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Preface

This book presents my research in the past four years during my stay in the Computational Physics Group
of the Faculty of Applied Sciences (the first two years) and later in the Theoretical Physics Group at the
same Faculty. It covers a number of subjects in the field of critical phenomena, including 1), a systematic
test of the three-dimensional (3D) Ising universality class, 2), cluster simulations of quantum transverse
g-state Potts models, 3), simulations in curved geometries and conformal symmetries in d > 2 dimensions,
4), constrained critical and tricritical phenomena, 5), spontaneous edge order of the 2D Potts model, 6),
Monte Carlo investigations of backbone exponents, and 7), geometric properties of 2D and 3D Potts models,
etc.

During this research, several novel computer algorithms were developed and applied. Even though the
computer power has increased rapidly over the past decades, efficient algorithms still play an important role
in the numerical study of phase transitions. On the other hand, I feel that numerical work is an efficient
approach to solve physical problems only if it is combined with theoretical knowledge. Subjects 5) and 7),
which arose from my curiosity in predictions by the Coulomb gas theory and conformal field theory, serve
as two good examples. Naturally, my insight in the renormalization group theory and in critical phenomena
has increased over time and by the research activities.

These scientific activities and achievements make my life full of joy and happiness.

Youjin Deng
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1

Introduction and outline

1.1 Examples of phase transitions

Nature is full of phase transitions. Well-known examples are contained in the phase diagram in the material
H>0, as sketched in Fig. 1.1(a). The material HoO can be a solid (ice), a liquid, or a vapor; transitions
between different phases can be induced by changing the temperature T' or the pressure P. From our every-
day experience, the liquid and the vapor phase coexist at 7' = 373°K and P = 1 atm. Thus, at this point,
the density p of HoO is not fixed but can have a high value (liquid) or a low value (vapor). The transition
is said to be first-order, because p, which can be expressed as the first derivative of the free energy density,
has a discontinuity. However, as 7" increases, this density difference becomes smaller along the transition
line, and at some point it vanishes completely. This point is named the critical point, and the associated
phenomena are referred to as critical phenomena. Another example is the ferromagnetic state of materials
like iron and nickel, of which the phase diagram is sketched in Fig. 1.1(b). At low temperature, the material
is in the ferromagnetic state: a spontaneous magnetization m exists. The magnetization m can point in
different directions when the external magnetic field h is zero. As T' increases, the magnitude of m becomes
smaller, and vanishes at the Curie temperature T.. For T' > T, the material becomes paramagnetic: m = 0
for h = 0. The Curie point is the ferromagnetic critical point.

P hA

218
atm

critical

'\}_}
0
1044K T
first—order
| | T
273K 647K
@ (b)

Figure 1.1: (a) The liquid-vapor critical point of HyO: T, = 647°K and P, = 218 atm. (b). The ferromagnetic
point of Fe: T, = 1044°K, h, = 0.

There are many other kinds of critical points, such as the antiferromagnetic critical point of Cs3CoCls,
the superfluid critical point of liquid helium, and the superconductivity critical points of many metals and
alloys. It turns out that the asymptotic behavior near a critical point can be described by a limited number



of critical indices. For instance, at the ferromagnetic critical point, the magnetization m, referred to as the
order parameter, vanishes algebraically as

|m| < (T, —=T)? (I'tT.,,h=0), and moh*® (T =T,). (1.1)
The magnetic susceptibility x = (0m/dh)r and the specific heat C' diverge with a power law
Xx(T,-T)7 and Cx(T.—-T)"% (h=0). (1.2)

The critical exponents, a, 3, v, and §, are generally not integers, i.e., critical behavior is singular. Moreover,
it turns out that these exponents are universal: various kinds of critical models can share a common set of
critical exponents. For instance, the critical points in Fig. 1.1 (a) and (b) are believed to belong to the same
universality class.

The universal properties of the transitions in Fig. 1.1 (a) and (b) are named after the Ising model, and
those of the superfluid transitions are said to be described by the XY model.

1.2 The renormalization group theory

For the simplified models such as the aforementioned Ising and the XY model, typically, there are two
approaches:

(1), direct solution approach. This means calculation of physical quantities of interest in terms of pa-
rameters, i.e., solving the model. The calculation may be done analytically or numerically, exactly or
approximately.

(2), exploiting symmetries and/or approximations. This approach tries to deduce some characteristics of
physical quantities from various symmetry operations, e.g., reflections, translations, and rotations.

The approach (1) is often a very difficult task. While (2) is not a substitute for (1), a great deal can be
learned from (2) even without attempting (1). Onsager’s solution of the two-dimensional Ising model is an
example of (1), and the mean-field theory is an example of (2).

The contemporary physics of critical phenomena started with the invention of the renormalization group
(RG) theory. This technique also takes approach (2): the renormalization group is a set of symmetry
transformations. The essence of the RG is the hypothesis of the scale invariance at a critical point. This can
be phenomenologically understood as follows. Consider a sample of magnetic material. At low temperature,
a large fraction of magnetic spins points in the same direction. As 7" increases, this fraction is reduced, and
it vanishes at the critical temperature T.. However, for T' = T,, there are large patches (much larger than
crystal unit cells) in which a net fraction of spins are lined up. The distribution of the sizes of these patches
has a diverse range, such that, in principle, all length scales occur. Suppose that we look at this material
through a microscope, and that our eyes can see spin variations down to a size b. If the sample is shrunk by
a factor s, we shall not see any change at criticality if the sample is sufficiently large.

In other words, critical fluctuations occur at all length scales, and the correlation length, which measures
the size of the largest fluctuations, diverges. In the momentum space, the RG deals with one length scale at
one time: the short-distance fluctuations are integrated out, and then the remaining part of the Hamiltonian
is rescaled. Upon iteration, this Hamiltonian approaches a fixed point, and universality emerges from the
existence of such fixed points in the space of Hamiltonians.

Since the invention of the RG, enormous progress has been achieved in the understanding of phase
transitions. In two dimensions, an important application is the Coulomb gas theory. This theory transforms
a number of two-dimensional models into an electromagnetic Coulomb gas model. Then, a hierarchy of
critical exponents can be expressed in terms of a single parameter. These models include the g-state Potts
model, the anti-ferromagnetic Potts model, the O(n) model, and frustrated Ising models, etc.

1.3 Conformal field theory

Besides RG transformations, a larger group of symmetry operations, the conformal transformations, can
be applied to critical phenomena. Roughly speaking, a conformal mapping is a generalization of a scale



transformation in which the length-rescaling factor depends continuously on position; it can be further
understood as a combination of the local scale and rotation transformations. The connection between scale
and conformal invariance has been known to field theorists for a long time. In two dimensions, the conformal
group algebra had been studied in the late 1960s by particle theorists in the context of the dual string model,
where it was known as the Virasoro algebra. The connection of such quantum field theories and statistical
mechanics close to a critical point has been proved to be very fruitful. It was shown, by Belavin, Polyakov, and
Zamolodchikov, that each ‘primary’ scaling operator of a two-dimensional system at criticality corresponds
to a representation of the Virasoro algebra. If these representations are of a particularly simple kind,
corresponding to the vanishing of a certain quantity called the Kac determinant, then not only the critical
exponents but all the multi-point correlation functions at criticality can be obtained. Further, Friedan, Qiu,
and Shenker showed that these representations are indeed allowed, if the theory is to be unitary and if
a certain quantity ¢ called the conformal anomaly satisfies ¢ < 1. In two dimensions, the conformal field
theory has already predicted a series of exact values, listed in the so-called Kac table, for a number of critical
systems.

Despite of their great success, the renormalization group approach and the conformal field theory still
lack a firm mathematical foundation. There has been a lot of work recently by mathematicians in the
context of the so-called Stochastic Loewner Evolution (SLE). The basic idea is to try to prove the physicists’
predictions for the critical exponents.

Naturally, neither the RG technique, the Coulomb gas theory, or the conformal field theory could supply
the immediate solution of all outstanding problems in the field of critical phenomena. In the first place, the
RG theory relies on several nontrivial assumptions, and the formalism is thus not rigorously justified, as
mentioned above. Second, in general, these theories do not provide information on nonuniversal aspects of
critical phenomena. Third, although the basic abstract ideas of the RG are easy to understand, to carry out
these ideas and verify them turns out to be difficult. Furthermore, although these theories have yielded a
large amount of exact information for two-dimensional critical systems, exact information is still very scarce
for spatial dimensionality d > 2. An alternative tool is provided by computer simulations, of which the
application has been greatly stimulated by the rapid development of the computer technology. It is even
considered that, together with theoretical and experimental physics, computational physics form a triangular
framework in the research of modern physics.

However, since numerical investigations are restricted to systems with finite extent, the diverging cor-
relation length at a critical point is truncated, such that critical singularities are rounded off. Due to the
scale invariance at criticality, the linear size of a finite system can be simply regarded as a scaling field in
the RG approach. The corresponding theory is called the finite-size scaling theory, in which the finite-size
dependence of physical quantities is derived at and near a critical point.

1.4 Outline

This thesis is organized on the basis of a number of drafts which have been published or are intended for
publication. As a consequence, there exists some redundancy in related chapters.

In Chapter 2, the universality hypothesis is systematically tested for eleven three-dimensional lattice
models believed to be in the Ising universality class by means of Monte Carlo methods and finite-size scaling.
After verification of this hypothesis within narrow numerical margins, we assume that universality holds
exactly. Then, we can analyze the numerical data near the critical points of these systems simultaneously
such that the universal parameters occur only once. As an example, we consider the dimensionless ratio
Q = (m?)?/(m*), where m is the profile of order parameter. The finite-size dependence of this ratio near
criticality can be expressed as

Q(t,v, L) = QOO + QUOtLy 4 QO L2 4 QODyLyi ... (1.3)

where L is the linear system size, and ¢ and v are the relevant and irrelevant thermal fields, respectively.
The renormalization exponents of ¢ and v are denoted as y; and y;, respectively. The scaling fields, ¢t and v,
are analytical functions of physical parameters, and the amplitudes can assume different values in different



systems. The symbol Q47 represents ¢ and j differentiations of Q with respect to ¢ and v, respectively.
In addition to the critical exponents y; and y;, the numbers Q(*7) are also universal. Thus, they occur
only once in the simultaneous fit of the Monte Carlo data. The 11 systems included in this chapter are
chosen such that they reflect a wide range of positions on the critical surface in the language of the Landau-
Ginzburg-Wilson description of the Ising model. This particular choice, together with the simultaneous
fitting technique, yields the thermal, magnetic, and irrelevant exponents as y; = 1.5868(3), y, = 2.4816(1),
and y; = —0.821(5), respectively.

In Chapter 3 we formulate a cluster Monte Carlo simulations of the quantum transverse Ising model
(TIM), which is believed to be relevant to the superconductivity phase transitions. It is known that the d-
dimensional quantum TIM is equivalent with the anisotropic limit of a (d+1)-dimensional lattice Ising model.
This equivalence was displayed by Schultz and Mattis in 1964, and later was shown in a reverse path by Suzuki
using the Trotter formula. However, the numerical application of this equivalence leads to practical difficulties
due to singular behavior in the anisotropic limit of the classical Ising model. When the Hamiltonian limit is
approached, the coupling constant and the correlation length diverge in one direction, while the couplings
in other directions vanish. In this Chapter, we increase the number of spins in the strong-coupling direction
and meanwhile rescale it by a divergent number. This rescaling renders this direction continuous, while
the weak-coupling dimensions remain discrete. A continuous cluster algorithm is then developed, and the
efficiency is comparable to the Swendsen-Wang and the Wolff method for discrete lattices. Applications of
this algorithm yield the critical points of the TIMs on several two- and three-dimensional lattices with the
statistical uncertainties in the fifth decimal place.

Chapter 4 investigates the critical properties of the Ising model in curved geometries by applying con-
formal transformations. In particular, the conformal invariance of the Ising model is confirmed in three
dimensions. In two dimensions, the consequences of conformal invariance in critical systems have been stud-
ied extensively, and a large amount of results has been achieved. A well-known example is Cardy’s mapping
between an infinite plane and the surface of an infinitely long cylinder, which covariantly transforms, at crit-
icality, the algebraic decay of correlations in the plane into an exponential decay along the cylinder. Since a
cylinder pseudo-one-dimensional, its numerical investigation is simpler than that of a two-dimensional plane.
For spatial dimensionality d > 2, however, conformal transformations generally lead to curved geometries
or geometries with curved boundaries. For instance, in three dimensions, Cardy’s mapping transforms the
infinite space R? into a pseudo-one-dimensional geometry S? x R!. This geometry can be obtained by ex-
tending the surface of a sphere S? into another dimension R!, and is referred to as the spherocylinder in
this chapter. Another example is the conformal mapping between the semi-infinite space R(4-D x Rt and
the interiors of a unit d-dimensional sphere. This mapping can be expressed as

7t =7t 412, (1.4)

where I is an arbitrary fixed unit vector in d dimensions. This formula maps spheres onto spheres, so that
the d-dimensional space R? is transformed into itself. Under the mapping (1.4), the (d — 1)-dimensional
plane I-7= 0, which corresponds to a spherical surface of an infinite radius, is conformally mapped onto
the surface of a unit d-dimensional sphere with the center at I. Meanwhile, the half spaces I-7>0and
I -7 < 0 are transformed respectively into the interior and exterior of this unit sphere, which reduces to a
unit circle for d = 2.

For the geometries like the spherocylinder or the unit sphere, the nonzero net curvature poses a serious
obstacle for numerical investigations: a sequence of regular lattices cannot be readily accommodated. For
discrete spin models, this problem can be solved by using the Hamiltonian limit of the lattice model and
the continuous cluster Monte Carlo algorithm developed in Chapter 2. The key ingredient of this infinitely
anisotropic model is that one of its dimensions is continuous, so that the problem of discretization for one
of the lattice dimensions is avoided.

In Sec. 4.1, we describe a conformal mapping of an infinite plane in two dimensions onto a spheroid. By
rotating an ellipse about the minor or the major axis, one obtains an oblate or prolate spheroid, respectively.
The special cases include the surface of an infinitely long cylinder, of a sphere, and of a two-sided flat disc.
The latter case is obtained when the polar diameter of the spheroid approaches zero, so that one has the
interiors of two circles connected at their perimeters. Thus, this transformation includes Cardy’s mapping as



a special case. From the known two- and four-point correlation functions in the plane, and the assumption of
covariance of the multipoint correlations under conformal mappings, the critical value of the dimensionless
ratio @) is calculated for the Ising model on the sphere and on the flat disc. Further, cluster Monte Carlo
simulations are performed, and the numerical estimations of @), determined from the finite-size scaling, agree
precisely with the above exact calculations. At criticality, we also sampled two- and one-point correlation
functions on spheroids and half spheroids, respectively. The thermal and magnetic exponents, as obtained
from the numerical data and the prediction of conformal invariance, are in good agreement with the exact
results.

In Sec. 4.2, we simulate the Hamiltonian limit of the critical three-dimensional Ising model. First, from
the ratio of the magnetic correlations in the strong- and weak-coupling directions, we numerically determined
the length ratio relating the isotropic Ising model and the anisotropic limit. On this basis, we simulate the
critical Ising model on a spherocylinder S? x R!. From the prediction of conformal invariance and the
sampled correlation lengths along the spherocylinder, we determine the magnetic and thermal exponents as
yn = 2.4818(6) and y; = 1.581(7), respectively. Then, free boundary conditions are imposed on the equators

of the spherocylinder, and we obtain the surface magnetic exponent y,(l(;) = 0.737(5), with the superscript (o)
for the ordinary phase transition. The precision of these results reveals that, as in two dimensions, conformal
mappings provide a powerful tool to investigate three-dimensional critical phenomena.

Chapter 5 investigates the anisotropic limit of the bond-percolation model in two and three dimensions,
in which the critical bond-occupation probability p; in one of the directions (longitudinal) approaches 1,
and the probability p, in the other (d — 1) dimensions (transverse) vanishes. Thus, near criticality, one has
p| =1—eand py = €/t, where e — 0 is an infinitely small constant and ¢ is a temperature-like parameter. In
the same way as for the Hamiltonian limit of the Ising model, we rescale the system with an infinite factor in
the longitudinal direction, so that a continuous percolation model is obtained. It can be simply reformulated
as follows. Suppose that a sequence of lines originate from the vertices of a (d — 1)-dimensional lattice,
through which a current can flow. For each pair of nearest-neighboring lines, they are connected through a
set of conducting ‘bridges’, which are uniformly distributed; moreover, a fraction of ‘barriers’, which have
infinite resistance, is uniformly distributed on these lines. Thus, if a potential difference is applied to a pair
of points with a large distance r, the probability P(r) that a current can flow between these two points
is determined by the relative abundance of the bridges and the barriers. For ¢ >> 1, there are so ‘many’
barriers that P(r) — 0 as r — oo; for t << 1, one has a nonzero probability P(r) as r — co. A continuous
phase transition occurs at some point t.. This transition is referred to as the critical point of the transverse
percolation model. It can be shown that a d-dimensional version is equivalent with the limit ¢ — 1 of the
quantum g-state Potts model in (d — 1) dimensions.

We formulate an efficient Monte Carlo method for this model, and its application confirms that it fits
well in the percolation universality class of the isotropic case. In two dimensions, the dual symmetry
yields the critical point as t. = 1. For the three-dimensional rectangular geometry, we numerically obtain
t. = 8.6429(4).

Next, we simulate critical systems in several two- and three-dimensional curved geometries including
a spheroid and a spherocylinder. Using finite-size scaling and the predictions of conformal invariance, we
determine the bulk and surface magnetic exponents, in agreement with the existing results.

Chapter 6 summarizes the influence of two types of annealed constraints on a number of critical and
tricritical systems. The first type of constraint is energy-like and fixes the total number of vacancies or
particles. We find that these constraints affect the leading finite-size behavior of energy-like quantities,
while the effect on magnetic quantities is restricted to correction terms. The second type applies to the
magnetization, and appears to suppresses the finite-size divergences of a quantity that normally scales as
the magnetic susceptibility.

In an attempt to explain the observed finite-size scaling properties, we make use of the well-known Fisher
renormalization mechanism. However, we do not always find a satisfactory agreement with our numerical re-
sults for constrained critical systems. For instance, for most energy-like constraints, the exponents describing
the finite-size dependence of the specific heat are twice the expected values.

We also sample specific-heat-like and susceptibility-like quantities, which account for large-scale spa-
tial inhomogeneities of energy and magnetization fluctuations. The finite-size behavior of these quantities



resembles that of the specific heat and the susceptibility of unconstrained systems.

In Chapter 7, we investigate the three-dimensional tricritical Blume-Capel model under an energy-like
constraint. Since three is the upper tricritical dimensionality of the Ising model, we expect that the mean-
field theory correctly predicts a number of universal parameters including the critical exponents and the
Binder ratio. Therefore, we calculate the partition sum of the mean-field tricritical Blume-Capel model, and
accordingly obtain the exact value of the Binder ratio. Further, we show that, under the constraint, this
mean-field tricritical system reduces to the mean-field critical Ising model. However, our three-dimensional
data do not agree with this mean-field prediction. Instead, they are successfully explained by the Fisher
renormalization mechanism generalized to include the effect of the subleading thermal field.

Chapter 8 systematically investigates the constrained phenomena of the tricritical Potts model in two
dimensions. Some of the results have been included in Chapter 6. Near a d-dimensional tricritical point, we
show that the leading thermal exponent y;; is renormalized to d — y:1, while the subleading exponent ;2
remains unchanged.

Chapter 9 determines the backbone exponents of several critical and tricritical g-state Potts models in
two dimensions and the percolation and the Ising model in three dimensions. For the general g-state Potts
model, the nature of the bulk critical singularities is well established in two dimensions. Nevertheless, the
Potts model continues to be a subject of much research interest. There is still a number of critical exponents,
of which the exact values have not been obtained even in two dimensions. These exponents characterize
geometric properties of the Potts model at criticality, and seem to have no analog in the thermodynamics.
One of them is the fractal dimension of “backbones”, whose definition can be illustrated as follows. Consider
the random-cluster representation of a Potts model, the probability that a pair of points with distance r
belongs to the same Kasteleyn-Fortuin cluster, denoted as P; (r), behaves asymptotically as P (1) oc r~2%* at
criticality, where X = d —yy, is the magnetic scaling dimension. In other words, P (r) can be understood as
the probability that these two points are connected by at least one path which consists of occupied bonds in
the random-cluster model. Analogously, one can ask the question what is the asymptotic critical behavior of
the probability Py (r) that these two points are connected via at least k independent paths without any bond
in common. At criticality, the behavior of Py (r) is governed by a family of exponents Xy, of which X5 is the
so-called backbone scaling dimension Xj. In percolation theory the backbone problem is considered to be of
some physical relevance. In the past decades, this subject has attracted much research attention. Numerous
theoretical attempts have been carried out to predict the exact values of X, for the two-dimensional Potts
model, particularly for the percolation model. In parallel, several numerical techniques have been developed
for the determination of X, including Monte Carlo simulations and transfer-matrix methods.

In this chapter, we formulate an efficient numerical procedure to sample the probability P (r), and thus to
determine the backbone dimension X} for several two- and three-dimensional models from a finite-size scaling
analysis of P»(r). The precision of these results is favorable in comparison with the existing determinations.
Moreover, from a scaling argument, we derive that, for two-dimensional tricritical Potts models, X} reduces
to the magnetic exponent X},. This is confirmed by the numerical results.

In Chapter 10, we investigate geometric properties of several systems. It is known that a second-order
phase transition is generally accompanied by diverging correlation lengths both in time and space. It has
been suspected long time ago that, near a critical point, thermodynamic singularities can be represented by
some sort of ‘geometric’ clusters. Consider a Potts model with ferromagnetic interactions between nearest-
neighboring (NN) Potts variables, for each pair of NN sites in the same Potts state, one places a bond
with probability 0 < p < 1. Thus, the whole lattice is decomposed into groups of spins connected via the
occupied bonds, to which we refer as the geometric clusters. For the special case p = p, = 1 — exp(—K)
with the Potts interaction strength K these geometric clusters reduce to the well-known Kasteleyn-Fortuin
(KF) clusters. The critical Potts singularities can be correctly represented by the size distribution of the
KF clusters (the so-called random-cluster model). For instance, the fractal dimension of KF clusters at the
critical point K. is just the magnetic scaling dimension X} of the Potts model. In the parameter space
(p, K), the point (pyrc, K¢), pre = 1 — exp(—K,), can be generally regarded as a fixed point, which is referred
to as the random-cluster fixed point. For K = K, renormalization flows in the p direction are governed by
the bond-dilution field, whose exponent is called the red-bond exponent y,..

Section 10.1 investigates the general g-state Potts model in two dimensions. We find that, in addition



to the random-cluster fixed point (K., p.c), there exists another fixed point on the critical line K = K, to
which we refer as the geometric cluster fixed point py.. For the critical branch, the fixed point p;. is unstable
(yr > 0) and the point pge > pr. is stable. In contrast, for the tricritical Potts model, the fixed points p,. and
Dye are stable and unstable, respectively. In this case, one has py. < pr¢, so that the percolation threshold
of the geometric clusters does not coincide with the KF clusters. We conjecture that the fixed point py. of
a critical and a tricritical g-state Potts model can be regarded to correspond to p,. of a tricritical and a
critical ¢’-state Potts model, respectively. In terms of the coupling constant g of the Coulomb gas particle,
these two models are related as gg' = 16. This conjecture is confirmed by the numerical results.

Along similar lines, Sec. 10.2 investigates the critical Ising and the tricritical Ising model in three dimen-
sions. For the critical Ising model, exact information is scarce. Nevertheless, many numerical techniques
have been developed, and a considerable amount of results has been obtained. Since the upper tricritical
dimensionality of Ising systems is three, many universal parameters can be exactly obtained. However, the
number of research activities carried out thus far for the geometric properties of both models is rather limited.
By means of Monte Carlo simulations, we observe that, unlike two-dimensional tricritical Potts systems, the
percolation threshold of geometric clusters coincides with KF clusters in three dimensions. We determine the
corresponding red-bond exponents as y, = 0.757(2) and 0.501(5) for the critical Ising and the tricritical Ising
model, respectively. On this basis, we conjecture y; = 1/2 for the latter model, which is further confirmed
by the numerical determination of y, for the mean-field version of the tricritical Blume-Capel model (not
reported in this section).

Chapter 11 investigates critical and tricritical surface phenomena of the general g-state Potts model in
two dimensions. Near a critical point, the effect of a surface can be drastic, since the bulk correlation
lengths become long-ranged. For instance, for the Ising model in a semi-infinite three-dimensional space,
as the surface coupling K is varied, the bulk transition K = K, can occur in the absence or the presence
of a spontaneous surface magnetization: the ‘ordinary’ or the ‘extraordinary’ transition, respectively. For
disordered bulk K < K., there is a critical line of ‘surface’ transitions terminating at K = K, in a multicritical
point, the so-called ‘special’ transition.

In two dimensions, the ‘surfaces’ are just one-dimensional edges, it may then seem natural that surface
critical phenomena are less rich than those in three dimensions. In particular, for systems with short-range
interactions only, it may seem plausible that spontaneous edge order cannot exist. However, our numerical
results show otherwise. Using suitable Monte Carlo methods and finite-size scaling, we show that, for the
two-dimensional tricritical Potts model, application of a sufficiently strong surface coupling or a surface
magnetic field can induce a continuous phase transition. At even larger surface couplings, pseudo-one-
dimensional order occurs on the edges. We determine several critical exponents describing these edges
transitions. On the basis of these results and conformal field theory, we conjecture exact expressions of these
exponents.
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2

Simultaneous analysis of three-dimensional Ising models

We investigate several three-dimensional lattice models believed to be in the Ising universality class, by
means of Monte Carlo methods and finite-size scaling. These models include spin—% models with nearest-
neighbor interactions on the simple-cubic and on the diamond lattice. For the simple-cubic lattice, we also
include models with third-neighbor interactions of varying strength, and some ’equivalent-neighbor’ models.
Also included are a spin-1 model and a hard-core lattice gas. Separate analyses of the numerical data
confirm the Ising-like universal critical behavior of all these systems. On this basis, we analyze all these data
simultaneously such that the universal parameters occur only once. This leads to an improved accuracy.
The thermal, magnetic, and irrelevant exponents are determined as y; = 1.5868(3), y; = 2.4816(1), and
yi = —0.821(5), respectively. The Binder ratio is estimated as @ = (m?)?/(m*) = 0.62341(4).

2.1 Introduction

The Ising model has been investigated extensively, and thus serves as a testing ground for theories of phase
transitions. Many physical systems can be described by this simple but nontrivial model. It is believed that
continuous phase transitions in systems with short-range interactions and a scalar order parameter belong to
the Ising universality class. These include a variety of magnetic systems, alloys, gas-liquid systems, and liquid
mixtures. For instance, magnetic systems can be described by a spin—% or spin-1 Ising model depending on
the nature of the elementary magnetic moments; gas-liquid systems can be modeled by means of hard-core
particles, which exclude one another within a non-zero range. Furthermore, the particle coordinates may be
restricted to the vertices of regular lattices.

In two dimensions, the evidence supporting the universality hypothesis is rather solid. One underlying
reason is that exact results are available. For instance, exact analysis of Onsager’s spin-i model [1] and
related models yields the thermal and magnetic scaling exponents as y; = 1 and y, = 15/8 [2], respectively.
In three dimensions, however, such exact results are absent. Therefore, investigation of critical behavior
has to depend on approximations. These include techniques such as e- and series expansions, the coherent-
anomaly method, and Monte Carlo methods etc. Extensive studies have been carried out [3-14], and there
is some consensus that the values of y; and y; are, respectively, 1.587 and 2.482, with differences only in the
last decimal place. Compared to the case of two dimensions, the three-dimensional results are indeed less
satisfactory. Apart from the limited accuracy, the absence of exact results leaves, at least in principle, some
room for severe disagreements. For instance, a very recent investigation by Garcia and coworkers [15] claims
that y; = 1.600(2) and y;, = 2.501(5).

Many factors are responsible for this unsatisfactory situation. First, due to the restriction of current
computer capacity, one can only explore rather limited system sizes in three dimensions. Second, corrections-
to-scaling are much more serious than that in two dimensions. For the two-dimensional Ising model, the
exponent of the leading irrelevant thermal field is y; = —2, while in three dimensions y; ~ —0.82. Moreover,
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the determination of y; is not very accurate so far. A better estimation of y; thus seems justified and is one
of the purposes of the present work.

In the language of renormalization group technique, the critical behavior of systems within a universality
class is governed by a common fixed point. In terms of scaling fields, the function of the free energy, and thus
of physical observables, is universal near the critical points. By means of finite-size scaling, such universal
functions are extended to finite systems. As an example, we concern the dimensionless ratio @ = (m?)?/(m*},
where m is the profile of order parameter. The quantity @ is related to Binder cumulant [16], and has been
reported [11] to be a good choice to estimate y; and locate criticality. Near the critical points () behaves as

Q(t,v,L) = QLY ,vLY 1)+ --- | (2.1)

where L is the linear system size, ¢ is the thermal scaling field, and the irrelevant field v reflects the distance
of criticality of corresponding systems and the fixed point. Here, we have not yet specified contributions due
to the analytic part of the free energy. Taylor-expansion of the right-hand-side of Eq. (2.1) yields

Q(t,v,L) = Q(O) + Q(l,O)tLyt + Q(2’0)t2L2yt + Q(O’l)vLyi +n (2.2)

where the derivatives of the universal function ) with respect to ¢ and v are denoted as Q(). Apart
from the scaling exponents y; and y;, the amplitudes of Q(®) and Q) are equal for systems in the same
universality class.

However, from the Monte Carlo data of a single model only, the estimation of y; is rather difficult. The
reason is as follows. In Eq. (2.2), the amplitude v is coupled to the exponent y;, and thus a reasonable
estimation of y; requires systems with a large value of v. However, the large value of v excludes an accurate
determination of Q(®), so that the accuracy of y; is also limited. On the other hand, although a system with
a small amplitude v helps to estimate Q©), it does not allow a good determination of y; either. This is one
of the reasons why, in many numerical investigations, the exponent y; is fixed at a constant taken from other
sources.

This problem can be avoided by a simultaneous analysis of several systems with a diversity of the irrelevant
fields v. Given a reasonable value of y;, Monte Carlo data of systems with a small irrelevant field v determine
Q® with a narrow margin; this information, together with models with a significant amplitude v, greatly
helps the estimation of y;, which in return improves the determination of Q(®.

In the present work, we investigate eleven Ising-like lattice models in three dimensions, of which the
amplitudes v have a wide range of values. These models include the spin—% Ising model with nearest-
neighbor interactions K, on the simple-cubic and on the diamond lattice. On the simple cubic lattice,
models with further-neighbor interactions are also investigated. In particular, third-neighbor interactions
K3, are included in several models with various ratios Ks,/K,,. Further, we study some ’equivalent-
neighbor’ models, originally introduced by Domb and Dalton [17-19]. In such systems, each spin interacts
equally strongly with all its neighbors within a certain distance. The model with the interactions till the
rth shell of neighbors is referred to as the equivalent-neighbor model of order r. Also included are a spin-1
model [20] and a hard-core lattice gas with nearest-neighbor exclusion.

For these models, we analyze the numerical data both separately and simultaneously. The separate anal-
yses are in a good agreement with the Ising universality hypothesis for all these systems. This provides the
basis of the simultaneous analysis, in which we assume that universality is ezactly satisfied so that universal
parameters occur only once. This feature of the simultaneous analysis, combined with the aforementioned
discussion in Sec. 2.1, leads to a significantly improved estimation of the critical points of these systems and
the universal quantities including scaling exponents and the Binder ratio Q(©).

A difficulty is that such a simultaneous analysis requires a large amount of accurate Monte Carlo data.
Fortunately, some numerical data are already available and were published elsewhere [9-11,21-24]. The data
generated by the Cluster Processor [11] are not included and will be published elsewhere. Our new Monte
Carlo simulations mainly focus on larger system sizes, and were performed on a cluster of 6 PCs with a
frequency of 2100 MHz.
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Table 2.1: Definitions of the models.

Model gii g:’nh Ilgi: D Lattice Description of models

1 0 0 0 —oo d. Spin—% with nn couplings

2 0 0 0 —00  Ss.C. Spin—% with nn couplings

3 0 0.1 0 —00  Ss.C. Spin—% with nn and 3n couplings
4 0 0.2 0 —00  Ss.C. Spin—% with nn and 3n couplings
) 0 0.3 0 —00  Ss.C. Spin—% with nn and 3n couplings
6 0 04 0 -0 s.c. Spin-1 with nn and 3n couplings
7 1 0 0 —00  s.C. Equivalent-neighbor of order two
8 1 1 0 —00  Ss.C. Equivalent-neighbor of order three
9 1 1 1 —00  s.C. Equivalent-neighbor of order four
10 0 0 0 In2 s.c. Spin-1 with nn couplings

11 - - - - S.C. Lattice gas with nn exclusion

d. — diamond lattice; s.c. — simple-cubic lattice.

2.2 Models and algorithms

As mentioned earlier, the present Monte Carlo analyses include eleven Ising-like models. Except the hard-
core lattice gas, these models can be represented in terms of a spin-1 Hamiltonian

H/kBT =—-K,» Z 0i0; —KznZUicrj _K3nZUin — Ky, Z 0i0; -l-DZU;-Z R (23)

(nn) (2n) (3n] {4n} i

where the sums (nn), (2n), [3n], and {4n} are respectively over nearest-, second-, third-, and fourth-neighbor
pairs, and the associated couplings are denoted as K,,,, Ku,, K3,, and Ky,, respectively. The spins can
assume three discrete values s; = 0,%1, where spins s = 0 may be referred to as vacancies. The detailed
definitions are specified in Tab. 2.1, where ten models are defined on the simple cubic lattice, and one on
the diamond lattice. We define the finite-size parameter L by its relation with the total number NV of lattice
sites as N = L3. Thus, the linear size of the 8-site elementary cell of the diamond lattice is taken to be
L = 2. Periodic boundary conditions are applied. The systems sizes were taken in the range 4 < L < 128.

For D = —o0, the vacancies are excluded, so that the model reduces to the spin—% model. This applies to
the first nine models in Tab. 2.1. Models 1 and 2 have nearest-neighbor interactions Ky, only. Models 3-6
include, in addition, third-neighbor interactions K3,. Various ratios are applied: K3, /Ky, = 0.1, 0.2, 0.3,
and 0.4. Models 7-9 are the equivalent-neighbor models [17-19] of order two, three, and four, respectively.
We choose these models because they cover a wide range of amplitudes of the irrelevant field v in Eq. (2.2).
In particular, v is positive for models 1-4 and negative for models 5-9. This reflects that the critical points
of these systems lie on opposite sides of the Ising fixed point in the direction of v on the critical surface.
Moreover, the absolute value of v is relatively large for models 1, 2, 8, and 9, and relatively small for models
4,5 and 7. This will be shown later in the numerical analysis.

During the Monte Carlo simulations, one can in principle apply the standard form of the Swendsen-Wang
or of the Wolff cluster algorithm. However, the efficiency of these methods decreases rapidly as the number
of interacting neighbors increases. This difficulty is avoided by an algorithm described in Ref. [9]. Here, we
summarize the essential points. During the formation of a cluster, a bond between equal spins coupled with
strength K is frozen with probability p = 1 —exp(—2K), or broken with probability 1 —p. Sites connected by
frozen bonds belong to the same cluster. The distribution P(k) = p(1 —p)¥~! expresses the probability that
(k — 1) subsequent bonds are broken while the kth bond is frozen. The algorithm generates this distribution
from a uniformly distributed random number 0 < r < 1 as follows

kE=1+[n(r)/In(l —p)], (2.4)

where the square brackets denote the integer part. By repeated evaluation of k, one may set up a complete
list of frozen bonds, and thus a cluster is formed. The efficiency of this procedure is almost independent of
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the range of the interactions. An example was shown in Ref. [21] by simulating the mean-field Ising model,
in which each spin is interacting with every other spin.

We also include a spin-1 model with D = In 2, which is important to our purposes due to its very small
amplitude of v [9]. However, for a general spin-1 model, it is not obvious how cluster algorithms can produce
transitions between vacancies and non-vacancies. One can in principle follow a hybrid algorithm in which
Metropolis sweeps alternate with cluster steps. As long as the spin-1 model is not close to the tricritical
point where the ordered Ising phases meet the phase dominated by vacancies, serious critical slowing down
is not expected.

Here, due to the special choice D = In2 (model 10), a full cluster algorithm [9,11,21] becomes possible.
First, the spin-1 model is mapped onto a spin—% model with two variables, of which the Hamiltonian is

H/kBT = —M; Z(t,‘ + U,‘)(tj + Uj) — M> Ztmum s (25)
(i) m

where two s = % spins t; = £1 and u; = %1 sit on each site i of the simple-cubic lattice. Using the

transformations o; = (t; +u;)/2 and v; = (1 +1¢;)(1 —u;)/4, it has been shown [9] that the partition function

is, up to a constant factor,

Z =Y exp [4M1 Y oi0;+ (2My —In2) Y oh | . (2.6)
o (ij) m

This is precisely the partition function of the spin-1 model. The special choice D = In2 leads to My = 0
so that there are no interactions between variables on the same site. On this basis, the Wolff algorithm
is applied to flip the variables ¢; and/or w;. This costs a little price, i.e., two arrays have to be stored in
computer memory for the variables ¢; and u;. In the present work, we improve this algorithm by using one
variable only. This improvement is based on the equivalence of the variables ¢; and u;. Because of this
symmetry, only the sum of ¢; and w; on the same site needs to be stored. This leads to a cluster algorithm
for D = 1In 2, which allows flips between nonzero and zero spins.

