurerequires less 
omputer time than the Wol� method. As an illustration, we performed 105 Monte Carlo stepsfor the per
olation model with system size 8 � L � 800. We sampled the ratio r between the 
omputer timefor steps 2 and 3 and the total time, i.e., for steps 1, 2, and 3. The data for r are shown in Fig. 9.3 versusL2Xh = L�5=24. The approximate linearity indi
ates that the fra
tion of the 
omputer time needed by thesampling pro
edure over the total time goes to 0 as L!1.9.1.4 ResultsAs mentioned in Se
. 9.1.1, the ba
kbone 
orrelation fun
tion P2, and thus the ba
kbone exponent, is relatedto the behavior of the red bonds. For 
riti
al Potts models 0 � q � 4, the value of Xr is known to in
reasewith q, whi
h indi
ates that the KF 
lusters be
ome less and less rami�ed. As a result, the ba
kbone
orrelation fun
tion P2 behaves more and more in line with P1, so that Xb may be expe
ted to approa
h thenormal magneti
 exponent Xh as q ! 4. For the tri
riti
al Potts model, sin
e Xr � 2, we expe
t that theba
kbone exponent Xb redu
es to the magneti
 exponent Xh.For the 
riti
al q ! 0 Potts model [4,5℄, the KF 
lusters span the whole latti
e without any loop, and arethus referred to as spanning trees. In this 
ase, between any pair of points on the latti
e, there is pre
iselyonly one path P, so that the ba
kbone 
orrelation fun
tion P2 vanishes. This is due to the vanishing of theamplitude of P2 as q ! 0. As a 
onsequen
e, one 
annot obtain Xb(q ! 0) by investigating k-
onne
ted
lusters, as we will do for other values of q > 0. In this 
ase, one 
an simply make use of the original141



de�nitions of the `geometri
' quantities in Se
. 9.1.1, whi
h in
lude the ba
kbone, the red-bond, and the
hemi
al-path exponents. From these de�nitions, one knows that the aforementioned path P is just the
hemi
al path, and that the ba
kbone pre
isely 
onsists of all the bonds on P. Furthermore, all these bondsare red bonds. Sin
e the red-bond s
aling dimension is exa
tly known Xr = 3=4 [10, 55℄, one simply hasthat X2 = Xb = Xmin = 3=4 for q ! 0. In fa
t, the statement that Xb = Xr = Xmin holds for any type ofspanning tree.In the remaining part of this se
tion, we present our Monte Carlo determinations of Xb for the systemsdis
ussed in Se
. 9.1.2. Periodi
 boundary 
onditions apply to all these systems. The aforementioned site Awas 
hosen at random, and site B is 
hosen at a distan
e r = L=2 in the x dire
tion from A. Further, we
hose a site D also separated from A a distan
e L=2 but in the y dire
tion.The 
orrelation fun
tions P1 and P2 were sampled both in the x and y dire
tions, su
h that P1 =[P (x)1 + P (y)1 ℄=2 and P2 = [P (x)2 + P (y)2 ℄=2. Moreover, we sampled another ba
kbone 
orrelation fun
tion P22that A is simultaneously 
onne
ted to B and D by at least two mutually independent paths.A

ording to �nite-size s
aling, the quantities P1, P2, and P22 behave at 
riti
ality asP1 = L�2Xh(a0 + a2Lyi + a3L�2 + a4L�3) ; (9.6)P2 = L�2Xb(b0 + b1Lyib + b2Lyi + b3L�2 + b4L�3) ; and (9.7)P22 = L�3Xb(
0 + 
1Lyib + 
2Lyi + 
3L�2 + 
4L�3) ; (9.8)where yi is the exponent of the leading irrelevant thermal s
aling �eld, and we have assumed integer 
orre
tionexponents (of 1=L). The amplitudes ai, bi, and 
i are unknown 
onstants. In 
omparison with the magneti

orrelation fun
tion P1, the `geometri
' quantities P2 and P22 may be expe
ted to su�er from additional �nite-size 
orre
tions, with unknown asso
iated exponents yib. More rapidly de
aying 
orre
tions are negle
tedhere. The unknown amplitudes and exponents are determined from multivariate least-square analysis usingthe Levenberg-Marquardt method [56℄. For the systems in the present work, the values of Xh, obtained fromthe �ts of P1, are all in ex
ellent agreement with their exa
t results [9℄, and need not be dis
ussed in thiswork.The bond per
olation modelFor this model, the system sizes L were taken in the range 8 � L � 240. The data for P2 are shown inFig. 9.5, and do not indi
ate the presen
e of large �nite-size 
orre
tions. Equation (9.7) was �tted to theMonte Carlo data a

ording to the least-square 
riterion, and the exponent yib was left as a free parameter.We observed that the terms with amplitudes b2, b3, and b4 do not de
rease the residual �2, and thus theywere not in
luded in the �t. We obtain Xb = 0:3566(2) and yib = �1:27(4), where the error bars are twi
ethe statisti
al standard deviations. Compared to Ref. [19℄, it seems that our Monte Carlo data su�er lessseriously from �nite-size 
orre
tions. This may be due to our 
hoi
e of a geometry with periodi
 boundary
onditions instead of the `bus-bar' geometry. For 
larity, we plot the value of P2L2Xb � b0 as a fun
tion ofL�1:27 in Fig. 9.4, where Xb = 0:3566(2) and b0 = 0:742(2) are taken from the �t. The apparent linearityindi
ates that, indeed, �nite-size 
orre
tions of P2 
an be well a

ounted for by a single power law b1Lyib .The Ising model and the tri
riti
al q = 1 Potts modelThe simulations were performed for 
riti
al Ising systems on square latti
es in the range 6 � L � 240.The quantities P2 and P22 were sampled both for KF and Ising 
lusters. As mentioned above, the Ising
lusters are des
ribed by the magneti
 dimension Xh = 5=96 of the tri
riti
al q = 1 Potts model [9{11℄.The Monte Carlo data for P2 of the KF 
lusters are shown in Fig. 9.6, whi
h indi
ates that 2Xb � 0:54.Equations (9.7) and (9.8) were simultaneously �tted to P2 and P22, respe
tively, so that Xb and yib appearsin the �t only on
e. In addition to the terms with yib, the �t also in
luded a 
orre
tion with yi = �2. Weobtain Xb = 0:2696(3) and yib = �0:87(4) for KF 
lusters, and Xb = 0:0520(3) for Ising 
lusters. Here, theerror bars are again two standard deviations. As expe
ted, for the Ising 
lusters Xb is in a good agreementwith Xh = 5=96 = 0:5208 � � � of the tri
riti
al q = 1 Potts model.142
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al q = 3 Potts model. The data are shownas P2 vs. L�7=40.The 
riti
al q = 3 Potts modelThe simulations were performed for the q = 3 Potts model at 
riti
ality with system sizes L in the range6 � L � 360. The quantities P2 and P22 were sampled both for KF and Potts 
lusters. As mentionedabove, the exponent for the Potts 
lusters has been predi
ted as Xh = 7=80 [42℄. As a test, Eq. (9.6) was�tted to the data for P1, and we obtain Xh = 0:0876(2), in good agreement with 7=80. Furthermore, aplot of the data for P22 for Potts 
lusters in Fig. 9.7 also indi
ates Xb � 7=80. Again, Eqs. (9.7) and (9.8)were simultaneously �tted to P2 and P22, respe
tively. For the q = 3 Potts model, the 
orre
tion term withyi = �4=5 [14℄ appears diÆ
ult to separate from that with yib, and thus it was negle
ted in the �t. The
orre
tions with L�2 were in
luded, and the �t yields that Xb = 0:2105(5) and yib = �0:61(4) for the KF
lusters, and that Xb = 0:0873(3) � Xh = 7=80 for the Potts 
lusters.The tri
riti
al Blume-Capel modelAs mentioned above, the ba
kbone exponent Xb for the tri
riti
al q = 1 Potts model has already beendetermined from the Ising 
lusters. The result Xb = 0:0520(3) � 5=96 indi
ates that Xb redu
es to themagneti
 exponentXh for tri
riti
al Potts models. As an independent test, we dire
tly Monte Carlo simulatedthe tri
riti
al Blume-Capel model. The simulations use the �xed-va
an
y-density ensemble, as dis
ussed inSe
. 9.1.2. The system sizes were taken in the range 10 � L � 360, and both quantities P2 and P22were sampled. The numeri
al �ts yield Xb = 0:0760(8) and 0:0753(4) for the KF and the Potts 
luster,respe
tively. Both are in good agreement with the tri
riti
al magneti
 exponent Xh = 3=40 [9, 14℄.The Baxter-Wu and the tri
riti
al q = 4 Potts modelThe q = 4 Potts model is a marginal 
ase, not only be
ause the se
ond-leading thermal exponent Xt2 = 2,but also be
ause the red-bond exponent Xr = 2 [10, 42℄. Thus, the bond-dilution s
aling �eld, 
onjugateto the red bonds, be
omes marginal, and the question arises whether this �eld is marginally relevant orirrelevant for 
riti
al KF and Potts 
lusters. As independent tests, Monte Carlo simulations were performedboth of the aforementioned dilute q = 4 Potts model at the �xed point and the Baxter-Wu model. For thelatter, the system size L was taken as multiples of 6 and in the range 12 � L � 240. For the dilute q = 4model, the system sizes were in the range 10 � L � 360. The Monte Carlo data for P2 of the KF 
lusters,shown in Fig. (9.8), indi
ate that 2Xb � 1=4. For these two models, logarithmi
 �nite-size 
orre
tionsare absent for `thermodynami
' quantities su
h as the magneti
 
orrelation P1. However, we have no solidreason to assume that su
h logarithmi
 
orre
tions are absent for `geometri
' quantities su
h as P2. Thus,at 
riti
ality, we assume that, instead of Eqs. (9.7) and (9.8), P2 behaves asP2 = L�2Xb(b0 + b1= lnL+ b2= ln2 L+ b3=L2) : (9.9)144
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riterion, we applied a 
uto� for small system sizes L � 12. We then obtain that Xb = 0:124(2) and 0:127(4)for the Potts and the KF 
lusters, respe
tively, in agreement with Xh = 1=8.The 
riti
al q = 2�p3 Potts modelAs a 
ase between q = 0 and 1, we simulated the q = 2�p3 Potts model. The system sizes were taken in therange 6 � L � 200, and the quantity P2 was sampled. We �nd that, as expe
ted, the �nite-size 
orre
tions
onverge rapidly, so that Eq. (9.7) with only the �rst two terms is suÆ
ient to des
ribe the Monte Carlodata. To obtain a satisfa
tory �2 residual, we applied a 
uto� for small system sizes L < 8. This leads toXb = 0:4953(3) and yib = �2:3(2).9.1.5 Dis
ussionWe have developed several Monte Carlo methods to determine the ba
kbone exponents of the q-state Pottsmodel. The eÆ
ien
y of these methods is re
e
ted by the pre
ision of the numeri
al results, summarizedin Tab. 9.1, whi
h signi�
antly improves over existing results. We �nd that, for 
riti
al Potts models, theba
kbone s
aling dimension Xb approa
hes the magneti
 dimension Xh as q ! 4. This re
e
ts the fa
t thatKasteleyn-Fortuin 
lusters be
ome more and more 
ompa
t with in
reasing q. Further, it has been 
on�rmednumeri
ally that, for the tri
riti
al Potts model, the ba
kbone exponent redu
es to the magneti
 exponent.In Fig. 9.9, we plot Xb and Xh as a fun
tion of the 
oupling 
onstant of the Coulomb gas g [9℄. The relationbetween g and q is given by q = 2 + 2 
os(g�=2) [9℄, with 2 � g � 4 and 4 � g � 6 for the 
riti
al andtri
riti
al Potts models, respe
tively.The present Monte Carlo methods 
an also be applied in three dimensions, and simulations for theper
olation and the Ising model are 
urrently being performed [51℄.9.2 The per
olation and the Ising model in three dimensionsUsing the sampling te
hnique developed above, we determine the magneti
 and ba
kbone exponents Xh =0:4768(7) and Xb = 1:125(3) for the per
olation and Xh = 0:5178(7) and Xb = 0:829(4) for the Ising modelin three dimensions.9.2.1 Introdu
tionThe Ising model and the per
olation problem have for many years been of great interest to physi
ists andmathemati
ians. While the Ising model presents a very simple theoreti
al des
ription [2℄ for thermodynami
145
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Table 9.1: Results for the ba
kbone exponent Xb and the asso
iated 
orre
tion-to-s
aling exponent yib for
riti
al Potts systems. Estimated error margins in the last de
imal pla
e, whi
h are twi
e thestandard deviations in the �ts, are shown in parentheses. For 
omparison, the magneti
 dimen-sions Xh and estimations of Xb by other sour
es are also listed (X�b , last 
olumn). The numbersgiven as fra
tions are exa
t.g Model Xh Xb yib X�b2 q = 0 Potts 0 3=47=3 q = 2�p3 Potts 11=168 0:4953(3) �2:3(2)8=3 Per
olation 5=48 0:3566(2) �1:27(4) 0:3569(6) [22℄3 Ising 1=8 0:2696(3) �0:87(4) 0:25(2) [20℄10=3 q = 3 Potts 2=15 0:2105(5) �0:61(4) 0:25(2) [20℄4 q = 4 Potts 1=8 0:127(4) 1= lnL?
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phase transitions in magneti
 systems, the per
olation provides a fas
inating illustration [3℄ of many impor-tant 
on
epts of 
riti
al phenomena in terms of geometri
 properties. Both models 
an be exa
tly mappedonto the random-
luster model [4℄, in whi
h thermodynami
 singularities of the Ising model 
an also be rep-resented in terms of per
olation 
lusters. For an introdu
tion, we start with the Hamiltonian of the q-statePotts model [5℄ on the square latti
eH=kBT = �KXhi;ji Æ�i;�j ; (� = 1; 2; � � � ; q) ; (9.10)where the sum is over nearest-neighbor (NN) spins andK is the 
oupling strength. The random-
luster modelis obtained as follows. Between ea
h pair of NN sites, a bond is pla
ed with the probability p = 1�exp(�K),so that the whole latti
e is de
omposed into 
onne
ted 
lusters, i.e., the well-known Kasteleyn-Fortuin (KF)
lusters [4℄. The statisti
al weight of ea
h bond-variable 
on�guration is given by the partition fun
tion ofthe random-
luster model Zr
(q;K) =Xb vnbqn
 ; (v = eK � 1) : (9.11)Here, the sum is over all bond-variable 
on�gurations, and nb and n
 are the total numbers of bonds and KF
lusters, respe
tively. It 
an be shown [4,5,50℄ that the partition sum of the Potts model (9.10) is equivalentwith Zr
 in Eq. (9.11). The Ising and per
olation models are the spe
ial 
ases with q = 2 and q ! 1,respe
tively. Near the 
riti
al point K
(q), the s
aling properties of KF 
lusters in Eq. (9.11) are governedby the thermal and magneti
 s
aling �elds.Besides the thermal and magneti
 s
aling dimensions Xt and Xh, there is still a number of 
riti
alexponents, whi
h 
hara
terize stru
ture properties of 
riti
al KF 
lusters in Eq. (9.11) and do not havethermodynami
 analogue. Among them there are fra
tal dimensions [7℄ of `ba
kbones' and of `red' bonds.From the s
aling behavior of Nb,In 
omparison with the two-dimensional 
ase, exa
t results are s
ar
e for 
riti
al behavior in threedimensions. Therefore, investigations have to depend on approximations su
h as �- and series expansions,and Monte Carlo te
hniques. Extensive studies have been 
arried out and signi�
ant results have beena
hieved [3, 27{35, 41℄. For instan
e, the per
olation threshold of the bond-per
olation on the simple-
ubi
latti
e was determined [27℄ as p
 = 0:248 821 6(5), and the ba
kbone dimension was reported [36℄ as Xb =1:145(15). From quantities su
h as the mean 
luster size, the thermal and magneti
 s
aling dimensions wereestimated [3, 27, 28, 41℄ as Xt = 1:141(3) and Xh = 0:477(3), respe
tively. For the Ising model, there is alsosome 
onsensus [29{35℄ that the values of Xt and Xh are 0:413 and 0:518, respe
tively, with di�eren
es onlyin the last de
imal pla
e. However, it seems that so far little attention has been given to the geometri
exponents of the Ising model, su
h as Xb and Xr.9.2.2 ModelsWe start with the Hamiltonian of a dilute Ising model on the simple-
ubi
 latti
eH=kBT = �KXhi;ji sisj +DXk s2k (s = 0;�1) : (9.12)The spins assume the values �1 and 0. Those in state s = 0 are referred to as va
an
ies. The abundan
e ofva
an
ies is 
ontrolled by the 
hemi
al potential D, and nonzero 
ouplings K o

ur only between NN Isingspins. For D ! �1, the va
an
ies are ex
luded, and the model redu
es to the `pure' Ising model, i.e., the's spin- 12 model [2℄. This model has been investigated extensively, and the 
riti
al point was determined [35℄as K
 = 0:22 165 455(3). Along the 
riti
al line K
(D), the amplitude of the irrelevant s
aling �eld with theexponent yi = �0:821(5) varies as a fun
tion of D. It was reported [29,35℄ that this amplitude is very smallnear D = ln 2.The present paper investigates the dilute Ising model (9.12) with D = ln 2. At this point, the 
riti
al
oupling and the 
orresponding va
an
y density were determined [29,35℄ as K
 = 0:39 342 225(5) and �v
 =0:400 694(1), respe
tively. During the simulations, we �xed the global density of va
an
ies at the 
riti
al147
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, while they are still allowed to move freely over the latti
e a

ording to the Boltzmann distribution.This means that an external 
onstraint is imposed. For su
h a 
onstrained system, it is known [37℄ that thethermal exponent yt = 1:5868(3) [35℄ is renormalized to y0t = Xt = 1:4132(3). Thus, the 
onstrained spe
i�
heat has only a �nite 
usp at 
riti
ality [37, 38℄ instead of being divergent. Large-s
ale simulations of themodel (9.12) under the 
onstraint are now possible be
ause of the so-
alled geometri
 
luster method [49℄.This algorithm is developed on the basis of geometri
 symmetries su
h as the spatial-inversion symmetry,and has been explained in Ref. [49℄. The geometri
 