Another model (model 11) investigated in the present work is the hard-core lattice gas on the simple-cubic
lattice, of which the Hamiltonian is

H/ksT = -K Y 0i0;—p Y _ om. (2.7)

(nn)

Here, the variable g; = 1,0 represents the presence and the absence of a particle, respectively. The nearest-
neighbor coupling K — —oo implies that no nearest-neighbor sites are allowed to be occupied simultaneously.
The chemical potential of the particles is denoted as p. This lattice gas was Monte Carlo simulated by
means of a combination of the Metropolis and a geometric cluster method. This cluster algorithm is based
on geometric symmetries, such as the spatial inversion symmetry of the simple-cubic lattice. The full
description of this algorithm is given in Refs. [22-24].

As mentioned in Sec. 2.1, the critical behavior of the hard-core lattice gas is expected to belong to
the Ising universality class. Surprisingly, significant differences have been reported. The investigations
by Yamagata [25,26] yielded critical exponents 8/v = 0.311(8) and /v = 2.38(2), which would imply
yr = 2.689(8). These results, however, could not be confirmed by later investigations which did reveal a
relatively large irrelevant field, but no deviations from the Ising universality class [22,23].

2.3 Dimensionless ratio ()

For the aforementioned eleven systems, Monte Carlo simulations took place very close to critical points for
L > 20, while ranges of temperature-like parameters are wider for smaller systems. Table 2.2 presents the
number of ten millions of samples taken per system size and the number of simulation sweeps before taking
each sample.
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Table 2.2: Number of samples (in ten millions) and simulation steps per sample. We use the notation M x N
to indicate that 107M samples have been taken at intervals of N Monte Carlo steps. Smaller
system sizes L < 20 are also included in the analysis. For the lattice gas, simulations steps include
one Metropolis sweep for each sample.

Model\L | 20 22 24 28 32

1 50x 10 50x 10 50x10 50 x 10 40 x 10

2 10x10 10x10 10x10 12x10 20 x 10

3 10x10 10x10 10x10 10 x 10 10 x 10

4 10x10 10x10 10x10 10 x 10 10 x 10

5 10x10 10x10 10x10 10 x 10 10 x 10

6 10x10 10x10 10x10 10 x 10 10 x 10

7 20x 20 15x22 17x24 15x28 12 x 32

8 20x20 15x22 12x24 10 x28 8 x 32

9 20x20 17x22 12x24 10 x28 7 x 32

10 128 x6 92x6 92 x 6 92 x6 87 x 8

11 150x7 20x8& 52x10 50 x 10 30 x 12
40 48 64 128

1 40x10 20x20 10x20 5 x40

2 10x10 5x20 5x32 1.8 x 64

3 10x10 5x20 5x32 2x64

4 10x10 5x20 5x32 2x64

5 10x10 5x20 5x32 2x64

6 10x10 5x20 5x32 2x64

7 8x40 6x48 5x64 3x128

8 6x40 4x48 3 x64 2x128

9 6x40 4x48 3 x64 1.5x128

10 55 x 10 22x12 2x16 54x25

11 15x14 12x16 15x64 4.4 x 128
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During the simulations, the universal ratio @ = (m?)?/{m*) was sampled, where m is the order parameter.
For the spin systems (models 1 - 10) and the lattice gas (model 11), the magnetization density and the
staggered particle density assume this role, respectively. Near the critical points, we analyzed ) both
separately and simultaneously.

I. Separate analyses

The finite-size behavior of @) near the critical points is described by Eq. (2.2). Here, the thermal scaling
field ¢ depends on temperature-like parameters. For the spin—% models (models 1-9), these are the spin-spin
interactions K., Kan, K3,, and Ky,. Since fixed ratios apply between these couplings, it is sufficient to
select K, as the only temperature parameter K; for the ith model. For the spin-1 model (model 10),
both the nearest-neighbor couplings K, and the chemical potential D are temperature-like parameters.
In this work, D is fixed at In2 so that K; is again represented by K,,. For the hard-core lattice gas
(model 11), the chemical potential p of the particles assumes this role. For later convenience, near the
critical points, we express the dependence of the scaling field ¢ on the physical temperature parameter K;
ast = a;(K; — K¢;) + b;j(K; — K¢)? + -+ +. The amplitudes of the quantities with the subscript ¢ depend on
specific models. On this basis, Eq. (2.2) becomes

Q= QY +QWai(k; — KoL + QPaf (K; — Kui)* L™ +
Q¥ ad(K; — K,)* L + QWat(K; — Ku)*t* LY +
Cz(Kz — Kci)ZLy‘ + by LYY + bo; LY? + by LY3 + - - - . (28)

Here, we have written Q¢ as Q) for simplicity. The term with the coefficient ¢; reflects the nonlinear
dependence of t on K;. The exponents of the correction terms, as obtained in earlier analyses of () in
Refs. [9,11], are y; = y; = —0.82(3), y» = d — 2y, = —1.963(3), and y3 = y; — 2yp = —3.375(3). The
correction with the exponent y, is due to the field dependence of the analytic part of the free energy. The
last term arises from nonlinear dependence of the temperature scaling field on the physical magnetic field.
Finite-size scaling also predicts further contributions. For a single model, since both the quantities Q¥ and
other parameters such as a; and K; are unknown, we may simplify Eq. (2.8) as

Q= Qo+ qi(K; — Kui)LY + qoi(K; — Kei) LY + q3i(K; — Ke) LY +
qai(K; — Kei) 2 LY + ¢;(K; — Kei) LY + by LY + by LY + by LY3 (2.9)

where g;; is the product of QY and a{.

According to the least-squares criterion, Eq. (2.9) was fitted to the Monte Carlo data separately for the
aforementioned eleven models. First, we fixed yi, y2, and y3 at the aforementioned values with the error
margins neglected, and y; was taken as 1.587 [3-13]. We applied a cutoff for small system sizes L < 10 for
model 8, L < 12 for model 9, and L < 8 for the rest. For the equivalent-neighbor model of order three and
four, the Monte Carlo data for small system sizes may be affected by crossover effects due to the proximity
of the mean-field fixed point [21]. This is the reason why we applied different cutoffs at small system
sizes for models 8 and 9. The results are shown in Tab. 2.3. The numerical uncertainties quoted between
parenthesis represent one standard deviation. The excellent agreement of the universal quantity Q(© in
the third column confirms that these eleven systems belong to the Ising universality class. Furthermore,
according to Egs. (2.8) and (2.9), the quantity ¢7 /¢ = [Q™M]?/Q®) is the same for all Ising-like models.
This is confirmed by the last column of Tab. 2.3, which reveals that the values ¢?/q» are consistent with
each other within two standard deviations.

The amplitudes of the irrelevant field for these models are shown, up to a constant factor, in the sixth
column of Tab. 2.3. As mentioned in Sec. 2.1, they reflect the positions of the critical points of these systems
on the critical surface. For clarity, we start from the Landau-Ginzburg-Wilson description [27] of the Ising
model:

“H() kT = / drfré?(r) + v (r) + V26(x) + ho(r] , (2.10)

where the square-gradient term represents short-range interactions, r and v together determine the temperature-
like and irrelevant parameters, and h is the magnetic field. For spatial dimensionality d < 4, a renormalization
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Table 2.3: Separate fits of the dimensionless ratio ) with y; fixed.

K. Q(O) q1 qz by fﬁ/Qz
1 .36973976(16) .62338(8) 0.4906(5) 0.19(1) 0.1150(10)  1.26(7)
2 .22165452(8) .62327(10) 0.885(10) 0.58(5) 0.097(2) 1.35(15)
3 18562459(10) .62351(10)  0.995(1) 0.80(3) 0.051(2) 1.24(4)
4 .16073242(15) .62364(15) 1.128(13) 1.07(4) 0.0118(20) 1.19(5)
) .14230189(10) .62355(14) 1.250(13) 1.26(5) —0.018(2) 1.24(5)
6 .12800424(12) .62350(16) 1.385(30) 1.85(18) —0.048(2) 1.03(15)
7 .06442225(5) .62338(10) 2.854(40) 7.5(2) —0.019(2) 1.08(19)
8 .04303818(3) .62324(15)  4.02(30) 15.1(9) —0.107(2) 1.07(16)
9 .03432687(4) .62337(26)  4.99(40) 23.2(15) —0.212(4) 1.08(23)
10 | .3934222(2) .62344(5) 0.6617(8) 0.360(2) —0.0015(7) 1.21(6)
11 | .0544853(20) .62316(20) 0.0593(1) .0027(4) 0.212(4) 1.29(12)

— the first column is the number of the models

Table 2.4: Some results of separate fits of @) with y; as a free parameter.

Model | 1 2 8 9 11

K. 0.3697399(4) 0.2216545(2) 0.0430382(7) 0.0343268(1) 0.05449(3)
Qo 0.6238(7) 0.6231(8) 0.625(1) 0.623(2) 0.625(3)
Vi —0.87(6) —0.800(15) —0.68(16) —0.80(2) —1.0(3)

analysis [28] shows that there are two fixed points, i.e., the mean-field (0, 0) and the Ising fixed points (r*, v*)
(Fig. 2.1). The crossover behavior of the Binder ratio Q) is displayed by a data collapse in Fig. 10 in
Ref. [29]. This provides a scale for the irrelevant Ising field v on the whole range from the Ising to the
mean-field fixed point. Using this scale and the value of by; for the ith model (Tab. 2.3), we schematically
illustrate the positions of the critical point of the eleven systems in the present work (Fig. 2.1).

0 v v
MF
9 |
A
8 6 7 10
s 5l 3
t21
! 11
r

Figure 2.1: Schematic illustration of positions of models 1-11 in the parameter space (r,v), where r is a
temperature-like parameter and u reflects the amplitude of the irrelevant field. The mean-field
and Ising fixed points, denoted as O, sit at (0,0) and (r*,v*), respectively.

The results in Tab. 2.3 rely on the choice that the irrelevant exponent y; was fixed at —0.82. As discussed
in Sec. 2.1, without such an assumption of the value of y;, the accuracy of Q(®) and y; will be very limited.
As a test, we left the exponent y; as a free parameter. We find that the uncertainties of y; are then almost
as big as the absolute value of y; itself for models with relatively small amplitude b;. For the rest, the results
in Tab. 2.3 are also affected in the sense that the accuracy decreases significantly, as shown in Tab. 2.4.

[1. Simultaneous analysis
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Table 2.5: Simultaneous fit of the ratio Q).

Q(O) Q(l) Q(Z) Q(B) Q(4)
0.62342(3) 1 (ﬁxed) 0.826(6) —3.32(9) —9.4(14)

. (1) (2) (3) K(4)
Yi c c c ¢
—0.821(5) 0.36973981(8) 0.22165455(5) 0.18562452(6) 0.16073229(5)
KC(5) K§6) Ké?) KéS) KC(Q)
0.14230186(5) 0.12800417(5) 0.06442222(2) 0.04303821(2) 0.03432687(2)
Kc(lo) Kéll) ap as as
0.39342225(9) 0.0544876(8) 0.5203(8) 0.853(1) 0.9930(12)
a4 as Qg [¢%¢ asg
1.132(2) 1.261(3) 1.390(3) 2.77(3) 4.031(14)
Qg aio a11 bi1 by 2
4.92(3) 0.6603(3) 0.05944(4) 0.114(2) 0.094(2)
b3 b1 4 bis bis by 7
0.052(1) 0.0147(7) —0.016(1) —0.046(1) —0.014(1)
b1 g b1g bi 10 b1 11
—0.113(2) —0.219(4) —0.0012(5) 0.207(4)

On the basis of the universality hypothesis, we analyze the Monte Carlo data of these systems simul-
taneously. The data were fitted, instead of to Eq. (2.9), to Eq. (2.8). As a result, each of the amplitudes
gji is decomposed in a universal factor Q") and a nonuniversal factor a;. Since the Q) are shared by all
the systems, the number of unknown parameters decreases significantly, in comparison of the total number
in the separate fits. This decomposition also leads to an additional free parameter since numerical data
can only determine the product of Q) and a;, so that one of the parameters Q) (j #0) and a; has to
be fixed as an arbitrary constant. Here, we simply set Q") = 1. Together with the mechanism discussed
in Sec. 2.1, this effect leads to a substantially improved accuracy of the unknown parameters, despite that
y; was left as a free parameter. This includes the determination of the critical points, the universal ratio
Q) the irrelevant exponent y;, and the amplitudes by;. The results are shown in Tab. 2.5. The amplitude
[QW]?/Q® =1/0.826(6) = 1.211(9) is in good agreement with those in the separate fits (Tab. 2.3).

2.4 Other quantities

The Monte Carlo simulations also yielded the susceptibility as x = L?(m?). Furthermore, we sampled the
energy density and its cross products with (m?) and (m*). Thus, we obtained derivative of @, denoted as Q,,.
Analysis of x and @), yields an estimation of the magnetic and thermal exponents, y; and y;, respectively.

I. Simultaneous analysis of x
According to finite-size scaling, the magnetic susceptibility x behaves as

2
x(t,v,L) = x(t) + L?»—4 (%) x(LYtt, L¥w, 1) , (2.11)

where z(t) arises from the differentiation of the analytical part of the free energy density, h is the magnetic
scaling field, and H is the physical magnetic field. The dependence of h on H is not universal and is linearized
as h = \Jw;H. Taking into account that ¢t = a;(K; — K.;) +b;(K; — K;)?+- - -, Taylor-expansion of Eq. (2.11)
yields

Xx= @i+ si(Ki— Kei) + L i + xWai(K; — Koi) LY +
X(Z)af(Kz’ _ Kci)ZLZyt + X(B)a?(Kz’ _ Kci)3L3yt +
xWat (K; — Ko) LA + b, LY + ¢;(K; — K) LYV . (2.12)
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Table 2.6: Simultaneous fit of the magnetic susceptibility x.

MO D e e Y@

1 (fixed) 1 (fixed) 0.409(2) —0.043(1) —0.075(2)

” o K K K
2.4816(1) 0.3697398(1)  0.22165457(3) 0.18562459(7) 0.16073233(6)
K§5) K§6) Kc(7) KC(S) KC(Q)
0.14230183(12) 0.12800422(5) 0.06442225(3) 0.04303821(2) 0.03432690(3)
Kélo) Kéll) w1 wo w3
0.3934221(1)  0.054487(1)  1.75(2) 1.55(2) 1.38(2)

W4 Ws We wr ws

1.266(2) 1.187(2) 1.127(2) 1.156(2) 0.989(2)

Wy wWio w11 ay az

0.875(1) 0.933(1) 0.2192(4) 2.00(4) 3.32(2)

as ay Qas Qg a7

3.87(2) 4.45(4) 4.96(6) 5.63(6) 10.64(4)

asg [e2:) aio @11

16.16(3) 19.7(2) 2.65(8) 0.2236(2)

Table 2.7: Results for the ratio r;.

Model 1 2 3 4 5

r 0.259(5) 0.258(5) 0.257(6) 0.256(6) 0.254(7)
6 7 8 9 10 11
0.253(8) 0.259(7) 0.252(8) 0.252(8) 0.259(6) 0.258(6)

Here, the jth thermal derivative of x at criticality is denoted as x(/). For the ith model, the amplitude a; is
the same as in Eq. (2.8). This will be confirmed later. Equation (2.12) was fitted to the Monte Carlo data,
and the result is shown in Tab. 2.6. According to similar arguments as mentioned above, there are two extra
free parameters in Eq. (2.12) during the fit. Here, we simply fixed x® and x) equal to 1. The magnetic
renormalization exponent is estimated as y;, = 2.4816(1). This is in excellent agreement with most available
results [3-13], and its precision is comparable with the best known value y;, = 2.48180(15), obtained from a
25th-order high-temperature expansion [30]. The critical points are consistent with those in Tab. 2.5. We
also calculated the ratio r; = (a,-)(Q) / (ai)(X), where the superscripts () and x represent that the value of a;
is taken from Tabs. 2.5 and 2.6, respectively. The result is shown in Tab. 2.7. The consistency of r; among
these eleven models confirms that the function of ¢ of K is independent of the type of physical observable.

[I. Simultaneous analysis of (),
During the Monte Carlo simulations, the energy density e was sampled as the nearest-neighbor sum for

models 1-10:
e=(Sun) = > _(0i0}) . (2.13)
(nn)
For the hard-core lattice gas (model 11), the nearest-neighbor couplings are infinitely repulsive, and the
quantity e is thus defined, instead, as a sum over the next-nearest-neighbor pairs. On this basis, we sampled
a quantity (), which correlates the magnetization distribution with the energy density:

(m2S,,)  (m*S,.) _10Q ot
(m?) "~ (m) - Q00K

Qp=2 — (Snn) (2.14)

Little additional effort is required for this task since m? and e are already sampled during the Monte Carlo
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Table 2.8: Result of simultaneous fit of Q.

Lo Q0 @ T Qp

8 1 (fixed) 0.1 (fixed) —4.4(5) —1.2(2) 9.3(23)
Yt b1 D2 D3 D4 D5
1.58684(14) 0.825(5) 1.355(2) 1.335(2) 1.334(2) 1.343(2)
Pe pr Ds Po DP1o P11
1.351(2) 1.422(1) 1.428(1) 1.441(2) 1.058(1) 0.662(1)

simulations. The quantity (), has been reported [9-11] to be a good choice in determining the thermal scaling
dimension. The reason will be discussed later on the basis of its scaling behavior. For models 3-10, apart
from nearest neighbors, the spin-spin interactions occur between second-, third- and fourth-neighbor pairs.
In those cases, the amplitude of 0t/0K,,, is different from the value of a; in the function t = a;(K; — K;).
According to Eq. (2.1), near the critical point the quantity @), behaves as

ot
Qp(t,v,L) = L¥ T

nn

Qp(L¥t, LY, 1) . (2.15)

Taking into account contributions of d; LY? due to the analytic part of the free energy, we Taylor-expand this
equation as

Qp = LY pi[Qz()O) + Qz()l)ai(Ki - K) L% + Qz()Q)a? (Ki— Kci)2L2yt +
QS)G? (Kl - Kci)3L3yt + Qé‘l)a? (Kl - Kci)4L4yt +
biLyi + diLy2 + Ci(K,' — Kc,')] 5 (216)

where the parameters Ql(,j) are universal, and 0t/0K,,, is denoted as p; for the ith model. Compared to
the specific heat, the divergence of (), with respect to the system size L at criticality is much stronger.
According to finite-size scaling, the critical specific heat C behaves approximately as C — Cy oc L2¥:73,
where Cy arises from the analytical part of free energy. The exponent 2y, — 3 ~ 0.174 is so small that the
term with this exponent is normally difficult to separate from the background contribution Cy in numerical
analyses. Therefore, the quantity (), serves as a better choice than C' to estimate the thermal exponent y;.
We fitted Eq. (2.16) to the Monte Carlo data, using the critical points as taken from Tab. 2.5. This is in line
with the relatively weak dependence of (), on the temperature-like parameters K. The results are shown in
Tab. 2.8. As possible alternatives, we have included more terms such as LY*1T¥% (K; — K.;) within the square
brackets of Eq. (2.16). However, this does not improve the residual x? of the fit. The dependence on the
cutoff at small system sizes in the fit was also determined. Taking into account these dependences and the
uncertainties of the critical points, we estimate the thermal exponent as y; = 1.5868(3).

2.5 Discussion

We have performed extensive Monte Carlo simulations of several Ising-like models in three dimensions. These
models were selected such that they span a wide range of the irrelevant field, as illustrated in Fig. 1. In order
to enable a meaningful test of universality, the models are also chosen according to quite different microscopic
Hamiltonians. On the basis of finite-size scaling, we analyze the Monte Carlo data both separately and
simultaneously. These systems are confirmed to be within the Ising universality class. Compared to other
methods, our simultaneous analyses yield more accurate estimations for the critical points, renormalization
exponents, and the Binder cumulant. In particular, we determine the irrelevant exponent as y; = —0.821(5).
Tables 2.9 and 2.10 show a comparison between some existing results and our estimations.

In order to interpret numerical data correctly, it is necessary to include appropriate corrections to scaling.
We find that, normally, a single power-law correction is not sufficient to account for all finite-size corrections.
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Table 2.9: Summary of results of the scaling exponents and the universal quantity Q(®) for the three-
dimensional Ising universality class.

Year y; Yn Vi QO Method
5] 1980 1.587(4)  2.485(2)  —0.79(3) RG
31] 1990 1.587(4)  2.4821(4)  —0.83(5) HTE
[32] 1991 1.587 2.4823 —0.84 HTE
33] 1992 1.602(5)  2.4870(15) 0.8 MCRG
[34] 1994 1590(2)  2.482(7) MC
7] 1995 1.586(4)  2.482(4) CAM
0] 1995 1.587(2)  24815(15) —0.82(6)  0.6233(4)  MC
[11] 1996 1.585(2)  2.4810(10) MCRG
[14] 1998 1.586(3)  2.483(2)  —0.799(11) HTE
[10] 1999 1.5865(14) 2.4814(5)  —0.82(3)  0.62358(15) MC
30] 2002 1.5869(4) 2.48180(15) —0.82(5) HTE
Now 2003 15868(3) 24816(1)  —0.821(5) 0.62341(3) MC

RG - renormalization of ¢* model; HTE - high-temperature series expansion; MC — Monte Carlo and
finite-size scaling; MCRG — Monte Carlo renormalization; CAM — coherent-anomaly method.

For instance, if one neglects the term b3L¥ in Eq. (2.9), which is decaying relatively fast, one finds a
considerable increase of the residual x? both in the separate and simultaneous fits. In three dimensions,
Monte Carlo simulations are restricted to linear system sizes L in the order of 100. Even for L = 100,
corrections-to-scaling are still significant. For instance, we consider the contribution of by LY: in Eq. (2.9) for
the spin-1 model on the simple-cubic lattice (model 2). From Tab. 2.3 ( b; ~ 0.094), we find that the term
by LY contributes about 0.002 to Q for L = 90. Compared to the accuracy 0.00003 of Q©) in Tab. 2.5, this
contribution is huge and may not be neglected. Another example of corrections due to the irrelevant field
is provided in Ref. [8], where the spontaneous magnetization density M was analyzed as M (t) = f(t)t° for
the Ising model on simple-cubic lattices with linear sizes up to L = 256. Here, ¢ is the reduced temperature
t = (K — K.)/K,, the exponent 3 is equal to (3 — yn)/ys, and f(t) is some function of ¢ that contains the
corrections to scaling. It was found that, without including a correction ~ #¥/¥ due to the irrelevant field in
the function f(t), one cannot successfully describe the numerical data (0.0005 < ¢ < 0.26), even when f(t) is
defined as f(t) = po + pit + pat? + p3t®. Another analysis involving the spontaneous magnetization density
was recently carried out by Garcia et ol [15]. Remarkably, they claimed that, for L > 90 and ¢ > 0.004,
corrections to scaling are invisible. They did not comment on the nature of the discrepancy with Ref. [§],
and did not provide details about their error estimation. Therefore, some doubt concerning the precision of
their results (y; = 1.600(2) and y, = 2.501(5)) seems justified.

For the spin-1 model and the lattice gas, another quantity of interest is the density of vacancies p,
at the critical points. Finite-size analysis yields p, = 0.400694(1) and 0.789516(1) for these two models,
respectively.
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3

Cluster simulation of the transverse Ising model

We formulate a cluster Monte Carlo method for the anisotropic limit of Ising models on d + 1-dimensional
lattices, which in effect, are equivalent with d-dimensional quantum transverse Ising models. Using this
technique, we investigate the transverse Ising models on the square, triangular, Kagome, honeycomb, and
simple-cubic lattices. The Monte Carlo data are analyzed by finite-size scaling. In each case we find,
as expected, that the critical behavior fits well in the d + 1-dimensional Ising universality class. For the
transverse Ising model on the square lattice, we determine the Binder cumulant of the classical counterpart
for a range of aspect ratios between the system sizes in the third or ‘classical’ direction and that in the other
two directions. Matching this universal function with the case of the isotropic Ising model yields the length
ratio relating the isotropic Ising model with the anisotropic limit. The efficiency of the present algorithm is
reflected by the precision of its results, which improves significantly on earlier analyses.

3.1 Introduction

It is well known that the d-dimensional quantum transverse Ising model (TIM) is equivalent with the
anisotropic limit of d 4+ 1-dimensional lattice Ising model. As early as in 1964, Schultz and Mattis [1] dis-
played this equivalence by mapping the classical Ising model on a quantum model that reduces to the TIM.
The reverse path, i.e. from quantum spin models to anisotropic lattice models, was shown by Suzuki [2, 3],
by using the Trotter formula [4].

This equivalence enables one to explore the properties of the TIM by the study of its classical counterpart.
In this way, one can take advantage of the insight and results that have been obtained from the theory of
classical critical phenomena, including the renormalization theory. For instance, one can study the TIM in
any number of dimensions, by means of the discretized path integral approach [5,6], or by applying standard
Monte Carlo techniques to its classical counterpart [7].

However, these numerical techniques lead to practical difficulties due to singular behavior in the anisotropic
limit of the classical Ising model. When this Hamiltonian limit is approached, the coupling strengths and
the correlation length in one of the directions in the classical model diverge, while the couplings in the other
directions approach zero. Possibilities to deal with this problem are to approximate the anisotropic limit
by a properly strong anisotropy, or extrapolate by taking the anisotropy stronger and stronger [7]. Such
simulations tend to be difficult as a consequence of the considerable requirements of computer time and
memory.

In this work, we tackle this problem by means of the direct application of a continuous cluster algorithm
in the anisotropic limit of the Ising model. As the correlation length in the strong-coupling direction diverges
when the Hamiltonian limit is approached, we increase the number of spins in this direction and meanwhile
rescale it by a divergent number such that the physical size of the system remains constant. This rescaling
renders the strong-coupling dimension continuous, while the other dimensions remain discrete. Thus, there
is an infinite number of spins per physical length unit along the strong-coupling direction. In this continuous
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limit, cluster algorithms can be formulated [8] whose efficiencies are comparable to the conventional cluster
methods for the isotropic case.

The precision of the results obtained by this continuous algorithm indicates that it is efficient in com-
parison with other methods that have been used to investigate transverse Ising models. These results are in
agreement with the expectation that quantum transverse Ising models belong to the universality class of the
classical Ising model with one more dimension. An interesting property of this continuous cluster algorithm
is that it can be applied to systems in curved geometries [9].

3.2 Anisotropic limit of the Ising model

Using d = 1 as an example, we briefly recall the relation between the d + 1-dimensional classical Ising model
and the d-dimensional TIM. In view of its relevance for Monte Carlo analyses, we put some emphasis on
the behavior of the length scale in the d + 1-st direction. The Hamiltonian of a classical 2-dimensional Ising
model on a NV x M square lattice with periodic boundary conditions is defined by

H/ksT = _Z[Kw Sa,y Sat1,y T Ky Say Soyt1], (3.1)

T,y

where the integer coordinates x and y, which are defined modulo NV and M respectively, label the lattice
sites, and K., K, are the coupling strengths in the z- and y-directions respectively. The spins can assume
the values s, , = 1. The critical line of this model is given by [10]

sinh (2K,) sinh (2K,) =1 . (3.2)
Therefore, in the anisotropic limit € — 0, the couplings can be written
K, =¢€/t, exp(—2K,) =€, (3.3)

where t parametrizes the temperature; the critical point is t. = 1.
The evaluation of the partition function Z(M, N) of this model by means of the transfer matrix T is
expressed by
ZIM,N)= > <&|T|&H >< 5|5 > < u|T[5 >, (3.4)
51,82, ,8m
where the transfer direction is taken along the strong bonds K, and the elements of T are
< 8| T|8ky1 >= H exp [KuSa,y Sot1,y + KySzy Soyt1] - (3.5)
T

Here §, and 5y are the spin configurations in two adjacent rows respectively. Eq. (3.4) is just the trace of
TM | so that the partition function is the sum over the M-th powers of the eigenvalues of T. For large M,
the contribution from the largest eigenvalue dominates. Since every different spin contributes a factor e, sk
and S§j41 must be nearly identical. Thus, up to order € we may represent the transfer matrix as

— — — € —
< 5| T|8k41 >=< sk|exp(—¥’qu)|sk+1 > exp (NK,), (3.6)
in which Hgp, is the 1-dimensional quantum Hamiltonian

Ham = — Y (58241 +152), (3.7)

where s* and s® are Pauli matrices. Hg, contains non-commuting operators and represents a quantum
system with Ising interactions between the nearest-neighboring spins along the chain, and a transverse field ¢
in the z-direction. This establishes the relation between the 2-dimensional Ising model and the 1-dimensional
TIM.
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As mentioned earlier, one can also derive this equivalence by using the Trotter formula [4], which can be
written as:

expl~FHan] = Jim fexpl~ 2 Honl}" (3.5)

where (8 is the inverse temperature of the quantum system.
A comparison of Egs. (3.6) and (3.8) yields the relation between the inverse temperature 8 of the TIM
and the lattice size M for the classical Ising model as

M = Bt/e . (3.9)

The equivalence of the TIM and the classical model thus requires that M diverges as 1/¢ even at nonzero
temperatures. This is a serious complication for simulations, especially at low quantum temperatures 5 — co.
For d > 2, we use the example of the Ising model on the simple cubic lattice. Its Hamiltonian is

N N M,
H/kT = — Z Z Z[Kwy Sey,:(Set1ye + Seyt1,2) + K Sey2Sey21] (3.10)

z=1y=1z2=1

where 1 < z,y < N and 1 < z < M, label the lattice sites. The label p emphasizes that M, refers to the
physical system size; its ratio with IV defines the aspect ratio of the 3-dimensional system. Periodic boundary
conditions apply. The coupling strengths K,, and K in the zy-plane and in the z-direction respectively
are initially chosen to be of order one. The behavior of the length scales in the Hamiltonian limit, where
K. diverges while K, approaches zero, is illustrated by means of a Migdal-type renormalization [11] in the
z-direction, without rescaling the z- and y-directions. We expect that this procedure, although only valid as
an approximation, will yield a qualitatively correct picture. Each bond in the z-direction is decorated with
n —1 Ising spins and the bond strength K, is distributed accordingly among the newly inserted spins. This
leads to a model with a lattice spacing along the z-direction which is smaller by a factor n. It is described by
the same Hamiltonian Eq. (3.10) but with new couplings K;Z) and K§”), and the z-coordinate is represented
by integers z’ = nz which run from 1 to M' = nlM,:

N N M
M [keT = — Z Z Z [Kéz) Sap,2 (Set1,y,20 + Say1,er) + K 50y 2080y,001] (3.11)

rz=1ly=1z'=1
The new couplings satisfy
K" = Kgy/n and  tanh K™ = [tanh K.]'/" . (3.12)

For large n, one may write exp [—2K§")] = ¢, and substitute tanh K™ in Eq. (3.12) accordingly. One finds

1/n=alln(l1+¢€) —In(1 —€)] =~ ae[2 + O(e?)], where a = —1/In(tanh K,). This leads to

€
K5 =21+ 0(@)], exp[-2K[)]=¢, (3.13)
which has a same form as Eq. (3.3). It also suggests that for nonzero € the critical point t.(¢) deviates from
t.(0) as €2.
This model is equivalent with the TIM on the square lattice with Hamiltonian

Ham =— D 52, (siy1, +55,41) +ts2,] (3.14)
z,y

The inverse proportionality of n and e, together with Eq. (3.9), shows that the physical size M, = M'/n is
proportional to the inverse quantum temperature (.
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3.3 Algorithm

As mentioned earlier, a Monte Carlo method for the Hamiltonian limit will have to deal with singular aspects
such as the divergent coupling strength K, the vanishing coupling strength K,,, and the divergence of the
system size M. Using ideas from existing cluster methods [12-14], we introduce procedures to improve the
efficiency for the system described by Egs. (3.1) and (3.3) with small but nonzero e. Then we discuss how to
deal with the divergence of the system size M in the y-direction, and finally describe the continuous Wolff
algorithm (CWA) for the limit e = 0.

Now, let us recall the cluster algorithm for the isotropic lattice Ising model with nearest-neighbor in-
teractions. If two nearest-neighboring spins on sites m and n, coupled with strength K,,,, have the same
sign the algorithm will ‘freeze’ the bond between m and n with a probability p,.. = [1 — exp (—2K,,,)], or
‘break’ the bond with the probability 1 — p,,,,. Sites connected by ‘frozen’ bonds are included in the same
cluster. One can introduce bond variables b,,,,, = 0 or 1; frozen bonds have b,,, = 1 and broken bonds have
bmn = 0. A pair of opposite spins always has b,,, = 0. The conventional way to simulate this is to draw a
uniformly distributed random number r (0 < r < 1) for each bond by, set b,,, = 1 if the spins on sites m
and n have the same sign and r < pyp.

For the anisotropic model defined by Egs. (3.1) and (3.3), there are two types of bond variables b,,,,. For
small €, the bond probability between a pair of equal spins in the y-direction is p, = 1 —exp (—2K,) x 1 —e¢,
so one has to draw of order 1/e random numbers r before finding a bond variable b, = 0. For the weak bonds
in the z-direction, the probability p, = 1 — exp (—2K,) x € that a pair of equal neighbors is connected by a
frozen bond is small, and many random numbers are needed before such a ‘bridge’ is found.

A more efficient procedure follows. We first write b, = brmnd where the b,,, are independent
random variables equal to 0 or 1; b, = 1 with probability p, = 1 — exp (—2K,) or p, = 1 —exp (—2K,) for
bonds in the x or y direction respectively. Counting the bond variables sequentially in the y-direction, the
distribution P,(k,) = (1 —p,) p, *~" expresses the probability that (k, — 1) subsequent bond variables by,
are equal to one, while the ky-th variable is zero: a ‘break’ occurs at the ky-th position. Thus the cumulative
distribution is

SmSn

k@l
Cylky) = Py(k) =1— (p,)*, (3.15)
k=1
and by mapping the probability distribution Cy(k,) on the uniform distribution of the random number r,
one can transform r into an integer k,:

ky =1+ [In(r)/In(py)] , (3.16)

where 0 < r < 1 and the square brackets denote the integer part. In contrast, in the z-direction, one uses
the distribution P, (k;) = p (1 — pg) ¥+ 1 to express the probability that (k, — 1) subsequent variables by,
are zero, while the k;-th bond variable is one. Also in this case, one transforms a uniformly distributed
random number r into an integer kg:

k. =14 [In(r)/In(1 — p,)] . (3.17)

This method avoids the problem that many random numbers have to be drawn before adding a new bridge
or a new break.

For purpose of clarity, we describe in detail the steps in the formation of a Wolff cluster according to the
description above.

1. Choose the origin (x, y) of the cluster randomly (see Fig. 3.1), denote its sign s = s, .

2. Count the neighboring sites on the left-hand side as (z, y — 1), (z, y — 2), ---, (z, y — a) till the
nearest interface s, y—q—1 = —s (see Fig. 3.1). Draw a random number r and compute k, according
to Eq. (3.16). Define [_ as the smaller number of a and k, — 1, and flip the spins from (z, y —I_ + 1)
to (z, y). Do the same for the right-hand side such that the spins from (z, y + 1) to (z, y + {;) are
flipped. Thus, a range of [_ + [ strongly coupled spins on the z-th row is included in the cluster and
flipped.
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Figure 3.1: Illustration of the anisotropic Ising model on an IV x M lattice. The vertical dashed line represents
the weak coupling K, the horizontal line represents the strong coupling K. The black circles
are + spins, and the open circles are —pins.

3. Include into the cluster spins on (z — 1)-th and (z + 1)-th rows connected to the above range by
bridges in the weak-coupling direction. Compute k, according to Eq. (3.17). If k, > I_ + 4, go to
4. Otherwise, if s;_1,y—i_4+k, = s, include this spin in the cluster and store its position in the ‘stack’
memory. Find a new random value k, till all the [_ + [ bonds between z-th and (x — 1)-th rows are
accounted for. Do the same for the neighboring sites on the (z 4+ 1)-th row.

4. If the stack is empty, go to 5. Otherwise, read a site (z, y) from the stack, and erase it from the stack.
Go to 2.

5. The cluster is completed and flipped.

Although the above procedures can improve the efficiency of the conventional Wolff algorithm, we still
have to solve the problem of the divergence of the expectation values of k, and k, in parallel with that of
M as e — 0: 1 1 1 1
(ky) and (k;) can be recognized as the average distances, in the y-direction, of the breaks and of the bridges
respectively.

To deal with the divergence of the system size M one can rescale the y-direction as y, = €y, so that
the total physical size M, = ¢ M and the correlation length in this direction remain approximately constant
(see Fig. 3.2). In the limit ¢ = 0, the strong-coupling dimension becomes continuous, i.e., there are infinite
number of spins per physical length unit, and the +/— spins are replaced by ranges of sign +/—. Thus, the
N x M square lattice reduces to N lines of physical length M, = eM (see Fig. 3.2), and Eqgs. (3.16) and
(3.17) change into

ly=€eky=—1In(r), (3.19)

and
l, =€k, = —1In(r) t/2, (3.20)

which indicate that the breaks and the bridges occur on a length scale of 1 so that the numbers of these
breaks and bridges are finite in this continuous limit. These breaks can be recognized as interfaces separating
the ranges of + and — spins, and the bridges serve as the connections between nearest-neighboring lines.
Instead of the individual spins one may use the locations of these interfaces as the dynamical variables, and
define a continuous Wolff algorithm (CWA) on this basis.