luster simulations of these 
onstrained systems su�erlittle from 
riti
al slowing down. This may be related to the fa
t that the 
onstrained 
riti
al spe
i�
 heattakes a �nite value.9.2.3 ResultsBond-per
olation modelThe bond-per
olation model was investigated on L � L � L simple-
ubi
 latti
es with periodi
 boundary
onditions, and the bond probability p was set at the 
riti
al value [27℄ p
 = 0:248 821 6(5). The magneti
and ba
kbone 
orrelation fun
tions P1(L=2) and P2(L=2) were sampled for three pairs of points in the x, y,and z dire
tions, respe
tively, and the average values were 
al
ulated. The system sizes were 
hosen as 16values in the range 6 � L � 80, and a number of 2:1 � 107 samples was taken for ea
h system size. Thenumeri
al data for P2(L=2) are listed in Tab. 9.2. In 
omparison with the magneti
 
orrelations P1(L=2),the ba
kbone 
orrelations P2(L=2) are relatively small, whi
h indi
ates that 
riti
al KF 
lusters are rather`rami�ed'. A

ording to the least-square 
riterion, we �tted the data for P1(L=2) and P2(L=2) byP1(L=2) = L�2Xh(a0 + a1Lyi + a2L�2 + a3L�3) ; (9.13)and P2(L=2) = L�2Xb(b0 + b1Lyi + b2L�2 + b3L�3 + b4Lyib) ; (9.14)where ai and bi are unknown parameters. The 
orre
tion terms with exponent yi arise from the irrelevants
aling �eld, of whi
h the exponent yi has been determined [27℄ as yi = �1:14(15). For the ba
kbone
orrelation P2, new �nite-size 
orre
tions 
ould appear, and thus we in
lude the term with the exponent yibin Eq. (9.14). Figure 9.10 shows the data for P2 on a logarithmi
 s
ale, i.e., lnP2(L=2) versus lnL. Theapproximate linearity indi
ates that 
orre
tions-to-s
aling are not very signi�
ant.If the exponent yi is left free during the �t for the magneti
 
orrelation P1, we have Xh = 0:4769(6)and yi = �1:5(3), where the quoted error margins are two standard deviations, as obtained from thestatisti
al analysis. The estimation of yi is 
onsistent with yi = �1:14(15) [27℄. The �t with yi �xed at�1:14 yields that Xh = 0:4768(4). Taking into a

ount the un
ertainties of the per
olation threshold p
,148



Table 9.2: The data for P1 and P2 � 10 for the 
riti
al bond-per
olation model in three dimensions. Thenumbers in parentheses are the statisti
al errors at the last de
imal pla
e.6 8 10 12 14 16P1 :20747(3) :15496(2) :12411(2) :10378(2) :08926(1) :07839(1)P2 :13899(6) :06889(4) :04049(3) :02641(2) :01846(2) :01359(2)18 20 24 28 32 36P1 :06996(1) :06321(1) :05301(1) :045719(9) :040200(9) :035905(9)P2 :01039(2) :00815(1) :00537(1) :003801(8) :002803(8) :002149(7)40 48 60 80P1 :032465(9) :027260(8) :022031(8) :016723(8)P2 :001694(7) :001117(6) :000676(5) :000354(5)
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al �t: Xb = 1:125(3), b0 = 0:688(13), and yib = �2:0(5).we 
on
lude that Xh = 0:4768(8) is a reasonable estimation, whi
h is in agreement with existing resultsXh = 0:477(3) [27, 28, 41℄. In the �t for the ba
kbone 
orrelation P2, it seems unne
essary to in
lude all
orre
tion terms des
ribed by Eq. (9.14), be
ause not all of them 
an be well determined, and moreoverresults do not depend on whether they are present or not. After ex
luding the terms with a1 and a2,we obtain Xb = 1:125(3) and yib = �2:0(5), whi
h improves signi�
antly over the existing estimationXb = 1:145(15) [36℄. The �t to the data for P2 is illustrated by Fig. 9.11.Dilute Ising modelThe dilute Ising model (9.12) on the simple-
ubi
 latti
e was also investigated with periodi
 boundary
onditions. Several Monte Carlo 
luster steps were performed between subsequent samples. The simulationstook pla
e at the 
riti
al point [29, 35℄ �v
 = 0:400 694(1) and K
 = 0:39 342 225(5). As mentioned earlier,the total number of va
an
ies is �xed at V
 = L2�v
, and thus a 
ombination of the Wol� [45℄ and thegeometri
 [49℄ 
luster steps was used. For �nite systems L, however, V
 is not an integer. Thus, the a
tualsimulations were performed at two numbers [V
℄ and [V
℄ + 1, where bra
kets [ ℄ denote the integer part.Numeri
al data at 
riti
ality were obtained by linear interpolation between [V
℄ and [V
℄ + 1. System sizeswere taken as 14 values in the range 6 � L � 64. Apart from the quantities P1 and P2, we also sampledthe probability P22 that the randomly 
hosen site A is simultaneously 
onne
ted to B and D by at least twomutually independent paths, where B and D are two points at a distan
e L=2 in the x and y dire
tions,149
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kbone 
orrelation fun
tion P2 for the Ising model, shown as lnP2 v.s. L�2Xb , whereXb = 0:829(5) is the ba
kbone s
aling dimension.Table 9.3: The data for P1, P2 � 10, and P22 � 100 for the dilute Ising model in three dimensions. Thenumbers in parentheses are the statisti
al errors at the last de
imal pla
e.6 8 10 12 14P1 :15598(3) :11571(3) :09214(2) :07656(2) :06550(2)P2 :31726(9) :18909(9) :12878(8) :09479(8) :07339(7)P22 :4668(2) :2151(2) :1211(1) :07649(9) :05212(8)16 18 20 24 28P1 :05722(2) :05081(2) :04565(1) :03794(1) :03243(1)P2 :05881(6) :04850(6) :04081(5) :03030(5) :02359(4)P22 :03758(7) :02818(6) :02170(5) :01394(5) :00956(4)32 40 48 64P1 :02832(1) :02257(1) :01873(1) :01395(1)P2 :01893(3) :01318(2) :00979(2) :00613(2)P22 :00689(3) :00400(2) :00258(1) :00125(1)respe
tively. The data for P1, P2 and P22 are listed in Tab. 9.3. The s
aling behavior of P22 is des
ribed byP22(L=2) = L�3Xb(x0 + x1Lyi + x2L�2 + x3L�3 + x4Lyib) : (9.15)The irrelevant exponent yi was set at �0:821(5) [35℄, and the data for P1 were �tted by Eq. (9.13). Weobtain Xh = 0:5178(7), in agreement with the earlier estimation Xh = 0:5184(1) [35℄, whi
h was obtainedfrom the magneti
 sus
eptibility. For the ba
kbone problem, we simultaneously �tted Eqs. (9.14) and (9.15)by the data for P2 and P22, respe
tively, su
h that the ba
kbone dimension Xb appears only on
e. As inthe 
ase of the bond-per
olation model, we found no eviden
e that new 
orre
tion terms with yib exist. Weobtain Xb = 0:829(4), where the quoted error is again twi
e the standard deviation. The data for P2 areshown in Fig. 9.12 versus L�2Xb , where Xb = 0:829 was taken from the �t.9.2.4 Dis
ussionIn 
on
lusion, we have numeri
ally determined the ba
kbone dimension Xb for the bond-per
olation andIsing models in three dimensions. As the thermal and magneti
 dimensions Xt and Xh, geometri
 
riti
alexponents are also universal, and thus our results for Xb should also apply to other systems within theper
olation and Ising universality 
lass in three dimensions.Besides the ba
kbone and red-bond dimensions Xb and Xr, there are other exponents 
hara
terizinggeometri
 properties of 
riti
al systems, e.g., the fra
tal dimension Xmin of `
hemi
al' paths [7℄. In per
o-150



lation theory, these exponents have re
eived signi�
ant attention, and they are 
onsidered to be of somephysi
al relevan
e. For instan
e, the 
hemi
al-path dimension Xmin is the analog in per
olation of dynami
s
aling exponent of 
riti
al phenomena [7℄. However, further explorations of the geometri
 exponents seemappropriate for other 
riti
al systems in three dimensions.Bibliography[1℄ R.B. Potts, Pro
. Cambridge Philos. So
. 48, 106 (1952).[2℄ L. Onsager, Phys. Rev. 65, 117 (1944).[3℄ D. Stau�er and A. Aharony, Introdu
tion to Per
olation Theory (Taylor & Fran
is, Philadelphia, 1994),and referen
es therein.[4℄ P.W. Kasteleyn and C.M. Fortuin, J. Phys. So
. Jpn. 46 (Suppl.), 11 (1969); C.M. Fortuin and P.W.Kasteleyn, Physi
a 57, 536 (1972).[5℄ For a review, see e.g., F.Y. Wu, Rev. Mod. Phys. 54, 235 (1982).[6℄ A. Coniglio and W. Klein, J. Phys. A 12, 2775 (1980).[7℄ H.J Herrmann and H.E. Stanley, Phys. Rev. Lett. 53, 1121 (1984); H.J Herrmann, D.C. Hong, andH.E. Stanley, J. Phys. A 17, L261 (1984).[8℄ B. Nienhuis, J. Phys. A 15, 199 (1982).[9℄ see e.g., B. Nienhuis, Phase Transitions and Criti
al Phenomena, edited by C. Domb and J.L. Lebowitz.(A
ademi
 Press, London, 1987), Vol. 11, p. 1, and referen
es therein.[10℄ A. Coniglio, Phys. Rev. Lett. 62, 3054 (1989).[11℄ H.W.J. Bl�ote, Y.M.M. Knops, and B. Nienhuis, Phys. Rev. Lett. 68, 3440 (1992).[12℄ Y. Deng, H.W.J. Bl�ote, and B. Nienhuis, Phys. Rev. E 69, 026123 (2004).[13℄ A.A. Belavin, A.M. Polyakov, and A.B. Zamolod
hikov, J. Stat. Phys. 34, 763 (1984); Nu
l. Phys. B241, 333 (1984); D. Friedan, Z. Qiu, and S. Shenker, Phys. Rev. Lett. 52, 1575 (1984).[14℄ J.L. Cardy, Phase Transitions and Criti
al Phenomena, edited by C. Domb and J.L. Lebowitz. (A
a-demi
 Press, London, 1987), Vol. 11, p. 55, and referen
es therein.[15℄ T.A. Larsson, J. Phys. A 20, L291 (1987).[16℄ H. Saleur, Nu
l. Phys. B 382, 486 (1992).[17℄ G.F. Lawler, O. S
hramm, and W. Werner, e-print math-PR/0108211 (2002).[18℄ H.J Herrmann and H.E. Stanley, J. Phys. A 21, L829 (1988).[19℄ P. Grassberger, J. Phys. A 25, 5475 (1992); Physi
a. A 262, 251 (1999), and referen
es in.[20℄ E.N. Miranda, Physi
a. A 175, 229 (1991).[21℄ Y. Deng, H.W.J. Bl�ote, and B. Nienhuis, Phys. Rev. E 69, 026114 (2003).[22℄ J. L. Ja
obsen and P. Zinn-Justin, Phys. Rev. E 66, R055102 (2002); J. Phys. A 35, 2131 (2002).[23℄ M. Porto, A. Bunde, S. Havlin, and H.E. Roman, Phys. Rev. E 56, 1667 (1997).[24℄ M. Barth�el�emy, S.V. Buldyrev, S. Havlin, and H.E. Stanley, Phys. Rev. E 60, R1123 (1999).151



[25℄ G. Paul, S.V. Buldyrev, N.V. Dokholyan, S. Havlin, P.R. King, Y. Lee, and H.E. Stanley, Phys. Rev. E61, 3435 (2000); G. Paul and H.E. Stanley, Phys. Rev. E 65, 056126 (2002).[26℄ M. Sahimi, Appli
ations of Per
olation Theory (Taylor and Fran
is, London, 1994).[27℄ C.D. Lorenz and R.M. Zi�, Phys. Rev. E 57, 230 (1997); G. Paul, R.M. Zi�, and H.E. Stanley, Phys.Rev. E 64, 026115 (2001).[28℄ C.K. Hu, J.A. Chen, N.S. Izmailian, and P. Kleban, Compt. Phys. Comm. 126, 77 (2000).[29℄ H.W.J. Bl�ote, E. Luijten, and J.R. Heringa, J. Phys. A 28, 6289 (1995); H.W.J. Bl�ote, J.R. Heringa, A.Hoogland, E.W. Meyer, and T.S. Smit, Phys. Rev. Lett. 76, 2613 (1996); H.W.J. Bl�ote, L.N. Sh
hur,and A.L. Talapov, Int. J. Mod. Phys. C 10, 1137 (1999).[30℄ M. Hasenbus
h, K. Pinn, and S. Vinti, Phys. Rev. B 59, 11471 (1999).[31℄ P. Butera and M. Comi, Phys. Rev. B 56, 8212 (1997).[32℄ R. Guida and J. Zinn-Justin, J. Phys. A 31, 8103 (1998).[33℄ K. Binder and E. Luijten, Phys. Rep. 344, 179 (2001).[34℄ M. Campostrini, A. Pelissetto, P. Rossi, and E. Vi
ari, Phys. Rev. E 65, 066127 (2002).[35℄ Y. Deng and H.W.J. Bl�ote, Phys. Rev. Lett. 88, 190602 (2002); Phys. Rev. E 68, 036125 (2003).[36℄ M.D. Rintoul and H. Nakanishi, J. Phys. A 27, 5445 (1994).[37℄ M.E. Fisher, Phys. Rev. 176, 257 (1967).[38℄ Y. Deng and H.W.J. Bl�ote, unpublished.[39℄ J.R. Heringa and H.W.J. Bl�ote, Physi
a A 232, 369 (1995); Phys. Rev. E 57, 4976 (1998).[40℄ U. Wol�, Phys. Rev. Lett. 62, 361 (1989).[41℄ M. Sahimi and S. Arbabi, J. Stat Phys. 62, 1873 (1990).[42℄ C. Vanderzande, J. Phys. A 25, L75 (1992).[43℄ W.T. Tutte, Graph Theory (Cambridge University Press, Cambridge, England, 1984).[44℄ G. Paul and H.E. Stanley, Phys. Rev. E 65, 056126 (2002).[45℄ U. Wol�, Phys. Rev. Lett. 62, 361 (1989).[46℄ M. Blume, Phys. Rev. 141, 1517 (1966).[47℄ H.W. Capel, Physi
a 32, 966 (1966); 33, 295 (1967).[48℄ R.J. Baxter and F.Y. Wu, Phys. Rev. Lett. 31, 1294 (1973); Aust. J. Phys. 27, 357 (1974).[49℄ J.R. Heringa and H.W.J. Bl�ote, Physi
a A 232, 369 (1996); Phys. Rev. E 57, 4976 (1998).[50℄ A. Coniglio and F. Peruggi, J. Phys. A 15, 1873 (1982).[51℄ Y. Deng and H.W.J. Bl�ote, unpublished.[52℄ M.A. Novotny and H.G. Evertz, Computer simulation studies in 
ondensed-matter physi
s VI, editedby D.P. Landau, K.K. Mon and H.-B. S
h�uttler. (Springer Berlin Heidelberg 1993) p.188.[53℄ F. Gliozzi, Phys. Rev. E 66, 016115 (2002); 152



[54℄ X.J. Li and A.D. Sokal, Phys. Rev. Lett. 63, 827 (1989).[55℄ B. Duplantier, J. Stat. Phys. 54, 581 (1989); Phys. Lett. B 228, 379 (1989).[56℄ see e.g.W.H. Press, B.P. Flannery, S.A. Teukolsky and W.T. Vetterling, Numeri
al Re
ipes, (CambridgeUniversity Press, Cambridge 1986).

153





10Geometri
 properties of Potts 
on�gurations
We investigate the geometri
 properties of several Potts models in two and three dimensions.10.1 The 
riti
al and tri
riti
al Potts model in two dimensionsWe investigate geometri
 properties of the general q-state Potts model in two dimensions, and de�ne geomet-ri
 
lusters as sets of latti
e sites in the same Potts state, 
onne
ted by nearest-neighbor bonds with variableprobability p. We �nd that, besides the random-
luster �xed point, both the 
riti
al and the tri
riti
alPotts model have another �xed point in the p dire
tion. For the 
riti
al model, the random-
luster �xedpoint pr is unstable and the other point pg � pr is stable; while pr is stable and pg � pr is unstable attri
riti
ality. Moreover, we show that the �xed point pg of a 
riti
al and tri
riti
al q-state Potts model 
anbe regarded to 
orrespond to pr of a tri
riti
al and 
riti
al q0-state Potts model, respe
tively. In terms of the
oupling 
onstant of the Coulomb gas g, these two models are related as gg0 = 16. By means of Monte Carlosimulations, we obtain pg = 0:6227(2) and 0:6395(2) for the tri
riti
al Blume-Capel and the q = 3 Pottsmodel, respe
tively, and 
on�rm the predi
ted values of the magneti
 and bond-dilution exponents near pg.10.1.1 Introdu
tionThe geometri
 des
ription of 
u
tuations near a 
riti
al point has been a subje
t of a long history, whi
h goesba
k to the formulation of phase transitions in terms of the droplet model [1℄. For the general q-state Pottsmodel [8, 47℄, the 
riti
al singularities 
an be represented in terms of Kasteleyn-Fortuin (KF) 
lusters [4, 9℄.For 
larity, we start from the Hamiltonian of the q-state Potts model on the square latti
eH=kBT = �KXhi;ji Æ�i;�j ; (� = 1; 2; � � � ; q) ; (10.1)where the sum is over all nearest-neighbor (NN) sites, and K is the 
oupling strength. This model 
an beexa
tly mapped onto a random-
luster model [9℄. Between ea
h pair of NN sites, a bond is pla
ed withthe probability p = 1� exp(�K), so that the whole latti
e is de
omposed into 
onne
ted 
lusters, i.e., theaforementioned KF 
lusters. The statisti
al weight of ea
h bond-variable 
on�guration is expressed by thepartition sum of the random-
luster model asZ(q;K) =Xb vnbqn
 ; (v = eK � 1) : (10.2)The sum is over all bond-variable 
on�gurations, and nb and n
 are the total numbers of bonds and KF
lusters, respe
tively. 155