In the conventional Wolff algorithm, the spins are simply stored in an array. Since this information is
no longer available, one has to determine the sign of a particular position (z, y) from the positions of the
interfaces, supplemented with additional information on the sign at a given position on each continuous line,
e.g. at the origin y = 0. The sign at position (x, y) is given by s, (—1)"™, where n is the number of interfaces
between the origin and position y on the z-th line, and s, is the sign at the origin of this line.

The steps involved in the continuous Wolff algorithm (CWA) can now be expressed as follows:

1. Choose a random position (z, y) randomly, which means it is at z-th line and its y-coordinate is y,
and obtain its sign s according to the directions given above.
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Figure 3.2: Illustration of the procedure leading to the Hamiltonian limit of the classical Ising model. The

6.

physical length scale is approximately conserved by reducing the horizontal size of N x M /e spins
with a factor e. This leads to N continuous lines of length M in the Hamiltonian limit. The left
figure shows an anisotropic Ising model with small but nonzero €, and the right one illustrates
the € = 0 case.

. Determine the distance d; from y to the first interface on the left-hand side of y, and similarly the

distance d, on the right-hand side.

Include a range around (z, y) into the cluster as follows. Draw a random number r and obtain [, from
Eq. (3.19). If [, < d;, create an interface at position (x, y — l,); otherwise, annihilate the interface
at (z, y — d;). So the left-hand end of the range to be flipped is set at (z, y — ¢;), where ¢; is the
smaller number of d; and I, (¢, = min (d;,,)). Find another number from Eq. (3.19) and obtain the
right-hand end of the range (z, y + ¢,) analogously. Thus, the range from (z, y — ¢) to (z, y + ¢;) is
included in the cluster and flipped.

Create bridges between this range and its nearest-neighboring lines. For the (z — 1)-th line, draw a
random number and compute [, by Eq. (3.20). If I, > ¢;+¢,, go to 5. Otherwise, if the sign at position
(x — 1,y — ¢ +1;) is equal to s, store the position into the stack. Repeat this procedure till the whole
range has been visited. Do the same for the (z 4+ 1)-th line.

. If the stack is empty, go to 6. Otherwise, read (x, y) from the stack, and erase it from the stack. Go

to 2.

The cluster is completed and flipped.

In the CWA a spin range is flipped by the creation or annihilation of interfaces. When a range is flipped,
there are three possibilities: two interfaces are created, two interfaces are annihilated, or one new interface
is created and an existing one is annihilated. In all these cases, the number of interfaces per line remains
even. One detail to be mentioned is that, if a flipped range includes the origin of that line, the corresponding
array element containing the signs at the origins, should be changed.

It is straightforward to generalize the CWA for applications to d-dimensional TIM’s with d > 2. Related
continuous cluster algorithms, such as the Swendsen-Wang variety, can also trivially be formulated on the
basis of the above description.

3.4 Test of the algorithm

To test the CWA, we investigated the anisotropic limit of the 2-dimensional Ising model defined by Egs. (3.1)
and (3.3), since it has been solved exactly [10]. The CWA was applied to simulate such systems with L lines
of length L and with periodic boundary conditions, where L = 8,12,16,22 and 24. During the simulations,
the dimensionless quantity @, which is related to the Binder cumulant [15], was sampled:
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Table 3.1: Results of the least-square fits of 1, (¢) for the TIMs defined on the triangular, Kagome, honey-
comb, square and cubic lattices.

triangular Kagome honeycomb square cubic
Lpin, | 6 8 10 2 7
Lpez | 20 20 20 48 14
Q 0.6238 (7) 0.6041 (4) 0.6149 (7)  0.6206 (2) 0.456947 (fixed)
tc 4.76811 (9)  2.95265 (4) 2.13250 (4) 3.04438 (2) 5.15813 (6)
ay 0.03138 (5) 0.0894 (1)  0.1027 (8)  0.0497 (2) 0.0235 (2)
a 0.0010 (1) 0.0082 (2)  0.0088 (2)  0.00207 (2)  0.0020 (4)
as -0.00023 (7) -0.0035 (5) -0.0040 (2) -0.00043 (6) -0.0024 (6)
b 0.061 (5) 0.066 (2) 0.097 (4) 0.093 (2) 0.205 (2)
by 0.14 (2) - - 0.018 (6) -0.118 (3)
<m?>?
QL(t) = ~is, (3.21)

where m is the magnetization density.

According to universality of the Binder cumulant, the asymptotic value of @ in such a system is equal
to that for the lattice Ising model, with isotropic couplings K, = K, and system sizes L x aL, where
a = lim. o 1/(esinh 2K,) = 2 [10,16].

In the language of renormalization, the finite-size dependence of the singular part of the free energy
density f is formulated as

f(t7 h,’l), T ’L) = L_df(tLytahLyhavLyia' T 1) ) (322)

where t is the transverse field, h the magnetic field, v the irrelevant field; y;, y, and y; are the corresponding
exponents, and d is the dimensionality. Therefore, one expects the following finite-size behavior of @ (t)
near critical point [17]:

Qut) =  Q+ar(t —te) L +as(t — o)L + -
F01 LY + 0o LY + ¢ LY (t —te) + - -+, (3.23)

where yo = d — 2yp, y3 = y; + yt, and a1, as, b1, by and ¢; are unknown parameters. The Monte Carlo data
were fitted on the basis of this formula, according to the least-squares criterion. The exponents y;, y, and
y; were set to the exact Ising values 1,15/8 and —2 respectively. So yo =d—2yp = —7/4 and y3 = y; +y: =
—1. A fit including corrections with amplitudes a;,as,as,aq4,b; and ¢; shows that t. = 0.99998 (6) and
@) = 0.80976 (22), in a good agreement with the known results ¢, = 1 and @ = 0.809678 (3) [16]. When we
set t. = 1 and @) = 0.809678, and leave y; to be fitted, we obtain y; = 1.01 (1), in agreement with the known
universal properties of the isotropic Ising model.

In order to compare the efficiency of the CWA with the conventional Wolff method, we investigated
the d = 2 TIM on a L x L square lattice with periodic boundary conditions. The CWA was applied to
simulate for the model defined by Eqs. (3.10) and (3.13) at the continuous limit € = 0. The length of the
third direction is taken as L. The conventional Wolff algorithm was used to study such anisotropic lattice
models with small but nonzero e (1/150 < e < 1/6). The lattice size in the z-direction is taken as L/e,
and the couplings K, and K, are obtained by substituting € in Eq. (3.13). The transverse field was set as
t = 3.04440, which is very close to the critical point t. (see Table 3.1), and the system size at L = 4.

For several values of €, the computer time needed for 5 million conventional Wolff steps, was compared
to the time needed by the CWA for the same number of steps (see Fig. 3.3). As expected, the efficiency of
the conventional Wolff method decreases proportionally for € — 0. The efficiency of the CWA is lower than
but still comparable to that of the conventional Wolff method for the isotropic Ising model. The reasons are
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Figure 3.3: Ratio between the time used by the conventional Wolff algorithm and that by the present con-

tinuous algorithm, as a function of 1/e. Five million Wolff steps are taken for every simulation.
The system size and the transverse field are L = 4 and ¢ = 3.04440 respectively.
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Figure 3.4: Dependence of @, (€) on ¢, as a function of €2, for a system with sizes L x L/e, with L = 4. The
transverse field ¢ = 3.04440 is set near its critical value. Error bars are approximately equal to
the thickness of the lines.

as follows: first, floating-point operations are necessary in the anisotropic limit since the third dimension is
continuous; and second, to find the sign at a particular position, one has to find the number of interfaces
between this position and the origin of the line where it is located. The time consumption to find the signs
is however still acceptable for the system sizes used in this work.

During these simulations, also the quantity @1, (¢) was sampled as a function of €. The results obtained by
the conventional Wolff method as € — 0, display satisfactory convergence to @1, (0) as obtained by the CWA
(see Fig. 3.4). The convergence takes place approximately as €2. The data for Q[ (¢) were fitted according
to the least-squares criterion by the formula

QL(e) = QL(0) + e + G26° + gz€® + - -, (3.24)

where ¢1, ¢2 and g3 are unknown parameters. The largest € included in the fit is 0.4, and we also let QL (0)
to be fitted. The resulting fit satisfied the x? criterion (x? = 18 for 17 degrees of freedom); we obtain
@1 = —0.0006 (8), g2 = —0.1322 (5), g3 = —0.0076 (10) and Q(0) = 0.65194 (7), which is consistent with
the Monte Carlo data obtained by the CWA @ (0) = 0.65188 (6). This fit suggests that the term with the
amplitude ¢; vanishes.

This can be explained by Eq. (3.13). Since the critical points ¢.(e) for nonzero € is expected to deviate
from t.(0) as €2, while the transverse field was always set as t.(0) during the simulations, it is not surprising
that Qr(e) — Qr(0)) o €.
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Figure 3.5: The two-dimensional lattices on which the TIM’s are investigated. From left to right: square,
triangular, Kagome and honeycomb lattices with finite size 2 x 2. The geometries of the cor-
responding anisotropic limit of the classical Ising models are parallel lines which originate from
these lattice sites and perpendicular to the planes.

3.5 Applications

3.5.1 Critical points of several TIM’s

By means of the CWA, we have investigated the d = 2 TIMs on the square, triangular, honeycomb, and
Kagome lattices (see Fig. 3.5), and the d = 3 TIM on the simple cubic lattice. System sizes were chosen as
L4, so that the physical length €M of the continuous direction is equal to L. Periodic boundary conditions
were imposed. During the simulations, the Binder parameter @, (t) was sampled.

For the d = 2 TIMs, the finite-size behavior of Qr(t) is expected to follow the usual scaling behavior
of 3-D Ising system as expressed by Eq. (3.23). Moreover, we expect that the d = 2 TIMs on different
lattices share the same exponents for the scaling fields ¢, h, and v, although the unknown amplitudes can be
different. The Monte Carlo data for the systems on these different lattices were independently fitted on the
basis of Eq. (3.23), according to the least-square criterion. The exponents y; and y; are set to the known
values 1.587 (2) and —0.815 (4) respectively as reported in the literature, for instance [18-20] and in papers
referenced therein. Results of these fits are shown in Table 3.1.

To test the universality of the d = 2 TIMs, we set Q = 0.6206 and ¢. = 3.04438 as in Table 3.1 for the
square lattice, and thus obtained y; = 1.583 (6), which is in agreement with the known value 1.587. The
corrections with amplitudes a1, a2, a3, a4, by and by were included, and the smallest system size used in the
fit is L = 2.

For the d = 3 TIM, we have to deal with the numerical difficulties associated with the corrections due
to the marginally irrelevant field as occur in 4-dimensional Ising-like models [21,22]. The anomalously slow
renormalization flow near the fixed point translates into a similarly slow finite-size convergence of the Binder
ratio 1 (t), and leads to correction factors including small powers of logarithms of the linear system size L.
Under these circumstances it is not feasible to determine many independent parameters in the fit. We thus
make use of the theoretical predictions for the universal value ( at the critical point and the values of the
exponents of the scaling fields. Expanding the finite-size scaling function for Q,(t), we expect the following
behavior [22]:

L~y
— Yt Gt — k
QL(t) =Q+ zk:ak{L (InL) {t te + U(ln e }
biLY2 +by(In L)™' + b3(In L)~ 2--- | (3.25)
where k£ = 1,2,---, (; = %, yt = 2 and y» = 4 — 2y, = —2. The ‘shift’ term with amplitude v seems

unimportant, and was taken to be zero. The universal value @) is taken as the analytical value: @ =
0.456947 [21,23]. Results are shown in Table 3.1.

Thus, by applying the CWA to these 2- or 3-dimensional TIMs, we obtained the critical values of the
transverse fields ¢, (see Table 3.1). Table 3.2 compares these values to those obtained by other methods
which include effective-field approximation [24,25], effective-field renormalization group (EFRG) [26,27],
series expansion [28,29] and density-matrix renormalization [31] results. The precision of the present results
indicates that our algorithm contributes a useful tool for numerical studies of transverse Ising models. The
total computer time consumed by the present simulations is about 5 processor-months at 750 MHz.
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Table 3.2: Comparison of the critical values of the transverse field ¢., as obtained by several different methods,
for the d = 2 TIMs on the square, Kagome, honeycomb and triangular lattices, and the d = 3
TIM in the simple cubic lattice.

lattice Present EFA* EFRGT SE® PI* S-wi DMRGS$
work 24,25 [27] 28,20] [6]  [30] 31]
Square 3.04438 2.742 3.021 3.08 3.225 3.044 (1) 3.046
Kagome 2.95265 2.742 2.333 - - - -

4.704 4.200 4.118 - - -
) 4.704 5.059 9.153 - - -

Triangular | 4.76811
Cubic 5.15813

)
)
)
)

(2
4
Honeycomb | 2.13250 (4
(9
(6

* : Effective Field Approximation; 7: Effective Field Renormalization Group; ®: Series Expansion; e: Path
Integral Monte Carlo simulation; I: Swendsen-Wang in continuous time; §: Density Matrix Renormalization
Group.

3.5.2 The Binder ratio and the determination of the length scale

For the isotropic Ising model on the simple cubic lattice, i.e. K,, = K. in Eq. (3.10), the ratio () defined by
Eq. (3.23) is a universal function Q(«) of the aspect ratio « = M/N. On the basis of symmetry arguments
it is plausible that a maximum occurs at « = 1.

For the corresponding anisotropic system, as obtained by extending the TIM on the square lattice in the
Trotter direction, we expect a different dependence of the Binder ratio ), (a) on the aspect ratio o = M, /N,
where M;, = €M is the physical size in the continuous dimension. This can be attributed to the spatial
anisotropy of the Hamiltonian density at the fixed-point of the anisotropic Ising model. However, the
anisotropy of the fixed-point Hamiltonian can be suppressed by an anisotropic rescaling in the strong-coupling
direction, i.e., z = 2z’ = Bz so that 0 < 2’ < fM},. Thus we expect that (), (a) of the anisotropic Ising model
follows the same universal function @, but with a replaced by o' = fa = M, /N, ie. Qq(a) = Q(af). Using
instead the logarithm of the aspect ratio as the independent variable, one finds that Q,(ln @) = Q(ln a+1n 3),
which expresses a shift on the In « scale with respect to the isotropic case.

We determined @, (In ) by means of Monte Carlo simulations for system sizes L x L x aL, with L = 8,
12, 16, 20 and 24, and several values of « in the range from 0.3 to 3.0. These data were analyzed on the
basis of the scaling formula

Qr(lna+1np) = Qoo(0) + v; LY + v LY? + (1 + dLYY)

Z ar(In B+ Ina + cL¥=)" | (3.26)
k>2

obtained by Taylor expansion in the argument of Q1 to which a finite-size correction with amplitude ¢ has
been added. This term describes an L-dependent shift of the maximum of @1,. The value of Q»(0) is
known to be 0.62358 (15) [19]. Corrections with amplitudes v; and v, describe the finite-size dependence of
Q@ near its maximum. The term with amplitude d describes the influence of the anisotropy on the irrelevant
finite-size correction.

Although the finite-size correction with amplitude c¢ is clearly observable, we could not satisfactorily
determine the associated exponent y,. We have assumed that y, = y; which is consistent with the data.
First, we neglected the term with amplitude d and fixed the value of @ (0) at 0.62358. A reasonable fit is
obtained when we include terms up to k = 7 in the expansion. We then find § = 0.880 (6), which is slightly
lower than the value 8 = 0.8881 (2) which was obtained from the spin-spin correlation function and quoted
in Ref. [9,20]. A reasonable data collapse of the numerical finite-size data for @) is thus obtained in the
Q) = Qr —v;LYi — vy LY? versus ' = Ina — cL¥¢ diagram, shown in Fig. 3.6. However, when we include
the term with amplitude d in Eq. (3.26), we obtain a more satisfactory (on the basis of the x? criterion) fit
yielding 8 = 0.886 (7).
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Figure 3.6: Data collapse of Q1 (Ina + 1n 8) shown as Q' = @, — viL¥" — vy LY* versus ' = lna — cL¥:. The
system size are L = 8 (¢), L =12 (0), and L = 16 (). The solid line is the corresponding fit.

In conclusion, the precision of the present results shows that the CWA is an efficient tool for the inves-
tigation of quantum models such as the TIM. The results of the data analysis agree with the general belief
that the Hamiltonian limit of the Ising model belongs to the same universality class as the isotropic lattice
Ising model. Furthermore, the special feature that one of the dimensions is continuous, makes the CWA
suitable for applications to models defined in curved geometries [9].
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4

Conformal invariance: The Ising model

We apply conformal transformations to the two-dimensional Ising model (4.1) and to the three-dimensional
Ising model (4.2).

4.1 The Ising model on a spheroid

We formulate conformal mappings between an infinite plane and a spheroid, and one between a semi-infinite
plane and a half spheroid. Special cases of the spheroid include the surface of an infinitely long cylinder,
of a sphere, and of a flat disc. These mappings are applied to the critical Ising model. For the case of
the sphere and the flat disc, we derive analytical expressions for the second and the fourth moments of the
magnetization density, and thus for the Binder cumulant. Next, we investigate Ising models on spheroids and
half spheroids by means of a continuous cluster Monte Carlo method for simulations in curved geometries.
Fixed and free boundary conditions are imposed for half spheroids. The Monte Carlo data are analyzed
by finite-size scaling. Critical values of the Binder cumulants and other ratios on the sphere and on the
flat disc agree precisely with the exact calculations mentioned above. At criticality, we also sample two-
and one-point correlation functions on spheroids and half spheroids. The magnetic and temperature scaling
dimensions, as determined from the Monte Carlo data and the theory of conformal invariance, are in good
agreement with exact results.

4.1.1 Introduction

In two dimensions, the consequences of conformal invariance for critical systems have been studied ex-
tensively. These studies have produced a large amount of results for both bulk and surface critical phe-
nomena [1-4]. One of the reasons is that the conformal group in two dimensions is an infinite-parameter
group, so that the restrictions imposed by conformal invariance are strong. As a result, the forms of the
bulk and surface correlation functions, and thus the critical exponents are limited by conformal invariance.
Under Cardy’s mapping between an infinite plane and the surface of a cylinder [5], the algebraic decay
of correlations in the plane is transformed into an exponential decay along the cylinder. By utilizing the
Schwarz-Christoffel formula, Burkhardt et al. conformally mapped the infinite plane onto a rectangular
geometry [2]. Furthermore, Cardy and Burkhardt investigated the semi-infinite plane and the parallel-plate
geometry with uniform or mixed boundary conditions [4,6]. The universal properties of a system inside a
circle with free or fixed boundary conditions have been studied both exactly and numerically [2,3,7].
However, as far as we know, no applications of conformal mappings onto curved geometries have been
reported in two dimensions. In this work, we use a conformal mapping of an infinite plane onto a spheroid.
By rotating an ellipse about the minor or the major axis, one obtains an oblate or a prolate spheroid,
respectively. Special cases include the surface of an infinitely long cylinder, of a sphere, and of a flat disc.
The latter case is reached when the polar diameter of the spheroid approaches zero, so that one obtains the

37



interiors of two circles connected at their perimeters. Thus, this transformation includes Cardy’s mapping
as a special case. We also perform a different conformal mapping from a semi-infinite plane onto a half
spheroid.

We apply these mappings to the critical Ising model. From the known bulk two- and four-point correlation
functions in the plane, and the assumption of covariance of the multi-point correlations under conformal
mappings, the second and the fourth moments of the magnetization density ¢ on the sphere and on the flat
disc can be expressed in terms of integrals. Since a direct analytic calculation of most of these integrals is
not feasible, we evaluated them by means of Monte Carlo integration. As a result, we obtain the universal
quantity Q = (0?)?/(0*), and ratios 72 = (02)/(0?)q and ry = (0*)4/(0*)4, where the subscripts s and d
represent the sphere and the flat disc, respectively.

The nonzero net curvature of a spheroid poses a problem for numerical applications of conformal invari-
ance. The difficulty is that a system defined on the spheroid seems to defy any acceptable discretization.
Even if the net curvature of a given geometry is zero, numerical simulations may be complicated due to
the presence of curved boundaries. An example is a system inside a circle. Badke and Res et al. have
approximated this geometry for the Ising model. A circle is drawn on a square lattice and then free or fixed
boundary conditions are imposed by removing or freezing the spins outside the circle, respectively [3,7]. The
effectivity of this approximation is, however, somewhat limited because of irregular finite size behavior, as
shown later.

Recently, a continuous cluster Monte Carlo algorithm has become available for the anisotropic limit of
the lattice Ising model [8,9]. One of the interesting properties of this model is that one of its dimensions
is continuous, which enables one to apply the continuous cluster method to curved geometries such as a
spheroid. Using a Wolff-like version of this algorithm [9], we investigate the Ising model on several spheroids,
including a sphere, a flat disc, and a prolate spheroid. Near the critical point, we sampled the moments of
the magnetization density and the quantity (. The Monte Carlo data were analyzed by means of finite-size
scaling. For the sphere and the flat disc, the numerical results for the ratios @, ro and r4 are in excellent
agreement with the aforementioned exact calculations, which will be presented in detail in Sec. 4.1.5. At
criticality, the two-point magnetic correlations were sampled. Moreover, the Ising model on half spheroids
was studied, including that on a half sphere and inside a circle. Both fixed and free boundary conditions
were used. The density profiles of the magnetization and of the energy, i.e., one-point correlations, were
sampled. From the Monte Carlo data and the theory of conformal invariance, we determined the magnetic
and temperature scaling dimensions with a satisfactory precision.

4.1.2 Conformal mappings

In three-dimensional Cartesian coordinates (z,y, z), a spheroid can be defined by

2 2 2
x Yy z
§+§+b—2:1,(a,b>0), (4.1)
where a and b are the equatorial and the polar radii, respectively. The parametric equations for the spheroid
are therefore

x =asinfsiny , y=asinfcosy, z=~bcosh, (4.2)

in which 0 < 8 <7 and 0 < ¢ < 27. Thus, the line element of the spheroid is

ds" dz? + dy? + d2? = (a® cos® 0 + b*sin” §) dB* + a® sin? 0 dop?

dw? + f(w) dy? . (4.3)

Here, we have defined a new coordinate w to specify the distance along the ellipse from the 'north pole’ as a
function of 6 (see Fig. 4.1). The coordinate w is related to the parameter § by w = f00 Va2 cos? v + b2 sin’ v dv,
which is an elliptic integral of the second kind, and f(w) = a?sin? 6.

In polar coordinates (r, ), the line element in an infinite plane is

ds® = dr® +r?dy® . (4.4)
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Figure 4.1: Example of an ellipse with 1/e = a/b = 2. The corresponding oblate spheroid is obtained by the
rotation of the ellipse about the z direction. The new coordinate w specifies the distance along
the ellipse from the north pole.

A conformal transformation from the infinite plane into the spheroid is thus established by the equations

0
r=e¢"99 and ¢ =1, with g(0) = / \/(b/a)? + cot>vdv (4.5)

and by the requirement that the points r = 0 and r = co are mapped onto points § = 7 and 0, respectively.
The transformation (4.5) is conformal, because the line elements (4.4) and (4.3) differ only by a position-
dependent factor:

ds® = ds™ [e7299) /a% sin? 0] . (4.6)
Under a conformal mapping (7 — 7'), a multi-point correlation function covariantly transforms as [1]
(o1(7) 02(72) -+ ) = b(F) =X b() X2 - (o1 (7)) 02(F) -+ ) (4.7)

where o; is a scaling operator (e.g., associated with the magnetization density or the energy density), X; is
the corresponding scaling dimension, and b(7) is the rescaling factor, which reads b(7)? = ds®/ds"2.
In the infinite plane, the bulk two-point correlation function at criticality behaves as [10]

<U(F1) U(F2)>p1ane = B|F2 - 7?1|_2X ) (48)

where B is a constant. Thus, according to Eqs. (4.5)-(4.8), one obtains the correlation function g;(#) of two
points (6,) and (0,v + 7) on a spheroid (¢ < 7)

g1(0) = B(2a sinf) 2% . (4.9)

The evaluation of the mapping formula (4.5) is complicated in general. However, for the special cases
mentioned above, it simplifies and yields more results.

I. Surface of a cylinder
As the polar radius b — oo, the spheroid approaches the surface of an infinitely long cylinder. The
substitutions of a new coordinate u = bf and the radius R = a of the cylinder lead to

ds"” = du? + R? dy? | (—o0 < u < 00,0 < < 2m), (4.10)
and the mapping formula (4.5) simplifies to
r=e" VR and p=1. (4.11)

Thus, Cardy’s mapping is restored [5]. The critical two-point correlation functions along the cylinder are
then
(o (1, ) 0 (s, ) = BR™X e=XIm—ual/R(] _ g=lur=us|/R)=2X (4.12)
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Figure 4.2: Illustration of the conformal mapping of an infinite plane on the surface of a sphere.

So the correlations decay exponentially for |uq — ua| > 0.

[1. Surface of a sphere
One obtains a sphere when the polar and the equatorial radii are equal, i.e., b = @ = R. The line
element (4.3) reduces to ds’> = R? (d6? + sin? § d¢?), and the mapping formula becomes

r=2Rcot(8/2), and @ =1. (4.13)

A geometric picture of this mapping involves the placement of a sphere with radius R on top of an infinite
plane (Fig. 4.2). The mapping of a point 7 in the plane on the sphere is defined as the intersection between
the sphere and the line connecting the north pole and the point 7. Here, the vector 7 stands for the point
(r,) in Eq. (4.13). According to Eqgs. (4.7), (4.8), and (4.13), one has the pair correlation function on the
sphere as

(0(81,91)0(02, 1)) = BR™2X27X[1 — sin 6, sin fy cos(1p1 — 2) — cos#; cosfa] =% . (4.14)

If one introduces R to represent the vector from the center of the sphere to the point (6,), equation (4.14)

reduces to . R . R
(o(R)o (i) = BIR: — Rol 2%, (4.15)

which, interestingly, has the same form as Eq. (4.8).

[1l. Surface of a flat disc
In the limit b — 0 of an oblate spheroid, a flat-disc geometry is reached. The coordinate w and the
element (4.3) respectively reduce to

w=asinf and ds?=dw?+w?d)?, (w<R=a), (4.16)
and the mapping formula becomes

r:{w/R 0<r<1 (4.17)

R/w r>1

This mapping can be generalized to any number of dimensions.
Under the mapping (4.17), one finds two formulas for g(uw},ws) = (o(w}) o(w2)), of which the applica-
bility depends on whether or not the two points 77 and 73 lie in the same face of the flat disc:

i) = { Blw? + w? — 2wyws cos(¢y — o)) ™% (wy,wh : same face) (4.18)

Bl(wiws)? + R? — 2wyws cos(¢y — )] (w1, w> : opposite faces)
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Figure 4.3: Illustration of the conformal mapping from a semi-infinite plane on a single disc.

where we have introduced @ to represent the vector from the center of the disc to the point (w, ).

The derivative Or/0w in Eq. (4.17) is discontinuous at the edge w = R. One may thus expect that
finite-size corrections arise for the critical behavior near the edge.

Next, we describe the conformal transformation between a semi-infinite plane and a half spheroid. The
latter object is defined by Eq. (4.1) but with z < 0. The mapping can conveniently be described in two
steps. First, one parameterizes the plane complex numbers z = z + iy, so the formula 2’ = (z — i)/(z + 9)
maps the semi-infinite plane R X RT onto the interior of a unit circle (Fig. 4.3) [1]. This conformal mapping
yields the profile of a scaling operator inside a unit circle as

(o(r)) = (1 —r")7>%. (4.19)

This result can be generalized to any number of dimensions [1,2]. Second, the interior of the unit circle is
conformally mapped on the half spheroid under the transformation (4.5). In the limit b — oo, a semi-infinite
cylinder (Eq. (4.10) but with u > 0) is reached, on which the profile of a scaling operator behaves as

(o(u)) oc R=X e uX/B (1 — guX/2R)=X (4.20)
For b = a = R a half spheroid reduces to a half sphere, and one has

(o(0)) o (R cosf)™% . (4.21)

4.1.3 Exact calculations

Since the transformations between the plane and the special cases of the spheroid (Egs. (4.11), (4.13), and
(4.17)) are relatively simple, it is possible to derive the expressions for {(0?) and (¢*) from the exact solution
of the Ising model in the infinite plane [10]. For the case of an infinitely long cylinder, Burkhardt has
evaluated these expressions by means of Monte Carlo integration [11]. The result is consistent with that
obtained from direct simulations of systems on the cylinder [11]. Here, we follow analogous procedures for
the surface of a sphere and of a flat disc.

In the continuum limit, the second and fourth moments of the magnetization density (0?) and (o*) can
be given in terms of the two- and four-spin correlation functions, respectively:

(0?) = p? /d5'1 dSs g(r1,73) , and (o*) = p4/d51 ~-dSy g(r1, 73, 73,71) (4.22)
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where p is the areal density of the spins, and dS; represents the number of spins in an infinitesimal area.
For a sphere, p and dS; can be written as 1/(4wmR?) and R?sin®; df; dy;, respectively. For a flat disc,
p=1/(2nR?) and dS; = r;dr; de;. R is the radius of the sphere or the flat disc. g(r7,73) and g(r7,73,73,71)
are the two- and four-spin correlation functions.

The two-point correlation function is known exactly (Eq. (4.8)). An exact result is also available for
the bulk four-spin correlation of the two-dimensional critical Ising model, which is given in terms of pair
correlations by [12]

9 1/2
9(1,2,3,4) = % { {9(1’2);58:2;38’:29(4’ D feon+co 4)} . (4.23)

Here, for simplicity, we have written g(r7,73) and g(r1,r3,73,71) as g(1,2) and g(1,2, 3,4), respectively. The
notation (7 <+ j) represents the expression between square brackets [] with ¢ and j interchanged.
The universal amplitude ratio @ = (o2)2/(o*) is simply related to the Binder cumulant [13].

I. Surface of a sphere
The substitution of the pair correlation on a sphere ( Eq. (4.14)) leads to

2 ™
<0’2> = p247TR2 / d'(/)z / d02 R2 sin02 g(0,0;92,1/)2)
0 0

= BR*2X2*X*1/ dé- sin02(1—c0502)*x
0

= BR272X/1-X), (4.24)

For the Ising model, X =2 —y;, = 1/8 so that (o) = (2''/4/7)BR~?X ~ 0.961 024 5BR*¥.
Eqgs. (4.22) and (4.23) and substitutions of the integration variables z; = 6;/m and y; = v; /27 lead to

1
(04) = BR_4X7T32_2X_3/ dzy dzs dzy dys dyy f(22; 23, Y3; T4, Ya) (4.25)
0

with f(za;3,ys; T4, ys) = sin(mxs) sin(mws) sin(mrs)g(1,2,3,4), where the coordinates of these four points
are (0,0), (7z2,0), (7zs3,27ys), and (74, 27y4). This equation was evaluated with a Monte Carlo procedure,
which approximates the integral by

N
(c%y = BR=*X 322X -3 y—1 Z f(:vgz);:cgl),yéz);xff),yy)) , (4.26)

i=1

where (¥ and y( are uniformly distributed random numbers in the interval (0,1). It yields (o) =
BR%%(1.198 78 £ 0.000 02), where the two decimal numbers are the average and standard error obtained
from 1000 determinations of the integral. Each integral involves 105 Monte Carlo steps.

Thus, the value of the dimensionless quantity is obtained as ¢ = 0.77042 % 0.000 01.

[1. Surface of a flat disc

The critical pair correlations on a flat disc are given by Eq. (4.18). The evaluations both of (¢%) and
(o*) were done by means of Monte Carlo procedures because in this case the symmetry lower than that of
a sphere. The calculation must allow for the fact that the form of the pair correlation depends on whether
or not the two points are in the same face (Eq. (4.18)). Taking into account all possible distributions of the
four correlated points, one finds

R 2
(o*) = P4/0 dry--- dr4/0 dapy - -d, g ry7rarara[290(1,2,3,4) + 891 + 692] , (4.27)
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where go(1,2,3,4) defines correlations of four points on the same face, g; applies to three points on one face

and one on the other, and g, applies to two points on one face and two on the other. From this calculation, we

obtain (0?) = R72X(1.04156+0.00001), (o*) = R~*%(1.412734+0.00005), and thus @ = 0.7679140.00003.
The ratios of moments of the magnetization density on the sphere and on the flat disc are thus:

ry = (0%)s/{0%)q = 0.92268(2) , and ry = (0?),/(0*)q = 0.848 57(4) , (4.28)

where the number between parentheses stands for the estimated error in the last decimal place.

4.1.4 Models and algorithms

As mentioned before, simulations on a spheroid are difficult due to the incompatibility of regular lattices with
curved geometries. Here, we tackle this problem by using the Hamiltonian limit of a two-dimensional lattice
Ising model. For such a system, an efficient continuous Wolff-like method has been explained in detail [9].
Here, we describe the application of this algorithm to simulations in curved geometries.

The Hamiltonian of an Ising model on a L x L square lattice with periodic boundary conditions reads

H/kpT = — Z[Kr Ouy Oatiy + Ky Ouy 0w yyi] (4.29)

z,y

where the integers 1 < z,y < L label the lattice sites. K, and K, are the coupling strengths along the x
and y direction, respectively. The spins can assume the values o, , = 1. The critical line of this model is
given by [10]

sinh (2K,) sinh (2K,) =1 . (4.30)

In the anisotropic limit € — 0, the couplings therefore are
K, =¢€/t, exp(—2K,) =€, (4.31)

where t is a temperature-like parameter whose critical point is t. = 1. It is known that in this limit the
system is equivalent to the quantum transverse Ising chain [14,15] with nearest-neighbor couplings and an
external field ¢:
Haom = =Y (050541 +10%) (4.32)
T
with 0% and ¢” Pauli matrices.

Since our purpose is the application of conformal invariance, we have to restore isotropy asymptotically
for the system with K, < K,. This can be done by increasing the number of spins in the y direction by
a factor L,/L, = sinh 2K, = 1/2¢ [16]. Meanwhile, one rescales the y direction as y’ = 2y/e so that the
system sizes along the = and y direction are equal again: L; = L,. As a result, the y dimension becomes
continuous as € — 0, i.e., there is an infinite number of spins per physical length unit, and the lattice structure
transforms into L lines of length L. The spins form ranges of +/— signs, and the number of interfaces in
the system is of order L2.

For this anisotropic limit, a full description of the aforementioned continuous Wolff-like algorithm has
been given in Ref. [9]. For the convenience of the reader, we summarize the essential points. During the
formation of a cluster, a bond between nearest-neighboring spins with the same sign is ’frozen’ with a
probability P = 1 — exp(—2K) or ’broken’ with 1 — P. Sites connected by ’frozen’ bonds are included in
the same cluster. For the anisotropic limit, the probability P in the z and y direction will be of order ¢ and
1 — ¢, respectively. Thus, the strong-couping bonds will continue to connect spins in the y direction until
a 'break’ occurs with a probability of order € per bond. Therefore, after the rescaling discussed above, the
connected spins along the lines in the y direction form ranges of +/— signs with lengths of order 1, and the
breaks are just the aforementioned interfaces. Moreover, the average distance of the bonds between adjacent
lines is also of order 1. These weak-coupling bonds serve as ’bridges’ between neighboring lines to connect
ranges of the same sign, and help to build clusters. Analogous to cluster methods for the discrete models, the
aforementioned continuous cluster algorithm flips one or more clusters during a Monte Carlo step depending
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Figure 4.4: Decay of the difference d,,,(r) of the magnetic correlation functions in the z and y direction,
shown as Ind,, vs Inr. The system size is 40 x 40.

on whether it is Wolff-like or Swendsen-Wang-like. The correctness and efficiency of this method has been
demonstrated both in two and three dimensions [9].

Although the long-distance behavior of such an anisotropic system is the same in the z and y direction,
corrections may exist at short distances. We investigate this problem in a system with size L = 40. We
sampled the difference d,,(r) of the magnetic correlation functions over distances  in the x and y direction

1
dm (’I“) = V Z/ dy <0—w7y Oxtry — Oayy Um,y+r> ) (433)

where V=3 [ dy = L x L is the area of the square. A plot of d,, as a function of r is shown in Fig. 4.4.
The fact that the line becomes approximately straight at the right-hand side indicates that the leading
correction behaves as r¥». From Fig. 4.4, we estimate the associated exponent y, ~ —2.25, so we simply
assume that y, = —2Xj + y;, where y; = —2 is the correction-to-scaling exponent in the two-dimensional
Ising model, and X}, = 1/8 is the magnetic scaling dimension. Taking into account the periodic boundary
conditions, we fitted the Monte Carlo data according to the least-squares criterion on the basis of

dpm = 1725 {ay [r¥ + (L — )Y ] + ag [ + (L — )]}, (4.34)

where aj,as are unknown parameters, and the term with y; = —3 is another significant correction. We
obtain a; = 0.0228(6) and a> = 0.027(3).