The partition sum (10.2) de�nes the general Potts model with non-integer q � 0, whi
h has a 
ontinuousand a �rst-order phase transition for 0 � q � 4 and for 4 < q, respe
tively. Near the 
riti
al point K
(q), thedistribution of KF 
lusters re
e
ts 
riti
al singularities of the Potts model (10.1). For instan
e, the s
alingproperties of the average size of 
riti
al KF 
lusters are determined by the magneti
 exponent Xh(q). Exa
tvalues of Xh(q) have already been obtained by the theory of the Coulomb gas [22,48℄, and are also in
ludedwithin the predi
tions of the 
onformal �eld theory [23,49℄. In terms of the 
oupling 
onstant of the Coulombgas g, Xh(g) is expressed as Xh(g) = (g � 2)(6� g)8g ; (10.3)where g is related to q as q = 2+2 
os(g�=2) with 2 � g � 4 for the 
riti
al bran
h of the Potts model [22,48℄.Apart from KF 
lusters, so-
alled Potts 
lusters [15{17,19℄ have re
eived 
onsiderable attentions, whi
hare de�ned as sets of NN sites in the same Potts state. Thus, bonds are alway present between any pair of NNsites as long as they are o

upied by the same Potts variable. For 
riti
al Potts models (10.1), the exponentsfor the Potts 
lusters are generally di�erent from those for the KF 
lusters. A well known example is theIsing model (q = 2). The exponent for the Ising 
lusters, i.e., the q = 2 Potts 
lusters, is X(p)h = 5=96 [15{17℄,equal to the magneti
 exponent of the tri
riti
al q = 1 Potts model. Here, the supers
ript (p) refers to thePotts 
lusters. For the bond per
olation model (q = 1), all latti
e sites belong to the same Potts 
luster,and thus X(p)h (q = 1) = 0. Apparently, X(p)h (q) 6= Xh(q) in these 
ases. Within the predi
tions of the
onformal �eld theory, Vanderzande [19℄ interpreted X(p)h = 7=80 and 1=8 for the 
riti
al q = 3 and 4-statePotts models, respe
tively. However, for the general non-integer 0 � q � 4 Potts model, exa
t value of X(p)hhas not been reported yet, as far as we know. This is one purpose of the present work.The tri
riti
al Potts model [8℄ 
an be obtained by in
luding va
an
ies in the 'pure' Potts model (10.1).The question then arises what 
riti
al exponents des
ribe Potts 
lusters of the general tri
riti
al q-state Pottsmodel. From Refs. [15{17,19℄, it is known that, for the 
riti
al Potts model, the exponent X(p)h approa
hesthe magneti
 exponent Xh as q in
reases. Parti
ularly, X(p)h = Xh for q = 4. Sin
e the tri
riti
al bran
hof the Potts model is an extension of the 
riti
al Potts model [8℄, we simply assume that, for the tri
riti
alPotts model, the Potts 
lusters and the KF 
lusters are des
ribed by the same 
riti
al exponents. This willbe 
on�rmed numeri
ally later.Moreover, both for the 
riti
al and the tri
riti
al Potts model, we investigate a general type of `geometri
'
lusters, whi
h are de�ned analogously as the aforementioned KF 
lusters, but the bond probability 
an havea variable value 0 � p � 1. Thus, KF and Potts 
lusters are just the spe
ial 
ases of geometri
 
lusters withp = 1� exp(�K) and 1, respe
tively. For the 
riti
al Potts model, it is generally believed that, in terms ofgeometri
 
lusters, the per
olation threshold pg 
oin
ides with the 
riti
al point of the 
orresponding Pottsmodel or random-
luster model pr, i.e., pg = pr = 1 � exp(�K
). In 
ontrast, at tri
riti
al points Kt
,we show that the per
olation threshold pg does not 
oin
ide with pr = 1 � exp(�Kt
), but 0 < pg < pr.Furthermore, 
riti
al exponents near pg are di�erent from those near pr. On the basis of the theory of theCoulomb gas, we predi
t values of 
riti
al exponents near pg for the tri
riti
al q-state Potts model.To 
on�rm these predi
tions, we perform Monte Carlo simulations for the tri
riti
al Blume-Capel [21℄and the q = 3 Potts model [8℄. Numeri
al data 
learly demonstrate the existen
e of pg for the tri
riti
alPotts model, and 
on�rm the predi
ted 
riti
al exponents.10.1.2 General analysisWe start from the 
riti
al Potts model, des
ribed by Eq. (10.1). For this model, the statisti
al properties ofgeometri
 
lusters 
an be obtained from a `mixed' Potts model [4℄ with the HamiltonianH=kBT = �JXhi;ji(Æ�i;�j � 1)Æ�i;�j �KXhi;ji Æ�i;�j : (10.4)The se
ond term is just the aforementioned `pure' q-state Potts Hamiltonian (10.1); the �rst term 
ontainsauxiliary Potts variables � = 1; 2; � � � ; s, and 
ontrols the distribution of bond variables. One 
an express156
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Figure 10.1: RG 
ows of Potts models in the parameter spa
e (K; p). Figures (a) and (b) apply to the
riti
al and the tri
riti
al Potts model, respe
tively. The dashed lines represent the random-
luster model p = 1 � exp(�K), The points, `r.
.' and `g.
.', represent the random- and thegeometri
-
luster �xed point, pr and pg, respe
tively. Arrows show the dire
tion of the RG
ows.the partition sum of Eq. (10.4) in bond variables, and di�erentiate the resulting free energy with respe
tto the parameter s. Taking the limit s ! 1, one obtains the distribution of geometri
 
lusters with bondprobability p = 1� exp(�J). Parti
ularly, if one 
hooses J = K, Hamiltonian (10.4) assumes a simple formand des
ribes the random-
luster model (10.2).For this `mixed' Potts model (10.4), the renormalization-group (RG) 
ow is sket
hed in Fig. 10.1(a) inthe parameter spa
e (p;K) with p = 1 � exp(�J). The dashed line represents the random-
luster modelwith J = K. At the 
riti
al point K = K
, in terms of geometri
 
lusters, the per
olation threshold is justpr = 1� exp(�K
). Thus, pr 
an be 
onsidered as a �xed point in the spa
e (p;K), whi
h is unstable bothin the bond-probability dire
tion p and along the dashed line J = K. The s
aling properties in these twodire
tions are des
ribed by the bond-dilution and the thermal s
aling �eld, respe
tively. We shall denotetheir asso
iated exponents as yp and yt, respe
tively, where yp is also referred to be the red-bond exponent [6℄.Near the random-
luster �xed point pr, exa
t values of the bond-dilution and the thermal exponents,yp and yt, have already been obtained by various methods. For instan
e, on the basis of the theory of theCoulomb gas, it has been derived [6,16,17℄ that the s
aling dimensions, Xp = 2� yp and Xt = 2� yt, satisfyXp(g) = 18g (3g � 4)(g + 4) ; (10.5)and Xt(g) = 6� gg ; (10.6)respe
tively, where g is the 
oupling 
onstant of the Coulomb gas, as mentioned before. Furthermore, forintegers 0 � q � 4, Xp(q) and Xt(q) are also in
luded in the predi
tions of the 
onformal �eld theory. For
larity, we start from the Ka
 formula des
ribing s
alar observables [23, 49℄Xi;j(q) = [im� j(m+ 1)℄2 � 12m(m+ 1) ; (m � 1) ; (10.7)where the positive integer m is related to the 
onformal analomy 
 as 
 = 1� 6=m(m+ 1). For the 
riti
albran
h of the Potts model, one has pq = 2 
os[�=(m + 1)℄. It is known that Xp(q) and Xt(q) 
an beidenti�ed as Xi;j with 
oordinates (i = 0; j = 2) and (i = 2; j = 1), respe
tively. We also mention that theaforementioned magneti
 exponent Xh(q) 
an be interpreted as Xi;j with i = j = (m+ 1)=2.For the 
riti
al Potts model (2 � g � 4), Eq. (10.5) yields Xp(q) � 2, whi
h indi
ates that the bond-dilution �eld is relevant at the random-
luster �xed point pr, as shown in Fig. 10.1(a). Thus, geometri
157




lusters at pr, i.e., KF 
lusters, and those with the bond-probability p 6= pr are des
ribed by di�erentexponents. For p < pr, we expe
t that the behavior of geometri
 
lusters is dominated by the trivial p = 0�xed point; while geometri
 
lusters with p > pr, in
luding Potts 
lusters, are des
ribed by a stable �xedpoint pg > pr, shown in Fig. 10.1(a). For later 
onvenien
e, we shall refer to the point pg as the geometri
-
luster �xed point. For the 
ase of the Ising model on the square latti
e, it has been found [17℄ that pg � 1:08,in an unphysi
al region.The above dis
ussions apply to the 
riti
al bran
h of the Potts model. For the tri
riti
al Potts model,it is already known [22, 48℄ that the magneti
 and thermal exponents, Xh(q) and Xt(q), are still given byEqs. (10.3) and (10.6), respe
tively, but with the 
oupling 
onstant in the range 4 � g � 6. A

ordingly, forintegers 0 � q � 4, Xt(g) and Xh(g) 
an be interpreted as X1;2 and Xm=2; m=2 in the Ka
 formula (10.7),respe
tively. On this basis, for the tri
riti
al Potts model, we simply assume that the bond-dilution exponentXp(q) is still given by Eq. (10.5) with 4 � g � 6, and thus 
orresponds to X2;0 in the Ka
 formula (10.7).To distinguish the 
riti
al and the tri
riti
al bran
h of the Potts model, later, we shall express 
riti
alexponents as a fun
tion of g only. Table 10.1 lists values of g, Xp(g), and Xh(g) for the Potts model withinteger 0 � q � 4.
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Table 10.1: The bond-dilution and the magneti
 exponents, Xp and Xh for the two-dimensional Potts model. The supers
ripts (r) and (g)represent the random- and the geometri
-
luster �xed point, pr and pg , respe
tively. the 
oupling 
onstant of the Coulomb gas isdenoted as g, and the positive integer m is related to the 
onformal anomaly 
 as 
 = 1� 6=m(m+ 1).Random-
luster �xed point Geometri
-
luster �xed pointq(r) g(r) m(r) X(r)p X(r)h X(g)p X(g)h m(g) g(g) q(g)
rit 0 2 1 3=4 0 15=4 �3=16 1 8 trii
al 1 8=3 2 5=4 5=48 35=12 0 2 6 0 
rit2 3 3 35=24 1=8 21=8 5=96 3 16=3 1 i
al3 10=3 5 33=20 2=15 143=60 7=80 5 24=5 2 + 2 
os(2�=5)4 4 1 2 1=8 2 1=8 1 4 4tri 3 14=3 6 65=28 2=21 143=84 15=112 6 24=7 2 + 2 
os(2�=7) 
rit
rit 2 5 4 99=40 3=40 63=40 21=160 4 16=5 2 + 2 
os(2�=5) i
ali
al 1 16=3 3 21=8 5=96 35=24 1=8 3 3 20 6 2 35=12 0 5=4 5=48 2 8=3 1
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Figure 10.2: RG 
ows in the plane (q; p) for the general q-state Potts model in two dimensions. The thi
kand thin solid lines represent the random- and the geometri
-
luster �xed point, pr and pg,respe
tively. Pairs of points in the same symbol have the same 
onformal anomaly. Arrowsshow the dire
tion of the RG 
ows. The q = 4 Potts model is a marginal 
ase.As mentioned earlier, for the 
riti
al Potts model, the point pr is a �xed point in the parameter spa
e(p;K). Here, we assume this statement still holds for the tri
riti
al Potts model (4 < g � 6). Equation (10.5)yields Xp(g) > 2, so that the bond-dilution s
aling �eld is irrelevant near the random-
luster �xed point pr.On the other hand, it is obvious that the trivial p = 0 �xed point is stable. On this basis, we expe
t that,in the p dire
tion, an unstable �xed point pg o

urs in the range 0 � p � pr for the tri
riti
al Potts model.We shall also refer to this unstable point pg as the geometri
-
luster �xed point. As far as we know, theexisten
e of pg has not yet been reported. The expe
ted RG 
ow is shown in Fig. 10.1(b), whi
h will be
on�rmed numeri
ally later.In 
on
lusion, a

ording to the predi
ted values of the bond-dilution exponent Xp [6, 16, 17℄, we predi
tthat both the 
riti
al and the tri
riti
al Potts model have a pair of �xed points, pr and pg, on the 
riti
al lineparametrized by the bond probability p. For the 
riti
al bran
h of the Potts model, the random-
luster �xedpoint pr is unstable, and the geometri
-
luster �xed point pg > pr is stable. In 
ontrast, for the tri
riti
alPotts model, pr is stable and pg < pr is unstable. The q = 4 Potts model is a marginal 
ase, and thesetwo �xed points, pr and pg, merge together. In the parameter spa
e (p; q), we illustrate the RG 
ows inFig. 10.2.The question arises what values the 
riti
al exponents take near the geometri
-
luster �xed point pg forthe general 
riti
al and tri
riti
al Potts model. For the Ising model (q = 2), it is already known [15{17,19℄that the �xed point pg 
orresponds to pr of the tri
riti
al q = 1 Potts model. In other words, pg of thetri
riti
al q = 1 Potts model 
orresponds to pr of the Ising model. On this basis, we assume the followingsfor the general Potts model with 0 � q � 4.Assumption 1, the geometri
-
luster �xed point pg of a 
riti
al (tri
riti
al) q-state Potts model 
orre-sponds to the random-
luster �xed point pr of a tri
riti
al (
riti
al) q0-state Potts model.Assumption 2, the 
riti
al q and tri
riti
al q0-state Potts models have the same 
onformal anomaly andthus the same number m.For the 
riti
al and the tri
riti
al bran
h of the Potts model, as is well known, the 
oupling 
onstant ofthe Coulomb gas g is related to m as g = 4m=(m+ 1) and g0 = 4(m0 + 1)=m0, respe
tively. Therefore, theaforementioned two models are related by gg0 = 16.With these assumptions, 
riti
al exponents 
an be easily obtained for the �xed point pg. As an example,we 
onsider the magneti
 exponent X(g)h for a model with the 
oupling 
onstant g. As mentioned earlier,160



Xh is given by Eq. (10.3), so that, after the substitution g = 16=g0, X(g)h (g) follows asX(g)h (g) = (8� g)(3g � 8)32g : (10.8)The same pro
edure applies to other 
riti
al exponents, and the resulting values are 
onsistent with theexisting predi
tions for the 
riti
al Potts model with q = 1; 2; 3, and 4. For 
larity, we list values of X(g)h andX(g)p in Tab. 10.1 for integer 0 � q � 4.10.1.3 Monte Carlo investigationTo 
on�rm the predi
tions in Se
. 10.1.2, we perform Monte Carlo simulations for the tri
riti
al Blume-Capeland q = 3 Potts models.The tri
riti
al Blume-Capel modelThe Ising model with va
an
ies, also 
alled the Blume-Capel model [21℄, is de�ned on the square latti
e,with the Hamiltonian H=kBT = �KXhi;ji�i�j +DXk �2k (� = 0;�1) : (10.9)The va
an
ies are denoted as � = 0, and D is the 
hemi
al potential of the Ising spins � = �1. We mentionthat, in this 
ase, the bond probability for KF 
lusters is p = 1� exp(�2K).For D ! �1, the va
an
ies are ex
luded, and the model redu
es to Onsager's spin- 12 model [18℄. The
riti
al 
oupling 
onstant K
 is an in
reasing fun
tion of the 
hemi
al potential D, and the 
riti
al lineK
(D) terminates at a tri
riti
al point. By means of a sparse transfer matrix te
hnique, we have determinedthe tri
riti
al point [50℄ as Kt
 = 1:6431759(1), Dt
 = 3:2301797(2), and �t
 = 0:4549506(2) for the va
an
ydensity. The pre
ision improves signi�
antly over that of the existing results [51℄ Kt
 = 1:64(1); Dt
 =3:22(2), and is 
onsidered to be suÆ
ient for our present investigation.For this model (10.9), however, no 
luster Monte Carlo method to 
ip between va
an
ies and Ising spinsis generally available. Thus, during the simulations, we �xed the total number of va
an
ies in order to avoidthe 
riti
al slowing down due to 
u
tuations in the number of va
an
ies. This was realized by a re
entlydeveloped geometri
 
luster algorithm [37℄, whi
h moves groups of va
an
ies and Ising spins on the latti
ein a

ordan
e with the Boltzmann distribution. A detailed a

ount of the geometri
 
luster method 
an befound in Refs. [37℄.The Monte Carlo simulations were performed at the tri
riti
al point. For �nite systems, however, thetotal number of va
an
ies V at tri
riti
ality is generally not an integer, so that the a
tual simulations tookpla
e at V� = [Vt
℄ = [�t
L2℄ and V+ = [Vt
℄ + 1, where square bra
kets [ ℄ denote the integer part of thenumber in it. For a sampled quantity A, its value At
 at the tri
riti
al point is approximated asAt
 = A+(Vt
 � V�) +A�(V+ � Vt
)V+ � V� ; (10.10)and the statisti
al error margin of At
 is taken asÆAt
 = 1V+ � V�p[ÆA+(Vt
 � V�)℄2 + [ÆA�(V+ � Vt
)℄2 : (10.11)Sin
e we are interested in geometri
 properties of the Blume-Capel model, the aforementioned geometri

lusters have to be 
onstru
ted with bond probability 0 � p � 1 during the sampling pro
edure. This wasrealized by a Swendsen-Wang-like algorithm [13℄. For a bond- and va
an
y-variable 
on�guration, we denotethe total number of geometri
 
lusters as N
, and the size of the ith 
luster as si. The following quantitieswere sampled S2 = 1L2 h N
Xi s2i i ; S4 = 1L4 h N
Xi s4i i ; and r = hS2i2=hS4i : (10.12)161
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pFigure 10.3: The dimensionless ratio r near the random-
luster �xed point pr for the tri
riti
al Blume-Capelmodel. The data points +, �, �, 
, and 4 represent L = 8; 12; 16; 24, and 32, respe
tively.It 
an be easily shown that, at the random-
luster �xed point pr, the quantity S2 is just the magneti
sus
eptibility, and the dimensionless ratio r plays a role as the universal Binder 
umulant [52℄ in the Pottsmodel.Periodi
 boundary 
onditions were applied, and near the random-
luster �xed point pr = 1�exp(�2Kt
) �0:96260999, the system sizes were taken in the range 8 � L � 120. Figure 10.3 shows parts of the MonteCarlo data of the dimensionless ratio r, in whi
h the slope of r de
reases as the system size L in
reases. Thisindi
ates that the bond-dilution exponent yp is a negative number, and thus the random-
luster �xed pointpr is stable, as expe
ted. Moreover, a

ording to the least-square 
riterion, we �tted the following equationto the data of r. r = r0 + r1(p� p
)Lyp + r2(p� p
)2L2yp + � � �+ r6(p� p
)6L6yp +b1Ly1 + b2Ly2 + b2Ly3 + 
1(p� p
)Ly1+yp + n1(p� p
)2Lyp : (10.13)Here, the amplitudes ri, bi, 
i, and ni are unknown parameters, and the term with n1 a