Since the model is now continuous in the y direction, one can investigate it in curved geometries such as
a spheroid. As an example, we consider the case of a sphere S2. The structure of the anisotropic model in
the flat geometry defined by Eqs. (4.29) and (4.31) consists of L lines of length L. Each of these lines can
be understood as a circle S because of the periodic boundary condition. As a result, one can represent the
lattice structure’ on a sphere S? by L uniformly distributed circles with varying radius (Fig. 4.5), such that
there are strong couplings along the circles while weak couplings occur between adjacent circles. The location
of the kth circle is 8 = (k — %)W/L, with k = 1,2,--- , L (Fig. 4.5), and the corresponding circumference
is ¢ = 2Lsin6y, which accounts for the S? curvature. Since the probability of a weak-couping bond is
defined per unit of length, and the adjacent circles on a sphere have different radii, the distribution of these
weak-coupling bonds still requires a length scale. It was chosen as the average length scale of both circles.
Self-interactions via weak bonds over the poles # = 0 or 7 could, in principle, occur at the circles with & = 1
and L, respectively. But these interactions may be set to zero because the circles at & = 0 and 7 have a zero
length. By means of the continuous Wolff-like algorithm, we simulated the above model on a sphere. The
magnetic correlation of diametrically opposite points was sampled,

06 = [ a0 (00,00t — 6,0+ ). (4.35)
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Figure 4.5: Example of ’lattice structure’ on a sphere, on which L = 5 circles represent continuous lines of
spins in the strong-coupling direction. The full and dash-dotted parts of the circles represent
(arbitrarily chosen) ranges of spins with different signs.
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Figure 4.6: The magnetic correlation functions go(#) on spheres vs 6. The Monte Carlo data are shown
for system sizes L = 8 (), L = 12 (0), L = 16 (A), and L = 20 (¢). The lines show the
corresponding fits. The angle 6 is given in radians.

An example for systems without self-interactions at § = 0 and 7 is shown in Fig. 4.6. As the number of the
circles L increases, the pole § = 0 is approached, and the spacing of adjacent circles decreases. The lines
are quite straight, which indicates that the spherical symmetry is restored asymptotically. We have also
investigated the system with self-interactions over the poles. Significant deviations from isotropy occur in
this case.

On a microscopic scale, the ’lattice’ structure on a sphere is the same as that on a flat plane. However, for
finite L, apart from microscopic deviations from the uniformity, the discretization in # may lead to a global
effect on the coupling strength. According to the trapezium rule, we expect that this deviation vanishes
as L2, Under renormalization this effect leads to corrections proportional to L¥*~2, where y; = 1 is the
temperature renormalization exponent. Thus, this effect vanishes when L — oo, and the critical point on a
sphere is identical to the one on the flat plane. Moreover, since the exponent of the irrelevant field y; = —2,
it is expected that the term with L¥*~2 dominates over the corrections of order LY, as will be confirmed
later.

As an alternative way for the distribution of L circles on a sphere, the location of the kth circle can be
given by 0 = (k — 1) /(L — 1), so that in this case the circumference of the sphere is ¢ = 2(L — 1). It was
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Figure 4.7: The dimensionless quantity Qg at criticality vs R~!.

found numerically that the spherical symmetry is less well restored in this case. That may be due to the
singularity of the zero radii of the circles with £ =1 and L.

The same procedure can be applied to the disc geometry. The kth circle is simply located at ry, = (k—1)
and its circumference is given by ¢ = 2w (k — 1), with k = 1,2,--- , L. For a general spheroid with constant
ratio e = b/a, the problem that the circles should be evenly distributed is solved in two steps. First, since the
circumference of the corresponding ellipse is 2L, the value of the parameter a can be numerically calculated

from the equation L = afOL dw = af(;r df+/cos2 @ + e2 sin? f. Second, the location of the kth circle can be

obtained by solving for 8, in equation k — % =a foo'“ df+/cos? 6 + e2sin” . The corresponding circumference
is ¢ = 2masing, (k=1,2,---,L).

4.1.5 Numerical results

By means of the continuous Wolff-like algorithm, we performed simulations of the Ising model on a sphere,
on a flat disc, on a spheroid with e = 2, on a half sphere, and inside a circle.

I. Surface of a sphere

For systems on a sphere, we sampled (o2), (o), and Qg(t) near the critical point. In addition, the
two-point magnetic correlation function g1(8) = {(6(0,v¢)o(r — 6,4)) was determined at criticality. The
system sizes are taken as 15 values ranging from L = 8 to 96.

According to finite-size scaling, in the critical region, @ g(t) behaves as

Qr(t) = Q.+ a1 RV (t —t.) + aa R** (t — t.)? 4+ -+ + by RY* + by RV + - - - | (4.36)

where a1, a2, b1, and bs are unknown parameters, and (). is the universal value for the infinite system at
criticality. The correction with exponent y. = y; — 2 = —1 is due to the discretization of the sphere as
explained above. An example is shown in Fig. 4.7. The approximate linearity indicates that the approach of
Qr(0) to Q. occurs as R~!. Formula (4.36) was fitted to Monte Carlo data according to the least-squares
criterion. The value of the temperature parameter is fixed at t. = 1. We obtain ). = 0.77043(3), which is
consistent with the exactly calculated value 0.770 42(1) in Sec. 4.1.3.

Similarly, the finite-size behavior of (o2) is

(0% = R™* " [my + a1 RVt (t — t.) + aa R** (t — t.)> +--- + by RY* + byRY +---], (4.37)
and that of (o) is

(0% = R™**" [my + a1 RY* (t — t) + asR** (t — t.)? + -+ + b1 RY + boRY + -+ -] . (4.38)
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Figure 4.8: Decay of the magnetic correlation function g;(#), shown as In g;(#) vs Insinf. The number of
circles on the sphere is L = 96. The line shows the corresponding fit.

Table 4.1: Fits of the correlation functions g;(#) on spheres.

Lmin Lmax amax Xh agp a1 a2 |
8 96 140  0.12497(4) 0.72215(5) -0.026(2) -0.023(4)
as bO bl c e e Ce
0.0006(1) -0.427(3) 0.21(2)  -0.209(3)

The exponents —2X, and —4X), of R are obtained by the substitution of X, = 1/8. The fits yield my =
0.619 88(3) and m4 = 0.498 75(5).

According to Eq. (4.14), g1(8) o< (L cos#)~2*» which is confirmed numerically in Fig. 4.8. On the basis
of finite-size scaling and conformal invariance, the correlation function g¢; (¢, L) is expected to behave as

q1(0,L) = L™2%% {(cos §) ~2Xr+eL™ a4 + ay (Lw — LO)Y* + ax(Lm — LO)Y: +
as (L sin 0)“] + boLyc + blLy’} s (439)

where ag, a1, as, by, b1, ¢ are unknown parameters. The corrections with amplitudes a; and a> are due to
the deviations from isotropy at short distances; the term with as accounts for the inhomogeneity because of
the discretization of the 6 direction. Equation (4.39) was fitted to the Monte Carlo data. As a consistency
test, we choose X, as a free parameter. We obtain X;, = 0.12497(4), which is in a good agreement with the
exact result X, = 1/8 (see Table 4.1). Although the parameter a3 is quite small, it is necessary to obtain a
reasonable residual.

I1. Surface of a flat disc

The system sizes on the flat-disc geometry were taken as values of 12 odd numbers ranging from L = 13
to 91. The corresponding radii are L/2. Near the critical point, we sampled Qg, (¢?), and (o*). The
finite-size behavior of these quantities also follows from Egs. (4.36), (4.37), and (4.38), respectively. The
fits yield that ms = 0.6719(1), m4 = 0.5879(1), and Q. = 0.768 02(15), which agrees well with the exact
calculation @, = 0.76791(3). Thus, we also obtain the ratios r» = 0.92263(13) and r4 = 0.84841(14), which
are consistent with Eq. (4.28).

At criticality, three types of two-point magnetic correlation functions were sampled. We denote ¢ (r) as
the one between two points with same coordinates (r,1) but on opposite faces, and g2(r) and g3(r) as those
between two points (r, 1) and (r,v + 7) on opposite and on the same faces, respectively. On the basis of
Eq. (4.18), one expects that

g1(r) o< (L — 47"2/L)_2Xh , g2(r) o< (L + 47“2/L)_2X" , g3(r) oc r72%n (4.40)
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Figure 4.9: Decay of the magnetic correlation function g(r), shown as Ings(r) vs In(1 + 4r2/L?). The
finite-size parameter of the flat disc is L = 17.

A plot for go(r) is shown in Fig. 4.9. The curvature near r = L/2 is due to the discrete property of the
derivative 07/ 0w in the mapping formula (4.17). We assume that this effect decays as in order of (L/2 —r)Ye
when r approaches zero. Thus, one can obtain the finite-size behavior of these quantities by including
corrections in Eq. (4.40). For instance, the quantity g3(r) follows

g3(r) = r72Xn el 00 4 ayr¥e 4 agr¥ +di (D)2 — 7)Y 4+ boLY +---]. (4.41)

By introducing a cutoff at large r, we made fits for ¢;(r), g2(r), and gs(r) independently, and obtain
Xn =0.12492(9), X, =0.12501(16), and X, = 0.12505(7), respectively, in good agreement with the exact
result.

[1l. Spheroids with e = 2

As an example, we performed Monte Carlo simulations for a prolate spheroid with the ratio e = b/a = 2.
We sampled the universal ratio Qg and the magnetic correlation function g () = (o(8,¢) o(0,¢ +m)). The
analysis of the finite-size behavior of Qg leads to the result Q. = 0.7643(1). From the Monte Carlo data for
91(#) and Eq. (4.9), we obtain X, = 0.1249(2).

We also sampled the correlation functions g2 (0) = (o(6,v) o(7—8,1)). The mapping formula is relatively
complicated in this case, and we did not work out the expression of g2(#). But we observe that a plot of the
Monte Carlo data In[g2(8)] versus In(1+4+/e2 + 1tan? #) approximately follows a straight line (Fig. 4.10). By
means of finite-size scaling, we obtain the value of the slope as 0.124 1(8), which is close to the exact result
X, =1/8.

IV. Half surface of a sphere with fixed boundary conditions
We also investigated the anisotropic limit of the Ising model on a half sphere. An infinite ordering
field was applied at the equator. The system sizes are taken as 10 values ranging from L = 4 to 40. The
corresponding radius is R = (2L — 1)/m. We sampled the magnetization density m = (o(6)) and the energy
density e as a function of #. Since the interactions along the 6 and v direction are of different forms, the
energy density can be represented in two ways: the interactions due to the weak couplings (o (8) (6 + 1)),
or the density of interfaces along the strong couplings (n(#)). We chose the latter because it needs much
less computer time. The behavior of the magnetization density follows Eq. (4.20), and the energy density
behaves as
e(d) = (n(h)) =no + a(Lcosh) =Xt | (4.42)

where ng is the bulk density, and X; is the temperature scaling dimension. An example is shown in Fig. 4.11.
Finite-size analyses of the quantities (o(6)) and (e()) yield X}, = 0.12499(2) and X; = 0.995(6) respectively,
which are again in excellent agreement with the exact values.
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Figure 4.10: Decay of the magnetic correlation function g»(f), shown as In go(#) vs In(1 + ve? + 1tan?6).
The finite size of the spheroid is L = 64 and e = b/a = 2.
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Figure 4.11: Decay of the fluctuation of the energy density e(f) — ng for half the surface of a sphere, shown

as In(e —np) vs Incos@. The system size L = 24. ng is obtained from the Monte Carlo data for
flat systems.
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Figure 4.12: Decay of the magnetization density m = (o(r)), shown as Inm vs In[l — r? /(L — 1/2)?]. The
system size is L = 16. Fixed boundary conditions were applied.
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Figure 4.13: Decay of the magnetization density m = (o(r)), shown as Inm vs In[l — r? /(L — 1/2)?]. The
circle was cut from a L x L square lattice with L = 24.

V. Interior of a circle

Conformal invariance on the interior of a circle with free and fixed boundary conditions has been numer-
ically tested by Badke and Res et al. [3,7]. They approximated this geometry by drawing the circle from a
squares lattice. In this way, the symmetry along the v direction is broken, and irregular finite-size effects
arise (Fig. 4.13). Thus, it seems appropriate to simulate the interior of a circle by means of the continuous
algorithm. We used both free and fixed boundary conditions. The system sizes are taken as 10 values ranging
from L = 8 to 40. An example is shown in Fig. 4.12, and no irregular effects are observed. Analyses yield
that X = 0.124994(15) and X; = 1.002(7).

4.1.6 Discussion

Conformal invariance is known as a powerful tool to investigate critical behavior. Its applications in two
dimensions have thus far been focused on flat systems. We have shown how one can apply it in curved
geometries. The validity of our method is confirmed by the agreement between predictions based on conformal
invariance and our numerical results. Moreover, in the case of the Ising model, the difficulty of numerical
simulations in curved geometries is solved by the recently developed continuous cluster algorithm. Trivial
modifications can generalize this algorithm to Potts models, including the percolation model [18].
Furthermore, since conformal mappings of three-dimensional systems usually lead to curved geometries,
this algorithm enables us to investigate applications of conformal invariance in three dimensions [9,17,18].
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4.2 Bulk and surface criticality: three-dimensional Ising model

Using a continuous cluster Monte Carlo algorithm, we investigate the critical three-dimensional Ising model
in its anisotropic limit. From the ratio of the magnetic correlations in the strong- and the weak-coupling
directions, we determine the length ratio relating the isotropic Ising model and the anisotropic limit. On this
basis, we simulate the critical Ising model on a spherocylinder S% x R!, i.e., a curved geometry obtained from
a conformal mapping of the infinite space R3. From correlation lengths along the spherocylinder, combined
with the prediction of conformal invariance, we estimate the magnetic and thermal scaling dimensions as
Xp = 0.5182(6) and X; = 1.419(7), respectively. The behavior of the Binder cumulant is also determined
in the limit of an infinitely long spherocylinder. Next, free boundary conditions are imposed on the equa-
tors of the spherocylinder, and thus the geometry S* x ST x R! is obtained. The surface magnetic scaling
dimension is estimated as X ,(ls) = 1.263(5). The consistency of the aforementioned estimations and existing
results confirms the three-dimensional Ising model is conformally invariant. Further, the precision of these
results reveals that, as in two dimensions, conformal mappings provide a powerful tool to investigate critical
phenomena. With the continuous cluster algorithm, we also perform simulations of systems inside a conven-
tional solid cylinder. The surface magnetic correlation length differs, within the estimated error margin, by
a factor 7/2 from that along a half spherocylinder S* x ST x R! with the same radius.

4.2.1 Introduction

Applications of conformal invariance in two dimensions have been explored extensively and produced fruitful
results both for bulk and surface critical phenomena [1,4,19,20]. Conformal mappings provide relations
between critical systems in different geometries. A well-known and particularly useful example is Cardy’s
mapping between an infinite plane and the surface of an infinitely long cylinder, which transforms the
algebraic decay of correlations in the plane into an exponential decay along the cylinder [5,6]. Because a
cylinder is pseudo-one dimensional, its numerical investigation is simpler than that of a two-dimensional
plane. This mapping can be generalized to any number of dimensions [6]. In three dimensions, Cardy’s
mapping transforms an infinite space R?® into a pseudo-one-dimensional geometry S? x R!, i.e., a curved
geometry extending the surface of a sphere S into another dimension R'. Thus, one also expects that, as in
two dimensions, Cardy’s mapping also provides a significant help in numerical studies of critical phenomena.
In particular, we need such studies because exact results are scarce in three dimensions. However, the
nonzero net curvature of the geometry S? x R! poses a serious obstacle for numerical investigations.

Recently, we solved this problem for the case of the Ising model by using the Hamiltonian limit of
the lattice Ising model and a continuous cluster Monte Carlo algorithm [9,17]. The key ingredient of this
infinitely anisotropic model is that one of its dimensions is continuous, so that the problem of discretization
for one of the lattice directions is avoided. In two dimensions, we have numerically studied a conformal
mapping between an infinite plane and a spheroid [21]. Special cases of the spheroid include the surfaces of
an infinitely long cylinder, of a sphere, and of a flat disc. Thus, this mapping includes Cardy’s transformation
as a special case. A brief report has also been published about the confirmation of Cardy’s mapping in three
dimensions [17], in which the aforementioned geometry S? x R! was named a ‘spherocylinder’. In the present
work, the techniques involved in Ref. [17] will be described in more detail. Moreover, by mapping the semi-
infinite space R? x Rt onto the half spherocylinder S? x Rt and S' x St x R!, respectively, we investigate
the surface criticality of the Ising model in three dimensions.

The present work also includes simulations of the Ising model inside a conventional solid cylinder. Com-
pared to the aforementioned half spherocylinder, the conventional solid cylinder has a zero net curvature.
However, numerical simulations suffer from complications due to its curved surface. Such a difficulty is
avoided by using the Hamiltonian limit of the lattice Ising model and the continuous cluster algorithm. Free
boundary conditions are imposed on the surface of the conventional solid cylinder, and correlation functions
along the cylinder are sampled. In fact, the conventional solid cylinder is closely related to the half sphero-
cylinder S' x St x R'. The former object is obtained by replacing the half-sphere of the latter object by
the interior of a circle.
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4.2.2 Conformal mappings

In two dimensions, one may parametrize the infinite plane as a complex number z = z + iy. Cardy’s
transformation is then expressed as z' = Rlnz [5]. The geometry of z’' can be interpreted as the surface
of an infinitely long cylinder or a flat strip with periodic boundary conditions. For a critical system with a
scaling dimension X, Cardy’s mapping yields the correlation length along the cylinder as

{r=R/X, (4.43)

where R is the radius of the cylinder [1].

This mapping can be generalized to any number of dimensions [6]. In three dimensions, one may express
the flat space R® in spherical coordinates (r,y). Cardy’s mapping is then described by the coordinate
transformation:

(7“70, 90) = (eU/R797<p) (—OO <u< OO) ) (444)

where R is a free parameter. Thus a geometry expressed by the variables (u, 6, ) in Eq. (4.44) is reached.
It is obvious that this geometry is analogous to the surface of an infinite cylinder as mentioned earlier. The
latter object can be recognized as the extension of a circle S! into another dimension R. Analogously, the
former geometry can be obtained by extending a sphere S? into another dimension R. This dimension is
perpendicular to the surface of the sphere, which, unfortunately, cannot be visualized in three-dimensional
space. Taking into account this analogy, we named in Ref. [17] the three-dimensional geometry S* x R a
‘spherocylinder’.

The reason why equation (4.44) is conformal is as follows. First, the metric of the flat space R? is
expressed, in spherical coordinates, by the invariant line element

ds? = dr? +r? (d§* +sin? 0 dp?) , 0<0<7T,0<p<2m). (4.45)
Under the formula (4.44), equation (4.45) transforms as [6]
ds? = R72e*Y/ B [du® + R? (d6” + sin® 0 dp?)] , (4.46)

where ds’ 2 = du? + R? (d#? + sin? @ dp?) reflects the natural metric of the spherocylinder S? x R'. Equa-

tion. (4.46) shows that the line elements ds ? and ds’ ? differ only by a position-dependent factor R~2e2%/ %,

Thus, the mapping (4.44) is conformal.
Under a conformal mapping (7 — 7'), a multipoint correlation function covariantly transforms as [1]

(o1(71) 02(72) -+ )i = b(FL) X1 b(7) =2 - (o1 (7)) 02(F) -~ ) (4.47)
where o; is a scaling operator (e.g., associated with the magnetization density or the energy density), and

b(7) is the rescaling factor, which reads b(r)? = ds?/ds’ 2.
In the infinite space R3, the critical two-point correlation function behaves as

(o(7) o (7))rs o |7 — 7| 72X (4.48)
Equations (4.44), (4.47) and (4.48) yield the correlation function along the spherocylinder as
—2X
o(u o(us 2yp1 X R~ elur—uzl/2BH _ o—lui—uz]/: . .
(0 (1,8, 9)0 (12,0, 9)) 52 mr o B2 (el mwel/20 _ o~ —ual/21) (4.49)
For |uy — uz2| > 0, equation (4.49) reduces to
(o (u1,0,0)0(u,0, ) o« R72¥ e XImmel/i, (4.50)
so that the relationship (4.43) follows again.

However, applications of Eq. (4.43) in three dimensions are rather scarce so far. The reason is that
the spherocylinder S? x R' has a non-zero net curvature. For numerical investigations, a curved geometry
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does not readily accommodate a sequence of regular lattices. For the special case of the spherical model,
equation (4.50) has been verified analytically by Cardy [6]. Weigel and Janke approximated the S? sphere
by the surface of a cube [22]. Their results for the Ising model with finite size R satisfy Eq. (4.50) up to a
proportionality constant, which has to be determined empirically.

Under the mapping (4.44), the half infinite space R? x R conformally transforms into the half sphero-
cylinder S x ST x R, i.e., a geometry also described by the natural metric ds’ 2 in Eq. (4.46), but with
0 < 0 < 7/2. Thus, this geometric object has a surface at the equators (§ = 7/2) of the spheres. The
pair correlation on the surface of the half space R? x R* follows from the formula (4.48), except that the
bulk scaling dimension X is replaced by the surface dimension X (*) [1]. Thus, the surface correlation at the
equators of the half spherocylinder is also described by Eq. (4.49) but with a substitution of X by X0,

Next, we consider another conformal mapping between the semi-infinite space R?> x Rt and a half sphero-
cylinder S% x Rt also described by the metric ds’ 2 in Eq. (4.46), but with v > 0. This mapping is different
from Eq. (4.44) and is conveniently described in two steps. First, the formula [2]

7t =7t 412, (4.51)

maps spheres onto spheres in three dimensions, and the space R? is transformed into itself [2]. Here, I is an
arbitrary fixed unit vector. Under the mapping (4.51), the plane I.7= 0, which corresponds to a spherical
surface of an infinite radius, is conformally mapped onto the surface of a unit sphere with the center at I.
Meanwhile, the half spaces I-7>0and I-7< 0 are transformed respectively into the interior and exterior
of this unit sphere. The homogeneous translation

11
r

—p_] (4.52)

shifts the center of the sphere to the origin of the double-primed coordinate system.
The profile of a scaling operator o in the semi-infinite space R* x R behaves as [1]

(o(7))rzxr+ <y~ , (4.53)

where y >> 0 is the distance of a point 7 to the surface. Equations (4.51) and (4.52) yield the rescaling
factor b(7) of the conformal mapping ( 7 — 7") as [2]

W@ =1+1-F+r2/a=4)F" - 1)%. (4.54)
From Eqgs. (4.47) and (4.51)-(4.54), the quantity (o(#'")) inside a unit sphere follows from [1,2]
(o) oc |1 = ()2, (4.55)

where 7"’ < 1 is the distance of the point 7" to the center of sphere.
Next, we apply Eq. (4.44) to conformally map this unit sphere onto the half spherocylinder S? x Rt .
The profile (4.55) is then covariantly transformed into

—2X

x (em—UZVzR _ e—\ul—uz\/m) , (4.56)

(o(u,8,9))s2 xp+ X R

which differs from Eq. (4.49) by a factor R=%.

Moreover, equations (4.51), (4.52) and (4.44) transform the quarter-infinite space R' x RT x RT into a
quarter of the infinite spherocylinder S! x ST x R, described by ds’ ? in Eq. (4.46) but with 0 < 0 < 7/2
and v > 0. Therefore, the profile of the surface scaling operator at the equators should follow from Eq. (4.56)
except that the exponent X is replaced by the surface scaling dimension X ),

4.2.3 Models and algorithms

In this section, we briefly recall the Hamiltonian limit of the Ising model and the continuous cluster algo-
rithm [9]. The applications to the spherocylinder and the conventional solid cylinder are also described.
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The three-dimensional Ising model with anisotropic couplings is described by the Hamiltonian

7'[/kBT‘ = - Z [Katy Sa:,y,z (SJ:Jrl,y,z + Sz7y+17z) + Kz Sa:,y,z Sa:,y,erl] ) (457)

T,Y,%

where the integers 1 < z,y < Land 1 < z < L' label the sites of a cubic lattice, K, and K are the coupling
strengths along bonds perpendicular and parallel to the z direction, respectively. The spins can assume the
values s, , . = £1.

In the limit that the interactions in the z direction are infinitely strong, the couplings K, and K, become

K., =¢€/t, exp[-2K.] =€, (e —=0), (4.58)

where ¢ parametrizes the temperature and € is an infinitely small number. The anisotropic model defined by
Eqs. (4.57) and (4.58) is equivalent to the quantum transverse Ising model on the square lattice [14,15]:

qu = - Z[s;,y(si+l7y + S;7y+1) + ts;y] ’ (459)
zy
where s7 , and si , are Pauli matrices, and ¢ represents a transverse field in the z direction.

For such an infinitely anisotropic system, the physical size in the z direction diverges as 1/e, because the
correlation length in this direction is of order 1/e [14,15]. In order to keep the correlation length finite, one
may rescale as z’ = ze so that the 2’ dimension becomes continuous. This means that there is an infinite
number of spins per physical length unit. As a result, the simple-cubic lattice reduces to L? lines originating
from the sites of a L x L square lattice. The spins on these lines form ranges of +/— signs, and the total
number of interfaces between these ranges is of order L>.

Monte Carlo simulations of this continuous system are realized by the application of a continuous cluster
algorithm. This algorithm uses the positions of the aforementioned interfaces as the dynamical variables.
The full description has been given in Ref. [9]. Here, we summarize the essential points. We start from
a discrete Ising model and use bond variables as defined in the random cluster model [23]. During the
formation of a cluster, the bond between nearest-neighbor spins of the same sign is ‘frozen’ with a probability
P =1—exp(—2K) or ‘broken’ with the probability 1 — P. A cluster is then formed by spins connected to one
another by these frozen bonds. The formation and flipping of these clusters leads to highly efficient Monte
Carlo methods, which suppress the critical slowing down that is prominent in the Metropolis algorithm. In
the Swendsen-Wang cluster method [24], the whole lattice is decomposed into a sequence of clusters. In the
Wolff version of the cluster algorithm [25], only one cluster is formed and flipped during a Monte Carlo step.
For the anisotropic Ising model defined by Eqgs. (4.57) and (4.58), the probability P in the xy plane and z
direction is of order € and 1 — ¢, respectively. Thus, the strong-coupling bonds connect many spins in the z
direction until a ‘break’ occurs with a probability of order € per bond. Spins between these breaks in the z
direction form clusters of +/— signs of with lengths of order 1/e. After the rescaling described above, these z
direction clusters reduce to ranges of +/— signs, of which the length is now of order 1. Moreover, the average
distance of the frozen weak-coupling bonds along the z direction is also of order 1. These weak-coupling
bonds serve as ‘bridges’ between neighboring lines to connect ranges of the same sign, and help to build
clusters in the xy plane. As a result, continuous Wolff-like and Swendsen-Wang-like cluster algorithms can
be formulated for this anisotropic limit. The application of a continuous Wolff-like algorithm, combined with
finite-size-scaling analysis, yields [9] the critical point as t. = 3.04438(2) for the model defined by Eqgs. (4.57)
and (4.58). The precision is good in comparison with existing results [8,26], and reflects the efficiency of the
aforementioned continuous cluster algorithm.

Since our purpose is the application of conformal mappings, we have to restore isotropy asymptotically.
This can be done by choosing an appropriate aspect ratio « = L /L,,, where L’ and L., = L are linear
system sizes in the z' direction and the zy plane, respectively. In Ref. [9], we determined the critical
Binder cumulant as a function of the length ratio . Matching this universal function with the case of the
isotropic Ising model [27-29], we showed that the asymptotic isotropy of this Hamiltonian limit is restored
for ap = 0.886(7). Here, we proceed differently. We sampled the critical magnetic correlations over half

o4



linear system sizes in the strong- and weak-coupling directions, respectively, of which the amplitude ratio
d, is defined as
dz' 2o(x,y,2)o(x,y, 2 +aL/2
dm(a, L) = Z,”’ J E ( Jol . /2 — (4.60)
Youy ) 42 (o(z,y,2") [o(z + L/2,y,2") + o(z,y + L/2,2")])

This amplitude ratio d,, is a function of the length ratio @ and the linear size L. The aforementioned isotropy
means that the magnetic correlations in the 2z direction are equal to those in the z and y directions, and thus
dm(ap, L) = 1. Taking into account finite-size effects, we Taylor-expand d,, («, L), using logarithmic scales
for d,, and «, as

Ind,,(a,L) = a;(lna — Inag) + az(Ina@ — Ina)? + bLY* + cLV*(Ina — Inag) + -+ -, (4.61)

where a1,a92,b and ¢ are unknown parameters, and the correction with the exponent y, is due to the
microscopic deviations from isotropy of the Hamiltonian limit of the Ising model. In two dimensions, such
a correction has been investigated in detail [21]. It was found that y, & —2 = y;, where y; is the exponent
of the irrelevant field for the two-dimensional Ising model. Here, we assume that this relation also holds in
three dimensions so that y, = y; = —0.821(5), where the value of y; was taken from Refs. [21,27-29]. On
the basis of the least-squares criterion, equation (4.61) was fitted to the Monte Carlo data. We find that
a; = 0.505(2), a2 = 0.06(1), b = 0.375(7), ¢ = 2.8(3), and ap = 0.8881(2), which provides a significant
improvement over our previous result oy = 0.886(7) [9].

As a result, the new coordinate z" = z'/ag restores the isotropy asymptotically for systems consisting of
L? lines with physical length L in the large-L limit. Due to periodic boundary conditions, each of these lines
can be recognized as a circle S'. This enables one [17,21] to represent the ‘lattice structure’ on a sphere
S? by L evenly spaced circles with varying radius, such that the strong couplings are along the ¢ direction
while the weak couplings are between the adjacent circles. The location of the kth circle is 6, = (k — %)W/L
(k = 1,2,---,L), and the corresponding circumference is 2L sin )}, which accounts for the S? curvature.
Since the probability of a weak-couping bond is defined per unit of length, and the adjacent circles on a
sphere have different radii, the distribution of these weak-coupling bonds still requires a length scale. It was
chosen as the average length scale of both circles. Therefore, the circumference of the sphere is 2L, and the
radius is L/7 [17,21]. The validity of this method, i.e., asymptotic spherical symmetry of such systems, has
been confirmed in Ref. [21]. Extension of this lattice structure of a sphere into another dimension yields the
approximation of the spherocylinder S? x R! [17].

The critical point for systems on the spherocylinder is identical to that in the flat space R®. Arguments
are a), the lattice structures in these two geometries are same on a microscopic scale; b), for finite systems L,
the discretization in 6 leads to an integrated effect on the average coupling strength, which is proportional
to L~ according to the trapezium rule. Under renormalization, this effect leads to corrections proportional
to L¥~2. Since the thermal scaling exponent y; < 2 for the two- and three-dimensional Ising model, this
effect will vanish for L — oo. In two dimensions, we have studied the Ising model on a sphere [17,21], and
confirmed that the leading corrections for finite systems are of order L¥¢~2.

Analogous procedures can be applied to the interior of a circle, i.e., a disc geometry. In this case,
the lattice structure on the disc is also represented by L evenly distributed circles, but the kth circle is
simply located at r;, = (k — 3). Thus, the radius of the disc is just that of the largest circle 7(2L — 1).
The conventional solid cylinder is obtained by extending this disc geometry into another dimension with a
discrete lattice structure.

4.2.4 Numerical results

By applying the aforementioned continuous Wolff-like cluster algorithm, we have simulated the Hamiltonian
limit of the Ising model in the following geometries.

I. Spherocylinder with periodic boundary conditions
For systems on a spherocylinder, the values of L were taken as 4,6,8,10,12,14,16,20. The finite size in
the R direction was taken as nL = 8L. Periodic boundary conditions were imposed in the u direction (u = 0
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and u = 8L). Later, we will show that n = 8 is large enough to approximate the geometry S? x R'. We
sampled the magnetic correlation function g, (r) in the u direction, which is defined by [17]

Im( =V Z/ dnp— sinf (o(u,8,p)o(u+r,0,p)) . (4.62)

Since the couplings are different in the ¢ direction and in the other two directions, there are two ways
to represent the energy density: the density of the interfaces and the nearest-neighbor interactions in the
weak-coupling directions. We chose the latter one

enn = 3 Z d<p— sinf (o(u,0,p)o(u+1,60,0)), (4.63)
in order to sample the energy-like correlation g, (r)

g VZ / dpT  sind (o(u,0,)0(u+1,6,0)

X olu+mr0,0)0(u+r+1,0,0)) — €2, . (4.64)

For finite systems, there is a correction oc LYt 2 as mentioned earlier. Compared to the irrelevant scaling
exponent y; = —0.821(5) in three dimensions [21,27-29], the correction with the power y. = y; —2 = —0.413
is expected to dominate over that with y;.

In the continuum limit, the behavior of the magnetic energy-like correlations, g,,(r) and g.(r) respectively,
follows from Eq. (4.49). Taking into account finite-size effects yields the correlation length £, as

X X
&' == (1+al¥ +bLY) = %(1 + aL¥ +bLY"). (4.65)

R
Due to the periodicity in the u direction, correlations build up over two distances r and nL — r. Thus, the
correlation function g(r, L) for finite systems behaves as

g(r,L) = L** [Y(r) + Y(nL —r)] (A + BLY + CL¥), (4.66)

with the function
Y (r) = (eh7/2F — g=hr/20)=2X (h =1+ aLV). (4.67)

Here, the radius is R = L/7 as mentioned before.

Equations (4.66) and (4.67) was fitted to the Monte Carlo data. The value of y. is fixed at —0.413
as specified above. For the magnetic and the energy-like correlations, the exponent X represents the bulk
magnetic and thermal scaling dimensions, X, and X; respectively. We obtain X; = 0.5178(12) and X; =
1.423(19), in a good agreement with the existing results X} = 0.5185(3) and X; = 1.413(1) [21,27-29]. This
confirms the assumption of conformal invariance [17]. Including another correction cL¥ in the function h
does not improve the residual x? of the fit significantly.

Il. Binder cumulant on a spherocylinder

The dimensionless quantity originally introduced by Binder plays an important role in the study of critical
phenomena [13]. An example is Ref. [9], in which we obtains the length ratio oy = 0.881(6) by sampling
the Binder cumulant. For a system on a hyper-cubic lattice in general d dimensions, the universal ratio @,
which is closely related to the Binder cumulant [13], is defined as

QK) = (0)* /(o). (4.68)

For a system on a hypercylinder-like geometry S¢~! x R', however, another definition is desirable. The
reason is as follows. If the length of the geometry S?—! x R! is much larger than the correlation length,
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Figure 4.14: The dimensionless ratio GG, shown as a function of n, where nx is the ratio of the length and
the radius of the spherocylinder. System size is L = 8.

ie, vy=L/R — oo, the critical magnetization density is normally distributed, and thus the value of Q(K)
approaches 1/3. The same value applies to a disordered system. As a consequence, little information can be
obtained for critical phenomena. In this case, a useful dimensionless quantity can be defined as [1,11]

G(K,7) = (3~ (a")/(e*)*) /3, (4.69)

which plays a similar role as the aforementioned correlation length £r. According to finite-size scaling, the
critical quantity G is universal for infinite systems R and v — oo.

In two dimensions, the critical bulk two- and four-point correlation functions are exactly known for the
Ising model [10]. On this basis, the value of G for the surface of an infinitely long cylinder can be calculated
according to the prediction of conformal invariance. This calculation has been performed by Burkhardt and
Derrida [11] who evaluated the resulting integrals by a Monte Carlo method. Their result is

G(K.,00)/2m = 2.46044(2) . (4.70)
For an arbitrary model, it was shown by Cardy [30] that for the infinitely long strip
G(K.,00)/2m ~ (mXp)™", (4.71)

if X}, is small.

In three dimensions, no result for the quantity G is available yet. Here, we sampled both quantities Q /7
and G/7 on a spherocylinder as a function of the size L and the ratio /7 = n. The system sizes were taken
as L =8,10,12,16, 20, 24, 30,40 and the largest value of n is 20. Periodic boundary conditions were applied
in the u direction. Part of the results are shown in Figs. 4.15 and 4.14. The lattice figure suggests that n = 8
already provides a good approximation of the geometry S? x R!.

For finite systems at the critical point, we fitted the following formula to the Monte Carlo data:

G(L,n)/m = Goo + % + % +onL)Ye + - . (4.72)

In order to obtain an acceptable residual x? of the fit, we applied a cutoff by excluding small system sizes
L <6 and n <5. The result is G/m = 0.6458(5), which differs significantly from that for a two-dimensional
strip [11].

[1l. Spherocylinder with fixed boundary conditions

Fixed boundary conditions, i.e., infinitely strong fields, were imposed on both ends of the spherocylinder
(u =0 and u = nL). The finite system sizes were taken as L = 4,6,8,10,12,14,16,20,24 and n = 8. The
magnetization and the energy densities,

m(r) = %203/0 Wd@%sinG(a(r,H,go)) (4.73)
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Figure 4.15: The dimensionless ratio ), shown as a function of Inn, where nz is the ratio of the length and
the radius of the spherocylinder. Systems sizes are L =8 (+), L =12 (v7), L =16 (O), L = 20
(O), L =24 (A), and L =40 (O). The data collapse indicates that corrections-to-scaling are
small.

and

e(r) = %20:/0 Wd(p% siné(n(r,0,¢)), (4.74)

were sampled. Here, we have chosen the density of the interfaces n(r, 8, ) as the energy density. Compared
to the alternative definition of e in Eq. (4.63), sampling the density of the interfaces consumes much less
computer time. This is due to the fact that, during the Monte Carlo simulations, the positions of these
interfaces are stored in computer memory as the dynamical variables.

The scaling behavior of m(r) and e(r) follows from Eq. (4.56). According to Eqgs. (4.56) and (4.49), the
magnetization density m(r) and the correlation g, (r) decay in a similar way with respect to the distance r.
An example is shown in Fig. 4.16. For a given spherocylinder with radius R, however, the prefactor of g,,(r)
is R~2%» [Eq. (4.49)] while that of m(r) is R~*» [Eq. (4.56)]. This effect, combined with the fact that less
computer time is needed, shows that m(r) is a better quantity than g,,(r) to determine the magnetic scaling
dimension. A similar argument holds for the energy density. Taking into account finite-size corrections and
fixed boundary conditions at both ends, we have

m(r,L) = L=X" [Y(r) + Y (nL — r)] (A + BL¥"), (4.75)

and
e(r,L) =ng+ L™ [Y(r) + Y (nL —r)] (A + BL¥), (4.76)

where ng is the bulk density of the interfaces at criticality, and the function Y (r) is given in Eq. (4.67).

Formulas (4.75), (4.76) and (4.67) were fitted to the Monte Carlo data. An example of the energy density
is shown in Fig. 4.17. The value of ng is fixed at 0.90160(5), as obtained from numerical simulations in a
flat geometry. We obtain X = 0.5182(6) and X; = 1.419(7). The precision of these results is comparable
to that of other methods [21,27-29].

IV. Half spherocylinder S* x St x R!

For the half spherocylinder, fixed and free boundary conditions were applied on both ends (u = 0
and v = nL) and the equators ( = 7/2) of S' x ST, respectively. The systems sizes were taken as
L =38,10,12,---,26 and n = 8. The radius of the half spherocylinder is R = (2L — 1)/, different from the
formula R = L/7 for the spherocylinder. The magnetization density on the equators was sampled, defined
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Figure 4.16: The quantities Inm(r) (O ) and In g, (r) (A), the logarithm of the magnetization profile and of
the magnetic correlation, respectively, vs. the distance r along a spherocylinder with R = 16/7
and n = 8. The error bars for Inm(r) are smaller than the symbol size; for In g,,, (r) they are at
most approximately equal to the symbol size.
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Figure 4.17: Exponential decay of the interface density, shown as In|e(r) — ng| vs. the distance r along a
spherocylinder with R = 24/m and n = 8. Error bars show the statistical uncertainty.
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objects are R = 19.5 and 19.5 x 2/, respectively; the ratio is n = 8.

as
1

(s) -
m o (r) 2w

/0 " dp {o(r,m/2,9)) (4.77)

The finite-size scaling behavior of this surface magnetization densities also follows from Eq. (4.75), except
that the exponent X}, is replaced by the surface scaling dimension X,(Ls). Equations (4.75) and (4.67) were
fitted to the Monte Carlo data, and a short-distance cutoff was applied. The minimum system size included
in the fit is L = 14. The result is X,(LS) = 1.263(5), of which the precision is good in comparison with the

known value obtained by a different method X ¥ = 1.259(15) [31].

V. Conventional solid cylinder

We have also performed simulations inside a conventional solid cylinder with fixed and free boundary
conditions on both ends (v = 0 and v = nL) and the surface, respectively. The system sizes are L =
8,10,12,16,18 and n = 8. The radius of the cylinder is given by R = L —1/2 in this case, which differs by a
factor 7/2 from that of the half spherocylinder with the same L. The surface magnetization density m(*)(r)
along the cylinder was sampled. We found, empirically, that the decay of m(®) (r) along the conventional
cylinder is very similar to that on the half spherocylinder S' x St x R! with the same finite size L. An
example is shown in Fig. 4.18. Thus, we also fitted the Monte Carlo data on the basis of Eqgs. (4.75) and
(4.67), but with h = ( + aL¥=. Here, the factor ¢ accounts for the difference of the surface correlation length
along the solid cylinder and that along the aforementioned half spherocylinder. The value of X ,(ls) is fixed
at 1.263 as specified earlier, and we obtain ¢ = 1.585(9), very close to 7/2 ~ 1.571.

4.2.5 Discussion

We have shown how one can simulate the Ising model in curved geometries by means of a continuous cluster
Monte Carlo algorithm. We confirm that the three-dimensional Ising model in conformally invariant. The
satisfactory precision of the numerical results presented in this work shows that, as in two dimensions,
conformal mappings also provide a useful tool to investigate critical phenomena (at least, if one takes the
assumption of conformal invariance for granted). Further applications to other models, such as the bond
percolation model, are also possible [32].

We have used the same algorithm for Monte Carlo simulations of a system inside a conventional solid
cylinder. We found that the corresponding surface correlation length differs by a factor close to 7/2 from
that along a half spherocylinder. However, it is not obvious that this result can be supported by means of
a conformal transformation.
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5

Conformal invariance: The percolation model

We investigate the anisotropic limit of the bond-percolation model in d dimensions, which is equivalent with
a (d — 1)-dimensional quantum g — 1 Potts model. We formulate an efficient Monte Carlo method for this
model. Its application shows that the anisotropic model fits well with the percolation universality class in d
dimensions. For three-dimensional rectangular geometry, we determine the critical point as t. = 8.6429(4),
and determine the length ratio as ay = 1.5844(3), which relates the anisotropic limit of the percolation
model and its isotropic version. On this basis, we simulate asymptotically isotropic critical systems in several
curved geometries including a spheroid and a spherocylinder. Using finite-size scaling and the assumption of
conformal invariance, we determine the bulk and surface magnetic exponents in two and three dimensions.
They are in good agreement with the existing results. This confirms that the percolation model is conformally
variant.

5.1 Introduction

Since their introduction in 1957 [1], percolation problems have been studied extensively, and a variety of
applications has also been reported (see, e.g., Refs. [2,3]). Percolation provides a simple picture of a second-
order phase transition, and remains an active research subject [4-6]. We illustrate the problem of the
bond-percolation on a regular lattice. Between each pair of lattice sites, a bond is occupied or empty with
a probability p or 1 — p, respectively. Two sites connected through a chain of occupied bonds are said to
be in the same cluster. Then, various questions can be asked concerning the critical cluster distribution
and the percolation probability etc. Such percolation problems are now rather well understood; this can at
least partly attributed to the well-known relationship [7] between the bond-percolation and the Potts model
(for a review of the Potts model, see Ref. [8]). In this way, the phase transition that occurs in percolation
problems can be described in the language of critical phenomena in statistical physics. As a consequence,
a considerable number of critical exponents has exactly been obtained in two dimensions. For instance, the
thermal and magnetic scaling exponents are y; = 3/4 and y, = 91/48. These exponents can be calculated
from the Coulomb gas theory [9,10] and are also predicted by the conformal field theory [11-13].

Besides the above isotropic percolation model, it is of interest to understand the behavior of anisotropic
systems in the percolation theory. For instance, an anisotropic random percolation model was demonstrated
to be governed by new, random fixed points [14]. In the present paper, we shall consider the anisotropic
bond-percolation model, which is defined on a d-dimensional rectangular lattice with a bond probability p
within (d—1)-dimensional layers perpendicular to the z direction, and with the probability p; = Rp, parallel
to z. For R = 0, the system decouples into independent (d — 1)-dimensional layers, so that the percolation
problem reduces to (d — 1) dimensions. Models with a finite and nonzero R have already received some
attention [15], and it was shown that they are within the same universality class as the isotropic percolation
model in d dimensions. In the present paper, we shall focus on the limit R — co. In this anisotropic limit of
the bond-percolation model, the probability p, in the (d—1)-dimensional layers approaches 0 near criticality,
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and thus one can express p, and p) as
P (p:) =1-¢, and pL =€/t (e—=0), (5.1)

where ¢ is a temperature-like parameter. When e is precisely zero, the system becomes one-dimensional
and this percolation problem is trivial. However, as we shall argue later, the anisotropic percolation model
defined by Eq. (5.1) is equivalent with a quantum ¢ — 1 Potts model in (d — 1) dimensions, which fits in the
d-dimensional percolation universality class.

For the anisotropic model defined by Eq. (5.1), the correlation length in the z direction is of the order of
1/e. In order to maintain the d-dimensional character of the system, the lattice size in this direction must
also diverge as 1/e. Thus, we apply a rescaling 2z’ = ze, so that the correlation length in the new unit and
the physical size remain approximately constant. As € — 0, the 2z’ dimension becomes continuous, and we
refer to the resulting continuous percolation problem as the transverse percolation model.

Next, we formulate a Monte Carlo method for the transverse percolation model. The numerical results
confirm that the transverse percolation model belongs to the same universality class as the conventional
percolation problem on a discrete lattice.

Another purpose of the present paper is the application of conformal mappings in curved geometries.
In two dimensions, the theory of conformal invariance has yielded substantial results [11-13]. Conformal
mappings yield relations between critical systems in different geometries, and thus provide useful tools for
the determination of universal properties of critical models. A well-known example is Cardy’s mapping
between an infinite plane and the surface of an infinitely long cylinder [16]. Since a cylinder is pseudo-one-
dimensional, its numerical investigation is simpler than that of a two-dimensional plane. Cardy’s mapping
can be generalized to any number of spatial dimensions, and in three dimensions it transforms an infinite
space R? into a pseudo-one-dimensional geometry S? x R. However, the nonzero curvature of the geometry
S? x R poses a serious obstacle for numerical simulations.

In applications to the Ising model, this problem was solved recently in Refs. [17-19]. The solution makes
use of the Hamiltonian limit of the lattice Ising model, which renders one of the lattice directions continuous.
Thus, one can perform Monte Carlo simulations in curved geometries, such as the surface of a sphere S x St
in two dimensions and the cylinder-like geometry S? x R! in three dimensions. It was reported [17,18] that,
in three dimensions, the Ising model is conformally invariant and the corresponding estimations of critical
exponents are compatible with existing results. In Ref. [17] the three-dimensional geometry S? x R! was
named a spherocylinder. Here, we simulate the transverse percolation model in curved geometries, which
provides another application of conformal mappings to investigate bulk and surface critical phenomena.

5.2 Models and algorithms

5.2.1 Quantum transverse ¢g-state Potts models

The partition sum of the ¢ = 1 Potts model is just a constant, so that its equivalence to the bond-percolation
model has to be formulated [7] in terms of geometric properties of the random-cluster representation of the
Potts model in the limit ¢ — 1. To explore the anisotropic limit of the bond-percolation model defined by
Eq. (5.1), we start with the Hamiltonian limit of an Ising model on a N x M rectangular lattice with periodic
boundary conditions
H/kBT: —Z[I(JE Si,j Si+1,j +Ky Si,j Si’j+1] . (52)
i,J
The spins can assume the values s; ; = %1, the integer coordinates ¢ and j label the lattice sites, and K,
and K, are the coupling strengths in the x and y directions, respectively. The critical line of this model is
given by [20]
sinh(2K,)sinh(2K,) =1. (5.3)

Thus, in the anisotropic limit € — 0, the couplings can be written as

K,=¢/t, and exp(-2K,)=¢, (e—0), (5.4)
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where t parametrizes the temperature; the critical point is t. = 1.

The Hamiltonian limit of the lattice Ising model defined by Eqgs. (5.2) and (5.4) can be exactly mapped
onto the one-dimensional quantum Ising model [21]. This equivalence was formulated in the reverse direction
by Suzuki [22], using the Trotter formula [23]. The Hamiltonian of the quantum Ising chain reads

Hom = — Z (ojoi, +tof), (5.5)

[3

where 0% and o are the Pauli matrices for the z and x spin components, respectively. The Hamiltonian Hqm,
contains noncommuting operators and represents a quantum system with nearest-neighbor Ising interactions,
and the temperature-like parameter ¢ acts as a transverse field in the = direction.

This equivalence can be readily generalized to spatial dimensions d > 2, i.e., the Hamiltonian limit of a
d-dimensional lattice Ising model is equivalent with the transverse Ising model in (d — 1) dimensions.

Including the transverse Ising model as a special case, one can define a general quantum g¢-state Potts
model [24,25]. For instance, the Hamiltonian of a quantum g¢-state Potts chain (with integer g) can be
written as

g—1
HQm:_ZZ (Sik Siizk+tRik) ) (5.6)
i k=0
where S and R are ¢ X ¢ matrices satisfying the Z(q) algebra
[Si,S;] = [Ri, R;] = [Si, R;] =0, P £
S;R; = exp(i2m/q)R;S; , and R!=S/=1I. (5.7)

For the case of ¢ = 2, the operators S and R reduce to the Pauli matrices o* and o®, respectively, and
Eq. (5.6) simplifies to Eq. (5.5). The eigenspectra of these critical quantum g-state Potts chains (0 < ¢ < 4)
with free and periodic boundary conditions have already been explored in Refs. [24,25], and it was shown
that, indeed, they share the same critical exponents as the corresponding classical g-state Potts models in
two dimensions.

For noninteger ¢ or the limiting case ¢ — 1, equations (5.6) and (5.7) are not suitable to describe the
Hamiltonian limit of the g-state Potts model. In this case, one can instead apply the transfer matrix of the
random cluster model [26]. The evaluation of the partition function uses the transfer matrix as

Z = Z (sD|T|sPy .- (sW|T|sWHDy ... (5.8)

s 5(2) ..

where s is the bond configuration at the yth row and the transfer is in the direction of the strong coupling.
For the anisotropic bond percolation model described by Eq. (5.1), the transfer matrix reads

(sW|T|sWtDy =T — ¢ Z[B;yyyﬂ) _low

t 1:,1:+1] + 0(62) 9 (59)

T

where I is the unit matrix. The symbol Bg}””l) represents that, between the yth and (y + 1) rows, a
‘broken’ bond occurs at the site  while the remaining bonds are occupied, and C(Zy; 41 means that only one
bond exists between z and x 4+ 1 at the yth row. Once ¢ is not precisely equal to 1, the operators B and C
do not commute, and thus are quantum operators. For ¢ << 1, most sites are connected so that the system
is in an ’ordered’ state; while for ¢t >> 1, they are independent of each other and the system is ’disordered’.
A phase transition occurs at ¢t = 1.

Therefore, we simply expect that the anisotropic limit of the bond percolation model by Eq. (5.1) is within
the same universality class with the corresponding isotropic version. This will be demonstrated further by
means of Monte Carlo simulations.
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5.2.2 Algorithms

We consider the anisotropic limit of the bond-percolation model [Eq. (5.1)] on a N x M rectangular lattice
with periodic boundary conditions. The bond occupation probabilities in the 2 and y directions are p; and
p| in Eq. (5.1), respectively. For such a system, the correlation length in the y direction is of order 1/¢, as
mentioned earlier. Thus, we have to take the lattice size M proportional to 1/e while if NV is kept constant.
Since computer memories are finite, it may not immediately be obvious how a Monte Carlo algorithm can
be formulated.

Let us start with the procedures commonly used for the cluster decomposition of the isotropic version of
the percolation model with the bond probability p. First, one introduces a bond variable b;; for each bond
between nearest-neighboring sites ¢ and j. Occupied and empty bonds are represented by b;; = 1 and 0,
respectively. For each bond variable b;;, one draws a uniformly distributed random number r (0 < r < 1),
and sets b;; = 1 if r < p. The whole lattice is then decomposed into clusters of connected sites through
the occupied bonds. These percolation clusters are analogous to the Swendsen-Wang clusters in the Potts
model [27].

For the anisotropic limit of the percolation model defined by Eq. (5.1), the bond probability in the y
direction is p, = 1 —¢, so that one has to draw of order 1/¢ random numbers r before finding an empty bond
b, = 0. This indicates that empty bonds are sparsely distributed in the y direction. In the z direction, the
bond probability p, €, so that the task to find the next occupied bond b, = 1 again involves of order 1/e
random numbers.

A more efficient procedure follows [28]. Counting the bond variables sequentially in the y direction, the
distribution P,(m) = (1 —p,)pj*~" expresses the probability that (m — 1) subsequent bond variables b;; are
equal to 1, while the mth variable is zero, i.e., an empty bond occurs at mth position. Thus, the cumulative
distribution can be written as

m

Cy(m) =) P(j)=1-py=1-(1-¢", (5.10)

j=1

which represents the probability that an empty bond b; = 0 occurs in the range 1 < j < m. Thus, by mapping
the distribution 0 < Cy(m) < 1 on the uniform distribution of the random number r, one transforms r into
an integer m

m=1+[In(r)/In(1 —¢)], (5.11)

where 0 < r < 1 and the square brackets denote the integer part of the number in between. The number
m represents the distance of the current empty bond to the one to be generated. Thus, onlyone random
number is needed to generate the next empty bond in the y direction.

In the z direction, one instead uses the distribution P,(n) = p,(1 — p,)"~! to express the probability
that (n — 1) subsequent variables b;; are zero, while the nth bond variable is 1. We mention that, although
the bond variables are now in the z direction, they are still counted sequentially along the y direction.
Analogously, one can transform a uniformly distributed random number r into an integer n

n=1+[ln(r)/In(l — p,)] (pz = €/t) . (5.12)

The average number of the y-dimensional empty bonds and that of the occupied bonds in the = direction
are

1
1
m= / dr In(r)/In(l—€)x—, and Wox-, (5.13)
o €

N |+

respectively. Now, suppose the NV x M square lattice represents a conducting network, and the occupied
bonds act as the elementary conducting units. According to Eq. (5.13), in the y direction, the current is
allowed to flow along the conducting ‘lines’ until it occasionally encounters an empty bond, to which we shall
refer as a barrier with an infinitely large resistance. In the = direction, since most bonds are empty, the areas
between the neighboring conducting lines can be considered to be filled with an insulating material, and the
electrical current has to rely on sparsely distributed ‘bridges’ (occupied bonds). If a potential difference is
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Figure 5.1: The anisotropic limit of the percolation model after the rescaling y’ = ey. The horizontal lines
represent ‘conducting’ lines in the y' direction, and the black bars are barriers with an infinitely
large resistance on these lines; the vertical lines serve as ‘bridges’ between neighboring lines. One
percolating cluster is shown by solid lines. This figure shows that the conducting lines on the
left- and right-hand sides of a barrier may belong to the same cluster, but in that case they are
via a detour. If this barrier is removed, the cluster size will remain unchanged.

applied to the up and down sides of the N x M network, the corresponding conductivity of this network then
depends on the relative abundance of the bridges and barriers. According to Eq. (5.13), the average total
numbers of the barriers and the bonds are N Me and N Me/t, respectively, so that they remain finite in the
limit € — 0. Thus, the conductivity of the network depends only on the temperature-like parameter ¢. For
t >> 1, the sizes of conducting clusters are small, and the up and down sides are disconnected, so that no
current exists; if the temperature ¢ is sufficiently low, a percolating cluster which carries current may occur
in the system.

Although one now needs only a finite number of random numbers, one still has to solve the problem of
the infinite size M in the y direction, reflected by the divergence of T and 7. This can be done by rescaling
the y direction as y’ = ey, so that the physical size M' = Me remains approximately a constant. In the
limit € — 0, the y dimension becomes continuous, i.e., there is an infinite number of lattice sites per physical
length unit, and the N x M square lattice reduces to N lines of physical length M'. Meanwhile, Egs. (5.11)
and (5.12) change into

m'=em=—In(r), and n' =en=—tln(r), (e—=0), (5.14)

which indicates that the average distances of the barriers and bridges, m’ and n', are now of the order of 1.
As a result, after the rescaling y' = ye, the anisotropic limit of the percolation model defined by Eq. (5.1)
reduces to a continuous percolation model, to which we shall refer as the transverse percolation model. A
typical configuration is shown in Fig. 5.1, where the horizontal lines are the aforementioned conducting lines
and the vertical lines are the bridges in the transverse direction. The black bars represent the barriers,
through which the current cannot penetrate. For clarity, in Fig. 5.1 we have outlined a cluster by means of
solid lines.

Conventional Monte Carlo methods for discrete lattice percolation problems store the lattice sites simply
in an array. For the transverse percolation, this is no longer applicable, since one of the dimensions is now
continuous. However, as mentioned above, the total number of the barriers and bridges still remains finite,
so that one can make use of their positions as the dynamical variables. On this basis, a procedure for the
cluster decomposition and the sampling is formulated as:

First, randomly distribute barriers and bridges over the N x M' geometry. Starting from an arbitrarily
chosen origin, the positions of the barriers and the bridges are sequentially generated by Eq. (5.14). For
instance, suppose the current Monte Carlo step arrives at the ith barrier, whose position is stored as (z;, y;)-
Here, the coordinates (z;,y;) represent that the ith barrier sits at the position y; of the z;th line. Then,
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one draws a random number 0 < r < 1 and evaluates m’ by Eq. (5.14). If y; + m’ < M', the (i + 1)th
barrier is placed at the same line as the ith one, and thus z;11 = z; and y;41 = y; + m'; otherwise if
M' <y;+m' <2M', the (i 4+ 1)th barrier is at (z; + 1,y; + m' — M'); ---. Repeat this procedure until the
whole N x M' geometry is visited. The same procedure is applied to the distribution of the bridges, and the
total numbers of the barriers and the bridges are denoted as B; and B,., respectively.

Second, sample the sizes of the clusters. After the first step, the geometry is now decomposed into clusters
which consists of conducting lines connected through the bridges. The size of the ith cluster is the sum of
the lengths of the conducting lines in it, which can be calculated from the positions of the barriers stored in
the computer memory. If the size of the ithe cluster is denoted as S;, a quantity resembling the magnetic
susceptibility x and the corresponding Binder-like ratio @) [29] can be defined as

S OO .
=S =vnt . and Q= e (5.15)
where V.= NM' is the volume of the system.

During the first step of the above algorithm, the function, Inr, has to be frequently carried out, which
decreases somewhat the efficiency of the algorithm. A different procedure can be applied as follows. From
Eq. (5.14), the total number of the barriers and bridges is as (B;) = V/(m/) =V and (B,) = V/{(n') = V/t,
respectively. Instead of allowing the fluctuations of B; and B, during Monte Carlo simulations, one may
fix them at their expectation values V' and V/t, respectively. Since these barriers and bridges are uniformly
distributed, their positions can now be independently calculated as [; = rV with the random number 0 <
r < 1. Then, the coordinates of the ith barrier is given by x; = [I;/M'] + 1 and y; = ; — (; — 1)M’, where
the square brackets represent the integer part. Here, the word ‘independently’ means that the position of
the (7 + 1)th barrier does not depend on that of the ith one.

However, in this way, since the fluctuations of the energy-like quantities B; and B, are suppressed, an
external constraint is effectively imposed on the system. A question arises how this energy-like constraint
affects the critical behavior of the system. For the percolation model, since the thermal scaling exponent
satisfies 2y; — d < 0, it can be shown [30] that the leading scaling behavior of the critical system is not
modified. But new corrections to scaling can arise due to this constraint. To avoid this complication, we
still use Eq. (5.14) to generate positions of the barriers and bridges in the present paper.

5.3 Simulations in flat geometries

5.3.1 Two dimensions

For the anisotropic limit of the percolation model in the two-dimensional rectangular geometry, the duality
argument yields that the critical point is ¢. = 1, since the critical bond probabilities satisfy p,. + pye = 1.
Furthermore, the thermal and magnetic critical exponents are exactly known, as mentioned earlier. Thus,
this model provides a good test case for the Monte Carlo algorithm described above and the universality of
the transverse percolation model.

The simulations used a rectangular geometry of L lines of length L in the range 6 < L < 32. Periodic
boundary conditions were applied, and the dimensionless Binder-like ratio ) and the susceptibility-like
quantity x defined in Eq. (5.15) were sampled. Near the critical point, the numerical data of @ were

fitted [31] by
4

Q(t,L) = qo+ Y _ qi(t — to) LFY 4 by LY + by L¥ + ¢y (t — t) LV (5.16)

k=1
The terms with y; = —2 and y» = —3 account for corrections to scaling. The fit with y, = 3/4 yields
t. = 0.9994(5), in good agreement with the exact result t. = 1. If ¢, is kept fixed at 1 while y; is left free,
we have y; = 0.752(3) =~ 3/4 [9-13]. Moreover, we fitted the Monte Carlo data of x at t. = 1 by the formula

x(t.) = xo + L2 (by + by LY* + by L¥?) | (5.17)
from which we obtain y, = 0.1043(4) = 5/48 [9-13].
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Figure 5.2: The Binder-like ratio @ vs the temperature-like parameter ¢ for the transverse percolation model
on the L? x L rectangular geometry. The system size L is 12 (+), 16 (O), 20 (x), 24 (O), and
28 (0), respectively.

5.3.2 Three dimensions

As mentioned earlier, three-dimensional percolation models have been investigated extensively [2—6]. The
most accurate results are provided by Monte Carlo simulations. For instance, for the isotropic bond-
percolation model on the simple-cubic lattice, the percolation threshold is estimated [4] as p, = 0.248 821 6(5);
the thermal and magnetic exponents are reported [4] as y; = 1.13(2) and yp, = 2.523(4), respectively.

Using the aforementioned Monte Carlo algorithm, we simulated the transverse percolation model on the
three-dimensional rectangular geometry: L? lines of length L originating from the L x L square lattice. The
system sizes are in the range 6 < L < 40, periodic boundary conditions were applied, and the quantities @
and x in Eq. (5.15) were sampled. Part of the data for ) is shown in Fig. 5.2, indicating that the critical point
is located at t, ~ 8.64. The clean intersection of these lines suggests that corrections to scaling are rather
small. Equation (5.16) was fitted to the data of @, with y; and y, taken as —1.14 and —2 [4], respectively.
For y; fixed at 1.13, we obtain t. = 8.6428(2); if y; is left free, we find y; = 1.135(8) and ¢. = 8.6429(4), with
the error margin twice the standard deviation.

Moreover, the data for x were fitted by [31]

4
X = xo+zi(t—tc)+ ot —tc)® + L2 Zak(t —te)k Ly
k=1
+ blLyl + szy2 +c1 (t — tc)LyH_yl] 5 (518)

where the terms with z; (i = 0, 1, 2) arise from the regular part of the free energy. With the thermal exponent
y: = 1.13, we obtain y;, = 2.519(1), where the estimated error margin includes the uncertainty of y;.

These investigations confirm the correctness of the Monte Carlo algorithm, and moreover confirm that the
transverse percolation model belongs to the same universality class as the isotropic version of the percolation
model on discrete lattices.

5.3.3 Restoration of isotropy

Although the transverse percolation model defined by Eq. (5.1) is intrinsically anisotropic, the correlation
lengths in the longitudinal and transverse directions are of the same order. This can be demonstrated by
the approximate isotropy of a cluster in Fig. 5.3. This arises from the rescaling 2z’ = ez in the longitudinal
direction. In fact, one can asymptotically restore the isotropy by choosing an appropriate rescaling factor,
ie., 2/ = ez/ap with ap a constant. The value of ag is important in the present investigation, since we are
also interested in applications of conformal mappings, which rely on isotropy.
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Figure 5.3: A cluster for the transverse percolation model on the L x L rectangular geometry with free
boundary conditions and L = 100.

In two dimensions, we simulated the transverse percolation model precisely at ¢ = 1 on the L x L
rectangular geometry. The system sizes and the length ratio were taken as in the range 6 < L < 64 and
0.65 < a < 0.80, respectively. Free boundary conditions were applied both in the = and y directions. During
the Monte Carlo simulations, we sampled the percolation probabilities in both directions, denoted as P, and
P,. Accordingly, we define a dimensionless ratio

r(a, L) = <%> . (5.19)

Thus, the aforementioned isotropy means r(ap, L) = 1. Taking into account finite-size effects, we fitted the
data of r(«, L) by

r(a,L) =1+ ai(a—ap) +as(a—ag)? + -+ b1 LY + b2 LY + ¢ LY (a — ap) - (5.20)

The terms with y; and ys describe corrections to scaling, due to small-scale deviations from isotropy of the
transverse percolation model. The numerical data can be successfully described by Eq. (5.20) with y; = —2
and y3 = —3, and the fit yields ap = 0.76978(7), in agreement with the number 4/3v/3 [25].

Similarly, for the three-dimensional rectangular geometry L? x L with free boundary conditions, one can
define the ratio r(a, L) on the basis of the percolation probabilities in the discrete and continuous directions.
Simulations were performed at the aforementioned estimated critical point t. = 8.6429(4), and the system
sizes were taken in the range 6 < L < 40. The data of r(a, L) were fitted by Eq. (5.20) with y; = —1.14 [4].
After a cutoff for small system sizes L < 10, the fit yields ag = 1.5844(4).

5.4 Conformal invariance
In this section, we summarize the conformal mappings and the corresponding transformations of the pair

correlation functions involved in the present paper. Most of these mappings have already been derived in
Refs [13,16-18].
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Spherocylinder. In two dimensions, one may parametrize the infinite plane as a complex number
z = z + iy, Cardy’s well-known mapping [13,16] is then expressed as z’ = Rlnz. The geometry z' can
be interpreted as the surface of an infinitely long cylinder S' x R' with a radius R. This mapping can be
generalized to any number of dimensions. For instance, in spherical coordinates (r, 6, ¢), Cardy’s mapping
in three dimensions reads

(r,0,¢) = (e“/R,Q,qS) , (—00 < u < 0) (5.21)

with R > 0 a free parameter. The geometry described by the variables (u, 8, ¢) has a line element as
ds® =du® 4+ R*(d#? +sin’6d¢?), (0<6<m0<¢<2m) (5.22)

and thus can by recognized as the extension of a sphere S? into another dimension R. In Ref. [17], this
pseudo-one-dimensional geometry S? x R was named a spherocylinder.
In the infinite flat space R?, a critical two-point correlation function g(r) behaves as

g(r)gs oc r 2% (r>>0) (5.23)

where X is the appropriate scaling dimension. Under the conformal mapping (5.23), this algebraic decay
[Eq. (5.23)] is covariantly transformed into

()52 xr 0c B2 (/21 — gm0 /272X (5.24)

where u > 0 is the distance between a pair of points on the spherocylinder, (ug,6,¢) and (ug + u, 8, ®).
For u >> 0, the correlation function decays exponentially: g(u) R2Xe~Xu/R = R=2X¢—u/€ 5o that the
correlation length along the spherocylinder is equal to £ = R/X.

Interior of a sphere.  In two dimensions, the complex function z' = (2 —14)/(z +1¢) [13] maps the infinite
plane onto itself, and meanwhile transforms the semi-infinite plane R x RT into the interior of a wnit circle.
In fact, such a mapping can be generalized to spatial dimensions d > 2. It then reads

7t =7 412, (5.25)

with I an arbitrary fixed unit vector. Under Eq. (5.25), the infinite flat space R? is mapped onto itself,
and the plane I-7= 0, which corresponds to a spherical surface with an infinite radius, is conformally
transformed into the the surface of a d-dimensional unit sphere with the center at I. The half spaces [-7>0
and I -7 < 0 are transformed into the interior and exterior of this unit sphere, respectively.

On the basis of the conformal transformation (5.25), it can be shown [13,32] that, in the interior of a
sphere with free or fixed boundary conditions, the profile of an operator (¢} follows from

(W(r)) <« RT¥[1 = (r/R?*] ™, (5.26)

where R is the radius of the sphere.

Furthermore, Eq. (5.21) transforms the interior of a unit sphere S¢ into a semi-infinite spherocylinder
S4=1 x R, with an end at u = 0. Thus, a conformal mapping between the semi-infinite flat space R?~! x Rt
and the half spherocylinder S%~! x R* is established, and the profile (5.26) is covariantly transformed into

<¢(U)) o R—X(eu/QR _ e—u/2R)—2X , (527)

which differs from Eq. (5.24) only by a factor R~

Surface of a sphere. By rotating an ellipse about the minor or major axis, one obtains an oblate
or a prolate spheroid, respectively. In three-dimensional Cartesian coordinates (z,y, z), these spheroids are

defined by
22 oy 22
+ = +

; a2 b_2 s (a, b> 0) (528)
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where a and b are the equatorial and the polar radii, respectively. Special cases of the spheroids include the
surface of an infinitely long cylinder, of a sphere, and of a flat disc. The latter object is reached in the limit
of an oblate spheroid b — 0. It is already known [18] that a conformal transformation exists between the
infinite plane R? and the surface of a spheroid. For simplicity, we here only introduce the mappings of the
infinite plane on the surface of a sphere and on that of a flat disc. Further, we generalize such conformal
mappings to spatial dimensions d > 2.

The transformation between an infinite plane R?> and the surface of a sphere S? can be graphically
understood as follows. A sphere with radius R is placed on the top of an infinite plane, i.e., only the south
‘pole’ of the sphere touches the plane. From the north ‘pole’, one draws an arbitrary line, such that this
line penetrates through the sphere at R and intersects with the plane at 7. The conformal transformation
is simply obtained by setting an one-to-one correspondence between the point 7 and R. If one expresses
the plane in polar coordinates (r, ¢), while parametrizes the surface of the sphere in spherical coordinates
(r = R,0,¢), the transformation reads

(r, 6) = (2Rcot 3, 6) (5.29)

According to Egs. (5.23) and (5.29), the pair correlation function g(R;, R») on the sphere follows from

—

g(Ry, 1%2) x 2*IR*2X[1 — sin 6 sin 0 cos(¢y — ¢2) — cos by cos 92]*X
= |R, - By 72X, (5.30)

which, interestingly, has the same form as that in the infinite plane described by Eq. (5.23).

Application of Eq. (5.29) to the interior of a unit circle leads to the half sphere S x ST, so that a conformal
transformation between the semi-infinite plane R x Rt and the half surface of a sphere is established.
Accordingly, the profile of an operator in the geometry S x ST behaves as

((R)) o (Reosh) X . (5.31)

In spherical coordinates (r,2), where € is a set of angular variables specifying the surface of a d-
dimensional sphere, the line element of the flat space R? can be written as

ds? =dr? +72dQ* . (5.32)

In three dimension, one simply has d 2 = d 6% + sin? #d ¢2. On this basis, one can express the line element
of the (d + 1)-dimensional space R¥*t! as

ds'? =dr'? +1'%(d8'? +sin?0'dQ?) . (5.33)
It is now obvious that, for d > 2, the generalization of Eq. (5.29) reads

!

(r, 2) = (2R cot %, Q), with 7' = R . (5.34)

Therefore, Eq. (5.34) transforms an infinite space R? into the surface of a (d + 1)-dimensional sphere S, on
which the pair correlation function follows from Eq. (5.30).

Surface of a hyper-disc. As mentioned earlier, the disc geometry is obtained in the limit b — 0 of an oblate
spheroid, composed of the interiors of two circles connected at their perimeters. This can be generalized to
d > 2, and the surface of a hyper-disc consists of the interiors of two d-dimensional spheres with the surfaces
of both spheres sewn together. Then, the conformal mapping between the space R? and the surface of the
hyper-disc reads

— ! 12 . .
{ (r, Q) =(r"/R, ), (0<r<1, r <R: positive face) (5.35)

(r, Q) = (R/r', ), (0<r<1, r <R: negative face)

The first derivative of the mapping formula (5.35) is discrete at the edge of the hyper-disc (' = R). For a
pair of points on the same face of the hyper-disc, 71 ' and 7', the correlation function has the same form as
that in the infinite space R?, i.e., g(7 ') o< |7 | — 7 /| 72X,
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Figure 5.4: Example of transverse percolation model on the interior of a circle.

5.5 Simulations in curved geometries

For spatial dimensions d > 2, conformal mappings normally lead to a curved space or a geometry with
curved boundaries. Even in two dimensions, curved geometries, such as the surface of a sphere, can also be
obtained from conformal transformations. The nonzero curvature of these geometries poses a serious problem
for numerical applications of conformal mappings, since they defy discretizations into regular lattices. As a
consequence, the validity of Cardy’s mapping was verified only for the special case of the spherical model [33].
Recently, for the case of the Ising model, this difficulty was avoided by making use of the Hamiltonian limit
of the Ising model [17,18], which renders one of the dimensions continuous. Since the aforementioned
transverse percolation model also has one continuous dimension, we here provide further applications of
conformal mappings to both the bulk and surface criticality.

5.5.1 Monte Carlo methods in curved geometries

As an example, we sketch a procedure for cluster decomposition of the interior of a circle. First, one divides
the geometry into L concentric circles, with the Lth circle precisely at the edge (Fig. 5.4). The location
of the kth circle reads rp, = k — %, with the corresponding circumference ¢, = 7(2k — 1). Then, let the
continuous longitudinal dimension of the transverse percolation model be the ¢ direction, so that those
concentric circles just represent the conducting lines mentioned above. Then, according to Eq. (5.14), one
generates and uniformly distributes barriers at the concentric circles. We mention that, at the kth circle, the
average number of the barriers is controlled by the length of its perimeter. The distribution of bridges follows
an analogous way, but the total number of the bridges between the kth and (k + 1)th circles (1 < k < L—1)
is now governed by the circumference of the circle in the middle. Furthermore, the diameter of the first circle
is 1, and thus bridges can exhibit through the center, connecting different parts of the first circle. A typical
configuration is shown in Fig. 5.4, where the bridges are denoted as the dashed lines.