ounts for the fa
tthat the bond-dilution s
aling �eld is a nonlinear fun
tion of (p� p
). The terms with bi des
ribe �nite-size
orre
tions, and the asso
iated exponents were simply taken as integer numbers as y1 = �1, y2 = �2, andy3 = �3. Furthermore, we �xed p
 at the random-
luster �xed point pr � 0:96260999. After a 
uto�for small system sizes L � 10, we obtain yp = �0:48(2), in agreement with the predi
tion yp = �19=40(Tab. 10.1).A

ording to Fig. 10.1(b), for tri
riti
al systems, Potts and KF 
lusters are des
ribed by the same 
riti
alexponent, i.e., X(p)h = Xh. Thus, we �tted the following equation to the data of S2 for Potts 
lustersS2 = L�2Xh(a0 + a1Ly1 + a2Ly2 + a3Ly3) : (10.14)Here, the leading �nite-size e�e
t arises from the bond-dilution �eld, so that we set y1 = yp = 2 � Xp =�19=40, y2 = 2y1 = �19=20, and y3 = �2. After a 
uto� for small system sizes L � 10, the �t yieldsXh = 0:0747(5), in good agreement with X(r)h (g = 5) = 3=40 in Tab. 10.1.We expe
t that an unstable geometri
-
luster �xed point o

urs in the range 0 < pg < pr for thetri
riti
al Blume-Capel model. This is 
learly shown by Fig. 10.4, indi
ating pg � 0:62. Thus, we performedextensive simulations in the range 0:61 � p � 0:65, and the system sizes were taken as 8 � L � 160. We�tted Eq. (10.13) to the Monte Carlo data of r. After a 
uto� for small system sizes L � 12, we obtainp
 = 0:6227(1) and yp = 0:4254(6), where the statisti
al error bars are two standard deviations in the �t.The value of yp is in good agreement with the expe
ted value yp = 2�Xp = 17=40 (Tab. 10.1).At the geometri
-
luster �xed point pg, Tab. 10.1 predi
ts X(g)h (g = 5) = 21=160. Thus, we �tted the162
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pFigure 10.4: The dimensionless ratio r near the geometri
-
luster �xed point pg for the tri
riti
al Blume-Capel model. The data points +, �, �, 
, 4, and � represent L = 8; 12; 16; 20, 24, and 28,respe
tively.following equation to the data of S2 near pgS2 = L�2X(g) [s0 + s1(p� p
)Lyp + s2(p� p
)2L2yp + � � �+ s6(p� p
)6L6yp +b1Ly1 + b2Ly2 + b2Ly3 + 
1(p� p
)Ly1+yp + n1(p� p
)2Lyp ℄ : (10.15)Again, the exponents for �nite-size 
orre
tions were simply taken as y1 = �1, y2 = �2, and y3 = �3. Aftera 
uto� for small systems L � 12, we obtain p
 = 0:62265(10) and X(g)h = 0:1311(5) � 21=160 = 0:13125.For the general Blume-Capel model des
ribed by Eq. (10.9), the RG 
ows should, in prin
iple, be shownin the three-parameter spa
e (p;K;D). For simpli
ity, we only 
onsider its proje
tion onto the plane (p;K),whi
h is s
hemati
ally shown in Fig. 10.5. Areas K < Kt
 and K > Kt
 represent a 
riti
al sheet and aregion for �rst-order phase transitions, respe
tively. For K ! 1, the per
olation problem of this Blume-Capel model redu
es to the bond-per
olation model [8, 12℄, whi
h has a per
olation threshold is p
 = 1=2on the square latti
e. For K < Kt
, the whole area above the solid line, p = 1 � exp(�2K), is withinthe per
olation thresholds, and 
riti
al properties are governed by the �xed point `P1', in the universality
lass of the tri
riti
al q = 1 Potts model. Besides this, there are four other �xed points, `I', `TI', `GT',and `BP', whi
h represent the Ising, the tri
riti
al Blume-Capel, pg of the tri
riti
al Blume-Capel, and thebond-per
olation model, respe
tively. Arrows show the dire
tion of the RG 
ows.The tri
riti
al q = 3 Potts modelIt has been known [8℄ that, by in
luding va
an
ies in the `pure' Potts model (10.1), the tri
riti
al Pottsmodel 
an be obtained. The Hamiltonian of the tri
riti
al q = 3 Potts model on the square latti
e readsH=kBT = �KXhi;ji Æ�i;�j (1� Æ�i;0)�DXk Æ�k;0 (� = 0; 1; 2; 3) : (10.16)By means of a sparse transfer matrix te
hnique, we have determined the tri
riti
al points [50℄ as Kt
 =1:649923(5), Dt
 = 3:152173(10), and �t
 = 0:34572(5) for the va
an
y density.Analogously, during the Monte Carlo simulations, we �xed the total number of va
an
ies, and thusused a 
ombination of the Wol� [14℄ and the geometri
 
luster [37℄ steps. The system sizes were taken as8 � L � 160, and periodi
 boundary 
onditions were applied. The sampled quantities in
lude S2, S4, and adimensionless ratio Q = hS2i2=h3S 22 �2S4i. Compared to the aforementioned ratio r, the quantity Q is morein line with the well-known Binder ratio [52℄. Near the random-
luster �xed point pr = 1 � exp(�Kt
) �0:808, the Monte Carlo data of Q also reveal that the bond-dilution s
aling �eld is irrelevant.Figure 10.6 shows parts of the Monte Carlo data of Q in the range p < pr, and indi
ates the geometri
-
luster �xed point pg � 0:64. A

ording to the least-square 
riterion, we �tted Eq. (10.13) to the data163
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ows diagram of the Blume-Capel model in the plane (K;P ). The areas K < Kt
 andK > Kt
 represent a 
riti
al sheet and the region for �rst-order phase transitions, respe
tively.The model redu
es to the bond-per
olation model forK !1, whi
h has a per
olation threshold`BP' at p = 1=2. There are in total 5 �xed points, `I', `P1', `TI', `GT', and `BP', representingthe Ising, the tri
riti
al q = 1 Potts, and the tri
riti
al Blume-Capel, the geometri
-
luster �xedpoint of the tri
riti
al Blume-Capel, and the bond-per
olation model, respe
tively. Arrows showthe dire
tion of the RG 
ows.of Q in the range 0:62 � p � 0:66. The value of yp is �xed at 2 � 2Xr = 25=84 (Tab. 10.1), we obtainpg = 0:6395(2), with two standard deviations for the error bar.We illustrate the data for S2 at pg = 0:6395(2) in Fig. 10.7 versus L = L�15=66. The approximatelinearity indi
ates that X(g)h = 15=112, as predi
ted in Tab. 10.1. Moreover, we �tted Eq. (10.15) to thedata of S2. After a 
uto� for small system sizes L � 12, we obtain X(g)h = 0:1337(6), in good agreementwith X(g)h = 15=112.The dilute q = 4 Potts modelThe q = 4 Potts model is a marginal 
ase, not only be
ause the se
ond-leading thermal s
aling �eld ismarginal yt2 = 0 [22, 48℄, but also the bond-dilution exponent yp = 0. We investigate a dilute q = 4 Pottsmodel Eq. (10.16) at a point where the se
ond-leading thermal �eld vanishes. By means of the transfer matrixte
hnique, we have determined this point [50℄ as K
 = 1:45790(1), D
 = 2:478438(2), and �
 = 0:21207(2)for the va
an
y density. Analogously, the Monte Carlo simulations use a �xed-va
an
y-density ensemble.Periodi
 boundary 
onditions were applied, and the system sizes were taken in the range 8 � L � 280.At the random-
luster �xed point pr, we �nd that Eq. (10.14) is suÆ
ient to des
ribe the data of S2, and�nite-size 
orre
tions de
ay very rapidly with the leading exponent y1 = �2:3(2). Furthermore, the �t yieldsthat the magneti
 exponent Xh = 0:1248(3), in good agreement with Xh = 1=8. This indi
ates that, asexpe
ted, logarithmi
 
orre
tions due to the marginal se
ond-leading thermal �eld are absent for the diluteq = 4 Potts model at this point. For Potts 
lusters (p = 1), we �nd that the data of S2 
annot be des
ribedby Eq. (10.14) anymore. Instead, we used the following equation during the numeri
al �tS2 = L�2Xh(a0 + a1= lnL+ a2= ln2 L+ a3L�2) : (10.17)This re
e
ts that, for the q = 4 Potts model, the bond-dilution s
aling �eld is indeed marginal.10.1.4 Dis
ussionWe have determined geometri
 properties of the general 
riti
al and tri
riti
al Potts model in two dimensions.Apart from the random-
luster �xed point pr, we �nd a geometri
-
luster �xed point pg. Moreover, on thebasis of the theory of the Coulomb gas, we predi
t 
riti
al exponents near pg, whi
h in
lude the magneti
,164
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Table 10.2: The hull-
luster s
aling dimensions XH for the 
riti
al and the tri
riti
al Potts model in twodimensions. The supers
ripts (r) and (g) represent the random- and the geometri
-
luster �xedpoint, pr and pg, respe
tively.Criti
al Potts model Tri
riti
al Potts modelq 0 1 2 3 4 3 2 1 0X(r)H 0 1=4 1=3 2=5 1=2 4=7 3=5 5=8 2=3X(g)H 3=4 2=3 5=8 7=12 1=2 5=12 3=8 1=3 1=4the thermal, and the bond-dilution exponent, shown in Tab. 10.1. We have performed extensive MonteCarlo simulations, and 
on�rmed some predi
tions. As another example, we 
onsider the fra
tal dimensionof the hull or external perimeter of a 
luster, whi
h 
onsists of all the absent bonds surrounding the 
lusterof interest. For the 
riti
al Potts model, exa
t values of the hull-
luster s
aling dimension X(r)H near therandom-
luster �xed point pr have already been given [6℄ asX(r)H = (g � 2)=g ; (10.18)with g the 
oupling 
onstant. By assuming that this formula applies to the tri
riti
al bran
h of the Pottsmodel, and a

ording to the relation gg0 = 16 between the �xed points pr and pg , we obtain near thegeometri
-
luster �xed point pg X(g)H = (8� g)=8 : (10.19)The values of X(r)H and X(g)H for integers 0 � q � 4 are listed in Tab. 10.2.From Tab. 10.1, the geometri
-�xed point pg of the bond-per
olation model 
orresponds to pr of thetri
riti
al q = 0 Potts model.
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10.2 The 
riti
al and the tri
riti
al Ising model in three dimen-sionsUsing the Wol� and geometri
 
luster algorithms and �nite-size s
aling analysis, we investigate the 
riti
alIsing and the tri
riti
al Blume-Capel model with nearest-neighbor intera
tions on the simple-
ubi
 latti
e.The sampling pro
edure involves the de
omposition of the Ising 
on�guration into geometri
 
lusters, ea
hof whi
h 
onsists of a set of nearest-neighboring spins of the same sign 
onne
ted with bond probability p.These 
lusters in
lude the well-known Kasteleyn-Fortuin 
lusters as a spe
ial 
ase for p = 1 � exp(�2K),where K is the Ising spin-spin 
oupling. A dimensionless ratio R is then de�ned on the basis of the sizedistribution of these geometri
 
lusters. We observe that, unlike the 
ase of two-dimensional tri
riti
ality, theper
olation threshold of geometri
 
lusters 
oin
ides with Kasteleyn-Fortuin 
lusters. Further, we determinethe 
orresponding red-bond exponents as yr = 0:757(2) and 0:501(5) for the 
riti
al Ising and the tri
riti
alBlume-Capel model, respe
tively. On this basis, we 
onje
ture yr = 1=2 for the latter model.10.2.1 Introdu
tionSe
ond-order thermodynami
 transitions are generally a

ompanied by long-range 
orrelations both in timeand spa
e. It is thus plausible that the pre
ise mi
ros
opi
 stru
ture of the system under 
onsiderationbe
omes unimportant as far as the universal aspe
ts of the transition are 
on
erned, and transitions inmany di�erent physi
al systems 
an be within the same universality 
lass. It has been suspe
ted long timeago [1{6℄ that, as indi
ated by the divergen
e of spatial 
orrelation lengths, thermodynami
 singularities neara 
riti
al point 
an be represented in terms of some sort of `geometri
 
lusters'. For instan
e, one may relatespontaneous long-range order below a 
riti
al temperature to the formation of an `in�nite' 
luster. As earlyas in 1967, Fisher [1℄ introdu
ed a phenomenologi
al droplet model for the two-dimensional Ising model, inwhi
h `geometri
 
lusters' 
onsist of nearest-neighboring (NN) Ising spins of the same sign. These 
lusters arereferred to as Ising 
lusters, and topologi
al 
onsiderations imply [7℄ that its per
olation threshold 
oin
ideswith the thermal 
riti
al point in two dimensions, at least for the square latti
e. However, it 
an also beshown [7℄ that Ising 
lusters are too `dense' to 
orre
tly des
ribe 
riti
al 
orrelations of the Ising model.For the q-state Potts model (for a review, see Ref. [8℄), whi
h in
ludes the Ising model as a spe
ial 
aseq = 2, a solution was given by Kasteleyn and Fortuin [9, 10℄ in 1969. The Hamiltonian of a latti
e Pottsmodel with nearest-neighbor (NN) intera
tions only 
an be expressed asH=kBT = �KpXhiji Æ�i�j ; (� = 1; 2; � � � ; q) ; (10.20)where the sum h i is over all NN pairs and K is the 
oupling 
onstant. A 
orre
t geometri
 representation ofthis model 
an be obtained as follows. For ea
h pair of NN spins in the same Potts state, a bond is pla
edwith with a probability pKF = 1 � exp(�Kp), su
h that the whole latti
e is then de
omposed into groupsof spins 
onne
ted via the o

upied bonds, whi
h are known as the Kasteleyn-Fortuin (KF) 
lusters. Thestatisti
al weight of ea
h bond-variable 
on�guration is then given by the partition sumZ(u; q) =Xb unbqn
 (u = eKp � 1) ; (10.21)where the sum is over all bond-variable 
on�gurations, and nb and n
 are the total numbers of bonds and KF
lusters, respe
tively. As early as 1932, this partition sum had already appeared in the work of Whitney [11℄,and the 
orresponding model is referred to as the random-
luster model. It 
an be shown [8{10℄ that therandom-
luster model 
an be exa
tly mapped onto the q-state Potts model. The per
olation threshold ofthe former o

urs pre
isely at the thermal 
riti
al point in the latter. S
aling properties of KF 
lusters near
riti
ality are governed by 
riti
al exponents of the Potts model (10.20). For instan
e, the fra
tal dimensionof KF 
lusters at 
riti
ality is identi
al to the magneti
 s
aling dimension Xh. In fa
t, one may view thepartition sum (10.21) as a generalization of the Potts model to noninteger q. It also in
ludes some spe
ial
ases su
h as q ! 0 and 1, where the latter redu
es to the un
orrelated bond-per
olation model [12℄. It was167
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Figure 10.8: Renormalization 
ow for the mixed Ising model des
ribed by Eq. (10.22) with q = 2 in twodimensions. The dashed line J = Kp is for the random-
luster representation of the Ising model,and arrows show the dire
tions of renormalization 
ow.be
ause of the exa
t mapping between Eqs. (10.21) and (10.20) that Swendsen and Wang 
ould develop [13℄a 
luster Monte Carlo method for the Potts model with integer q = 1; 2; � � � . This method and its single-
luster version, the Wol� algorithm [14℄, signi�
antly suppress the 
riti
al-slowing-down e�e
t whi
h is veryprominent in the standard Metropolis method. Thus, these 
luster algorithms have been extensively used inthe �eld of 
riti
al phenomena and phase transitions.The Potts model (10.20) in
ludes the Ising model as a spe
ial 
ase for q = 2. For other values of q, one
an, in the same way as the Ising 
lusters de�ned earlier, form Potts 
lusters [15{17℄ 
omposed of NN spinsin the same Potts state. As expe
ted, these Potts 
lusters are also on average too `large' [19, 20℄ to a

ountfor thermodynami
 singularities of the Potts model. In the 
ontext of the renormalization group theory, this
an be understood from a `mixed' Potts model, as des
ribed by [4, 6℄H=kBT = �JXhiji(Æ�i;�j � 1)Æ�i�j �KXhiji Æ�i�j : (10.22)The se
ond term is just the `pure' q-state Potts model (10.20); and the �rst term 
ontains an auxiliary Pottsvariable � = 1; 2; � � � ; s. For the 
ase that a pair of NN spins is in the same Potts state both for variables �and � , a bond is pla
ed with the probability pg = 1� exp(�J). One 
an then express the partition sum ofEq. (10.22) in su
h bond variables, and di�erentiate the resulting free energy with respe
t to the parameters. Taking the limit s ! 1, one obtains the size distribution of geometri
 
lusters 
omposed of NN sites inthe same state � 
onne
ted with probability pg. Thus, these 
lusters in
lude KF and Potts 
lusters as twospe
ial 
ases for J = K and pg = 1, respe
tively.The renormalization 
ow of the `mixed' Potts model (10.22) in two dimensions is s
hemati
ally shown [20℄in Fig. 10.8, where the dashed line J = K represents the random-
luster model (10.21). Near the random-
luster �xed point J = K = K
, the renormalization 
ow along the dashed line is governed by the thermalexponent yt of the Potts model. Further, on the 
riti
al line K = K
, the per
olation threshold of geometri

lusters o

urs pre
isely at J = J
 = K
 [20℄. The s
aling �eld parameterizing the 
riti
al line near J = K
is the bond-dilution �eld, and the asso
iated exponent is 
alled the red-bond exponent yr. In 
ontrast tothe thermal and magneti
 ones, the red-bond exponent yr 
hara
terizes geometri
 properties of the Pottsmodel, and does not have a thermodynami
 analogue. The s
aling properties of geometri
 
lusters withpg > pKF(K
), in
luding Potts 
lusters, are governed by another �xed point, shown as the bla
k square inFig. 10.8. This �xed point is irrelevant (yr < 0) in the pg dire
tion, and we refer to it was the geometri
-
luster �xed point [20℄. For the two-dimensional Ising model on the square latti
e, it o

urs in the unphysi
alregion pg > 1 [17℄.However, the renormalization s
heme in Fig. 10.8 is not generally valid [20℄ for two-dimensional models.168