Similarly, the ‘lattice’ structure on a sphere S? can be represented by L uniformly distributed circles with
radii as chosen above. The transverse and longitudinal dimensions are the § and ¢ directions, respectively.
The location of the kth circle is 6y = (k — %)W/L, and its circumference is ¢ = 2L sinf},. Thus, the radius of
the sphere is R = L/7. Analogously, the number of the barriers at the kth circle is dominated by the length
of its perimeter, while that of the bridges is governed by the circumference of the circle in the middle of the
kth and (k + 1)th ones.

On a microscopic scale, the lattice structure on a sphere or the interior of a circle is the same as that
on a flat plane, i.e., both of them are obtained in the anisotropic limit of the square lattice. Thus, one
expects that the critical point is still £, = 1. However, a global effect may arise due to the fact that the
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Figure 5.5: Data collapse of the quantity P»(6, L) for the transverse percolation model on the sphere. The
system sizes are 8(+), 16(0), 24(x), 32(0), and 40(0).

nonzero curvature cannot be fully accounted for by circles with varying radius. This has been investigated
in Ref. [18], and it was argued that such a global effect can be described by a correction term proportional to
L¥:~2_ Since the two- and three-dimensional percolation models have y; < 2, this effect vanishes as L — occ.

It is now obvious that, in three dimensions, the spherocylinder S? x R can be obtained by extending the
aforementioned lattice structure of a sphere into another dimension. Meanwhile, in order to approximate
the pseudo-one-dimensional geometry of the spherocylinder, the size of the R direction should be taken as
nL with a sufficiently large integer n.

5.5.2 Numerical results

With the Monte Carlo algorithms described above, we are now able to simulate the transverse percolation
model in the following curved geometries in two and three dimensions.

Surface of a sphere. The system sizes were taken in the range 8 < L < 48, with L the number of
the circles on the sphere. The simulations occur precisely at the critical point ¢, = 1, and the rescaling
length ratio was set at cg = 0.76978, such that the isotropy of the transverse percolation is asymptotically
restored. We sampled the pair connectivity P»(6) of the points (6, ¢) and (8, ¢ = ) on the same circle. For
both points in the same cluster, we say P, = 1; otherwise P, = 0. According to Eq. (5.30), the connectivity
behaves as (P,(6)) o« (Lsinf)~2*» with X}, the magnetic scaling dimension, graphically shown in Fig. 5.5.
The good quality of the data collapse for different system sizes (Fig. 5.5) indicates that corrections to scaling
are relatively small. The data for P, were fitted by

(P5(8)) = (Lsin )~ 22Tl (g5 + ay LY + az(Lsin @)Y + -], (5.36)

where the exponent y. = y; —2 = —5/4, as explained above. For finite systems, the Hamiltonian may deviate
from that at the fixed point, and we account for this by the terms with coefficients ¢ and as. Furthermore,
we also include a term with a3, describing the inhomogeneity of a finite sphere. We found that the numerical
data for L > 12 are successfully explained by Eq. (5.36), and the term ¢L¥c cannot be well observed. The
fit with ¢ = 0 yields X} = 0.10418(4), in good agreement with the exact result X, = 5/48 = 0.104167 - - -.

Interior of a circle. For the Ising model, the geometry inside a circle can be approximated [34] by
drawing a circle on the square lattice. Applications of free or fixed boundary conditions are realized by
removing or freezing the spins outside the circle, respectively. However, the symmetry along the ¢ direction
is broken in this way, and thus irregular finite-size effects arise. The aforementioned Monte Carlo algorithm
avoids this difficulty. The systems sizes were taken in the range 6 < L < 48, and fixed boundary conditions
were imposed: the whole edge is set within the same cluster. The fraction of the kth circle in this cluster Py (r)
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Figure 5.6: Exponential decay of P;(u) along the spherocylinder for the transverse percolation model. The
system size is L = 14 and n = 8.

was sampled. The numerical data of P;(r) were fitted by Eq. (5.26) but with additional terms accounting
for corrections to scaling. We obtain X, = 0.10413(4) ~ 5/48.

Spherocylinder S? x R. The systems were taken as L = 5,7, ---,21, and the finite-size in the R
direction was set as nL = 8L. Fixed boundary conditions were imposed at both ends v = 0 and v = 8L.
The simulations were performed at the estimated critical point ¢, = 8.6429, and the length rescaling ratio was
fixed at ap = 1.5844. The quantity P; (u) was sampled at the ‘equators’ only, in order to avoid inhomogeneity
on finite spheres. The behavior of P; (u) follows from Eq. (5.27), decaying exponentially for v >> 0. This is
demonstrated in Fig. 5.6. The curved positions at the right-hand-side arise because fixed boundary conditions
were applied at both ends, so that the correlations P (u) build up over two distances v and 8L — w.

As discussed above, there is a correction o< L¥c in finite systems, due to the discretization of the 6
direction. Compared to the irrelevant scaling exponent y; = —1.14 in three dimensions, the correction with
the exponent y. = y — 2 = —0.87 is expected to dominate over that with y;. Taking into account these
effects, Eq. (5.27) yields

Pi(u,L) = L=X[Y (u) + Y/(8L — u)](ap + a1 L¥* + a2 L¥ + azL™?) , (5.37)

with the function
Y(u) = (en¥/2R — emuX/2R)=2X (X = Xp + cL¥) (5.38)

where the radius of the spheres is R = L7 as mentioned earlier.

Equations (5.37) and (5.38) were fitted to the Monte Carlo data of P;(u). The fit yields X} = 0.479(1),
which is in agreement with the existing estimation y, = 2.523(4) [4] and with our earlier determination
yn = 2.519(1) on the L? x L rectangular geometry.

Half spherocylinder S x ST x R. As an example of the applications of conformal mappings to surface
criticality, we simulated the transverse percolation model on the half spherocylinder S x ST x R. The system
sizes were taken as 6,8,---,24, and n = 8. The fixed and free boundary conditions were imposed on the
ends of the spherocylinder and the equators, respectively. The quantity P;(u) was sampled. Analogously,
the numerical data of Pj(u) were fitted by Eqs.(5.37) and (5.38), but X = Xps + cL¥°, where X, is
now the surface magnetic scaling dimension. After a cutoff for small system sizes L < 10, the fit yields
Xns = 0.975(4), in good agreement with the existing results X, = 0.96(5) [35] and X} = 0.970(6) [36].
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5.6 Discussion

We define a continuous percolation model: the transverse percolation model. This model is obtained by
applying an infinite rescale factor to the longitudinal direction of the anisotropic limit of the bond percolation
model, and is equivalent with the quantum transverse ¢ — 1 Potts model. We formulate and apply an efficient
Monte Carlo method, and confirm that the transverse percolation model belongs to the same universality
class as the conventional percolation problem on discrete lattices. For the two-dimensional rectangular
geometry, the critical point is exactly available as ¢, = 1, and that in the three-dimensional rectangular
geometry is determined as t. = 8.6429(4). Furthermore, we restore the isotropy asymptotically by requiring
that the correlation lengths in all Cartesian directions are identical to each other.

Moreover, the property that the longitudinal direction is continuous enables simulations of the transverse
percolation model in curved geometries. The numerical data are analyzed by finite-size scaling according to
the predictions of the theory of conformal invariance. It is shown that, in curved geometries, the predictions
of conformal invariance are accurately satisfied. On the other hand, assuming conformal invariance, out
method provides a powerful tool to investigate bulk and surface critical phenomena.
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6

Critical phenomena under energy-like and magnetic con-

straints

We present a Monte Carlo study of several critical and tricritical systems in two dimensions under two types
of constraint. The systems include Baxter’s hard-square and hard-hexagon lattice gases, the Blume-Capel
model, and three- and four-state Potts models with vacancies. The first type of constraint is energy-like
and fixes the number of particles or vacancies. We find that such constraints affect the leading finite-size-
scaling properties of energy-like quantities, while the effect on magnetic quantities is restricted to correction
terms. The second type of constraint applies to the magnetization, and appears to suppress the finite-size
divergences of a quantity that normally scales as the magnetic susceptibility.

In an attempt to explain the observed finite-size scaling properties, we make use of the well-known Fisher
renormalization mechanism. However, we do not always find a satisfactory agreement with our numerical re-
sults for constrained critical systems. For instance, for most energy-like constraints, the exponents describing
the finite-size dependence of the specific heat are twice the expected values.

We also sample specific-heat-like and susceptibility-like quantities on the basis of the fluctuations of the
long-wavelength Fourier components of the energy and magnetization densities of constrained systems. Their
finite-size scaling behavior resembles that of the specific heat and the susceptibility of unconstrained systems
respectively.

6.1 Introduction

In experiments or in simulations, systems undergoing a phase transition may be subject to a constraint. For
instance, the total number of vacancies in the Blume-Capel (BC) model [1,2] can be kept constant. Likewise,
in Baxter’s hard-square lattice gas [3], the total number of particles may be fixed.

Critical phenomena in these ‘annealed’ constrained systems have been of interest for decades. Inves-
tigations date back to 1965 when the exactly solvable Syozi model [4], a dilute spin—% Ising model, was
introduced. Syozi found that the critical indices o', 3’ and ' are related to the standard exponents of the
Ising model as

a':—a/(l—a), Blzﬁ/(l_a)a 7I:7/(1_a)7 (61)

Fisher suggested [5] that the relations (6.1) are not specific to the Syozi model, but are satisfied by
equilibrium models with a divergent specific heat (o > 0) in general. Since then, Fisher’s renormalized
critical exponents have gained considerable acceptance. As a result of Eq. (6.1), the singularity of the
constrained critical specific heat C' assumes the form of a finite cusp instead of being divergent. For the
marginal case of a logarithmic divergence (o = 0), Fisher showed that C — Cy x 1/Int where ¢ is the
temperature-like distance to criticality.

79



Later, more general theories were formulated [6] for constrained systems, including a theory of tricritical
constrained phenomena. Such restrictions can, besides the total number of vacancies, also involve the volume
or pressure etc. It was concluded [6,7] that, depending on the type or strength of the constraint, a continuous
transition may get Fisher-renormalized, remain unchanged, or become first-order. The special point where
the transition remains unchanged corresponds to a ‘tricritical’ point [6], of which the critical singularity is
the same as that of the unconstrained critical system. This theory was tested on the Baker-Essam model [8],
an exactly solvable compressible Ising model.

On the basis of a renormalization-type analysis using a generalized Landau-Ginzburg-Wilson Hamiltonian
and the e-expansion technique, Imry and coworkers found four distinct fixed points [9]. These are the
tricritical Ising (T') and critical Ising (I) fixed points for unconstrained systems, and the renormalized
tricritical (RT) Ising and the renormalized Ising (RI) critical fixed point for constrained systems. In three
dimensions, 7" and RT correspond to Gaussian and spherical fixed points, respectively [9]. The exponent
relations between these fixed points are: agrr = —ay/(1 — ar) and agr = —ar/(1 — ar), in agreement
with Eq. (6.1). These relations have, for the 3D case, been used to explain experimental data for *He-*He
mixtures [10].

Since the upper critical dimensionality of Ising-like tricritical systems is three, one may expect that
mean-field theory yields a qualitatively correct scenario for such systems. We have thus performed an exact
calculation for the tricritical mean-field Blume-Capel (BC) model [11] with a large but finite system size.
We find that the finite-size scaling behavior of the constrained version of this model corresponds with the
classical (mean-field) critical Ising model.

Although considerable work has already been done for critical constrained behavior, further investigations
still seem appropriate. The reasons are as follows. First, although Fisher’s renormalized exponents have been
used extensively, few reports have been published about the finite-size dependence of constrained systems.
Second, it is not obvious how tricritical systems behave under the constraint. Third, it remains to be
investigated how the constraint affects the long-wavelength fluctuations of quantities whose critical behavior
is conserved or renormalized. Since the constraint does not eliminate the spatial fluctuations, one might
expect that the unrenormalized behavior will persist.

Our investigations include several critical and tricritical 2D models: Baxter’s hard square (HS) and
hard-hexagon (HH) lattice gases [3], the Blume-Capel (BC) model, and Potts models with vacancies. Also
included is the tricritical BC model in three dimensions. The total number of vacancies (or particles) is
fixed at the critical expectation value, while they still can move freely over the lattice. These models are
defined in Section II. Here the problem arises what sort of Monte Carlo algorithm applies to such constrained
systems. The Swendsen-Wang and Wolff methods are not suitable or sufficient, since they do not operate
on the zero spins or lattice-gas particles. In principle, one can apply a particle-conserving Kawasaki-like
Monte Carlo algorithm. But this method suffers from serious critical slowing down, so that such simulations
are limited to small system sizes. In the present work, we realize two types of constraints by means of a
particle-conserving geometric cluster algorithm [12], which moreover suppresses critical slowing down. This
Monte Carlo method moves critical clusters of spins (both zero and nonzero) or particles over the lattice
in accordance with the Boltzmann distribution. It also imposes a magnetic constraint: it conserves the
magnetization. The latter constraint can be eliminated by including Wolff cluster steps. The results for the
energy-like and for the magnetic constraint are presented in Sections III and IV, respectively. Section V
presents an analytic approach to finite-size scaling in the presence of a constraint. A brief discussion and
overview is given in Section VI.

6.2 Models and sampled quantities

All simulations of the models described below used L x L systems with periodic boundary conditions.
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6.2.1 The Blume-Capel model
The Hamiltonian of the BC model [1,2] on the square lattice is

MH/ksT =K Y sisj+D> sp, (6.2)

(nn) k

where the sum (nn) is over nearest-neighbor pairs, and the spins assume values s = 0 or £1. We refer to
zero spins s = 0 as vacancies. The parameter D acts as the chemical potential of the vacancies. In the
K — D parameter space, the BC model has a critical line K.(D) and a tricritical point (Ky, D;). The critical
behavior along the line K.(D) is Ising-like, and thus the magnetic, thermal and irrelevant scaling exponents
are y, = 15/8, y = 1, and y; = —2, respectively. At tricriticality, the BC model has different exponents,
namely [13] y, = 77/40, y') = 9/5, y'*) = 1/5, and y; = —1. Using a sparse transfer-matrix method and
finite-size scaling, we locate the tricritical point at K; = 1.6431759 (1) and D; = 3.2301797 (2). This result
is based on the requirement that two types of correlation lengths (magnetic and energy-like) simultaneously
reach their theoretical values. The corresponding vacancy density is p; = 0.4549506(2). Analogously, we
determine an arbitrary critical point at K. =1 as D, = 1.70271780(2), with p. = 0.3495830(1). This point
appears to be sufficiently far from the tricritical point; crossover effects were not seen in the scaling analysis
of the transfer-matrix results.

6.2.2 Baxter’s hard-core lattice gases

We consider a lattice gas on the square lattice defined by the Hamiltonian

H:—KZU,-Uj—JZUkal—MZUman+,uZUk, (6.3)

(nn) {NE} [SE] k

where o = 0, 1 represents the absence and the presence of a particle, respectively, and the chemical potential
of particles is denoted as p. The sums labeled as {NE} and [SE] are over second-neighbor pairs (diagonals
of the elementary faces) along the (z,y) = (1,1) and (1,—1) directions, respectively. We focus on two
exactly solved cases [3] in which the nearest-neighbor interaction K — —oo, i.e., the particles are ‘hard’
and nearest-neighbor sites cannot be occupied simultaneously. The first case is Baxter’s HS model at
Jy = M; = In(3 ++/5) and p; = In[8(1 + v/5)] which is known [14] to belong to the same universality class
as the tricritical BC model. The corresponding vacancy density is p; = (5 + v/5)/10.

In the second case, one of the diagonal couplings becomes infinitely repulsive while the other one is zero:
M — —oo and J = 0. This leads to Baxter’s hard-hexagon (HH) lattice gas, which has a critical point at
pte = In[(114+/5) /2] that belongs to the three-state Potts universality class. The critical exponents are given
by yn = 28/15, y; = 6/5 and y; = —4/5 [3,15]. The critical vacancy density is again p. = (5 +v/5)/10 [3].

6.2.3 Two-dimensional Potts model with vacancies

We consider the Potts model on the square lattice defined by the Hamiltonian

H/ksT = =K > 60:0,(1 = 05.0) = DY b0 (6=0,1,---,q) . (6.4)
(i) k

Here, the sum () is over all nearest-neighbor sites, and the site is occupied by a Potts spin with o =1,--- | ¢
or by a vacancy o = 0. Nonzero couplings K occur only between equal Potts spins, i.e., spins with o # 0.
The abundance of the vacancies is controlled by the chemical potential D. For ¢ < 4 the phase diagram in
the (K, D) plane resembles that of the Blume-Capel model: a tricritical point occurs between the continuous
and the first-order range of the line of phase transitions. By means of a transfer-matrix method, we have
located the ¢ = 3 tricritical point at K = 1.649913 (5), D = 3.152173 (1). The corresponding density of the
vacancies is p = 0.34572 (5).
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For the generic ¢ = 4 Potts case, analyses of the critical scaling behavior are hampered by logarithmic
corrections induced by the marginally irrelevant dilution field associated with D. We suppress this dilution
field by requiring that transfer-matrix results for both the temperature and the magnetic exponent lead to
the exactly known values. Extrapolation of finite-size estimates leads to our estimate of the ¢ = 4 critical
fixed point in the (K, D) plane as K = 1.45790 (1), D = 2.47844 (2). The corresponding density of the
vacancies is p = 0.21207 (2).

6.2.4 Data sampled

Several quantities were sampled during the Monte Carlo simulations, including the order parameter and the
densities of the energy and the particles or vacancies when allowed to fluctuate. The magnetic susceptibility
is obtained from the fluctuations of the order parameter m as y = L*(m?). For the BC model, m is just the
magnetization density. For the HH model, we define m? = 1((p1 — p2)? + (p2 — p3)? + (p3 — p1)?) in terms
of the vacancy densities p1, p2 and p3 on the three sublattices.

Analogously, we have m? = ((p1 — p2)?) for the HS model. A universal Binder ratio [16] is then defined
as Q@ = (m?)?/(m*). An energy-like density e was sampled as the nearest-neighbor correlation for the BC
model, and as the next-nearest-neighbor correlation for the HH and HS lattice gases. On this basis, a specific-
heat-like quantity (equal to the second derivative of the reduced free energy to the parameter conjugate to
e) is defined as C' = L%((e?) — (e)?), where d is the dimensionality of the lattice.

In addition we also sample quantities describing the response of the model to spatially inhomogeneous
temperature or magnetic fields. Just as C and yx they can be expressed in terms of fluctuations of the
conjugate densities. For these conjugate densities we use the long-wavelength Fourier components of the
energy or magnetization.

First, we define a susceptibility-like quantity xp on the basis of the fluctuations of the spatial order
parameter distribution m(z,y). The Fourier components of m(z,y) for systems of size L are

1 [
Mok, = T3 / dz dy m(z,y) exp[2ni(zk, + yky) /L], (6.5)
0

Obviously, the conventional susceptibility is just x = L*(m?) = L?*(mj,), and the quantities my, x,, for
k. #0 or ky # 0, represent spatial inhomogeneity of m. Thus, We define

XF = Lz(meoml,o + mg,_1Mo,1). (6.6)

We shall refer to xr as the structure factor of the susceptibility.
Analogously, we define a specific-heat-like structure factor as Cp = L2<€_170€170 +eo,—1€0,1), Where eg, 1,
denotes the Fourier components of the energy density e.

6.3 Results for energy-like constraints

The following simulations are performed exactly at the critical or tricritical point, unless specified otherwise.
According to finite-size scaling, for unconstrained critical systems, we expect, apart from finite-size

corrections,
e—egox LV~ x o< L2n=d and C—Cyox L2~ (6.7)

where eg and Cy arise from the analytic part of free energy. The scaling behavior of x and C' can be
obtained by integration over space of the magnetic and energy-energy correlation functions respectively.
These correlation functions depend on the distance r as r2¥»~2¢ and r2¥t=2¢ respectively. Since xr and Cr
are determined by integrals with the same scaling properties, we expect finite-size behavior similar to x and
C respectively.

As a test, we simulated the unconstrained HH model (y; = 6/5 and y, = 28/15). In order to allow
transitions between particles and vacancies, Metropolis sweeps were applied in addition to geometric cluster
steps [12]. System sizes were taken as L = 6,9,---,24. Results are shown in Fig. 6.1, which confirms
Eq. (6.7) and our expectation that C and Cr behave similarly.
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Figure 6.1: Specific-heat-like quantities C' (0) and Cr (A) versus L?/5 for the unconstrained HH model.
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Figure 6.2: Energy-like quantity e for the constrained HH model versus L—6/5,

6.3.1 Hard-hexagon lattice gas

For the constrained HH model, only geometric cluster steps [12] were used. In principle, the total number
of the vacancies should be taken as V., = L?p,, with p. = (54 +/5)/10. For finite systems, however, V. is not
an integer. Therefore simulations were performed at two numbers [V.] and [V, + 1] where brackets [ | denote
the integer part. Data at V. are obtained by linear interpolation between [V;] and [V, 4+ 1]. System sizes
were chosen as 33 values ranging from 9 to 960. Examples of the Monte Carlo results are shown in following
figures.

Figures 6.2-6.4 suggest that e—eg oc L~%/%, C—Cy o« L=%/% and C o L*/®. Compared to unconstrained
systems, the behavior of e and C' is considerably modified. In particular, the specific-heat-like quantity C'
approaches a constant Cy when L increases. The structure factor Cr remains, however, similar to that in
the unconstrained system. It is also observed that the magnetic susceptibilities, as expected, approximately
behave as x o< xr o< L2+~ = [?6/15 (not shown).

Although the leading behavior of susceptibility-like quantities remains unchanged, finite-size corrections
due to the constraint appear. An example of such a quantity is the dimensionless Binder ratio (Fig. 6.5),
indicating an associated exponent y; = —2/5.

To be more specific, we fitted the formula @,, = Q. + aL¥" to the numerical data according to the
least-squares criterion. Applying a cutoff for small system sizes L < 15 we found that Q.. = 0.7892(2),
a = 0.1025(9) and y; = —0.397(5). Since the irrelevant exponent y; = —4/5 is clearly different, it appears
that new corrections are introduced by the constraint.
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Figure 6.3: Specific-heat-like quantity C' for the
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Figure 6.5: Binder ratio @),, for the constrained HH model versus L~
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Figure 6.7: Specific-heat-like quantity C for the constrained critical BC model versus 1/(In L)2.

6.3.2 Critical Blume-Capel model

The critical BC model in two dimensions is a marginal case (o = 0). The simulations used a combination
of Wolff and geometric cluster steps in order to leave the magnetization free and impose the constraint that
the number of vacancies is fixed. System sizes were chosen as 53 values ranging from 4 to 400. Under the
constraint, the critical structure factor approximately behaves as Cr — Cpg o In L (Fig. 6.6), and the scaling
behavior of x and yr is about oc L?¥»~% = L7/* (not shown). This scenario is analogous to that for the
constrained HH model, i.e., the critical behavior of C'r, x and xr is not affected by the constraint.

The Monte Carlo data for C' and e are shown in Figs. 6.7 and 6.8, respectively. The suggest that
C — Cp x 1/(In L)?, and that a single power law is not sufficient to describe the behavior of the energy-like
quantity e.

The Binder ratio @, is shown in Fig. 6.9 as 1/1n L, the approximate linearity at left-hand-side indicates
that the leading finite-size correction may be of a logarithmic form. Compared to the irrelevant exponent
y; = —2 for unconstrained BC model, such a correction may arise from the constraint.

6.3.3 Dilute ¢ = 4 Potts model

The simulations took place at the ‘fixed point’ where the logarithmic corrections are absent. The vacancy
densities were kept fixed, and square systems were chosen in the range 12 < L < 280. The numerical data
for of C' were fitted by

C=co+ear L™+l 3% 4072, (6.8)
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The amplitude c3 was not significant. A two-parameter fit led to ¢; = —2.1(5) and ¢2 = —23(1). It appears
that the absolute value of ¢y is much larger than that of ¢;.

6.4 Results for magnetic constraints

In the presence of a constraint on the magnetization we still want to determine a susceptibility-like quantity.
For the Ising model we may consider a local quantity defined as

m' =L ¢ Z $iSjSk (6.9)

triang

where the sum is over three-spin products. These three spins are picked up from those on elementary
units such as the elementary triangles and squares for the triangular and square lattices, respectively. This
quantity has the same symmetry property as the magnetization m, i.e., it changes sign when all spins are
inverted. Its fluctuations are obviously reduced when the constraint m = 0 is imposed. We thus define the
susceptibility-like quantity

X' = LYm') (6.10)
In the more general context of the Potts model the magnetization is determined by the densities p; defined
as
pi =LY 6oy (6.11)
k
where i = 1,2,--- ,q denotes the Potts state. The normal Potts magnetic susceptibility x is defined as
l i © .
x = Lm?) = ;L DD Api=p)?) (6.12)
i=1 j=i+1

Since the terms in the double sum do not depend on i and j one can just take the term ¢ =1 and j = 2. In
the presence of the constraint p; = 1/¢q we may thus define the magnetization-like quantity

m' = L7¢ Z((stn,l - 60'1'72)(60']'71 - 60172)(6%71 - 60'k72) ) (6.13)
.5,k
and the susceptibility-like quantity
X' = LYm'?) (6.14)
Without this constraint, the finite-size scaling behavior of x’ and x is governed by the same exponents. This
was numerically verified for several models.

6.4.1 Critical Ising model

The model is defined on the triangular lattice, and the system sizes were chosen in the range 8 < L < 660.
The simulations took place at the critical point K. = %ln?) and at zero magnetization. The results for the
susceptibility-like quantity x' are shown in Fig. 6.10. The data for x' were fitted by the formula

X' = co + LP(ap + a1 L") , (6.15)
according to the least-squares criterion. The exponent p governs the leading singular behavior of x’, and
the term with y; purportedly accounts for finite-size corrections. We thus obtain p = —1.008(12) and

6.4.2 Critical ¢ = 3 Potts model

The model is also defined on the triangular lattice, with system sizes ranging from 9 to 480. The densities
of the three types of Potts variables were chosen equal and fixed. The data for x' (not shown) were fitted
by Eq. (6.15), which led to the results p = —0.77(5) and y; = —0.51(20).
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Figure 6.11: Susceptibility-like quantity x’ for the tricritical Blume-Capel model versus L/4,

6.4.3 Tricritical Blume-Capel model

The simulations took place at the tricritical point as given above , at zero magnetization and with the
vacancy density fixed at its tricritical value, using square lattices with sizes in the range 8 < L < 360. The
results for x’ are shown in Fig. 6.11. The fits yielded that p = 0.253(2) and y; = —1.96(6).

6.4.4 Tricritical ¢ = 3 Potts model

The simulations used the model on the square lattice, and took place at the tricritical point as given above.
The vacancy density was fixed at its tricritical value, with the three Potts densities equal and fixed. The
system sizes were in the range 10 < L < 480. The three spins in the product sampled for x’ were chosen
in the corners of each elementary square. The data are shown in Fig. 6.12. The fit yields p = 0.126(2) and
y1 = —2.0(3).

6.4.5 Dilute ¢ = 4 Potts model

The simulations took place at the ‘fixed point’ where the logarithmic corrections are absent. The vacancy
and Potts densities were kept fixed. Square systems were chosen in the range 12 < L < 480. The data for
x' are shown in Fig. 6.13. The fits by Eq. (6.15) yields p = 0.224(4) and y; = —1.8(1).
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6.5 Finite-size scaling in the presence of a constraint

As mentioned above, constrained critical behavior in infinite systems is explained by Fisher’s renormalized
ezponents [5]. On this basis, we perform some calculations for finite-size constrained critical behavior.

6.5.1 Energy-like constraint

In the language of the Potts model with vacancies [Eq .(6.4)], the scaling behavior near the critical temper-
ature of the reduced free energy density f =1nZ is

.f(t7L) :Lidfs(tLy“]-)_f_fa(D) ) (616)

where t is the thermal scaling field, and f; and f, are the singular and analytic parts of the free energy
respectively. Here, we have neglected the irrelevant field in fs;. The analytic part f, is expressed in D which
parametrizes the critical line. The dependence of f, on the distance ¢ to the critical line is neglected. The
constraint is thus p(D, K, L) = 0f/0D = constant where ¢ is expressed in K and D. Solving this equation
yields the path in the (D, K) plane. The solution can be written as t oc (K — K.)L42%¢ if 2y; —d > 0, where
K. is the value of K where the path crosses the critical line at ¢ = 0. Substitution of ¢ in Eq. (6.16) leads to

F#',L) = LUf(t' L%, 1) + fu(t') - (6.17)

where we have parametrized the distance to the critical point as t' = K — K.. On this basis, we expect that
the leading critical singularities for constrained systems are

e—epox L7 and C' — Cy oc L4724 g L2420 (6.18)

Equation (6.18) indicates that e — eg oc L~ %/ and C — Cy o< L~2/> + aL~*/> for the constrained HH
model, and that e — ey oc L™! and C — Cy o< 1/InL + a/(In L)? for the constrained critical BC model.
From a comparison with the numerical data in Sec. II, we find that the energy density is satisfactorily
explained. However, for the specific heat, the amplitude of the leading term L?2% is very small if not
absent. This result, as well as the aforementioned new finite-size corrections, suggests that some more
reflection is desirable.

Our finite-size scaling results for models with an energy-like constraint, and our expectation on the basis
of the Fisher renormalization scheme, are listed in Tab. I.

Tab. I: Summary of finite-size scaling properties in critical and tricritical models under the energy-like
constraint that the number of vacancies or particles is conserved.

model quantity | found expected
hard-hexagon e L~675 L—6/5
hard-hexagon C—-Cy | L5 L—2/%
hard-hexagon Cr L2/5 L2/5

crit. 2D Blume-Capel | e L=t (? L=t
crit. 2D Blume-Capel | C —Cy | 1/(InL)? | 1/InL
crit. 2D Blume-Capel | @ 1/InL(?) | L2
dilute 2D ¢ =4 Potts | C—Cy | L7t (?) | L!

6.5.2 Magnetic constraint

For Ising models we require m = 0, and for Potts models p; = p» = --- = p,. Without this constraint,
the critical behavior of x and x' as defined above is governed by the same magnetic exponent. Under the
constraint, x is completely suppressed, and we may thus raise the question about the scaling behavior of
x'. We first note that x and x' can be written as the second derivatives of the free energy density f with
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respect to fields H and H' respectively. The second derivative of f to H' will depend on the ‘path’ described
by the constrained system in the H, H' plane. To find this path, we first assume that the magnetic scaling
field h and a subleading field h' can be expressed as linear combinations of H and H', and that h is the only
relevant field governing the magnetic critical behavior. Following Fisher’s procedure applied earlier in the
case of thermal behavior, we find that the path is determined by balancing the contributions of the singular
and analytic parts of f to the magnetization so that the magnetic scaling dimension y;, is renormalized as
Yy, = Xp = 2 — yp. Thus, for critical systems with a zero magnetization, one would expect x' x LP' with
p1 =2y, — 2 =2 — 2y;,. We refer to this as ‘Mechanism One’. It does not match our results given in Section
IV: the observed singularities appear to be stronger.

We therefore tentatively assume instead that there is another relevant magnetic scaling field that plays a
role in the Potts model. For the exponents associated with such scaling fields see e.g. Ref. [13]. Normally, this
second field is considered redundant. The value of the second magnetic dimension is X; = (¢9+1)(10—g)/8y,
with ¢ = 2 + 2 cos(gn/2), where 2 < g < 4 applies to the critical branch of the Potts model, and 4 < g < 6
to the tricritical branch. The parameter g is called the coupling constant of the Coulomb gas. If the second
field is not redundant, it will lead to a singularity according to x' oc LP? with p, = 2 — 2X}. We will refer
to this as ‘Mechanism Two’. Comparison with Section IV tells us that it does not apply, as expected for
redundant operators.

Next we investigate a third mechanism based on the nonlinearity of the scaling fields. In particular
we expect that quadratic terms in the magnetic field may contribute to the temperature field ¢, i.e., t =
K — K.+ wH? +w'H" + - --. The scaling equation for the free energy then becomes

ft, L) = L7f(LY(K — K. + wH? + w' H'?> +---), -+, 1) + - (6.19)

The second derivative to H' will thus pick up contributions proportional to LP? with p3 = y; — d. For the
case of the critical ¢ = 2 and ¢ = 3 Potts models, this agrees well with the numerical results, but not so for
q = 4 and the tricritical systems.

A fourth mechanism is similar to the second, but with a second magnetic dimension assumed to be
described by the Kac formula [17,18]

[p(m +1) — gmP’ — 1
2m(m + 1)

Xpq = : (I1<p<m,1<qg<p) (6.20)
for rotationally invariant operators. For the tricritical Blume-Capel model (m = 4), it is known [19] that
Xn2 = X2,1 = 7/8 is a second relevant magnetic dimension. We assume that this can be generalized to the
whole tricritical branch of the Potts model such that

Xn2 = Xonj2,m/z—1 = (9m® —4)/8m(m + 1) . (6.21)

Thus, one has X2 = 20/21 and 9/8 for the tricritical ¢ = 3 (m = 6)and the ¢ = 4 (m — oo) Potts model,
respectively. Substitution of g = 4(m + 1)/m in Eq. (6.21) yields

Xnz =[36 — (9 —4)*]/8g , (6.22)

where g is the coupling constant of the Coulomb gas. We simply assume that Eq. (6.22) also applies to the
critical branch of the Potts model, for which g = 4m/(m + 1). Thus, one has Xp2 = X(py3)/2,(mt1)/2 =
(3m +5)(3m + 1) /8m(m + 1) for the critical Potts model. For m =5, i.e., the ¢ = 3 Potts model, its value
is Xp2 = X4,3 = 4/3. The case m = 3 applies to the critical Ising and tricritical ¢ = 1 Potts models, which
have X2 = X35 and X35 1/2, respectively. Apparently, the coordinates of these exponents do not occur in
the aforementioned Kac table (6.20), and the exponents may not be observable in thermodynamic quantities.
The predictions of this mechanism (Mechanism Four) agree satisfactorily with the numerical results, except
for the ¢ = 4 Potts model and the tricritical ¢ = 3 model.
The fits according to the above four mechanisms are summarized in Tab. II.
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Tab. II: Summary of finite-size scaling results according to Mechanisms 1-4 outlined above. In those cases where p does not well agree with a
single mechanism, better agreement is obtained by combining Mechanisms 3 and 4.

q | model Xn1 Xn2 | P 21 D2 D3 P4
2 | crit. Ising 1/8 7/6 —1.008(12) | —7/4 -1/3 -1 —
3 | cit. ¢=3 2/15 13/12 | —0.77(5) | —26/15 -1/6 —4/5 —-2/3
4 | q =4 with vac. | 1/8 15/16 | —0.224(4) | —7/4 1/8 -1/2 —1/4
3 tricr. ¢ = 3 2/21 20/21 | 0.126(2) —38/21 8/21 —2/7 2/21
2 | tricr. ¢ =2 3/40 3/4 | 0.253(2) —37/20 1/2 -1/5 1/4
Tab. III: Results of fits for several g-state Potts models with vacancies
Fitl (ps, p; fixed) Fit2 Fit3
model ag ay ay P4 D3 D4 D3
crit. ¢ =3 0.4198(4) —0.83(5) —1.08(7) | —0.7(2) —4/5 (fixed) | —2/3 (fixed) —0.7(2)
q = 4 with vac. | 2.55(3) —4.67(2) 0.78(3) | —0.249(5) —1/2 (fixed) | —1/4 (fixed) —0.49(8)
tricr. ¢ = 3 —5.54(2) 4.40(2)  0.67(2) | 0.094(5)  —2/7 (fixed) | 2/21 (fixed) —0.30(5)
tricr. Ising —2.26(1) 1.356(2)  0.12(2) | 0.250(5)  —1/5 (fixed) | 1/4 (fixed)  —0.2(2)




Table II indicates that not all the numerical data can be explained by a single mechanism. It is obvious,
however, that more than one mechanisms can simultaneously exist under the magnetic constraint. Thus, we
fitted the data for x' by

X, = ap + ale4 + asz3 + ang‘*“” y (623)

where the term with y; arises from the irrelevant thermal scaling field. For the critical ¢ = 3 Potts model,
it is difficult to distinguish p3 = —4/5 from ps = —2/3. However, if ps and ps are fixed and y; is set to
—4/5, both amplitudes a; and ay are indeed well determined as a; = —0.83(4) and ay = —1.08(5). For
the tricritical Blume-Capel model, we also fixed p3 = —1/5 and ps = 1/4 and obtained a; = 1.356(3) and
as = 0.12(2). If we leave py free and keep ps fixed, we find ps = 0.249(3), in agreement with the expected
value. However, if ps is left free while py4 is fixed at 1/4, the error margin of ps is as big as the value itself.
This may be due to the following. First, the amplitude as is much smaller than a; as mentioned earlier.
Second, the exponent ps = —1/5 is close to 0 such that the term with a» is difficult to distinguish from the
background contribution ag. The fits of x’ for the ¢ = 3 and ¢ = 4 Potts models, and for the ¢ = 2 tricritical
model, are summarized in Tab. III.

6.6 Discussion

From our numerical results for several critical and tricritical systems under an energy-like constraint, we
observe that a) the leading scaling behavior of susceptibility-like quantities remains the same as in uncon-
strained systems; b) critical behavior of structure factors, accounting for spatial fluctuations, is also not
influenced by such a global constraint; ¢) the scaling behavior of energy-like quantities is modified signifi-
cantly; and d) strong finite-size corrections arise due to the constraint.

On the basis of Fisher’s theory, we have performed some analytical calculations, in order to compare
with our numerical results. We find that constrained tricritical phenomena can be described satisfactorily.
However, our understanding of constrained critical phenomena appears to be insufficient: the numerical
results indicate that, for a number of models, the amplitude of the leading term in Eq. (6.18) is very small
if not absent.

Our derivation of the constrained finite-size behavior does not provide us with an obvious reason why
the leading term should vanish. Moreover, it has been observed [20] that the effective renormalization of
the constrained specific heat in experiments is not as strong as the theoretical prediction, Eq. (6.1). This
deviation from the expected scaling behavior is just in the opposite direction.

Furthermore, we have shown that, in comparison with unconstrained systems, new finite-size corrections
for magnetic quantities arise due to the energy-like constraint. It appears that these corrections are not
accounted for by the mechanism described in Ref. [21]. Thus, further investigation, in particular a theoretical
analysis, seems desirable.

Our results for the constrained three-dimensional Blume-Capel model, while in agreement with the Fisher
renormalization scheme, do not agree with the mean-field description [11] of the constrained model. Can we
understand this? In the mean-field model, each spin interacts equally with every other spin. The presence
of vacancies only reduces the number of Ising spins, leading to a smaller effective interaction. Thus, the
vacancy fluctuations are coupled to the Ising fluctuations. The stability criterion of the coupled fluctuations
determines the tricritical point. The constraint suppresses the fluctuations of the vacancies, and thus reduces
the model to an ‘ordinary’ mean-field Ising model. It is clear that tricritical behavior is suppressed in the
constrained mean-field model, but we find it puzzling that this result differs from that for the tricritical
Blume-Capel model in three dimensions, the upper critical dimensionality.

For the magnetic constraint, the situation seems more satisfactory than for the energy-like constraints,
but still involves assumptions that need further justification. For instance, our assumption for the value of
the second magnetic scaling dimension of the Potts model deserves more attention, since no solid numerical
evidence for this exponent is available, as far as we know.

For us the most remarkable result obtained above is the finite-size behavior of the constrained specific
heat, which displays twice the expected exponent. In an attempt to obtain a further clue, we have done an
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Figure 6.14: Specific heat C' of the antiferromagnetic Ising model with a conserved magnetization versus
1/InL.

additional investigation of the 2D antiferromagnetic critical Ising model at a conserved and nonzero mag-
netization. This case of a magnetic constraint stands clearly apart from the magnetic constraints described
above. In the context of the Ising universality, the magnetic field acts as a temperature-like scaling field
in the case of the antiferromagnet, so that the constraint should, within this context, be considered an
energy-like one.

A transfer-matrix method was used to determine a rather arbitrary critical point at magnetization density
m = 0.199897148. The associated coupling was found to be K, = —0.64599(1). The simulations by means
of a geometric cluster algorithm used system sizes in the range 8 < L < 160. The specific heat C was
determined in the usual way from the fluctuations in time of the nearest-neighbor correlation. In this case,
we found that C' — Cp o< 1/In L (shown in Fig. 6.14), which is, unlike the other cases involving an energy-like
constraint, in a good agreement with our understanding of the Fisher renormalization mechanism.
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7

Constrained tricritical Ising model in three dimensions

Using the Wolff and geometric cluster Monte Carlo methods, we investigate the tricritical Blume-Capel
model in three dimensions. Since these simulations conserve the number of vacancies and thus effectively
introduce a constraint, we generalize the Fisher renormalization for constrained critical behavior to tricritical
systems. We observe that, indeed, the tricritical behavior is significantly modified under this constraint. For
instance, at tricriticality, the specific heat has only a finite cusp and the Binder ratio assumes a different value
from that in unconstrained systems. Since three is the upper tricritical dimensionality of Ising systems, we
expect that the mean-field theory correctly predicts a number of universal parameters in three dimensions.
Therefore, we calculate the partition sum of the mean-field tricritical Blume-Capel model, and accordingly
obtain the exact value of the Binder ratio. Under the constraint, we show that this mean-field tricritical
system reduces to the mean-field critical Ising model. However, our three-dimensional data do not agree with
this mean-field prediction. Instead, they are successfully explained by the generalized Fisher renormalization
mechanism.

7.1 Introduction

In the development of the theory of critical phenomena and phase transitions, a spin-1 Ising model known as
the Blume-Capel (BC) model has played an important role. This model was originally introduced by Blume
and Capel [1,2], and the reduced Hamiltonian reads

M/ksT = —KY sis;+ DY _si  (si =+1,0), (7.1)
(i) k

where the sum ( ) is over all nearest-neighbor pairs of lattice sites. The spins assume values +1 and 0,
and those in state 0 are referred to as vacancies. The abundance of vacancies is governed by the chemical
potential D, which is also termed the crystal field parameter. The phase diagram is sketched in Fig. 7.1.
For D — —oo, the vacancies are excluded, and the model (7.1) reduces to Onsager’s spin-1 model [3]. The
critical couping K.(D) is an increasing function of D. For sufficiently large chemical potential, the transition
then becomes first-order, separating the vacancy-dominated phase from those dominated by plus (+1) or
minus (—1) spins. At the joint point, these three coexisting phases simultaneously become identical, and
this point is then called [4] the tricritical point, denoted as (K¢, D;) in Fig. 7.1.

In two dimensions, the nature of critical singularities of the BC model is now well established. For
instance, as early as in 1942, the exact expression of the free energy was obtained by Onsager [3,5] for the
spin—% model. The universal thermal and magnetic exponents are y; = 1 and y;, = 15/8, respectively. At the
tricritical point (K, D;), exact values of the universal exponents follow from Baxter’s exact results for the
hard-square lattice gas [6,7], in the same universality class with the tricritical Blume-Capel model; further,
these exponents can be calculated from the Coulomb gas theory [8,9] and are also included in predictions of
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Figure 7.1: Sketch of the phase diagram of the BC model. The solid line represents the critical line, which
separates the para- and ferromagnetic phases; and the first-order transition is shown as a dashed
line. The two lines join at a tricritical point (black circle).

the conformal field theory [10,11]. The leading and subleading thermal exponents at tricriticality are [6-12]
ye1 = 9/5 and ygz = 4/5, respectively, and the magnetic ones are yp; = 77/40 and yp2 = 9/8, respectively.

In three dimensions, exact results are absent for the BC model along the critical line K.(D), and inves-
tigations of critical behavior have to depend on approximations such as series and e expansions, and Monte
Carlo simulations [13-16]. However, the tricritical Ising model is somewhat special, in the sense that it is one
of the rare cases in three dimensions that exact information is available about critical singularities [4]. This
is possible because three is the upper tricritical dimensionality of Ising systems. As a consequence, critical
exponents can be exactly obtained from renormalization calculations [17] of the Landau-Ginzburg-Wilson
Hamiltonian. The thermal and magnetic tricritical exponents [4] are y;; = 2 and y2 = 1, and yp; = 5/2 and
Yn2 = 3/2, respectively.

An experimental example of tricritical phenomena in three dimensions is the superfluid transition in
3He-*He mixtures [4], which is sketched in Fig. 7.2. The transition at the tricritical point is known as
the X transition. In fact, the order parameter in the *He-*He mixtures is a vector of two components, so
that the superfluid transition should in principle be described by the O(2) model, the so-called XY model.
Nevertheless, the renormalization calculations yield the same critical exponents for the O(n) model with
n > 1, apart from logarithmic corrections. Thus, in this sense, the BC model (7.1) is still qualitatively
applicable [4] at the A point. One would then simply expect that the tricritical specific heat C is divergent,
with a critical index @« = 2 — d/y;; = 1/2. However, this expectation does not agree with the existing
experimental results: C' was observed [18] to have only a finite cusp with & = —0.9(1) at the A point.

This lack of agreement is the result of an important difference between the systems in the aforementioned
theoretical and experimental contexts. This is reflected by the distinction between Figs. 7.1 and 7.2, of
which the first deals with models in the space (K, D). In contrast, Fig. 7.2 uses the mole fraction z of 3He
as an independent parameter [18]. The fraction z plays a similar role as the vacancy density in Eq. (7.1).
Therefore, a correct theoretical description of the A transition in Fig. 7.2 should be based on a restricted
partition sum with a conserved number of vacancies. In other words, an external constraint is imposed on
the system (7.1). This constraint is of the ‘annealed’ type [19] since vacancies are allowed to move freely
over the lattice according to the Boltzmann distribution.

Constrained critical behavior has already been studied for decades. As earlier as 1965, Syozi [20] intro-
duced a decorated Ising model on a d-dimensional lattice, which was shown [21] to be intimately connected
with annealed systems. The Syozi model can be exactly transformed into the spin—% model, and critical
exponents of these two systems are related as

as=—af(l-a), PLs=p/1-a), and wv=v/(l—a), -- (7.2)

where a and [ are the standard critical indices for the specific heat C and the magnetization density m for
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Figure 7.2: The schematic phase diagram of a *He-*He mixture in the plane of temperature 7' and mole
fraction z of 3He. The temperature can be understood as the inverse coupling constant 1/K in
Eq. (7.1).

the spin—% model, respectively, and v = 1/y; is the inverse of the thermal exponent; those with the subscript
s are for the Syozi model. It can be shown that the hyperscaling relations still hold among the critical
indices ag, s etc. In three dimensions, the spin—% model has a > 0, so that the specific heat C' of the Syozi
model does not diverge at criticality. In two dimensions, C' of the spin—% model is divergent in a logarithmic
scale since @ = 0. For this marginal case, C' of the Syozi model reaches a finite cusp, also of a logarithmic
nature. Later, this was discussed in a more general context by Essam and Garelick [22] and by Fisher [23].
It was pointed out that relations (7.2) are not specific to the Syozi model, but are more generally satisfied by
equilibrium models with a divergent specific heat (o > 0). Since then, the so-called Fisher renormalization
of constrained critical systems has gained considerable acceptance [24-27].

A description of constrained tricritical behavior was formulated by Imry and his coworkers [28] in the
context of the renormalization group (RG) technique. Using the e-expansion and a generalized Landau-
Ginzburg-Wilson Hamiltonian, they found four distinct fixed points: the tricritical Ising (7'I), critical
Ising (C1I), renormalized tricritical Ising (RTI), and renormalized critical Ising (RCI) fixed points. Renor-
malization flows deviating from 71 can move into the fixed points C'I or RTI, and those from CI can
end at RCI. The critical exponents at these fixed points are related as arcr = —ac;/(1 — acy) and
arrr = —arr/(1 — arr), in agreement with Eq. (7.2). For the spatial dimensionality d > 3, T'I and RTT
correspond to Gaussian and spherical fixed points, respectively. Thus, one has the critical indices arr = 1/2

and agrr = —arr/(1 — arr) = —1 in three dimensions. If one assumes that constrained behavior of an
annealed tricritical system is governed by the fixed point RT'I, the theoretical prediction agry = —1 is then
in good agreement with the experimental observation [18] o = —0.9(1).

At the upper critical dimensionality, the mean-field theory is generally believed to correctly describe some
universal aspects of phase transitions. Indeed, for the tricritical BC model in three dimensions, a number of
universal quantities, including the thermal and magnetic exponents y;; and yp1, can be exactly calculated [4]
from a mean-field (MF) analysis. In the present paper, we also perform some exact calculations for the MF
BC model. Under the constraint that the total number of vacancies is fixed, we show that the tricritical MF
BC model reduces to the critical MF Ising model. However, this MF result is not what one would expect for
the tricritical BC model in three dimensions, since the constraint should not change the universality class.
Thus, the present paper also takes another approach: following the basic ideas in Ref. [23], we generalize the
Fisher renormalization mechanism for constrained critical behavior to tricritical systems. In Particular, we
derive finite-size scaling results based on this generalized mechanism.

In addition to these theoretical analyses, we perform a Monte Carlo study of the constrained three-
dimensional (3D) BC model. For systems with a conserved number of vacancies, efficient simulations have
only become possible after the introduction of the geometric cluster method [29-31]. This algorithm was
developed on the basis of spatial symmetries, such as Hamiltonian invariance under spatial inversions and
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rotations. It moves groups of magnetic spins and vacancies over the lattice in accordance with Boltzmann
distribution, while the global magnetization and vacancy densities are conserved. Then, the aforementioned
constraint can be realized by a combination of the geometric method and the Wolff algorithm [32], which
acts only on nonzero spins and thus allows magnetization fluctuations.

7.2 Mean-field Blume-Capel model

In this section, we perform an asymptotic analysis of the finite mean-field (MF) BC model. On this basis, we
hope to obtain some exact results for universal parameters describing constrained behavior of the tricritical
BC model in three dimensions.

The mean-field (MF) version of a finite BC model (7.1) is expressed by the Hamiltonian

N N
K 2
’H/kBT = N i:E 1 j:EH_l s;8; + D Ek Sy, (S,‘ = :|:1,0) s (73)

where NV is the total number of spins, and each spin is interacting with each other spin. Then, the local
Hamiltonian of the ith spin, i.e., the terms in Eq. (7.3) involving that spin, reads

N
K
Hi/ksT = —Ks;m + Ds> + Ns? with mN = s, (7.4)
i=1
where m is the global magnetization density. The last term in Eq. (7.4) vanishes as 1/N, and will be

neglected. The tricritical point [4] of this MF system can be calculated as follows. According to the
Boltzmann distribution, Eq. (7.4) determines the statistical probability w of the local spin s; as

1 1 1
w(s; =1) = ;eKm , w(s; =0)= ;eD , and w(s; = —1) ;e*Km , (7.5)

with a normalization factor z = eX™ + P + e~K™_ Thus, the local magnetization (s;) and the global one
m are related as
(s;) = 2sinh(K'm)/[exp(D) + 2 cosh(Km)] . (7.6)

At tricriticality, the stability criterion requires that m = 0, d(s;)/0m = 1, and 8%(s;)/Om3 = 0. From
Eq. (7.6), solution of these requirements yields the tricritical point as K; = 3 and D; = 2In2; and the
corresponding vacancy density as p, = pyt = 2/3.

7.2.1 Unconstrained systems

The Hamiltonian (7.3) depends only on the numbers of down spins and vacancies, which are denoted as Ny
and N,, respectively. Expression of the partition sum Z in these variables leads to

N N-—Ng4
K N —N,—2Ng, K
Z = Ny, N, —N(——— )" - (D+ —)(N — N, 7.7
PO Dewp |5 N2 (04 S - ) &

where the combinatorial factor ¢(Ng, N,) counts the total number of configurations with Ny minus spins and
N, vacancies

N!
~ Ng!N,(N —Ngz— N,)!~
After the substitution of the magnetization density m = (N — N, — 2Ny)/N and the vacancy density
py = Ny/N in Egs. (7.7) and (7.8), one has

C(Ng4, Ny) (7.8)

7= 2N2/0 dm/0 dpy c(m, py) exp[gzvnﬂ ~DN( = p)] [1 + O(1/NY] , (7.9)
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where we have replaced the sums in Eq. (7.7) by integrals over the magnetization and vacancy density m
and py, and neglected correction terms of order 1/N. Substitution of the tricritical values of K and D,
application of the Stirling’s formula In(N!) = (N + %) In N — N, and Taylor-expansion of In ¢(m, p,) yield

o 1 2 .
lnc(m, p,) = —gN(épv +m?)? — 8ZN(S/)Um‘l — ;N&vamz — ngSSPv

4
S s £ O [Z 82k (5p,)" - (7.10)

10
k=0

where dp, = p, — put represents fluctuations of the vacancies. On this basis, the partition sum (7.9) can be
written as

Z = fNQ/ dm e" N’ [1 + NO(m / dpe s 1+683Nm + NO(m?)]
= f’NZ/ dm e~ 4on/ dpe NP [1+ O(1/N)] (i+2j =6), (7.11)
0 —00

where f and f' are constants and we have introduced a new variable § = ép, + m?. The integration

boundaries have been extended to infinity, and this can be shown [33] to introduce only an error decaying
exponentially with N. Equation (7.11) indicates that the tricritical fluctuations of the MF BC model (7.3)
consist of two parts: Gaussian (normal) fluctuations of a combined variable p and those of the magnetization
described by a weight exp(—9Nm®/40). The absence of m? and m? in Eq. (7.11) is an essential characteristic
of the ¢% theory and the mean-field description of tricritical phenomena. For later convenience, we rewrite
Eq. (7.11) in the variables z,, = 9Nm5/40 and z, = 9N j?/4 as

o - > _1 3
7 = B(N)/ depy, Tme ™ / dz, zo 2e” " [1+ O(1/VN)], (7.12)
0 0

where B(N) is a function of N. Then, substitution of the T function, T'(z) = [ °u*"te™* dz, yields the

0
partition sum (7.11) as
1.1
Z = B(N)I‘(E)I‘(E) . (7.13)
In the study critical phenomena, several universal ratios of finite-size scaling amplitudes, closely related
to the quantity originally introduced by Binder [34], play an important role. Particularly, these dimensionless
ratios are very useful in Monte Carlo determinations of critical points. Here, we consider two such ratios,
which are defined on the basis of fluctuations of the magnetization m and vacancy density p, as
(m?)?

(m*)

and Q, = ()" (7.14)

Um = (Gpo))

with §p, = py — put, as mentioned earlier.
From the probability distribution implied by the partition sum (7.12), the expectation values of the
moments of the magnetization density m are then obtained as

(m®) = @ /0 " do m2rptemen /0 % dzy oy e
@)

o - () B

(m) = <;—;> £E§;+O(N‘§), and

(m®) = <;—;>%£E§;+O(N_g). (7.15)



Therefore, the dimensionless ratio @, is

1 1.5 _1 1 1
Qm =T ()/T(GT() + O(NTH) = 5+ O(NTH), (7.16)
where we have used formula I'(3 + 2)['(3 — 2) = sy SO that I'?(3) =m and I'($)I(2) = 2.
The exact value of @), can be obtained as follows. From the definition g = dp, + m?, one has
po) = (p) = (m?),
((6p0)*) = (p°) = 2(p)(m?) + (m*) ,  and
((p)") = (") = 4p*)(m?) + 6(p°)(m*) — 4(p)(m®) + (m®) . (7.17)
At the tricritical point, one has (dp,) = 0, so that (p) = (m?). A detailed calculation then yields
4 6 8 4 2
1 (m”) (m®)  (m°) (m”)
=|- -4 -1 1
05" = (248 ms = gais * ) [ 1] 19
so that
1T’
l=9—< ~ 3.8348 7.19
@t =9-5 |54 , (7.19)

and @, = 0.2608 - - -.

The aforementioned calculations implicitly yield the mean-field (MF) thermal and magnetic exponents.
Equation (7.4) indicates that the mean-field quantity (m?) can be regarded as a type of energy density. From
the definition of the magnetic susceptibility x = N(m?), one has then the scaling behavior at tricriticality
(m?) o< N¥~1 = N29»=2_ Here, we have introduced the mean-field critical exponents f; and ¢, which
are related to the standard leading thermal and magnetic exponents in finite dimensions as y;; = dg: and
yn1 = dip, with d > 3, respectively. The above scaling formula gives the mean-field relation §; = 2, — 1,
which generally holds for mean-field systems. On this basis, Eq. (7.15) yields g; = 2/3 and g, = 5/6 for the
tricritical MF BC model, so that one has y;; = 2 and yp1 = 5/2 in three dimensions, in agreement with the
existing RG results [4].

7.2.2 Monte Carlo simulations

The mean-field (MF) calculations in the above subsection rely on the limit N — oo, and thus we have
performed numerical tests for finite N. Using the standard Metropolis method, which is adequate for this
purpose, we simulated the unconstrained model (7.3) for D = D; = 2In2 in the range 2.96 < K < 3.04.
The system sizes were taken as N = 100, 200, 400, 600, 800, and 1000. The MF result for the tricritical
point is confirmed by the clear intersection of the @, versus K data, shown in Fig. (7.3) at K = 3. Then,
we simulated precisely at the tricritical point (K¢, D), with system sizes 10 < N < 16000. The sampled
quantities include the magnetic susceptibility x = N(m?), the vacancy density p,, and the Binder ratios Q,,
and @,. Here, the quantity @, is defined by Eq. (7.14), but dp, = p, — put is replaced by dp, = p, — (p,) for
finite systems. The latter definition of @), is more natural in the sense that, for finite-dimensional systems,
the exact value of p,; is generally unknown. Further, at tricriticality, since the quantity (p,) approaches py:
as N — 00, these two definitions do not have qualitative difference. The data for p,, @, and @, are shown
in Tab 7.1. According to the least-square criterion, we fitted the Monte Carlo data by

X(N) = xo+ N Yag + 2 NV + 2, N2V + g3 N397) |
pv(N) = pvt+N§t71(p0 +p1N§i +p2N2’"7" +p3N3‘7§i) ,
Qm (N) = th + leNgi + Qm2N2gi + qm3N3§“ , and
Qu(N) = Qut+quN" + queN? + q3N*i | (7.20)
The terms with the exponent §; account for finite-size corrections, with §; = —1/3, as indicated from

Eq. (7.16). Results are given in Tab. 7.2, where the estimation of §; was obtained from the fit of @Q,, with
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Figure 7.3: The Binder ratio @Q,, of the MF BC model at D; = 2In2 for 2.96 < K < 3.04. The data points
are N =100 (+), 200 (x), 400 (O), 600 (O), 800 (A), and 1000 (O).

Table 7.1: Monte Carlo data for p,, @, and @, for the MF BC model at the tricritical point K; = 3 and
D; = 2In2. The numbers in in parentheses represent the error margins in the last decimal place.

N 10 20 40 60 100

po  53364(3) .54314(3) .55756(3) .56666(2) .57804(2)
Qm A45159(5) .45815(6) .46352(6) .46644(6) .46992(6)
Q. A40132(5) .36988(6) .34546(7) .33388(7) .32129(8)
N 200 300 400 600 1000

po 59251(2) .60027(2) .60541(2) .61211(2) .61970(1)
Qm AT449(7) .47694(8) .47853(8) .4806(1)  .4831(1)
Q. .30746(3) .30099(9) .29683(9) .2918(1)  .2865(1)
N 2000 4000 8000 16000

po  .62852(1) .63587(1) .64183(1) .64678(2)

Qm A4862(1)  .4886(1)  .4910(2)  .4922(2)

Q, 2807(1)  2763(1)  .2732(2)  .2700(2)

Table 7.2: Results of a least-squares analysis of the Monte Carlo data for the MF BC model at the tricritical
point K; = 3 and D; = 21In 2. The numbers in parentheses represent the error margins in the last
decimal place.

gh gt gz Put th Qvt
Theory 5/6 2/3 —1/3 2/3 1/2 0.2608 - - -
Fit 0.833(2) 0.667(2) —0.332(1) 0.66664(6) 0.4998(3) 0.2609(3)

103



37 - s s
. | ,

-2/3
Qv'qu N

028 |
027t -

026 <
0 005 01 015 02 025 03
N-1/3

Figure 7.4: The Binder ratio @, of the MF BC model at tricriticality. The data Q, — g, N 2/3 are shown
vs. N~'/3 where g,2 = 0.26(2) was taken from the fit.

Qmt fixed at 1/2. The theoretical predictions and the numerical determinations are in fine agreement. For
clarity, the data for @, is shown in Fig. 7.4 as Qu — quo N ~2/3 versus N~'/3, with g2 taken from the fit.

These exact results are not only theoretically interesting, but also practically useful. For instance, the
exact values of @+ and @, are very helpful in a Monte Carlo determination [35] of the tricritical point of
BC models in three dimensions.

7.2.3 Constrained systems

For the MF BC model (7.3) with a conserved number of vacancies, the reduced partition sum is obtained
from Eq. (7.9) by excluding the integration over vacancy fluctuations:

Z' = N* / dm 8, 2/5 c(m, pv) exp[gNm2 —DN(1-p,)][1+O(1/N)]. (7.21)

Following the procedure in Ref. [33], it can be shown that,at the tricritical point (K¢, D), Eq. (7.21) reduces
to

Z' = N? / dm e 3V [1+ O(Nm®)] (7.22)

which characterizes the critical mean-field Ising model [17,33].

The reduction to the critical MF Ising model can be further understood as follows. In mean-field systems,
each spin interacts with each other spin. Only the number of vacancies, not their positions, matters. One
can then rearrange the labels of the Ising spins and those of the vacancies, such that all Ising spins are
counted from 1 to N/3 and vacancies from N/3 + 1 to N. Then, the constrained Hamiltonian reads

o N N’

H/keT = -5 D A2DN' DY sisy (si= 1), (7.23)
i=1 j=it1

where the sum is now only over N’ = N/3 Ising spins, and K’ = K/3 is the coupling constant in Eq. (7.23).

For K = K; = 3, Eq. (7.23) describes a MF critical Ising model with N’ spins, and the critical point is at

K' = K! = 1. In this case, the Binder ratio @, assumes 4I'*(2)/I'?(1) = 0.4569 - - - [33].

7.3 Fisher renormalization mechanism at tricriticality

As mentioned earlier, constrained critical phenomena can be successfully explained by the Fisher renormal-
ization mechanism [23-27]. The basic idea of this mechanism is straightforward and fundamental. It is based
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on the thermodynamic relation that, in the language of the BC model, the vacancy density p, and the chem-
ical potential D are conjugate parameters. Let f be the reduced free energy of the unconstrained critical
model as a function of K and D. The constraint equation is then expressed as p, = —0f/0D =constant.
This yields the path of the constrained system in the parameter space (K, D), which appears to be singular
at the critical point. In this section, we follow a similar procedure and generalize the Fisher renormalization
mechanism such that it can describe constrained tricritical phenomena. Particularly, since the Monte Carlo
simulations have to take place at finite systems, we shall first focus on the finite-size scaling behavior of
constrained tricritical systems.

As a first step, we express the finite-size scaling formula of the reduced free energy f of an unconstrained
system [4] near the tricritical point as

f(tl, to, L) = L_dfs (t1 Ly s tzLytz) + fa (tl, tz) . (724)

Here, L is the linear system size, and it can also be recognized as a scaling factor in the context of the
renormalization group theory. The leading and subleading thermal scaling fields ¢; and ¢y represent the
distance to the tricritical point at ¢; = t2 = 0. The functions f; and f, are singular and analytical parts
of the free energy f, respectively. We have neglected irrelevant scaling fields and also suppressed magnetic
scaling fields in Eq. (7.24). For the BC model described by Eq. (7.1), the thermal fields ¢; and t5 are analytic
functions of K and D. Thus, differentiation of Eq. (7.24) with respect to D yields

—(po(ti,t2)) = g—g = a0 g Ly g, LYY 4 g LY 4 fOD (3, LY

t2LV2) + ar f0 (1, 82) + an [0V (11, 1) (7.25)

where a1 = 0t /0D and as = 0t3/0D are constants. The superscripts (¢,j) represent i differentiations
with respect to ¢; and j differentiations to ¢;. Here, we mention that, for finite systems L, the conjugate
quantity of D is the expectation value of the vacancy density (p,(t1,t2)) instead of p,(¢1,t2) itself. Under
the constraint (p,(t1,t2)) = (pv(0,0)), Taylor expansion of of Eq. (7.25) near the tricritical point leads to

0= by L2ty 4 by ¥ t¥e2=d ¢y 4 bat) + byt (7.26)

where by, be, b3, and by are constants, and only the leading terms are kept in the expansions of f; and f,. The
constraint equation (7.26) describes the approach of the constrained BC model to the tricritical point in the
parameter space (t1,t2). However, the analytic form of the path still depends on the relative values of y;1,
Y2, and d, and so does the critical exponents describing the constrained critical singularities for t1,t> — 0.
It follows from Eq.(7.26) that, near the tricritical point, the thermal fields ¢; and ¢, are related as

1. for 2y;1 —d > 0 and yu + yeo — d > 0, the first two terms in the right-hand side of Eq. (7.26) dominate
as L — oo, so that one has LY1t; oc LY2ty, i.e., to >> t; and K — K. & t3. Thus, the leading thermal
exponent of the constrained system is equal to the subleading exponent y;».

2. for 2y;1 —d > 0 but y;1 + 1y —d < 0, one has L¥#1t; oc L4 ¥1¢,. The leading exponent is renormalized
as yn1 — d — yz1. This case was already correctly included as one of the possible outcomes of Imry’s
renormalization calculations [28].

3. for 2y; — d < 0, i.e., the unconstrained specific heat does not diverge at tricriticality, ¢; is linearly
related to t2 as t; o t2, and no exponent renormalization occurs.

In short, for a system with a divergent specific heat at tricriticality, critical exponents are renormalized
under the constraint; otherwise, no renormalization occurs. However, since tricritical systems have two
relevant thermal fields ¢; and ¢3, the tricritical renormalizations can appear in different ways, depending on
whether or not y;1 + yi2 > d.

Then, the expression of the reduced free energy f’ of the constrained tricritical BC model can be obtained
by substitution of the above renormalization in Eq. (7.24), which yields

fl(tr,ta, L) = L1 (4 LY 8o LY 1) + fL(t, t) (7.27)
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where y;, is equal to y2, d — ye1, and yg1 for ye + Yo > d, Y1 + Y2 < d but 2y > d, and 2y < d,
respectively.

Next, we consider the effect of the constraint in an infinite system. We interpret the parameter L
in Eq. (7.24) as a rescaling factor that can be arbitrarily chosen. Thus, we may set the rescaling factor

L = tz_l/yt2 for case 1 and L = t;l/(d_y“) for case 2, so that the thermal fields ¢; and t, are related

as t; tg”/y“ and t; tgdfy“)/y“, respectively. Substitution of these relation in Eq. (7.27) yields the

constrained reduced free energy f’ of an infinite system as
Flty,ts) o 27 W(ty /t2) . (7.28)

Here, the critical index is given by o' = 2 —d/y;; and the crossover exponent by ¢ = y;2/y;;, with y;; given
earlier, and ¥ represents an analytical function. For the case y;; = d — y41, one has o' = —a/(1 — a), in
agreement with Eq. (7.2).

During the derivation of these scaling equations, we have used Taylor expansions, for instance, of
Eq. (7.25), and kept only the leading terms. Therefore, in addition to those from irrelevant thermal fields,
we expect that new corrections are induced by the constraint.

As generally expected at the borderline dimensionality for mean-field-like behavior, logarithmic corrections-
to-scaling occur in tricritical BC systems (7.1) in three dimensions. This has already been obtained in renor-
malization calculations of the Landau-Ginzburg-Wilson Hamiltonian. Near the tricritical point, the reduced
free energy of the 3D BC model reads [4]

Fltr,ta,hy ho,v, L) = L3 f (4 L%, taLLy 2/ by L7/,
0
hoL¥2 Lo "0 wLg ) + falty,ts) - (7.29)

where the parameter v, also an analytical function of K and D, describes the leading irrelevant thermal field.
For completeness, we have also included the leading and subleading magnetic fields h; and hy. The amplitude
Lo = 1+ 25vIn L accounts for the aforementioned logarithmic corrections. Equation (7.29) indicates that
these corrections occur not only in the irrelevant field v but also in the subleading fields t» and hs.

It follows from Eq. (7.29) that the unconstrained specific heat C' in systems (7.1) is divergent (2y;; —3 > 0)
at tricriticality, and thus the critical exponents are renormalized under the constraint. However, the 3D
tricritical BC model (7.1) is a marginal case in the sense the critical exponents y; + y2 — 3 = 0, so that it
is not immediately obvious how the renormalization occurs. Taking into account L /% in Eq. (7.29) for the
subleading field t,, we conclude that in constrained systems the leading thermal exponent is renormalized
as Yy =3 —yn = L.

7.4 Monte Carlo simulations

7.4.1 TUnconstrained BC model

The tricritical BC model (7.1) has been investigated on several three-dimensional lattices, and various
techniques have been developed, including the self-consistent Ornstein-Zernike approximation [36] and Monte
Carlo simulations [35,37].

In comparison with the well-known Swendsen-Wang [38] and Wolff [32] algorithms for the spin-3 Ising
model, no cluster algorithm has so far been developed to efficiently flip between Ising spins and vacancies near
the tricritical point. Thus, Monte Carlo simulations of the unconstrained tricritical BC model (7.1) suffer
from critical-slowing-down. Using a combination of the Metropolis, Wolff, and aforementioned geometric
cluster [29-31] steps, we simulated the BC model (7.1) on the simple-cubic lattice with periodic boundary
conditions. The fluctuations between vacancies and Ising spins are realized by the standard Metropolis
method; the Wolff algorithm flips between +1 and —1 Ising spins; and the geometric steps move groups of
spins and vacancies over the lattice. In this way, critical-slowing-down is significantly suppressed. Making
use of the exact values of @, and @,. we located [35] the tricritical point as as K; = 0.7133(1) and
D, = 2.0313(4); the expectation value of the tricritical vacancy density is p,; = 0.6485(2), rather close the

106



14 : : : : »

10t ]

X (x 109

o N B )] [ee]
T T T T
%
I

0 2 4 6 8§ 10 12
L2 (x 109

Figure 7.5: The unconstrained magnetic susceptibility x of the 3D BC model at tricriticality, shown vs.
L2738 with yp1 = 5/2.

08 ]
07 - * |

<e>
¥
¥

0.6 + + 7
05 | ]
04 | :

0.3

0 0.05 0.1 0.15 0.2 0.25
UL

Figure 7.6: The unconstrained energy density (e) of the 3D BC model at tricriticality, vs. L¥'~3 with
Y = 2.

mean-field value 2/3. Consistency between these results and existing determinations [36,37], K; = 0.706(3),
D; = 2.01(1), and p,+ = 0.655(6), exists within a margin of about twice the quoted errors. Here, we have
applied other techniques, including a simultaneous analysis of various quantities for different systems such
that parameters in common appear only once [16]; the details of these numerical analyses will be presented
elsewhere [35].

For a comparison of constrained tricritical behavior, we simulated the constrained BC model at the
tricritical point (K, D), as determined earlier, with system sizes 6 < L < 32. We sampled the magnetic
susceptibility x, the energy density (e), the specific heat C, and the Binder ratios etc, respectively. Here,
the energy density (e) was defined as nearest-neighbor correlations, and the specific heat C reads

C'=L*K*((e*) — (e)) , (7.30)

representing the strength of critical fluctuations of (e). At tricriticality, the scaling behavior of these quan-
tities can be derived from Eq. (7.29) as

X —xoox L3 =2 (e)—epox L' 3 =L"", and C—cyx L?¥* 3 =1, (7.31)

where the terms zg, eg, and ¢y arise from the analytical part of the free energy. The Monte Carlo data for x,
(e}, and C are shown in Figs. 7.5, 7.6, and 7.7, respectively. The approximate linearity for large L in these
figures confirms the tricritical finite-size scaling behavior described by Eq. (7.31).
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Figure 7.7: The unconstrained specific heat C of the 3D BC model at tricriticality, vs. L2173 with y;; = 2.
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Figure 7.8: The unconstrained structure factor of the specific heat Cy of the 3D BC model at tricriticality,
vs. L?¥173 with yyy = 2.

Apart from the conventional specific heat C, we also sampled a related quantity Cs on the basis of the
Fourier components of e(x,y, z) for systems of size L:

1 (b
Chaby ke = T3 / de dy dz e(z,y, 2) exp[2mi(zk, + yky + 2k:)/L] . (7.32)
0

Obviously, eg0,0 is just the global energy density e; and quantities ey, &, x. for k; # 0, ky, # 0, or k; # 0
represent spatial inhomogeneities of e(x,y,z). Then, the quantity C can be defined in terms of ey, x, &, for
the smallest wave numbers as

Cs = L*K*{e_1,0,0 €1,0,0 + €0,-1,0 €0,1,0 + €0,0,—1 €0,0,1)- (7.33)

The physical meaning of Cs can be gleaned in comparison with the conventional specific heat C. First,
as indicated by Eq. (7.30) and (7.33), both quantities represent fluctuation strengths of ey, , k., Wwith
ky = ky = k., = 0 for C and |k;| + |ky| + |k.| = 1 for Cs. Second, both C' and C, can be expressed in
terms of a sum of energy-energy correlation functions. Thus, we expect that Cs behaves as a specific-heat-
like quantity, and we refer to it as the structure factor of the specific heat C. Then, the tricritical scaling
behavior of C; is also governed by Eq. (7.31), and this is confirmed by Fig. 7.8.

7.4.2 Constrained BC model

For the three-dimensional BC model (7.1) with a conserved number of vacancies, we used a combination of
the Wolff and geometric cluster steps only. The chemical potential D in Eq. (7.1) becomes implicit and does
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Figure 7.9: The constrained magnetic susceptibility x of the 3D BC model at tricriticality, vs. L?¥»1~3  with
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Figure 7.10: The constrained energy density (e) of the 3D BC model at tricriticality, vs. L2,

not play a role in constrained Monte Carlo simulations. One particular feature is that these simulations
hardly suffer from critical-slowing-down even near the tricritical point. This may be attributed to the fact
that the constrained specific heat C' does not diverge at tricriticality, as discussed later. Therefore, we
extensively simulated systems in the range 6 < L < 128. The coupling constant K and the vacancy density
py were set at Ky = 0.7133(1) and p;. = 0.6485(2) [35], respectively. For a finite system, however, the
number of vacancies Ny = L3ptc is not an integer, so that the actual simulations took place at [N,:] and
[Nyt] + 1, where brackets [] denote the integer part. The value of a sampled quantity at N,; was obtained
by a linear interpolation between [N,:] and [Ny¢] + 1.