cK

yr

yt

pg

����

0 1

K

Figure 10.9: Renormalization 
ow for the two-dimensional tri
riti
al Blume-Capel model (10.23) with D�xed at the tri
riti
al value Dt. The horizontal dire
tion is the bond probability pg in geometri

lusters, and KF 
lusters are represented by the dashed line pg = 1� exp(�2K).For instan
e, we 
onsider the two-dimensional Blume-Capel model [21℄ with the HamiltonianH=kBT = �KpXhiji sisj +DXk s2k ; (10.23)where the spins 
an assume the values �1 and 0, and those in state s = 0 are referred to as va
an
ies.The abundan
e of va
an
ies is 
ontrolled by the 
hemi
al potential D. For D ! �1, the va
an
ies aresqueezed out, and the model (10.23) redu
es to the spin- 12 model. The 
riti
al 
oupling is an in
reasingfun
tion of D, and the 
riti
al line K
(D) terminates at a tri
riti
al point (Kt; Dt). We mention that, forthe Blume-Capel model (10.23), KF 
lusters should be 
onstru
ted with the bond-o

upation probabilitypKF = 1� exp(�2K) instead of pKF = 1� exp(�K), due to the di�eren
e between the Potts and the IsingHamiltonian, as shown by Eqs. (10.20) and (10.23), respe
tively. For the 
ase that the 
hemi
al potentialD is �xed at the tri
riti
al value Dt, the renormalization 
ow of the Blume-Capel model [20℄ is sket
hed inFig. 10.9. The bond-dilution �eld near the random-
luster �xed point pKF(Kt) is now irrelevant (yr < 0); andthe per
olation threshold pg
 of geometri
 
lusters is smaller than pKF(Kt). Thus, at tri
riti
ality (Kt; Dt),the thermodynami
 singularities of the Blume-Capel model 
an be 
orre
tly represented by geometri
 
lustersas long as the bond probability pg > pg
, in
luding Ising 
lusters. It has been shown [20℄ that Fig. 10.9applies to the whole tri
riti
al bran
h of the Potts model in two dimensions.As a result of exa
t solutions, Coulomb gas treatments [22℄, and 
onformal �eld theory [23℄, the 
riti
albehavior of the Potts model (10.20) is now well established in two dimensions. The exa
t values of a numberof 
riti
al exponents are known. The geometri
- and random-
luster �xed points in Figs. 10.8 and 10.9were re
ently 
onje
tured [20℄ to 
orrespond with a pair of 
riti
al and tri
riti
al Potts systems. These twomodels share the same 
onformal anomaly, and are related as gg0 = 16 in terms of the Coulomb gas 
oupling
onstant g [22℄.For the three-dimensional Ising model, however, exa
t information is s
ar
e, so that investigations haveto depend on approximations, in
luding Monte Carlo simulations as a powerful tool. A 
onsiderable amountof resear
h a
tivities have been 
arried out [24{31℄. For instan
e, there is some 
onsensus that the thermaland magneti
 exponents are yt = 1:587 and yh = 2:482, with un
ertainties restri
ted to the last de
imalpla
e. Meanwhile, geometri
 properties of Ising systems have also re
eived some attention [32{34℄. For thespin- 12 model on the simple-
ubi
 latti
e, in�nite Ising 
lusters already exist even for zero 
oupling 
onstantK = 0. In the low-temperature phase K > K
, in�nite Ising 
lusters, 
omposed of minority Ising spins,o

ur at about 1:05K
 [32{34℄, before the 
riti
al temperature is rea
hed. However, to our knowledge, nosystemati
 investigation has been reported about the renormalization 
ows su
h as in shown Figs. 10.8and 10.9. Parti
ularly, it is not obvious whether or not the per
olation threshold of geometri
 
lusters at
riti
ality K = K
 
oin
ides with the random-
luster �xed point; and the red-bond exponent yr remains to169



be determined.In addition to the 
riti
al Ising model, the present work also investigates the tri
riti
al Ising model in threedimensions [35℄. Sin
e the upper tri
riti
al dimensionality of O(n) systems is three, exa
t information for someuniversal quantities is available, one of the rare 
ases in three dimensions. Exa
t values of 
riti
al exponents
an be obtained from renormalization 
al
ulations [35℄ of the Landau-Ginzburg-Wilson Hamiltonian, andeven from mean-�eld analyses. The leading and subleading thermal exponents [35℄ are yt1 = 2 and yt2 = 1,and those magneti
 ones are yh1 = 5=2 and yh2 = 3=2, respe
tively. However, no exa
t results or numeri
aldeterminations for the red-bond exponent yr have been reported to our knowledge; and it is even not obviouswhere per
olation threshold of geometri
 
lusters o

urs at tri
riti
ality. It seems thus justi�ed to performa Monte Carlo investigation for the tri
riti
al Ising model in three dimensions.10.2.2 Monte Carlo methods and sampled quantitiesFor simpli
ity, we 
hose the spin- 12 and the tri
riti
al Blume-Capel model as the subje
t of our simulations,so that the Hamiltonian of both models 
an be expressed by Eq. (10.23). The systems are de�ned on theL� L� L simple-
ubi
 latti
e with periodi
 boundary 
onditions.For the spin- 12 model, as des
ribed by Eq. (10.23) for D ! �1, one 
an simply apply the Swendsen-Wang and Wol� 
luster algorithms. In this 
ase, the 
riti
al point on the simple-
ubi
 latti
e is known [31℄as K
 = 0:22 165 455(3), where the number in bra
kets ( ) is the error margin in the last de
imal pla
e.The �nite-size analysis in Ref. [31℄ used a te
hnique that Monte Carlo data for 11 Ising systems weresimultaneously �tted, su
h that universal parameters only o

ur only on
e. In the present investigation, thepre
ision of the above determination of K
 is 
onsidered to be suÆ
ient.However, for the general Blume-Capel model (10.23) in the presen
e of va
an
ies, the Swendsen-Wang orWol� 
luster simulations be
ome in
omplete, sin
e they a
t only on Ising spins. In this 
ase, the Metropolismethod, whi
h allows 
u
tuations of va
an
ies, 
an be used in a 
ombination with these 
luster methods.Further, for the spe
ial 
ase D = 2 ln 2, a full-
luster simulation has also been developed [25,36℄ by mappingthe system (10.23) onto a spin- 12 model with two independent variables �1 = �1 and �2 = �1. Neartri
riti
ality, however, no eÆ
ient 
luster method is available so far to 
ip between va
an
ies and Ising spins.This problem was partly solved in Ref. [38℄ by means of the so-
alled geometri
 
luster method [25,37℄. Thisalgorithm was developed on the basis of spatial symmetries, su
h as invarian
e under spatial inversion androtation operations. It moves groups of Ising spins and va
an
ies over the latti
e in a

ordan
e with theBoltzmann distribution, so that the magnetization and the va
an
y density are 
onserved. A 
ombinationof the Metropolis, Wol�, and geometri
 steps signi�
antly suppresses the magnitude of 
riti
al-slowing-down. Su
h simulations, together with other te
hniques su
h as the aforementioned simultaneous �nite-sizeanalysis, yield [38℄ the tri
riti
al point as Kt = 0:7133(1) and Dt = 2:0332(3) on the simple-
ubi
 latti
e.The va
an
y density �v at the tri
riti
al point is �v = �vt = 0:6485(2) [38℄. These results are 
onsistent withestimations [39, 40℄ from other sour
es Kt = 0:706(4), Dt = 2:12(6), and �vt = 0:652(6), within two errormargins quoted in the bra
kets ( ).The 
al
ulations in the present work in
lude two parts: the Monte Carlo simulations and the formationof geometri
 
lusters with bond-o

upation probability pg. The latter step is performed as follows. For ea
hpair of NN Ising spins of the same sign, a uniformly distributed random number r is drawn, and a bond ispla
ed if r < pg. This is done in an analogous way as in the well-known Swendsen-Wang pro
edures. In this
ase, the whole latti
e is de
omposed into geometri
 
lusters. The size of ea
h 
luster, de�ned as the totalnumber of latti
e sites in the 
luster, is determined and used to 
al
ulate the quantitiesl2 = 1N2 Xi n2i and l4 = 1N4 Xi n4i ; (10.24)where ni is the size of the ith geometri
 
luster, and N = L3 is the volume of the system. For KF 
lustersin whi
h the bond probability pg = pKF = 1� exp(�2K), it 
an be shown that the quantities in Eq. (10.24)are related to the magnetization m ashm2i = hl2i and hm4i = 3hl22i � 2hl4i : (10.25)170



The �rst equality in Eq. (10.25) is derived as follows for the spin- 12 model. We denote the numbers of plusand minus spins as N+ and N�, respe
tively, so that the total magnetization is M = N+ �N�. Sin
e allspins in a KF 
luster are of the same sign, M 
an be written in terms of 
luster sizes of KF 
lusters asM = Pi ni�i, where �i is the sign of spins in the ith 
luster. The sign �i assumes +1 and �1 with equalprobability, and is un
orrelated between di�erent KF 
lusters. Thus, one hasm2 = 1N2 Xi Xj ninj�i�j = 1N2 Xi n2i : (10.26)The derivation of the se
ond equality in Eq. (10.25) follows along similar lines.On the basis of the quantities l2 and l4, we de�ne a dimensionless ratio R asR = hl2i2=(3hl22i � 2hl4i) ; (10.27)whi
h is equal to the magneti
 ratio Q = hm2i2=hm4i for KF 
lusters, i.e., for pg = pKF. For the bondprobability pg 6= pKF, R will be di�erent from Q; its value re
e
ts the geometri
 
luster size distribution.Further, the s
aling behavior as a fun
tion of the distan
e pg � pKF is governed by the red-bond exponentyr.10.2.3 ResultsSpin- 12 modelSimulations of the spin- 12 model were performed at K
 = 0:22 165 455(3) [31℄, where the bond-o

upationprobability in KF 
lusters satis�es pKF(K
) = 1�exp(�2K
) = 0:35 809 124(5). The system sizes were takenin the range 6 � L � 48, and we sampled the geometri
 quantities l2, l4, and R, and the magneti
 ratio Q.Several Wol� 
luster steps were 
arried out between 
onse
utive sampling pro
edures. Part of the data forR is shown in Fig. 10.10, indi
ating that the per
olation threshold of geometri
 
lusters is near pg
 � 0:358,
onsistent with the random-
luster �xed point pKF(K
). A

ording to the least-squares 
riterion, we �ttedthe data of R by R(pg; L) = R0 + 4Xk=1 rk[(pg � pg
)Lyr ℄k + 3Xj=1 ajLyj +
(pg � pg
)Ly1+yr + b(pg � pg
)2Lyr ; (10.28)where R0 is the universal number at pg
. The terms with amplitudes rk des
ribe the e�e
t of the bond-dilution�eld, and those with aj a

ounts for �nite-size 
orre
tions. We set the exponent y1 = yi = �0:821(5) [31℄,the leading irrelevant exponent of the three-dimensional Ising universality 
lass. Other exponents of the
orre
tion terms, as des
ribed in Ref. [31℄, take values as y2 = d�2yh = �1:964 and y3 = yt�2yh = �3:375.The term with y2 arises from the �eld dependen
e of the analyti
 part of the free energy, and that with y3is introdu
ed by the nonlinear dependen
e of the thermal s
aling �eld on the physi
al magneti
 �eld. Theterm with amplitude 
 a

ounts for the `mixed' e�e
t of the bond-dilution �eld and the irrelevant thermal�eld. The last term arises from nonlinear dependen
e of the bond-dilution �eld on the bond probabilitypg. The data for Q were also in
luded in the �t by Eq. (10.28) with pg = pKF(K
). Further, we in
ludedthe Q data at K
, published in Ref. [31℄. These data, parti
ular those for larger system sizes L = 48, 64,128, and 256, were found very helpful in the numeri
al analysis. To obtain a satisfa
tory �t by Eq. (10.28)a

ording to the least-squares 
riterion, it was ne
essary to dis
ard the R data for small system sizes L � 6.We obtain R0 = 0:6238(8), p
 = 0:35 809 135(15) = pKF(K
), and yr = 0:757(2), where the error marginsare quoted as two standard deviations. The estimation of R0 is in good agreement with the Binder ratioQ = 0:6241(4) [31℄. We mention that, in Eq. (10.28), the 
ontributions from the terms with b and 
 aresigni�
ant. This is indi
ated by Tab. 10.3, whi
h lists detailed results of the above �t.171
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PgFigure 10.10: Dimensionless ratio R for the 
riti
al spin- 12 model in three dimensions, vs. he bond probabilitypg. The data points +, �, �, 
, 4, and � represent �nite sizes L = 12; 16; 20; 24, 28, and32, respe
tively. The interse
tions reveal that the lo
ation of the per
olation threshold agreeswith the random-
luster 
riti
al point.Table 10.3: The �t of the dimensionless ratio R for the 
riti
al spin- 12 model in three dimensions. Thenumbers in parentheses are the statisti
al errors in the last de
imal pla
e.yr p
 R0 r1 r2 r30:757(2) 0:35 809 135(15) 0:6238(5) �0:811(6) �1:01(2) �0:96(3)r4 a1 a2 a3 b 
4:5(5) 0:0965(3) 0:132(3) 1:2(8) �0:35(2) 0:64(8)Tri
riti
al Blume-Capel modelOur simulations used a 
onstrained version of the Blume-Capel model des
ribed by Eq. (10.23), namely thetotal number of va
an
ies is 
onserved. In this 
ase, the 
hemi
al potential D in Eq. (10.23) be
omes impli
it,and a full-
luster simulation be
omes possible by using a 
ombination of Wol� and geometri
 
luster stepsonly. A parti
ular feature of su
h 
onstrained simulations is that they hardly su�er from 
riti
al-slowing-down even near the tri
riti
al point. This is 
onsistent with the Li-Sokal 
riterion [41℄ whi
h spe
i�es a lowerlimit for the dynami
 exponent, sin
e the 
onstrained spe
i�
 heat has only rea
hes a �nite 
usp insteadof being divergent at tri
riti
ality, as already noted in Ref. [38℄. Simulations took pla
e at the estimatedtri
riti
al point Kt = 0:7133(1) and �vt = 0:6485(2). Geometri
 
lusters were formed among Ising spins,and we sampled l2, l4, R, and Q. The system sizes were taken in the range 6 � L � 60. For a �nitesystem L at tri
riti
ality, however, the total number of va
an
ies L3�vt is not always an integer. Therefore,the a
tual simulations were performed at [L3�vt℄ and [L3�vt℄ + 1, where the bra
kets [ ℄ denote the integerpart. Geometri
 
lusters were formed among Ising spins, and we sampled l2, l4, R, and Q. The value of asampled quantity at the tri
riti
al point were obtained by a linear interpolation of the Monte Carlo data.For instan
e, we 
onsider the dimensionless ratio R, and denote the R data at [L3�vt℄ and [L3�vt℄ + 1 as Raand Rb, respe
tively. The tri
riti
al value of R and its statisti
al error margin ÆR are thenR = xRb + (1� x)Ra and ÆR =p(xÆRb)2 + [(1� x)ÆRb℄2 ; (10.29)respe
tively, where x = L3�vt � [L3�vt℄.At the tri
riti
al point (Kt; �vt), the bond probability at the random-
luster �xed point is pKF(Kt) =1�exp(�2Kt) = 0:7599(1). Part of the data for R is shown in Fig. 10.11, whi
h indi
ates that the per
olation
172
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riti
al Blume-Capel model in three dimensions, vs. bondprobability pg. The data points +, �, �, 
, 4, and � represent �nite sizes L = 8; 16; 24; 32,40, and 60, respe
tively.Table 10.4: The �t of the dimensionless ratio R for the tri
riti
al Blume-Capel model in three dimensions.The numbers in parentheses are the statisti
al errors in the last de
imal pla
e.yr p
 R0 r1 r2 r30:501(3) 0:759 876(3) 0:690(3) �0:248(6) �0:06(1) 0:08(3)r4 a1 a2 a3 a4 a5�0:2(2) �0:0144(5) 0:04(4) �0:227(5) 1:20(3) �1:0(2)a5 b 
 g1:20(3) 4:2(5) �0:40(5) �2:8(3)threshold of geometri
 
lusters also o

urs at pKF(Kt). The data for R were �tted byR(pg; L) = R0 + 4Xk=1 rk [(pg � pg
)Lyr ℄k + a1= lnL+ a2= ln2 L+ a3=L+a4=L2 + a5=L3 + b(pg � pg
)Lyr�1 + 
(pg � pg
)2Lyr +g(pg � pg
)=L2 : (10.30)The terms with amplitudes a1 and a2 a

ount for logarithmi
 
orre
tions [35℄ for the tri
riti
al Ising modelin three dimensions, as generally expe
ted at borderline dimensionality of mean-�eld-like behavior. Thelast term in Eq. (10.30) arises from the �eld dependen
e of the analyti
al part of the free energy, wherethe fa
tor 1=L2 is obtained as Ld�2yh1 with yh1 = 5=2 [35℄. In analogy with the pro
edure for the spin- 12model, the Q data of Ref. [38℄ were in
luded in the analysis for R with the 
orresponding bond probabilitypg = pKF(Kt). After a 
uto� for small system sizes L < 8, we obtain R0 = 0:690(3), yr = 0:501(3), andpg = 0:759876(3) � pKF(Kt). Detailed results are shown in Tab. 10.4, whi
h indi
ates that the amplitudea1 and a2 for logarithmi
 
orre
tions are rather small. Further, we observe that the result does not dependon whether the term with a2 is in
luded. Taking into a

ount the un
ertainties of the estimated tri
riti
alpoint (Kt; �vt), we obtain the red-bond exponent as yr = 0:501(5).As mentioned earlier, for the tri
riti
al Ising model in three dimensions, exa
t values of a number ofuniversal parameters, in
luding the thermal and magneti
 exponents, are exa
tly known as integers or simplefra
tions [35℄. Thus, on the basis of the numeri
al result yr = 0:501(5), we 
onje
ture that the red-bondexponent yr = 1=2 at the three-dimensional Blume-Capel tri
riti
al random-
luster �xed point.173



10.2.4 Dis
ussionUsing Monte Carlo simulations and �nite-size analysis, we have investigated geometri
 properties of the
riti
al Ising and tri
riti
al Ising models in three dimensions. We �nd that the per
olation threshold of 
riti
algeometri
 
lusters o

urs at the random-
luster �xed point, and the 
orresponding red-bond exponents areyr = 0:757(2) and 0:501(5) for the above two models, respe
tively. Just as the thermal and magneti
exponents, the results of the red-bond exponent yr apply to a large number of systems in the same universality
lass.In 
omparison with the two-dimensional 
ase, geometri
 properties of the tri
riti
al Ising model are`qualitatively' di�erent in three dimensions. In two dimensions, tri
riti
al KF 
lusters are so `dense' [20℄ thatthe bond-dilution �eld be
omes irrelevant near the random-
luster �xed point; the per
olation threshold ofgeometri
 
lusters o

urs before pKF(Kt), and belongs to a di�erent universality 
lass. In three dimensions,however, the red-bond exponent yr > 0 near pKF(Kt), so that only KF 
lusters 
an 
orre
tly representthermodynami
 singularities near tri
riti
ality.As mention earlier, the red-bond exponent yr des
ribes geometri
 properties of the system under 
on-sideration, and does not have a thermodynami
 analogue. As a 
onsequen
e, the exa
t value of yr has notbeen obtained even for the tri
riti
al Ising model in three dimensions. Although the 
onje
ture yr = 1=2is in agreement with the numeri
al determination yr = 0:501(5), further investigations seem justi�ed. Forinstan
e, one may ask the question whether one 
an derive yr from mean-�eld-like 
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11Edge transitions of two-dimensional tri
riti
al Potts mod-els
Using Monte Carlo te
hniques and �nite-size analysis, we investigate several two-dimensional latti
e modelswith open edges, in
luding the Blume-Capel model and the q = 1 and 3 Potts models with va
an
ies. Atbulk tri
riti
ality, we �nd that the open edges are dominated by the va
an
ies when the surfa
e 
ouplings Ksand the 
hemi
al potential Ds of the va
an
ies assume the bulk values. When Ks and/or Ds is suÆ
ientlyenhan
ed, an edge phase transition takes pla
e, beyond whi
h spontaneous one-dimensional order o

urson the edges. Edge phase transitions 
an also be indu
ed by a surfa
e magneti
 �eld Hs. We numeri
allydetermine a number of edge 
riti
al exponents and derive phase diagrams in terms of Ks, Ds, and Hs. In thelow-temperature region, we observe �rst-order transitions when Ks and Ds are varied; the asso
iated hys-teresis loops of surfa
e quantities are remarkably asymmetri
. Some further insight in these edge transitionsis provided by the exa
t equivalen
e of the tri
riti
al q = 1 Potts model and the Ising model.11.1 Introdu
tionsWhile theoreti
al physi
ists frequently study phase transitions in systems with periodi
 boundary 
onditions,in reality systems generally have surfa
es. Thus, there may be a need to 
onsider the e�e
ts due to thepresen
e of surfa
es. For a d-dimensional system 
ontaining Ld atoms, the relative fra
tion of atoms at ornear a surfa
e is of order 1=L, and hen
e for large L it is usually justi�ed to negle
t the surfa
e e�e
ts onbulk properties of the material. However, near a phase transition, 
orrelations be
ome long-ranged, so thatrelatively small perturbations 
an produ
e large responses. Therefore, surfa
e e�e
ts 
an be
ome signi�
ant,and in many 
ases they 
annot be ignored. Indeed surfa
e phase transitions have been the subje
t of
onsiderable resear
h interest in the past de
ades [1{11℄. Many theoreti
al and numeri
al methods have beendeveloped, in
luding mean-�eld approximations, high- and low-temperature expansions, renormalizationgroup (RG) te
hniques, 
onformal �eld theory, and Monte Carlo simulations et
.Most of these results apply to three-dimensional systems, and in this 
ontext, we brie
y review surfa
e
riti
al phenomena of the Ising model on a simple-
ubi
 latti
e with two open surfa
es in the z dire
tionand periodi
 boundary 
onditions in the xy plane [1,4,8,10℄. The Hamiltonian of this system 
an be dividedinto two parts: bulk terms and surfa
e terms, i.e.,H=kBT = �KXhiji(b)sisj �HXk (b)sk �KsXhlmi(s)slsm �HsXn (s)sn : (11.1)The spins assume values �1, and intera
tions o

ur between nearest-neighbor spins. The �rst two sumsa

ount for the bulk, and the last two sums involve spins on the open surfa
es. For a �nite 
ube with linearsize L, the surfa
e terms 
on
ern an area 2L2, be
ause there are surfa
es both at z = 0 and at z = L.177
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Figure 11.1: Sket
h of the surfa
e phase transitions of the Ising model in three dimensions. The verti
alaxis is the bulk temperature 1=K, and the parameter � = (Ks �K)=K in the horizontal axisrepresents the enhan
ement of the surfa
e 
ouplings. The `surfa
e', the `ordinary', and the`extraordinary' phase transitions are represented by the thi
k solid, the thin solid, and thedashed line, respe
tively. The lines meet in a point, shown as the bla
k 
ir
le, whi
h is referredto as the `spe
ial' phase transition.In three dimensions, exa
t information is s
ar
e about the bulk 
riti
al behavior of the Ising modeldes
ribed by Eq. (11.1), so that investigations have to depend on approximations. Nevertheless, a

urateinformation has been obtained. For instan
e, it has been determined [12℄ that the bulk 
riti
al point isK = K
 = 0:22 165 455(3) and H = H
 = 0, and the thermal and magneti
 renormalization exponents areyt = 1:5 868(3) and yh = 2:4 816(1), respe
tively. Surfa
e 
riti
al phenomena in this magneti
 system (11.1)are now also well analyzed [1, 4, 8, 10℄. In the absen
e of magneti
 �elds H = Hs = 0 and for ferromagneti

ouplings K � 0 and Ks � 0, the phase diagram is sket
hed in Fig. 11.1. In the high-temperature region,i.e., the bulk 
ouplings K < K
, the bulk is in the paramagneti
 state (`disordered'), so that the bulk
orrelations remain �nite. However, phase transitions 
an still o

ur on the open surfa
es when the surfa
e
ouplings Ks are varied. These transitions, referred to as the `surfa
e transitions', are shown as the 
urvedsolid line in Fig. 11.1. Apparently, they belong to the same universality 
lass as Onsager's Ising model [13℄in two dimensions, so that the thermal and magneti
 exponents are [13℄ yts = 1 and yhs = 15=8, respe
tively.At the bulk 
riti
al point K = K
, the line of surfa
e transitions terminates at a point (K
;Ks
), whi
ha
ts as a multi
riti
al point. For relatively small surfa
e 
ouplings Ks < Ks
, both the bulk and thesurfa
es undergo a se
ond-order phase transition at K = K
 when K is varied. However, for larger surfa
e
ouplings Ks > Ks
, the surfa
es be
ome ferromagneti
 at a smaller bulk 
oupling K < K
, so that thebulk transition K = K
 o

urs in the presen
e of spontaneous surfa
e order. Along the bulk 
riti
al lineK = K
, the phase transitions for Ks < Ks
, Ks = Ks
, and Ks > Ks
 are referred to as the `ordinary',the `spe
ial', and the `extraordinary' transitions, respe
tively. In order to des
ribe the s
aling aspe
ts ofthese surfa
e transitions, besides the bulk exponents yt and yh, additional surfa
e 
riti
al exponents arealso needed. The ordinary and the extraordinary transitions have one additional relevant surfa
e magneti
s
aling �eld; both the surfa
e thermal and magneti
 s
aling �elds are relevant at the spe
ial transition. Wedenote the 
orresponding exponents as y(o)hs , y(e)hs , y(s)ts , and y(s)hs , respe
tively, where the supers
ripts (o), (e),and (s) are for the ordinary, the extraordinary, and the spe
ial transitions, respe
tively. In an analogy withthe bulk ones yt and yh, exa
t values of these surfa
e exponents are unavailable. It has been numeri
allydetermined [1, 4, 8, 9, 14℄ that y(o)hs = 0:737(5), y(s)ts = 0:94(6), and y(s)hs = 1:62(2).The present paper investigates the surfa
e e�e
ts on a number of two-dimensional systems. However,in this 
ase, the `surfa
es' are just one-dimensional edges. Sin
e one-dimensional systems with short-rangeintera
tions are known not to order for any nonzero temperature, the `surfa
e transitions' o

urring atK < K
 simply 
annot exist on open edges of two-dimensional systems. It may then seem natural that nospontaneous edge order 
an o

ur without a long-ranged ordered bulk. In other words, in two dimensions,178



it may be expe
ted that only the ordinary transition exists on the one-dimensional surfa
es. It has furtherbeen argued [1℄ that the surfa
e dimensionality d = 2 is the lower 
riti
al dimensionality for the spe
ial,the surfa
e, and the extraordinary transitions. This is 
onsistent with exa
t results for the Ising model intwo dimensions. Exa
t 
al
ulations of surfa
e e�e
ts in this model [15,16℄ were not restri
ted to the 
riti
alregion but 
overed in the entire temperature range. At the bulk 
riti
ality, it was shown that, for any �nitesurfa
e 
oupling Ks, the transition on the open edges is just the ordinary transition. The 
orrespondingsurfa
e magneti
 exponent is y(o)hs = 1=2 [15, 16℄, di�erent from the bulk exponent yh = 15=8 [13℄. Thesurfa
e magnetization density ms and the surfa
e sus
eptibility �s at the ordinary transition appear to beof logarithmi
 nature [15, 16℄, i.e.,ms(Hs) / Hs j lnHsj (K = K
; jHsj << 1) ; (11.2)and �s(t) / j ln jtjj (Hs = 0; jtj = jK �K
j << 1) ; (11.3)where �s is de�ned as �ms=�Hs.The statement that only ordinary transitions o

ur on the edges 
an be generalized to the 
riti
al bran
hof the q-state Potts model in two dimensions. For a review of the Potts model, see Ref. [17℄. For thismodel, the nature of the bulk 
riti
al singularities is now well established. This is mostly due to exa
t
al
ulations [18,19℄, Coulomb gas theory [20℄, and 
onformal �eld theory [3℄. In the 
ontext of the Coulombgas theory [20℄, a sequen
e of universal exponents 
an be exa
tly expressed in terms of a single parameter g,i.e., the 
oupling strength of the Coulomb gas. The parameter g satis�es q = 2+2 
os(g�=2), with 2 � g � 4and 4 � g � 6 for the 
riti
al and the tri
riti
al bran
h of the Potts model, respe
tively. The leading thermaland magneti
 exponents of the Potts model are [20,21℄ yt = 3�6=g and yh = (g+2)(g+6)=8g, respe
tively.For the ordinary surfa
e transition of the 
riti
al Potts model, Cardy [5{7℄ employed boundary 
onformal�eld theory, and expressed the surfa
e magneti
 exponent y(o)hs in terms of the bulk thermal exponent yt asy(o)hs = 2� 3=(3� yt) = 2� g=2 (2 � g � 4) : (11.4)A remarkable feature of Eq. (11.4) is that y(o)hs is a de
reasing fun
tion of the Coulomb gas 
oupling g. Inparti
ular, for the q = 4 Potts model (g = 4), Eq. (11.4) yields y(o)hs = 0, so that the surfa
e magneti
s
aling �eld is marginal. It seems natural that Eq. (11.4) 
an also be applied to g > 4, just as the aboveexpressions for the bulk exponents yt and yh [20,21℄. This appli
ation then yields that the surfa
e magneti
s
aling �eld is irrelevant for the tri
riti
al Potts model. On the other hand, it is known that, near a se
ond-order transition, the strength of 
riti
al 
u
tuations and the sensitivity to perturbations are re
e
ted by themagnitudes of the 
riti
al exponents yt and yh. For the Potts model, yt = 3� 6=g is an in
reasing fun
tionof g, and, for 0 < q < 4, yh is larger on the tri
riti
al bran
h than on the 
riti
al one. Thus, one mightnaively expe
t that the surfa
e e�e
ts, in
luding that of the surfa
e magneti
 �eld Hs, be
ome stronger asg in
reases. Further exploration of this paradox seems justi�ed.Re
ently, boundary 
onformal �eld theory has re
eived 
onsiderable resear
h interest [22{27℄. In the
ontext of statisti
al physi
s, this has been applied to the tri
riti
al Ising model in two dimensions. Thismodel is 
onsidered to 
orrespond with an integral s
attering theory of massive kinks [22℄, and it preservessuper
onformal symmetry. By means of fa
torisable S matrix, fusion rules, and symmetry arguments, variousboundary operators were 
onje
tured [23℄ and the 
orresponding renormalization 
ows were 
onstru
ted. Aphysi
al interpretation of these boundary phenomena was then provided by A�e
k [24℄, indi
ating thepossible emergen
e of spontaneous edge order if the bulk is in the tri
riti
al state. Moreover, this s
enariohas been numeri
ally 
on�rmed in Ref. [28℄.The present paper extends the work in Ref. [28℄. First, as a dire
t illustration of the existen
e of theedge transitions in tri
riti
al Potts models in two dimensions, we make use of the exa
t equivalen
e of thedilute q = 1 Potts model with the Ising model in a magneti
 �eld [29℄. Thus, the exa
t information aboutthe edge 
riti
al phenomena in the latter model 
an be reformulated in the language of the former model.Then, using suitable Monte Carlo methods, we simulate the Blume-Capel (BC) model [30,31℄ and the q = 3Potts model with va
an
ies. From the �nite-size analysis of the numeri
al data, we derive a number of edgephase diagrams in terms of surfa
e parameters, and determine several surfa
e 
riti
al exponents.179



11.2 Dilute 1-state Potts modelThe dilute Potts model is obtained by in
luding va
an
ies in the 
orresponding \pure" Potts model. On theL � L square latti
e with periodi
 boundary 
onditions, to whi
h we shall refer as the torus geometry, theHamiltonian of the dilute q-state model readsHP=kBT = �K LXx;y=1(1� Æ�x;y ;0)(Æ�x;y ;�x+1;y + Æ�x;y ;�x;y+1)�D LXx;y=1 Æ�x;y ;0 ; (11.5)where the latti
e site is o

upied by a va
an
y � = 0 or a Potts variable with � = 1; 2; � � � ; q. Nonzero
ouplings K o

ur only between Potts variables, and the 
hemi
al potential D 
ontrols the 
on
entration ofthe va
an
ies. In Eq. (11.5), we have introdu
ed the subs
ript P to represent periodi
 boundary 
onditions.For the spe
ial 
ase q = 1 Eq. (11.5) redu
es, apart from a 
onstant, toHP=kBT = �K LXx;y=1�x;y(�x+1;y + �x;y+1) +D LXx;y=1�x;y (� = 0; 1) : (11.6)For D ! �1, the va
an
ies are ex
luded, and the �rst sum of Eq. (11.6) is just a 
onstant. Nevertheless,the random-
luster representation of Hamiltonian (11.6) 
orresponds with the bond-per
olation model withbond-o

upation probability p = 1 � exp(�K), so that Eq. (11.6) still des
ribes per
olation phenomena.In the presen
e of va
an
ies, Eq. (11.6) des
ribes a 
orrelated dilute bond-per
olation model, whi
h 
anbe transformed into the Ising model in a magneti
 �eld. This follows from substitution of s = 2� � 1 inEq. (11.6), whi
h yieldsH(i)P =kBT = �K(i) LXx;y=1 sx;y(sx+1;y + sx;y+1)�H(i) LXx;y=1 sx;y (s = �1) ; (11.7)with the relations K(i) = K=4 and H(i) = �D=2 +K ; (11.8)where the supers
ript (i) refers to the Ising model. In the absen
e of a magneti
 �eld H(i), the Isingmodel (11.7) has a 
riti
al point at K(i) = K(i)
 = ln(1 + p2)=2 [13℄. This point is not per
olation-like; itserves as the tri
riti
al point of the q = 1 Potts system (11.6). Equation (11.8) yields the tri
riti
al point asK = Kt = 2 ln(1 +p2) and D = Dt = 4 ln(1 +p2); the up-down symmetry of Ising spins implies that thetri
riti
al va
an
y density is � = 1=2. Further, it follows from Eq. (11.8) that the leading and the subleadingthermal exponents of the tri
riti
al Potts model are equal to the magneti
 and the thermal exponent ofthe Ising model, respe
tively, so that yt1 = 15=8 and yt2 = 1. The leading magneti
 exponent is known asyh1 = 187=96 [20℄. In the low-temperature region K(i) > K(i)
 , the Ising model undergoes a �rst-order phasetransition when the magneti
 �eld H(i) 
hanges sign. In other words, the dilute q = 1 Potts model (11.6)has a line of �rst-order phase transitions at D = 2K for K > Kt.Be
ause of the attra
tion between the va
an
ies, the dilute q = 1 model (11.6) is di�erent from the
onventional site-bond per
olation problem [32℄. In the latter system, the va
an
ies are randomly distributedover the latti
e sites, and then bonds are pla
ed with probability 0 � p � 1 between all nearest-neighboringo

upied sites. Apart from that, sites and bonds are un
orrelated. A limiting 
ase is the `pure' site-per
olationmodel, in whi
h the bond-o

upation probability is 1. This model is still in the per
olation universality,so that no tri
riti
al point exists for the 
onventional site-bond per
olation problem. In 
ontrast, for a
orrelated dilute q-state Potts model des
ribed by Eq. (11.5), it has been found [29, 33℄ that the tri
riti
alpoint o

urs for any value in the 
ontinuous range 0 � q � 4.In order to investigate the surfa
e e�e
ts, we de�ne the 
orrelated per
olation model (11.6) on an open
ylinder, i.e., the L�L square latti
e with periodi
 and free boundary 
onditions in the x and the y dire
tion,respe
tively. As for the three-dimensional 
ase, the surfa
e 
ouplings Ks and the 
hemi
al potential Ds 
an180



assume di�erent values from those in the bulk. The Hamiltonian HO on the open 
ylinder 
an be writtenas the sum of HP in Eq. (11.6) and their di�eren
e, whi
h readsHO=kBT �HP=kBT = K LXx=1�x;1�x;L �K�k LXx=1(�x;1�x+1;1 +�x;L�x+1;L)�D�d LXx=1(�x;1 + �x;L) ; (11.9)where �k = Ks=K � 1 and �d = Ds=D � 1 represent the enhan
ements of the surfa
e 
oupling and the
hemi
al-potential, respe
tively. The subs
ript O is for the open 
ylinder. The sums in the right-hand sideof Eq. (11.9) are only over spins sitting on the edges y = 1 and y = L. Thus, the surfa
e e�e
ts 
an beregarded to 
ontain two parts: the �rst term in Eq. (11.9) a

ounts for the geometri
 e�e
t due to `missing'neighbors for spins at the surfa
e layers, and the last two sums des
ribe the enhan
ements of the surfa
eparameters Ks and Ds. E�e
tively, the �rst term serves as a perturbation whi
h de
reases the 
orrelationsalong the lines y = 1 and y = L. After substituting � = (s+1)=2 in Eq. (11.9), one obtains the Ising modelon a 
ylinder with open endsH(i)O =kBT �H(i)P =kBT = K4 LXx=1 sx;1sx;L � K4 �k LXx=1(sx;1sx+1;1 +sx;Lsx+1;L)�H(i)s LXx=1(sx;1 + sx;L) ; (11.10)with a surfa
e magneti
 �eld H(i)s H(i)s = [K(2�k � 1)� 2D�d℄=4 : (11.11)Due to the equivalen
es of Eqs. (11.6) and (11.7), and of Eqs. (11.9) and (11.10), the edge transitionsof the Ising model 
an now be reformulated in the language of the dilute q = 1 Potts model. In thehigh-temperature region K > Kt, no transition o

urs on the one-dimensional edge. At bulk 
riti
ality,the Ising model exhibits an ordinary edge transition at H(i)s = 0, and the surfa
e magneti
 exponent isy(o)hs = 1=2 [15, 16℄. In the 
ontext of the tri
riti
al q = 1 Potts model (11.9), this means that, as indi
atedby the relation (11.11), an edge transition 
an be indu
ed by varying the surfa
e 
ouplings Ks and the
hemi
al potential Ds. For instan
e, for the 
ase �d = 0, the edges of the Potts model are dominated byva
an
ies (� = 0) or by Potts variables (� = 1) for �k < 1=2 or �k > 1=2, respe
tively. Sin
e Ks and Dsare temperature-like parameters, we refer to su
h an edge transition as the `spe
ial transition'. The surfa
ethermal exponent is simply obtained as y(s)ts (q = 1) = 1=2. In the low-temperature regionK > Kt, the bulk ofthe Potts model (11.9) is in a two-phase equilibrium along the line D=K = 2, as dis
ussed above. Therefore,a small perturbation due to an enhan
ement �k or �d indu
es a �rst-order transition, whi
h involves thebulk as well as the edges. Fig. 11.2 sket
hes the phase diagram of the dilute q = 1 Potts model (11.9) forthe 
ase �d = 0.For the q = 1 Potts model at bulk tri
riti
ality, Eq. (11.11) yields a line of `spe
ial' 
riti
al points in the(�k; �d) plane, as shown in Fig. 11.3.11.3 Blume-Capel modelThe previous se
tion indi
ates that, also in two-dimensional systems, spe
ial phase transitions 
an o

ur.However, the dilute q = 1 Potts model des
ribed by Eq. (11.9) is only a spe
ial 
ase. For instan
e, the
oupling 
onstants and the 
hemi
al potential in this Potts model are just the magneti
 �eld in the Isingmodel. In the following two se
tions, we shall investigate the Blume-Capel (BC) model and the dilute q = 3Potts model. 181
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h of the bulk phase diagram of the BC model. The tri
riti
al point is denoted as the bla
k
ir
le, the se
ond- and the �rst-order transition line is represented by the solid and the dashedline, respe
tively.The BC model, also referred to as the spin-1 Ising model, was independently introdu
ed by Blume [30℄and Capel [31℄. This model 
an be obtained by in
luding va
an
ies in the Ising model, and it played animportant role in the development of the theory of phase transitions and 
riti
al phenomena. In the torusgeometry, the Hamiltonian readsHP=kBT = �KXhiji sisj +DXk s2k (s = 0;�1) : (11.12)When the 
hemi
al potential D goes to �1, the va
an
ies s = 0 are ex
luded, and this model redu
es to thespin- 12 Ising model. The 
riti
al 
oupling 
onstant K
(D) is an in
reasing fun
tion of D, and the 
riti
al lineK
(D) terminates at the tri
riti
al point (Kt; Dt). For K > Kt, this line 
ontinues as a line of �rst-orderphase transitions. The phase diagram of the bulk transitions is sket
hed in Fig. 11.4. At the tri
riti
al point,there are four relevant s
aling �elds; two of them are thermal ones and the other two are magneti
 ones. Intwo dimensions, the renormalization exponents are known as yt1 = 9=5 and yt2 = 4=5, and yh1 = 77=40 andyh2 = 9=8 [20, 21℄, respe
tively. By means of a sparse transfer-matrix te
hnique and �nite-size s
aling, welo
ated the square-latti
e tri
riti
al point [33℄ as Kt = 1:643 175 9(1) and Dt = 3:230 179 7(2); the tri
riti
alva
an
y density is �t = 0:454 950 6(2). This result is obtained from the requirement that both the bulkleading magneti
 and energy-energy 
orrelation lengths simultaneously rea
h their theoreti
al values. Thepre
ision is 
onsidered to be suÆ
ient for the present investigation.On the L�L open 
ylinder, as for the dilute q = 1 Potts model (11.9), the Hamiltonian of the BC model
an be expressed as the sum of the Hamiltonian in the torus geometry and their di�eren
e, whi
h readsHO=kBT� HP=kBT = K LXx=1 sx;1sx;L �K�k LXx=1(sx;1sx+1;1 + sx;Lsx+1;L) +D�d LXx=1(s 2x;1 + s 2x;L)�HsXk (sx;1 + sx;L) ; (11.13)where Hs is the surfa
e magneti
 �eld. In the right-hand-side of Eq. (11.13), the �rst term 
orresponds withthe geometri
 e�e
t, and the remaining three terms des
ribe the e�e
ts of the surfa
e parameters Ks, Ds,and Hs.11.3.1 Bulk 
riti
ality K < KtFor bulk 
ouplings K < Kt, the phase transition along the 
riti
al line K
(D) is just Ising-like. Thus, inthe absen
e of surfa
e magneti
 �elds Hs, only the ordinary transitions o

ur on the open edges, and the183
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an
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ylinder for the tri
riti
al BCmodel. The system size is 
hosen as L = 12, and r represents the distan
e to one open end.The 
orrelation length used for the horizontal s
ale is 
al
ulated as �t = L=(2�Xt1), whereXt1 = 1=5 is the bulk thermal s
aling dimension. In the middle of the 
ylinder, � is 
lose tothe tri
riti
al value �t = 0:4 549 506(2). Deviations from the exponential behavior o

ur nearthe edges (right-hand-side) and near the middle (not visible on this s
ale).surfa
e magneti
 exponent is y(o)hs = 1=2 [15, 16℄.11.3.2 Bulk tri
riti
ality: K = Kt, D = DtWhen the bulk is at the tri
riti
al point, the predi
tion from 
onformal �eld theory des
ribed by Eq. (11.4)and the dis
ussions in Se
. II indi
ate that intriguing phase transitions 
an o

ur on the open edges of theBC model.Ordinary edge transitionsAs dis
ussed above, the surfa
e e�e
ts 
an be divided into two parts: the geometri
 e�e
t and the surfa
eenhan
ements. To study the former e�e
t only, we investigated the tri
riti
al BC model on an open 
ylinderwith 
ir
umferen
e L and length nL for n = 10. We took the surfa
e parameters in Eq. (11.13) as �k = �d = 0and Hs = 0. The system sizes assumed even numbers in the range 8 � L � 24. Simulations used a
ombination of Wol� and Metropolis steps. The former step 
ips Ising spins, while the latter step alsoallows 
u
tuations of the va
an
y density. The va
an
y density � was sampled along the 
ylinder. The �data for L = 12 are shown in Fig. 11.5. One observes that, without suÆ
ient enhan
ements of Ks and Ds,the open edges of the tri
riti
al BC model are mainly o

upied by the va
an
ies. This is analogous to the
ase of the tri
riti
al q = 1 Potts model.An explanation of the paradox mentioned after Eq. (11.4) 
an be given as follows. As mentioned inSe
. I, the e�e
t of a temperature-like perturbation is re
e
ted by the bulk thermal exponent yt, and thusthe geometri
 e�e
t des
ribed by the �rst term in Eq. (11.13) also in
reases as a fun
tion of yt. For the
riti
al Potts model (g < 4), yt is relatively small, so that the edges maintain strong 
riti
al 
orrelations.As g in
reases, however, the density of the va
an
ies in
reases and the edge 
riti
al 
orrelations be
omeless strong. As a 
onsequen
e, the surfa
e magneti
 �eld be
omes less `e�e
tive'. On the tri
riti
al bran
h(g > 4), the geometri
 e�e
t is so large that the edges are dominated by va
an
ies, and the surfa
e magneti
�eld be
omes irrelevant. We mention that, although the edges have a 
onsiderable degree of disorder, andthe de
ay of this disorder into the bulk 
an be long-ranged, the bulk tri
riti
al 
orrelation lengths remaindivergent. This is re
e
ted by the asymptoti
ally exponential de
ay of the va
an
y density � in Fig. 11.5,whi
h takes pla
e with the predi
ted length s
ale �. Thus, the bulk transition at K = Kt and D = Dt o

ursin the presen
e of `disordered' edges. In analogy with the three-dimensional Ising model, we refer to thisphase transition as the `ordinary transition'. 184



Under Cardy's well-known 
onformal mapping [3℄, the semi-in�nite 
ylinder is be transformed into asemi-in�nite plane. The exponential de
ay of 
orrelations along the 
ylinder is 
ovariantly transformed intoalgebrai
 de
ay into the bulk of the semi-in�nite plane. Thus, the thermal 
orrelation length along the
ylinder reads �t = L=(2�Xt1), with the leading thermal s
aling dimension Xt1 = 2 � yt1 = 1=5 [20, 21℄.A

ording to the least-squares 
riterion, we �tted the � data by the formula�(r; L) = �t + L�2Xt1 [	(r) + 	(nL� r)℄(a0 + a1Lyi + a2L�2 + � � � ) ; (11.14)with the fun
tion 	(r) = (er�=L � e�r�=L)�2Xt1 ; (11.15)where r is the distan
e to one of the open ends. A justi�
ation of Eqs. (11.14) and (11.15) 
an be foundin Refs. [14, 34℄. The term  (nL � r) in Eq. (11.14) is due to the symmetry between the positions r andnL�r. The parameters a0, a1, and a2 are unknown 
onstants, and yi = �1 is the leading irrelevant thermalexponent of the tri
riti
al q = 2 universality 
lass [20, 21℄. For L ! 1 and r = L=2, the bulk va
an
ydensity �(r; L) approa
hes the tri
riti
al value �t = 0:4 549 506(2) [33℄. We �xed the values of yi and �t,and dis
arded the data for small system sizes L � 8 and for small distan
es y � L=4. Then, the �t yieldsXt1 = 0:198(3), in good agreement with the theoreti
al value Xt1 = 1=5.Spe
ial phase transitionsAs for the 
ase of the tri
riti
al q = 1 Potts model, we expe
t that the geometri
 e�e
t in the tri
riti
al BCmodel 
an be asymptoti
ally 
ompensated by the enhan
ements of surfa
e parameters Ks and Ds. To testthis expe
tation, we used a 
ombination of the Wol� and Metropolis methods to simulate the BC model onopen 
ylinders with size L� L. The simulations were performed at bulk tri
riti
al point mentioned above,and we took the surfa
e parameters as �d = 0 and Hs = 0. The system sizes assumed 14 odd values in therange 9 � L � 121, and we sampled the magnetization density and the va
an
y density � for several valuesof �k. Further, we de�ned two dimensionless ratios asQb = hm2bi2=hm4bi and Qs = hms1ms2i2=h(ms1ms2)2i ; (11.16)where mb, ms1, and ms2 are the magnetization density on the lines y = (L + 1)=2, y = 1, and y = L,respe
tively. These dimensionless quantities are 
losely related to the Binder ratio, and they are useful inMonte Carlo analyses of 
riti
al points, be
ause their asymptoti
 values at 
riti
ality are universal.The absolute value of the surfa
e magnetization jmsj and the edge va
an
y density �s for system sizeL = 15 are shown in Figs. 11.6 and 11.7, respe
tively. These �gures illustrate that, for 
oupling enhan
e-ments �k > 0:6, the open edges are dominated by Ising spins so that spontaneous order o

urs on theone-dimensional edges. Further, the 
lean interse
tion of the Qb data in Fig. 11.8 reveals a se
ond-orderphase transition near �k = 0:56. We �tted the data of Qb and Qs by the formulaQ(�k; L) = Q
 + 4Xk=1 ak(�k � �k
)kLky(s)ts + b1Ly1 + b2Ly2 + b3Ly3 +b4Ly4 + 
(�� �k
)Ly(s)ts +y1 + n(�� �k
)2Ly(s)ts ; (11.17)where the terms with b1, b2, and b3 a

ount for �nite-size 
orre
tions. The exponent y1 = yi = �1 arises fromthe leading irrelevant thermal s
aling �eld [20,21℄. More generally, we expe
t analyti
 �nite-size 
orre
tionswith exponents yj = �n with integer n � 1. Thus, the exponents y2, y3, and y4 were taken as �2, �3,and �4, respe
tively. The term with 
 des
ribes the `mixed' e�e
t of the relevant and the irrelevant thermals
aling �eld, and the last term in Eq. (11.17) is due to the fa
t that the surfa
e thermal s
aling �eld 
an bea nonlinear fun
tion of �k. After a 
uto� for small system sizes L � 11, the �t of Qb yields Qb
 = 0:765(4),�k
 = 0:5660(4), and y(s)ts = 0:407(8), and the �t of Qs yields Qs
 = 0:566(3), �k
 = 0:5664(4), andy(s)ts = 0:395(7). These two �ts are 
onsistent with ea
h other, and the results for y(s)ts are equal to the exa
tvalue 2=5 [23, 24℄ within the estimated error margins.185
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e magneti
 ratio Qs of the tri
riti
al BC model vs. 
hemi
al-potential enhan
ement �d.The other surfa
e parameters are �k = 0 and Hs = 0, and the system sizes are L = 9 (+),13 (�), 17 (�), 21 (
), and 29 (4).Near the above estimated spe
ial transition �k = �k
 and �d = 0, the surfa
e magneti
 sus
eptibility�s = Lhm2si was sampled, and the Monte Carlo data were �tted by�s(�k; L) = r0 + r1(�� �k
) + r2(�� �k
)2 + L2y(s)hs�1 " 4Xk=0 ak(�� �k
)kLky(s)ts+b1Ly1 + b2Ly2 + b3Ly3 + 
(�� �k
)Ly(s)ts +y1 + n(�� �k
)2Ly(s)ts i : (11.18)The terms with r0, r1, and r2 
ome from di�erentiations of the analyti
al part of the free energy with respe
tto the surfa
e magneti
 s
aling �eld. We �xed the surfa
e thermal exponent y(s)ts at the value 2=5 [23,24℄, andobtain �k
 = 0:5658(8) and y(s)hs = 0:914(8), where the error margins are quoted as two standard deviations.The 
orresponding s
aling dimension X(s)hs = 1 � y(s)hs = 0:086(8) is marginally 
onsistent with the bulkmagneti
 s
aling dimension Xh = 3=40 but also with the exa
t value 1=10 [23, 24℄. We shall 
ome ba
k tothis point in Se
. V.Just as �k, the enhan
ement �d of the surfa
e 
hemi
al potential also indu
es a `spe
ial transition'. Thisis illustrated by the Qs data in Fig. 11.9 for the 
ase �k = 0. The �t of the Qs data by Eq. (11.17) yields a
riti
al point at �d
 = �0:344(2). Using the same te
hnique, we have determined a number of spe
ial 
riti
alpoints in the parameter spa
e (Ks; Ds), whi
h are listed in Tab. 11.1. On this basis, the line of spe
ial edgetransitions is shown in Fig. 11.10. For the limit Ks ! 1, the edge transition is �rst-order, and separatesa state with edges fully o

upied by the va
an
ies from one with fully magnetized edges. From the relativestatisti
al weights of these phases, the transition is simply obtained as Ks
=Ds
 = 1. For the oppositelimit Ds ! �1, no va
an
ies o

ur on the edges. We simulated this limit for system sizes in the range11 � L � 111. We still �nd a se
ond-order transition at Ks
 = Kt(1+�k
) = 0:1183(8). The surfa
e 
riti
al
oupling strength Ks
 is quite small in 
omparison with the bulk tri
riti
al value Kt = 1:6 431 759(1). Nearthe 
riti
al point Ks
, the data of the surfa
e sus
eptibility �s were �tted by Eq. (11.18). We obtain thesurfa
e magneti
 exponent as y(s)hs = 0:098(2), in good agreement with the exa
t value 1=10 [23, 24℄.As indi
ated in Fig. 11.10, the line of the spe
ial transitions exhibits two bends near the limits Ds ! �1.To display its behavior for large Ds ! �1 in more detail, this line is shown again in Fig. 11.11 in theparameter spa
e (Ks; eDs).Extraordinary phase transitionsIn the upper region of the 
riti
al line in Fig. 11.10, the edges and the bulk undergo a �rst- and a se
ond-order transition, respe
tively, when the bulk 
oupling K is varied, i.e., the surfa
e magnetization density187
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riti
al BC model in the parameter spa
e(tanhKs; tanhDs). The symbols 4 represent the numeri
al data. When the bulk 
oupling Kis varied, the transition on the edge is �rst-order in the region above the 
urve.Table 11.1: Numeri
al results for several spe
ial edge transition points of the tri
riti
al BC model in thespa
e (Ks; Ds). The 
riti
al values are given in terms of the surfa
e enhan
ements �k
 and �d
;the 
orresponding values of Ks
 and Ds
 are Ks
 = Kt(1 + �k
) and Kd
 = Dt(1 + �d
).�d
 �1 �1:7 �1:6 �1:5 �1:4�k
 �0:9280(4) �0:9050(4) �0:8964(4) �0:8845(4) �0:8686(4)�d
 �1:3 �1:2 �1:1 �1:0 �0:9�k
 �0:8474(4) �0:8175(4) �0:7778(7) �0:7252(7) �0:6576(7)�d
 �0:8 �0:7 �0:6 �0:45 �0:35�k
 �0:5737(8) �0:4732(8) �0:3563(9) �0:1261(8) �0:0095(9)�d
 �0:15 0 0:6�k
 0:3096(8) 0:5662(4) 1:6665(8)
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κkFigure 11.12: Bulk magnetization moment ratio Qb of the tri
riti
al BC model vs. surfa
e 
oupling enhan
e-ment �k. The other surfa
e parameters are �d = 0 and Hs = 0. The data points +, �, �, 
,4, �, and � represent L = 7, 9, 11, 13, 17, 21, and 29, respe
tively. The 
lean interse
tionof these data lines implies that, in addition to the `spe
ial' transition �k = �k
 = 0:5662(5),there is another `�xed' point at �k � 0:81. However, in 
ontrast to Fig. 11.8, the slope of theselines is a de
reasing fun
tion of the system size L. This means that this �xed point is stablein the �k dire
tion.ms displays a dis
ontinuity. In 
omparison with the three-dimensional Ising model, this 
an be 
onsideredto 
orrespond with the 
oin
iden
e of the `surfa
e' and the `extraordinary' transitions. The existen
e ofspontaneous edge order is only possible be
ause the bulk is tri
riti
al. At this point, spins on the edgesin e�e
t intera
t via suÆ
iently long-ranged bulk 
orrelations, so that also the edge 
orrelations be
omelong-ranged.It seems reasonable to expe
t that the bulk 
riti
al properties are re
e
ted on the edges even if the edgetransition is �rst order. As a test, we simulated the tri
riti
al BC model for �d = 0 and �k > 0:6. Thesystem sizes were taken in the range 9 � L � 185, and part of the Qb data are shown in Fig. 11.12. The
lean interse
tion in Fig. 11.12 indi
ates a �xed point near �k = 0:81. The de
reasing slope as a fun
tionof L indi
ates that this �xed point is stable in the �k dire
tion. Naturally, the question arises what 
riti
alexponent governs the renormalization 
ow in the �k dire
tion. For this purpose, we �tted the Qb data byEq. (11.17), where the exponent y(s)ts is repla
ed by y(e)ts . After dis
arding data for small system sizes L � 9,we obtain Q
 = 0:892(2) and y(e)ts = �0:80(5). We note that, for an arbitrary d-dimensional system, a surfa
ethermal exponent yts = �1 has been reported [35℄ to o

ur. However, the result y(e)ts = �0:80(5) is slightlydi�erent from this exa
t value, whi
h dominates the range of the ordinary transitions.For a further illustration of the edge 
riti
al properties in the range of the extraordinary transition, we�tted the m2s data at �k = 0:805, whi
h are listed in Tab. 11.2, by the formulam2s = a20 + L�2X(e)hs (b0 + b1Ly(e)ts + b2Lyi + b3L�2 + b4L�3) ; (11.19)where the term a0 represents the spontaneous edge magnetization density. The exponent y(e)ts was �xed atthe estimated value �0:80(5), and we obtain a0 = 0:94 776(4) and X(e)hs = 0:3987(15) � 2=5. Thus, 
riti
al
orrelations still o

ur on the edges.Field-driven edge transitionIt seems reasonable that, in analogy with the enhan
ements of the surfa
e 
ouplings Ks and the 
hemi
alpotential Ds, the geometri
 e�e
t 
an also be 
ompensated by the surfa
e magneti
 �eld Hs. Thus, wesimulated the tri
riti
al BC model for surfa
e parameters �d = �k = 0 but Hs 6= 0. The edge magnetizationdensity ms is shown versus Hs in Fig. 11.13 for system size L = 32. It behaves 
onsistently with the189



Table 11.2: Monte Carlo data for the se
ond moment m2s of the surfa
e magnetization density at the ex-traordinary transition in the tri
riti
al BC model. The surfa
e parameters are Hs = 0, �d = 0,and �k = 0:805.L 9 11 13 15 17m2s :91729(1) :91560(1) :91399(1) :91262(1) :91145(1)L 19 21 23 25 29m2s :91044(1) :90960(1) :90886(1) :90821(1) :90717(1)L 33 37 45 55 65m2s :90631(1) :90562(1) :90459(1) :90367(1) :90299(1)L 85 105 145 185m2s :90206(1) :90151(1) :90076(1) :90031(1)
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riti
al BC model vs. surfa
e magneti
 �eld Hs Thesystem size is L = 32, and surfa
e parameters are �d = 0 and �k = 0.above expe
tation. To test for the presen
e of a �eld-driven edge phase transition, we de�ned the ratioQsf = h(ms � hmsi)2i2=h(ms � hmsi)4i. The Qsf data in the range 8 � L � 48 were �tted by Eq. (11.17),and we obtain Qsf
 = 0:4419(10), Hs
 = 0:6772(10), and yfhs = 0:405(10) � 2=5. This result, in parti
ularthe relevant exponent yfhs, 
on�rms the existen
e of the phase transition.The phase diagram in the parameter spa
e (�k; Hs) is sket
hed in Fig. 11.14 for �d = 0. The numeri
alresults for the estimated 
riti
al points, as denoted by � in Fig. 11.14, are listed in Tab. 11.3. It is 
learfrom Fig. 11.14 that the spe
ial transition, at �k
 = 0:5662(4), Hs = 0, behaves as a `multi
riti
al' point,be
ause several phase transition lines merge in this point.Table 11.3: Numeri
al determinations of several �eld-driven edge transitions for the tri
riti
al BC model inthe parameter spa
e (�k; Hs). The surfa
e 
hemi
al-potential enhan
ement is �d = 0.�k
 0:45 0:4 0:3 0:2Hs
 0:0661(10) 0:1212(8) 0:2500(10) 0:3880(8)�k
 0:1 0 �0:2 �0:5Hs
 0:5315(10) 0:6772(10) 0:9720(10) 1:4080(10)
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κkFigure 11.15: Hysteresis loop of the bulk va
an
y density �b of the BC model with K = 1:8 and D = 3:55535,vs. surfa
e 
oupling enhan
ement �k. The system size is L = 63.11.3.3 Bulk �rst-order range: K > KtFor K > Kt, the bulk of the BC model exhibits a line of �rst-order transitions, whi
h separates the fer-romagneti
 phases from the va
an
y-dominated phase. On this transition line, just as for the tri
riti
alq = 1 Potts model, the surfa
e parameters 
an also indu
e �rst-order transitions. These transitions o

ursimultaneously on the edges and in the bulk. As an example, we simulated the BC model for K = 1:8 andD = 3:55535, whi
h is very 
lose to the line of the bulk transitions. The surfa
e parameters were �xed at�d = Hs = 0, and we sampled the bulk and edge va
an
y densities, �b and �s, on the lines y = (L + 1)=2and y = 1; L, respe
tively. The hysteresis loops of �b and �s for system size L = 63 are shown in Figs. 11.15and 11.16, respe
tively. The hysteresis loop of �s is rather asymmetri
.A

ording to the investigations in this se
tion, the edge phase transitions of the Blume-Capel model aresket
hed in Fig. 11.17. The shaded area represents the surfa
e of bulk phase transitions. For K < Kt, onlythe ordinary transitions o

ur on the edges, so that all renormalization 
ow lines in this part of the 
riti
alsurfa
e end in a single �xed point. Along the bulk tri
riti
al line K = Kt and D = Dt, there are three�xed points, representing the ordinary, the spe
ial, and the extraordinary phase transitions, respe
tively.For K > Kt, there is a line of �rst-order transitions, whi
h is denoted as the dashed line in Fig. 11.17. Onthe left- and the right-hand-side of this line, the edges and the bulk of the BC model are dominated by theva
an
ies and the Ising spins, respe
tively. 191
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11.4 Tri
riti
al 3-state Potts modelThe Hamiltonian of the dilute q = 3 Potts model in the torus geometry is des
ribed by Eq. (11.5) withq = 3. The bulk phase diagram of this model is analogous to that of the Blume-Capel model des
ribedby Eq. (11.12). At tri
riti
ality, the leading and subleading bulk thermal exponents are yt1 = 12=7 andyt2 = 4=7, respe
tively, and the magneti
 ones are yh1 = 40=21 and yh2 = 22=21 [20, 21℄. By means ofa sparse transfer-matrix te
hnique, the tri
riti
al point on the square latti
e has been determined [33℄ asKt = 1:649 913(5) and Dt = 3:152 173(10); the tri
riti
al va
an
y density is �t = 0:34 572(5).On the L� L open 
ylinder, the Hamiltonian of the dilute q = 3 Potts model readsHO=kBT �HP=kBT = K LXx=1 Æ�x;1;�x;L(1� Æ�x;1;0)�K�k LXx=1[Æ�x;1;�x+1;1(1� Æ�x;1;0) + Æ�x;L;�x+1;L(1� Æ�x;L;0)℄�D�d LXx=1(Æ�x;1;0 + Æ�x;L;0)�Hs1 LXk=1(Æ�x;1;1 + Æ�x;L;1) + Hs12 LXk=1(Æ�x;1;2 + Æ�x;L;2) +Hs12 LXk=1(Æ�x;1;3 + Æ�x;L;3) : (11.20)The surfa
e magneti
 �eld Hs1 serves to enhan
e the statisti
al weight of the Potts state � = 1 with respe
tto states � = 2 and � = 3.In analogy with the BC model, the system (11.20) has a line of bulk 
riti
al points for K < Kt, in thesame universality 
lass as the `pure' q = 3 Potts model. Thus, only the ordinary phase transition o

urs onthe open edges, with a surfa
e magneti
 exponent y(o)hs = 1=3, as predi
ted by Eq. (11.4). For K > Kt, a�rst-order transition 
an be indu
ed by enhan
ements of the surfa
e 
ouplings and the 
hemi
al potential.In the present work, we 
on
entrate on the 
ase that the bulk is pre
isely at the tri
riti
al point.11.4.1 Spe
ial phase transitionsWe simulated the tri
riti
al q = 3 Potts model (11.20) on the L�L open 
ylinder by means of a 
ombinationof the Metropolis and Wol� methods, with the linear size in the range 7 � L � 65. The bulk parameterswere set at the aforementioned tri
riti
al point, and the surfa
e parameters at Hs1 = 0 and �d = 0. Theedge order parameter was de�ned as m2s = [(�1� �2)2+(�2� �3)2+(�3� �1)2℄=2, in whi
h �i is the densityof the edge spins in state i. A

ordingly, we sampled the ratio Qs1 = hm2si2=hm4si. The Qs1 data are partlyshown in Fig. 11.18. They indi
ate a spe
ial edge transition near �k = 0:7. The Qs1 data were �tted byEq. (11.17), in whi
h the 
orre
tion exponents were �xed at y1 = yi = �10=7 [3℄, y2 = �1, y3 = �2, andy4 = �3. We obtain Qs1
 = 0:941(2), �k
 = 0:702(2), and y(s)ts = 0:282(5). Near this spe
ial phase transition,i.e., �k
 = 0:702(2) and �d = 0, we also analyzed the edge sus
eptibility �s by Eq. (11.18). The �t yieldsX(s)hs = 0:133(15).11.4.2 Field-driven edge transitionsNext, we simulated the tri
riti
al q = 3 Potts model (11.20) in the presen
e of the surfa
e magneti
 �eldHs1; the other surfa
e enhan
ements were taken as �k = �d = 0. The system sizes were taken as 10 oddvalues in the range 7 � L � 49, and we sampled the bulk ratio Qb in Eq. (11.16). Analogous to the 
ase ofthe tri
riti
al BC model, edge phase transitions are introdu
ed by the �eld Hs1. Nevertheless, the symmetrybetween the positive and the negative �eld is now absent. The Qb data were �tted by Eq. (11.17), and wefound two edge transitions at Hs1
 = 0:5710(15) and �2:27(3). At these two points, the asymptoti
 values ofthe ratio Qb are 0:462(4) and 0:232(8), respe
tively; those of the renormalization exponent yfhs are 0:278(8)193
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h of the edge phase diagram of the tri
riti
al q = 3 Potts model in the (Hs1; �k) plane for�d = 0.The �xed points are denoted by bla
k 
ir
les, and the arrows show the renormalization
ow.and 0:280(8), respe
tively, whi
h are identi
al to ea
h other within the estimated error margins. From theseresults, we 
onje
ture the lo
i of the edge transitions in the plane (�k; Hs1) as sket
hed in Fig. 11.19.In addition to Hs1, the surfa
e magneti
 �elds, Hs2 and Hs3, 
an also be applied to the Potts sys-tem (11.20). Thus, for the 
ase �d = �k = 0, Fig. 11.20 illustrates the edge phase diagram in the spa
e(Hs1; Hs1; Hs3).11.5 Dis
ussionBy means of Monte Carlo simulations and �nite-size s
aling, we have found that ri
h surfa
e 
riti
al phe-nomena still o

ur in two-dimensional systems with short-range intera
tions only. In parti
ular, when thebulk of a Potts model is at the tri
riti
al point, edge transitions are introdu
ed by enhan
ements of thesurfa
e 
ouplings and the 
hemi
al potential, and by a surfa
e magneti
 �eld. For the 
riti
al bran
h of thePotts model, however, only the ordinary phase transition exists on the one-dimensional edges. Thus, one
on
ludes that, in two dimensions, it depends on the strength of bulk 
riti
al 
u
tuations whether othertypes of edge phase transitions 
an o

ur.Let us now address the question what are the exa
t values of the 
riti
al exponents des
ribing the edgephase transitions des
ribed in this work. At the spe
ial transitions, one has the exa
t result y(s)ts (q = 1) = 1=2for the tri
riti
al q = 1 Potts model. For the 
ase of the tri
riti
al Blume-Capel model, in the 
ontext of194
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h of the edge phase diagram of the tri
riti
al q = 3 Potts model as a fun
tion the surfa
e�elds for �d = �k = 0. The �xed points are denoted by bla
k 
ir
les, and the arrows illustratethe renormalization 
ows.Table 11.4: Theoreti
al predi
tions of the surfa
e thermal and magneti
 exponents, y(s)ts and y(s)hs , at thespe
ial phase transitions for the tri
riti
al q-state Potts model with q = 1, 2, 3, and 4. Theparameter g is the Coulomb gas 
oupling 
onstant.Model q = 0 q = 1 q = 2 q = 3 q = 4g 6 16=3 5 14=3 4y(s)ts 2=3 1=2 2=5 2=7 0y(s)hs 1 15=16 9=10 6=7 3=4super
onformal �eld theory, it has been predi
ted that the surfa
e thermal and magneti
 exponents are [23,24℄y(s)ts = 2=5 and y(s)hs = 9=10, respe
tively. For the whole tri
riti
al bran
h of the Potts model, it has beenre
ently 
onje
tured [28℄ that, in terms of the Coulomb gas 
oupling 
onstant g, the exa
t expressions of y(s)hsand y(s)ts read y(s)hs = (3g � 6)=2g and y(s)ts = 2� 8=g ; (11.21)respe
tively. These values of y(s)hs and y(s)ts are one half of the leading and subleading bulk thermal exponents,yt1 and yt2, respe
tively. For the tri
riti
al Potts models with q = 0, 1, 2, 3, and 4, the results a

ording toEq. (11.21) are listed in Tab. 11.4. A remarkable feature is that the expression of y(s)ts in Eq. (11.21) 
an besimply obtained by substituting g = 16=g0 in Eq. (11.4), whi
h des
ribes the surfa
e magneti
 exponent y(o)hsat the ordinary phase transitions. The underlying meaning of this pro
edure is 
lear for the tri
riti
al q = 1Potts model, be
ause the spe
ial transition of this model is just the ordinary transition of the Ising modeland the Coulomb gas 
oupling of these two models are g = 16=3 and g = 3, respe
tively. For a pair of 
riti
aland tri
riti
al Potts models, we note the relation gg0 = 16 has been reported [36, 37℄ in other 
ases. Thus,Eq. (11.21) might mean that the e�e
t of surfa
e 
ouplings Ks in a tri
riti
al Potts model is equivalent withthat of the magneti
 �eld Hs in a 
riti
al system, the two models being related as gg0 = 16.For the tri
riti
al q = 1 Potts model, Eq. (11.21) predi
ts a surfa
e magneti
 exponent y(s)hs = 15=16. It isknown that the bulk Potts magneti
 s
aling dimension Xh = 5=96 is the fra
tal dimension of Ising 
lusters,whi
h 
onne
t nearest-neighbor Ising spins of the same sign. Thus, one would expe
t that the exponent y(s)hsgoverns the s
aling behavior of the 
orrelation fun
tion g(I)(r), whi
h is de�ned as the probability that a pairof edge points is in the same Ising 
luster. However, it has been shown that the de
ay of g(I)(r) is des
ribedby a geometri
 s
aling dimension Xp = 1=6 [28℄, di�erent from X(s)hs = 1=16. The physi
al interpretation ofy(s)hs is so far not 
lear. 195



For the tri
riti
al BC model, the results obtained from Eq. (11.21) are in agreement with the predi
tions inRef. [23,24℄. In parti
ular, the predi
tion y(s)ts = 2=5 is well 
on�rmed by our numeri
al result y(s)ts = 0:395(7).However, the exa
t value y(s)hs = 9=10 is only marginally 
onsistent with the result y(s)hs = 0:914(8) for the 
ase�d = Hs = 0 and �k
 = 0:5662(4). On the other hand, at the 
riti
al point �k
 = �0:9280(4), �d = �1,the result y(s)hs = 0:902(2) is in good agreement with y(s)hs = 9=10. This might be taken as a suggestion thatthe end point of the line of spe
ial transitions at �d = �1 in Fig. 11.10 a
ts as an unstable �xed point withthe expe
ted exponent y(s)hs = 9=10, while the rest of the line is attra
ted by another �xed point. However,the numeri
al eviden
e is only marginal, and moreover, if the end point at �d = �1 is a �xed point, thenone would in general expe
t that the line of spe
ial transitions, when parametrized by the a
tivity of theva
an
ies and the surfa
e 
oupling enhan
ement, displays a singularity at �d = �1. No sign of su
h asingularity is visible in Fig. 11.11.For the tri
riti
al q = 3 model, the predi
tions in Tab. 11.4 are 
onsistent with the numeri
al determi-nations y(s)ts = 0:282(5) and y(s)hs = 0:867(15).The q = 4 Potts model is a marginal 
ase for several reasons. First, the 
riti
al and the tri
riti
albran
h of the Potts model join at q = 4. Se
ond, Eq. (11.4) predi
ts that, at the ordinary phase transitions,the surfa
e magneti
 s
aling �eld is marginal, i.e., y(o)hs = 0. Third, Eq. (11.21) yields y(s)ts = 0, so thatthe surfa
e 
oupling and the 
hemi
al-potential enhan
ement be
ome marginal. However, the predi
tiony(s)hs = 3=4 a

ording to Eq. (11.21) is apparently di�erent from the exponent y(o)hs = 0. The result y(s)ts = 0also di�ers from the existing surfa
e thermal exponent yts = �1 [35℄. These phenomena indi
ate that thereexists a spe
ial phase transition for the q = 4 Potts model.Bibliography[1℄ K. Binder, Phase Transitions and Criti
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