The Monte Carlo data for x, (e), and C' are shown in Figs. 7.9, 7.10, and 7.11, respectively.

As illustrated by Figs. 7.5 and 7.9, the magnetic exponent describing the divergence of the susceptibility
X, i-e., yn1, remains unchanged under the constraint, which indicates that the constraint on vacancies does
not qualitatively influence magnetic quantities. However, the critical behavior of energy-like quantities is
significantly modified. In particular, the tricritical specific heat C' is strongly suppressed so that it only
takes a finite value as L — oo. This constrained phenomenon is in agreement with the generalized Fisher
renormalization mechanism. Further, from Eqs. (7.27) and (7.29), the quantitative finite-size behavior of (e)
and C' at tricriticality is described by

(&) —egx LYo 3 = L2 and C—¢oox Lo 3 =L, (7.34)

where y;; =3 —y;1 = 1, as mentioned earlier. These theoretical predictions, i.e., Eq. (7.34), are reflected by
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Figure 7.11: The constrained specific heat C' of the 3D BC model at tricriticality, vs. L™!.

the approximate linearity displayed by the data in Figs. 7.9 and 7.10. We fitted the data for (¢) and C by

(e) = e+ e LY ~3(1+by/In L+ by /L + bs/L?) , (7.35)

and
C=co+a LV ?(1+dy/InL+dy/L+ds/L?) , (7.36)

respectively. The logarithmic corrections from the irrelevant fields are described by the terms with amplitudes
by and d;. The fits of (e) and C yield that y;; = 0.99(2) and 1.02(2), respectively, with error margins of two
standard deviations. This is consistent with the expectation y;; = 3 — y¢; = 1. We mention that Eqs. (7.35)
and (7.36) are in fact neither complete nor “correct” in describing the scaling behavior of (e) and C. First,
one has not taken into account the second relevant thermal fields ¢y, which can in principle introduce terms
with L, 2/% in the brackets of Eqs. (7.35) and (7.36). Second, the logarithmic corrections should be described
by terms with 1/Lg instead of 1/1n L. However, as indicated by the fits of (e) and C, this ‘bias’ does not
significantly affect the results of y}, due to the following reasons. The replacement of 1/In L by (In L)~ 2/5
does not significantly change the result for y;,. Even neglecting the 1/1n L term does not produce a large
change. It appears that logarithmic corrections are not very serious in constrained tricritical systems. This
is also illustrated by the clean intersection of the @, data for K = K; = 0.7133(1) and 0.645 < p, < 0.651,
partly shown in Fig. 7.12. The data for @,, in the range 6 < L < 128 were fitted by

4
Qu(K,L) = Qi + Y _(po = pot) Lt + by /In L + b/ L+ by /L* + c(py — po) LY /L, (7.37)
k=1

where p,; is the tricritical vacancy density. The renormalized thermal exponent was taken as y;; = 1, and
we obtain b; = 0.066(5) and @,,; = 0.687(6), with two standard deviations again. The value of Q. is
in agreement neither with (); = 1/2 for unconstrained systems nor with the mean-field critical Ising value
Q. =0.4567---.

The influence of the annealed constraint on tricritical spatial fluctuations can be reflected by the con-
strained Monte Carlo data for Cy at the tricritical point, as shown in Fig. 7.13. As in unconstrained systems,
Cs diverges as Cs o< L as L — 00, so that the leading thermal exponent y,; still governs the scaling behavior
of Cs. This is rather different from the constrained behavior of the conventional specific heat C, which is
suppressed to be convergent at tricriticality. We fitted the data for C; by

Cs = cg0 + Cley“_3(]. + dsl/ InL + dsz/L + dsg/L2) s (738)
which yields y;; = 1.995(8), in fine agreement with the exact value y;; = 2. Therefore, one can conclude

that the tricritical spatial fluctuations remain unchanged under the constraint.
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7.5 Discussion

Due to the geometric cluster algorithm, a full-cluster simulation becomes possible for the tricritical BC
model with a conserved number of vacancies. We have performed an extensive investigation of constrained
tricritical behavior in three dimensions, and observe that

e the leading finite-size scaling behavior of magnetic quantities remains unchanged under the constraint.
This is as expected: the vacancy density p, is conjugate to the chemical potential D, which contributes
only to the thermal fields ¢; and t,.

e the critical behavior of energy-like quantities is renormalized; particularly, the constrained specific
heat C has only a finite cusp at tricriticality. The leading thermal exponent y;; = 2 is renormalized as
Y41 = 3 —yz1 = 1, while the second one y;» = 1 remains unchanged under the constraint;

e the constrained magnetic Binder ratio at tricriticality is @, = 0.687(6), apparently different from the
unconstrained value @+ = 1/2. This is understandable because the universal ratio @, still depends
on boundary conditions, and the aspect ratios, etc, which influence magnetic correlation functions.
The constraint also belongs to this category;

e structure factors such as Cy, accounting for spatial inhomogeneities of conventional quantities, display
the same scaling behavior as in unconstrained systems. This indicates that the divergence of the spatial
correlation length, one essential characterization of critical phenomena, remains unchanged under the
constraint at least to a scale which is small in comparison with system sizes. In this sense, one can
conclude that the annealed constraint does not modify the universality class of a tricritical system.

It is clear that the constrained tricritical BC model in three dimensions is not mean-field critical Ising-like.
This indicates that the mean-field theory is not complete in describing universal critical phenomena even at
the upper critical dimensionality. For a unconstrained mean-field BC model, the vacancy fluctuations are
coupled to the Ising fluctuations. Then, the stability criterion of the coupled fluctuations, depending on the
value of K and D, yields distinct types of phase transitions: a line of critical Ising points, a tricritical point,
and a first-order transition line. However, in constrained mean-field systems, the fluctuations of vacancies
are suppressed. Therefore, the presence of vacancies only serves to reduce the number of Ising spins, leading
to a smaller effective interaction. As a consequence, the whole line of phase transitions in the space (K, D),
including the tricritical point and the first-order transition, reduces to mean-field critical Ising-like under the
constraint. Since this does not agree with the constrained behavior of the investigated short-range model,
we arrive at the somewhat surprising that mean-field theory does not describe the universal properties of
the constrained tricritical at its upper critical dimensionality.

On the basis of the generalized Fisher renormalization mechanism, we finite-size analyzed several tricrit-
ical quantities of the constrained BC model in three dimensions. The agreement between the theoretical
predictions and the Monte Carlo results is quite satisfactory.

The Fisher renormalization mechanism is rather straightforward and fundamental. Nevertheless, Imry’s
renormalization calculations [28] also give a correct prediction of the critical index a for tricritical O(n)
systems (n > 1) in three dimensions. However, we mention that the calculations in Ref. [28] did not take
into account the effect of the subleading thermal field y;2. It is then justified to ask the question how to
include y¢2 in these calculations.

A final remark follows. In a finite system, the vacancy density p, needs not be equal to its expectation
value (p,), although this difference vanishes as L — co. In the generalized Fisher mechanism for constrained
tricritical behavior, it is only required that (p,(t1,%2)) is equal to (p,(0,0)). However, the Monte Carlo
simulations take place with p, = py¢, i-e., no fluctuation of p, is allowed. In this sense, the constraint in our
numerical studies is ‘stronger’ than the one in the generalized Fisher renormalization, although our present
numerical results do not reveal the consequences of this fact.
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8

Constrained tricritical phenomena in two dimensions

We investigate several tricritical models on the square lattice by means of Monte Carlo simulations. These
include the Blume-Capel model, Baxter’s hard-square model, and the ¢ = 1, 3, and 4 Potts models with
vacancies. We use a combination of the Wolff and geometric cluster methods, which conserves the total
number of vacancies or lattice-gas particles, and suppresses critical slowing down. Several quantities are
sampled, such as the specific heat C' and the structure factor Cs which accounts for the large-scale spatial
inhomogeneity of the energy fluctuations. We find that the constraint strongly modifies some of the critical
singularities. For instance, the specific heat C' reaches a finite value at tricriticality, while C; remains
divergent as in the unconstrained system. We are able to explain these observed constrained phenomena on
the basis of the Fisher renormalization mechanism generalized to include a subleading relevant thermal scaling
field. In this context, we find that, under the constraint, the leading thermal exponent y;; is renormalized
to 2 — y;1, while the subleading exponent 3, remains unchanged.

8.1 Introduction

In experiments, many systems undergoing phase transitions are subject to external constraints such as the
conversation of particle numbers in a mixture. Such systems are described in terms of the canonical ensemble,
and thus typically display a behavior different from that of unconstrained models, which are described by
the grand ensemble. An example is the superfluid transition in the *He-*He mixtures [1], whose universal
properties can be described by a dilute XY model. The Hamiltonian of the lattice XY model reads

H/ksT =—K > &5 +DY |5, (8.1)
(ird) k

where the spins can assume a unit vector of two components, |5;| = 1, or a vacancy |5] = 0. The sum ()
is over nearest-neighbor lattice pairs, and K and D are the coupling constant and the chemical potential of
vacancies, respectively. The mole fraction of *He in the experiment corresponds with the vacancy density
p =% >, (1—|5?), with N the total number of lattice sites. For D — —oo, the vacancies are excluded,
and the model (8.1) reduces to the pure XY model. In three dimensions, this model undergoes a second-
order phase transition, and the critical coupling constant K.(D) is an increasing function of D. The critical
line terminates at a tricritical point (K¢, D;). Since the upper tricritical dimensionality of the O(n) model
(n > 1) is equal to three, significant exact information is available [1]. A set of universal parameters can be
exactly obtained by means of mean-field analyses and also by renormalization group (RG) calculations of the
Landau-Ginzburg-Wilson Hamiltonian. The leading and subleading thermal critical exponents are y;; = 2
and yi2 = 1 [1]. Thus, as the tricritical point is approached, one simply expects that the specific heat C
diverges with the index a = 2 — 3/ys; = 1/2. However, typical experiments take place at a constant density
p instead at a constant chemical potential D. It was reported [2] that, at the tricritical point (K, pt), the
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specific heat C has only a finite value with o = —0.9(1), apparently different from the aforementioned index
a = 1/2. Thus, the theoretical description of the experiment in Ref. [2] uses the dilute XY model with
a conserved number of vacancies. This means that an external constraint is imposed on the system (8.1).
Since the pertinent *He and *He mixtures are liquid, the constraint is of the ‘annealed’ type [3]. Therefore,
the vacancies should be able to move freely over the lattice of model (8.1).

The effect of a constraint on a critical systems has already been studied for decades [3-6]. As early as
in 1965, Syozi introduced [4] a decorated Ising model, which is intimately connected with annealed systems.
The Syozi model can be exactly transformed into the spin—% model, and for dimensionality d > 2 critical
exponents of these two models are related as

as=—-af(l-a), Fs=p/1-a), and vs=v/(1—0qa), - (8.2)

where a and (8 are the standard critical indices for the specific heat C' and the magnetization density m,
respectively, and v = 1/y; is the inversion of the thermal exponent. The subscript s represents the Syozi
model. Later, this constraint mechanism was discussed in a more general context by Essam and Garelick [5]
and by Fisher [6]. It was argued [5,6] that the relations (8.2) are not specific to the Syozi model, but are
more generally satisfied by equilibrium models with a divergent specific heat C'. Thus, Eq.(8.2) predicts that,
as long as a > 0, the constrained critical specific heat C' can at most reach a finite value instead of being
divergent. For systems with a convergent specific heat a < 0, Fisher [6] pointed out that no renormalization
of critical exponents as Eq. (8.2) occurs, but additional corrections can be introduced by the constraint.
Further, for the marginal case a = 0, i.e., C' normally diverges logarithmically in unconstrained systems, it
was shown [6] that, again, the constraint leads to a convergent specific heat. Since then, Fisher’s renormalized
critical exponents have been used extensively [3,7-10].

More general theories were then formulated for constrained systems, including a theory of constrained
tricritical phenomena [11,12]. Besides vacancies, constraints can be imposed on volumes or pressure, etc.
It was argued [11,12] that, depending on the type or strength of the constraint, a continuous transition
may become Fisher-renormalized, remain unchanged, or become first-order. The special point, where the
transition remains unchanged was referred to as a special ’tricritical’ point [11].

In the context of the renormalization group (RG) theory, Imry and coworkers [13] applied the e-expansion
technique to a generalized Landau-Ginzburg-Wilson Hamiltonian. The effect of the constraint is accounted
for by an additional parameter, and they found four distinct fixed points: the tricritical Ising (TI), the critical
Ising (CI), the renormalized tricritical Ising (RTI), and the renormalized critical Ising (RCI) fixed point. The
critical exponents at these fixed points are related as: arc; = —aci/(1 — aci) and agr = —a11/(1 — a7r),
in agreement with Eq. (8.2). For the spatial dimensionality d > 3, TI and RTI correspond to Gaussian and
spherical fixed points, respectively [13]. Thus, at the fixed points TI and RTI, the critical index is equal to
atr = 1/2 and arrr = —1, respectively. For the *He-*He mixtures, if one assumes that constrained tricritical
behavior is governed by the fixed point RTI, the theoretical prediction agr; = —1 is in good agreement with
the experimental result & = —0.9(1) [2].

However, to our knowledge, numerical tests of these theories are still scarce; in particular, the finite-
size behavior of constrained critical systems has only attracted limited attention. Thus, very recently,
we performed [14] a Monte Carlo investigation of the constrained three-dimensional Blume-Capel (BC)
model [15,16]. The phase diagram of the BC model is analogous to that of the dilute XY model, and,
in three dimensions, the two tricritical models share a common set of critical exponents. At the tricritical
point, the constrained specific heat reaches a finite value with the index @ = —0.99(3) [14], in agreement
with the experimental data [2] and the RG calculations in Ref. [13]. Nevertheless, the exponent of the
power law describing the decay of the correlation function at tricriticality remains unchanged under the
constraint. In this sense, the constraint does not lead to a change of the universality class. In Ref. [14], we
also generalized Fisher’s approach [6] for application to tricritical systems. For the tricritical BC model in
three dimensions, this mechanism also predicts that the unconstrained and constrained indices are related

as a® = —a"/(1 — a") = —1, in agreement with the RG calculations in Ref. [13]. Here, the superscripts
‘co’ and ‘un’ are for constrained and unconstrained systems, respectively. However, for a general tricritical
system, it was predicted [14] that, in addition to the relation a® = —a"" /(1 — a""), other cases can occur,
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depending on the relative magnitude of the leading and subleading thermal exponents y;; and y:2, and the
spatial dimensionality d.

In order to verify these theoretical predictions, the present paper presents a more extensive study of
constrained tricritical phenomena in two dimensions. The systems investigated include the Blume-Capel
(BC) model [15,16], Baxter’s hard-square model [17,18], and the ¢ = 1, 3, and 4 Potts models with
vacancies [19]. In comparison with the three-dimensional case, the investigation of two-dimensional systems
has some advantages. First, Monte Carlo simulations can be performed for larger linear systems sizes.
Second, the tricritical points of the tricritical ¢ = 1 Potts model and Baxter’s hard-square lattice gas are
exactly known, and those of the other systems have been determined with a precision in the sixth or seventh
decimal place. In contrast, for the three-dimensional BC model, the error estimation of the tricritical point is
so far restricted to the fourth decimal place [14]. Third, Baxter’s hard-square lattice gas [17,18] is in the same
universality class as the tricritical Blume-Capel model, so that the two models can serve for independent
tests.

The outline of the remaining part of this paper is as follows. Section II reviews the models, the sampled
quantities, and the geometric cluster algorithm, which plays an important role in the present investigation.
In Sec. III, we apply the Fisher renormalization mechanism in the generalized context of tricritical scaling.
Numerical results are presented in Sec. IV, and a brief discussion is given in Sec. V.

8.2 Models, simulations, and sampled quantities

8.2.1 Models

The Blume-Capel model.  In the development of the theory of tricritical phenomena, the spin-1 model known
as the Blume-Capel (BC) model has provided the foundation. The model was independently introduced by
Blume and Capel [15,16]. The reduced Hamiltonian reads

H/kgT = -K > sis;+DY si (s=0,%1). (8.3)
(4,5) k

This Hamiltonian is identical to Eq. (8.1) when the vector order parameter §'is replaced by a scalar s. Further,
in three dimensions, the phase diagram of Eq. (8.3) is analogous to that of the dilute XY model (8.1). The
universal tricritical exponents of the two-dimensional BC model (8.3) are known from exact solutions [17,18];
they can also be calculated in the context of the Coulomb gas theory [20,21] and are included in the
predictions of conformal field theory [22,23]. The leading and subleading thermal exponents are y;; = 9/5 and
Y2 = 4/5, and the magnetic ones are yp1 = 77/40 and y,2 = 9/8, respectively. Using a sparse transfer-matrix
technique and the finite-size scaling, we have located [24] the tricritical point of the square-lattice BC model
as Ky = 1.6431759(1) and D; = 3.2301797(2); the tricritical vacancy density is p; = 0.4 549 506(2). These
results are based on the requirement that both the leading magnetic and energy-energy correlation lengths
simultaneously reach their theoretical values. They are consistent with the existing estimate K; = 1.64(2)
and D; = 3.22(4) [25], and the precision is considered to be sufficient in the present investigation.

Baxter’s hard-square model. We also investigate Baxter’s tricritical hard-square lattice gas [17, 18],
which belongs to the same universality class as the tricritical BC model. The Hamiltonian of a general
lattice gas on the square lattice can be written as

’H:—KZaiaj—J Z akal+D20k, (8.4)

(nn) {nnn} k

where o = 0, 1 represents the absence and the presence of a particle, respectively. The sums (nn) and {nnn}
are over nearest-neighbor and second-nearest-neighbor sites, respectively. For the hard-square lattice gas,
it is required that K — —o0, i.e., the particles have a ‘hard’-core so that nearest-neighbor sites cannot be
occupied simultaneously. For this case, the tricritical point is exactly known [17,18]: J; = In(3 + \/5_)) and
D; = In[8(1 + /5)]. The corresponding vacancy density is p; = (5 + +/5)/10.
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The tricritical ¢ = 3 Potts model.  Just as the tricritical BC model, the tricritical ¢ = 3 Potts model [19]
can be obtained by including vacancies in the ‘pure’ ¢ = 3 Potts model. The Hamiltonian of such a dilute
g-state Potts model then reads

H:_Kz(sai,a'j(]-_(sa'i,())_D26gi70, (0':0,].,"' ,q) ) (85)
(nn) k
where the lattice site is occupied by a Potts variable ¢ = 1,---,¢ or by a vacancy ¢ = 0. Nonzero

couplings K occur only between nonzero Potts variables. For ¢ < 4, the phase diagram in the (K, D) plane
resembles that of the BC model: a tricritical point occurs between the continuous and the first-order line of
transitions. At the tricritical point (K}, D;), the critical exponents are [20-23] y;1 = 12/7, y2 = 4/7, and
yp1 = 40/21. Also for this model we used the sparse transfer-matrix method to locate [24] the tricritical
point: K; = 1.649913(5), D; = 3.152173(10), with a corresponding vacancy density p; = 0.34572(5).

The dilute ¢ = 4 Potts model. The ¢ = 4 Potts model is a marginal case [19], since the subleading
leading thermal exponent satisfies y;2 = 0. The leading thermal and magnetic exponents are [21,22] y;1 = 3/2
and yp1 = 15/8, respectively. The phase transition of a pure Potts model with ¢ > 4 is of the first-order
type [17]. We investigate the dilute ¢ = 4 Potts model at the point where the leading and the subleading
thermal field vanish. We have located [24] this fixed’ point as K; = 1.45790(1), D; = 2.47 844(2), and the
corresponding vacancy density is p; = 0.21207(2).

The tricritical ¢ = 1 Potts model. It is already known for a long time [26] that the tricritical ¢ = 1 Potts
model is equivalent with the critical Ising model. The Ising clusters of the critical Ising model, a group of
spins connected by bonds between equal nearest-neighbor spins, are described by the magnetic exponent of
the tricritical ¢ = 1 Potts model. Here, we shall illustrate this equivalence, starting from the dilute g-state
Potts model (8.5), which, for the case ¢ = 1, simplifies as

H=-K» 0i0;j+D> o, (0=0,1). (8.6)
(nn) k

For D — —oo, the vacancies are excluded, and the random-cluster representation describes the ‘pure’ bond-
percolation problem. Thus, the random-cluster representation of Eq. (8.6) corresponds with a mixed site-
bond percolation model. Because of the attraction between the non-vacancies, this dilute model is different
from the conventional site-bond percolation model [27], in which the vacancies are randomly distributed over
the lattice, i.e., different sites are uncorrelated. Nevertheless, in general, one expects that the dilute ¢ — 1
Potts model, described by Eq. (8.6), is still in the percolation universality class, and the question arises if it
has a tricritical point. The answer follows after substituting the relation o = (s + 1)/2 in Eq. (8.6). Apart
from a constant, the Hamiltonian (8.6) reduces to the Ising model in a magnetic field:

H = —K(I) Z SiSj — stk y (Sz = :I:].) y (87)

(nn) k

with the relations
KO =K/4, and H=-D/2+ 2K/4, (8.8)

where z is the lattice coordination number. Thus, the Ising critical point at KC(I) and H = 0 appears in

the dilute ¢ — 1 Potts model (8.6) at K; = 4K and D, = 2:K". Since the critical singularity is not
percolation-like, this point qualifies as the tricritical point of the ¢ — 1 Potts model. The spin up-down
symmetry of the critical Ising model yields the vacancy density of the dilute Potts model p, = 1/2 at
tricriticality. The relation (8.8) shows that the temperature-like parameters, K and D, contribute to K M
and H in the Ising model. Therefore, the leading and subleading thermal exponents of the two-dimensional
tricritical ¢ = 1 Potts model simply follow as

Y1 = yg) =15/8 and yp = yt(I) =1. (8.9)

The leading magnetic exponent of the two-dimensional tricritical ¢ = 1 Potts model is yp1 = 187/96 [26].
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8.2.2 Monte Carlo methods

The Hamiltonian for the g-state Potts model remains invariant under a global permutation of two of the ¢
Potts states. Thus, one can apply the conventional Swendsen-Wang [28] and Wolff [29] cluster algorithms
to simulate these models. However, for most tricritical models defined above (except for the tricritical ¢ = 1
Potts model), these cluster algorithms are apparently not suitable or sufficient, since they do not operate on
the vacancies. For unconstrained systems, a simple solution is to combine these conventional algorithms and
the Metropolis method. However, the problem arises what sort of Monte Carlo algorithm is appropriate for
constrained systems. In principle, one can apply a Kawasaki-like Monte Carlo method [30], which is particle-
conserving. Unfortunately, this method suffers from serious critical-slowing-down, and thus simulations are
restricted to small system sizes. This may be one of the reasons why the number of numerical investigations
in this subject is rather limited.

In the present work, we make use of the so-called geometric cluster method [31-33], which is developed on
the basis of spatial symmetries, such as invariance under the spatial inversion and rotation operations. This
algorithm moves groups of spins/particles or vacancies over the lattice in accordance with the Boltzmann
distribution, so that the total numbers of spins/particles and vacancies are conserved. It has been shown [31-
33] for several models that the percolation threshold of the geometric clusters coincides with the phase
transitions, so that critical-slowing-down is effectively suppressed.

Then, the constraint is fully realized by a combination of the Wolff and geometric cluster methods, of
which the former flips between variables in different Potts states. A particular feature of such constrained
simulations is that they hardly suffer from critical-slowing-down even near tricriticality.

8.2.3 Sampled quantities

Conventional quantities. During Monte Carlo simulations, we sampled several quantities, including the
moments of the order parameter and the energy density etc. The magnetic susceptibility is then obtained
from the fluctuations of the order parameter m as xy = L*(m?). For the BC model (8.1), m is just the
magnetization density; for Baxter’s hard-square lattice gas, m is the difference of the vacancy densities on the
two sublattices of the square lattice, i.e., m = p) —p(?); and for the tricritical ¢ = 3 and 4-state Potts models,
we define m? = % Z#j(pi —p;)? where p; is the density of the ith Potts state. An energy-like quantity e was
sampled as nearest-neighbor correlations for the BC and the ¢ = 1, 3, and 4-state Potts models with vacancies.
For Baxter’s hard-square lattice gas, the nearest-neighbor sites cannot be occupied simultaneously, so that
we sampled e as next-nearest-neighbor correlations. On this basis, a specific-heat-like quantity is defined as
C = L*((e*) — (e)?), which is proportional to the second derivative of the reduced energy with respect to the
coupling constant K. Moreover, we sampled energy-energy correlations g.(r) = (epe,) — (e)?. For a lattice
with linear system size L, the distance r was taken as the half diagonal distance, i.e., 7 = v/2L/2. Since the
vacancy density p also behaves energy-like, we define a compressibility-like quantity P = L2({p?) — (p)?),
which is expected to behave analogously as C'.

In Monte Carlo studies of critical phenomena, the universal Binder ratio [34] plays a useful role. Thus,
we sampled several dimensionless quantities as

((e —®)*)?
(e—2)) ’

(m?)?

0%
(mty

Qm = Qe = (8.10)
where € = (e) and p = (p).

Structure factors. Apart from the singular behavior of physical observables, a second-order phase
transition is generally accompanied by long-range correlations in time and space, and thus large-scale spatial
fluctuations exist for the physical observables, such as the magnetization density m and the energy density
e. It is thus justified to investigate the influence of the constraint on these spatial fluctuations. For this
purpose, we define a set of quantities on the basis of spatial inhomogeneities of the magnetization, the energy,
and the vacancy density. Consider the Fourier expansion of the order parameter m(z,y) for a system of size
L:

1 [k
me, = ﬁ/ daedy m(z,y) exp[2mi(zk + yl)/L] . (8.11)
0
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Obviously, mg o is just the global magnetization density m, and the magnetic susceptibility is x = L?(m?) =
L*(m§ o); the number my; (k # 0 or I # 0) represents spatial inhomogeneity of m(x,y). Since we are
especially interested in fluctuations on the largest scales, we define a susceptibility-like quantity xs in terms
of my,; for the smallest wave numbers:

Xs = L2(m,1,0 “Mio+mo,_1-Mo1) = L2(m§> ) (8.12)

where, for later convenience, a quantity ms has been introduced. We shall refer to s as the structure factor
of the susceptibility x.

Analogously, we sampled the structure factor of the specific heat C as Cs = L*(e_10-€1,0+€0,-1-€01) =
L?(e?), and that of the compressibility P as Ps = L*(p_1,0 - p1,0 + po,—1 - po,1) = L*(p?), where e, and py
are obtained from Fourier expansions of the energy and the vacancy density, e(x,y) and p(z,y), respectively.
On this basis, we sampled the following dimensionless ratios

_ (m3)? _ (e3)? an _ ()
Qsm = (miy Qse = ey d Qs = o (8.13)

The physical meaning of these structure factors can be gleaned from a comparison with the conventional
quantities. For instance, both x and x; represent fluctuation strengths of the order parameter m, and can
be expressed in terms of a summation involving the magnetic correlation function, whose scaling behavior
is described by the correlation function exponents 1 and v. Thus, we expect that, in unconstrained systems
, the structure factors, x5, Cs, and Ps, display the same scaling behavior as x, C, and P, respectively.
However, as we shall see, there are interesting differences in constrained systems.

8.3 Finite-size scaling behavior in constrained systems

A finite-size analysis of constrained phenomena precisely at tricriticality has recently been reported [14].
This analysis follows the basic idea of the Fisher renormalization mechanism, which has been formulated
for critical systems [6]. In this section, we shall briefly review and moreover generalize the procedures in
Ref. [14], such that we can also account for constrained scaling behavior due to deviations from the tricritical
vacancy density.

As a first step, we express the finite-size scaling formula of the reduced free energy near tricriticality as

f(ti,ta, L) = L™ f (LY ¢y, LY*2ty, 1) + fo(t1,t2) , (8.14)

where ¢; and t2 are the leading and subleading thermal fields, respectively. In the language of the BC model,
t; and to are analytic functions of the coupling constant K and the chemical potential D. The symbols
fs and f, are the singular and analytical parts of the free energy, respectively. The expectation value of
vacancy density (p) follows by differentiation as

—(p(t1,t2)) = or

= 5D — alLyu—dfs(l,O)(tlLytl,t2Lyt2) +aQLytz—df£071)(tlLyt1,t2Lyt2)

+ alfél’o) (t1,t2) + széo’l)(tl;tz) ) (8.15)

where a; = 0t1 /0D and ay = 0ty /0D are constants. The superscripts (i, j) represent i differentiations with
respect to t; and j differentiations to ¢5. Linearization at the tricritical point yields

—5p = blLZytlid tl + bgLyt1+yt27d t2 + bgtl + b4t2 + - 5 (816)

where by, b2, bs, and by are constants, and dp = (p(t1,t2)) — (p(0,0)) is the deviation of the vacancy density
from its tricritical value. The constraint that the vacancy density is fixed at the tricritical value yields dp = 0
in Eq. (8.16). As a consequence, the thermal fields ¢; and ¢, are related, but in a way which still depends
on which terms in the right-hand-side of Eq. (8.16) dominate. We consider the case of large L and then
distinguish three cases:
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1. for 2y —d > 0 and yy + ye2 — d > 0, one has LYt o< LY2ty, ie., ty >> t; and K — K, ~ ta, SO
that the leading thermal exponent of the constrained systems is equal to the subleading exponent y;»;

2. for 2y —d > 0 but yy1 + ye2 — d < 0, one has LYt Li—vu1¢, The leading thermal exponent is thus
renormalized as yi1 — d — yz1. Again, we have ty >> ¢ and K — K. ~ to.

3. for 2y;; —d < 0, i.e., the unconstrained specific heat does not diverge at tricriticality, ¢; is approximately
proportional to t5, and no exponent renormalization occurs.

Therefore, for a tricritical system with a divergent specific heat (2y;1 — d > 0), the leading thermal
exponent y;; is renormalized to d — y;; under the constraint, while the subleading one remains unchanged.
Thus, the finite-size scaling relation for the difference of K to the tricritical point is (K — K;) — (K —
Ky) L4 + ag(K — Ky)LYt2, with ay a constant.

Next, we consider the case that the fixed vacancy density p differs slightly from the tricritical value p¢,
ie, dp=p—p: #0in Eq. (8.16). We first consider cases 1 and 2, i.e., 2y;y —d > 0. We rewrite Eq. 8.16 as

LYty = —b H(0p + bato) L7V 4 bty L2 - -] (8.17)

where we have omitted the term with amplitude b3 which contributes a smaller power of L than the left-hand
side. After substitution in Eq. (8.14), neglecting less relevant terms, we obtain

f(ti,ta, L) = L™ fo (b7 L7 (8p + bata) — (ba/b1) L¥?ta, LY*2ts, 1) + f,(0,t2) , (8.18)
which can be written more simply as
ft,te, L) = LTOfLU(LA 7980, LV ty) + fa (0, 12) (8.19)

where t| = 0p + bato. This means that the deviation (p — p;) from the tricritical density combines with
ty to act as a scaling field with a renormalization exponent d — y;1, i.e., the finite-size effect of this linear
combination is multiplied by L% ¥:1,
In the constrained system, we wish to express the constrained free energy in K and p instead of ¢» and p.
In cases 1 and 2, the constraint equation (8.16) shows that ¢t; << t» for large L. Since ¢; and t» are written
as linear combinations of K and D, we may write K — K; ~ t, apart from corrections with negative powers
of L. Thus we have
tll = 6p + a(K — Kt) and to = K — Kt (820)

Then, the scaling behavior of constrained quantities can be obtained from differentiations of Eq. (8.19)
with respect to appropriate scaling fields.

For case 3, no exponent renormalization occurs and dp approaches a linear combination of ¢; and ts, i.e.,
the distance p — p; behaves in leading order as the scaling fields ¢; and t5, independent of L.

The essential element of the above procedure is the solution of the constraint equation, §p =constant, in
terms of a relation between K and D. In the parameter space (t1,%2), this solution is sketched in Fig. 8.1.
The path of the constrained system, the dashed line, is singular at tricriticality, and for the case 2y —d > 0,
renormalization of critical exponents occurs.

As mentioned earlier, in addition to uniform fluctuations, a second-order phase transition is also ac-
companied by inhomogeneous large-scale spatial fluctuations. Without the constraint, these two types of
fluctuations display the same scaling behavior. However, their behavior becomes qualitatively different in
constrained systems when the uniform fluctuations are sufficiently strongly suppressed by the constraint.
A good test for such a difference is to compare the critical behavior of the structure factors ys, Cs, and
P, with x, C, and P, respectively. According to Eq. (8.19), the exponents describing the behavior of C
and P are modified as long as 2y;; —d > 0. In contrast, since the constraint does not lead to a change
of the universality class, one may expect that the leading finite-size scaling behavior of Cs and Ps remains
unchanged at tricriticality. This will be confirmed by our numerical data later.

We conclude this section by pointing out the following implicit assumption. In the derivation of Eq. (8.16),
we require that the expectation value (p) of the vacancy density is a constant; while, in fact, we should require
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Figure 8.1: Illustration of the application of the Fisher renormalization mechanism to tricritical systems.
The tricritical point (K, D;) is denoted as the black circle, and the solid single and double lines
represent the critical and the first-order-transition line, respectively. The variables ¢; and ¢, are
the leading and subleading thermal fields at the tricritical point, respectively. The constraint
that the vacancy density p is fixed at the tricritical value p; is described by the dashed line, part
of which coincides with the first-order transition line. As a consequence of the constraint, the
scaling fields t; and to are related, and this relation is singular at tricriticality.

that p itself is a constant. For L — oo, no difference exists between (p) and p. In a finite system, however,
p need not be equal to (p), i.e., fluctuations of the vacancy density are allowed even if (p) is a constant.
As mentioned earlier, the Monte Carlo simulations to be performed in this work conserve the number of
vacancies, which leads to a ‘stronger’ constraint than (p) =constant. Thus, the application of the Fisher
renormalization mechanism in this paper used the assumption that suppressing the fluctuations of p about
(p) does not lead to a qualitative change in the leading scaling behavior of the constrained system.

8.4 Results

8.4.1 'Tricritical ¢ = 1 Potts model

The tricritical ¢ = 1 Potts model is particularly suitable to illustrate the Fisher renormalization mechanism
for constrained tricritical phenomena. The equivalence of this model with the Ising model in a magnetic
field, as mentioned in Sec. II, makes it possible to use the known properties of the latter model, and thus
there is no obvious need for simulations. The energy density and the specific heat in the two models are
related as

(e) o< (M) +2(mM) | and C oc W + 4y (8.21)

where the superscript (I) is for the Ising model. Thus, the leading behavior of the Potts specific heat C
is just that of the Ising magnetic susceptibility x(V. This illustrates the fact that the leading ¢ = 1 Potts

tricritical thermal exponent y; is equal to the magnetic exponent y,(LI) of the Ising model. However, the

leading scaling behavior of (e) of the Potts model (8.6) is ‘accidentally’ governed by the exponent yt(I), the
subleading Potts thermal exponent y;>. This is due to the symmetry between plus and minus Ising spins.
The dilute ¢ = 1 Potts model with its vacancy density p fixed at p; = 1/2, is equivalent with an Ising
model with zero magnetization. Thus, the constrained susceptibility (! vanishes in Eq. (8.21), and the
Potts and Ising specific heats, C and CV, become identical. Further, the constraint on the Ising model
is of the magnetic type, so that the scaling behavior of C(" is not qualitatively influenced. Thus, one can

conclude that, under the constraint, the Potts specific heat C is governed by the second thermal exponent

Yi2, 1.e., the Ising thermal exponent yt(l) = 1. This is as predicted in Sec. III for the case 2y;; —d > 0,

Y1 + Y2 —d > 0.
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Figure 8.2: Specific-heat-like quantities in the unconstrained BC model at tricriticality vs. L3/5. These
quantities include C'/10 (4), 2P (x), Cs (O), and 10P; (A). The approximate linearity of the
data illustrates that the leading behavior of these quantities is governed by the exponent 2y;; —2,
with yi1 = 9/5.

8.4.2 Tricritical Blume-Capel model
Unconstrained systems

For the unconstrained tricritical systems in the present paper, the nature of the critical behavior is now
well established [20,21]. The finite-size expression of the reduced free energy is given by Eq. (8.14), and
the scaling behavior of the aforementioned conventional quantities is obtained by differentiating Eq. (8.14)
with respect to appropriate scaling fields. These quantities include the energy density (e}, the specific heat
C, the magnetic susceptibility x, and the energy-energy correlation function g.(r = L/ \/5) etc. Precisely at
tricriticality, one has

) = eot+ellViT? fepl¥r 4
) = ¢+ clLQyu*? + 02L9t1+yt2*2 + C3L2y52*2 4o
L) o C(L),
) = xo+xol? ™t 4+... and
) — glLZyu*‘l + g2Lyzl+y5274 R (822)

The constants, eg, cg, and Xo, arise from the analytic part of the free energy density. As discussed above,
we expect that the structure factors, Cs, Ps, and x5, behave in a similar way as the physical quantities, C,
P, and y, respectively.

For a comparison with constrained phenomena investigated later, we simulated the tricritical BC model
on the square lattice precisely at the tricritical point [24] K; = 1.6431759(1) and D, = 3.2301797(2). The
Monte Carlo simulations used a combination of Metropolis and Wolff steps, which allows fluctuations of the
magnetization as well as the density of the vacancies. Periodic boundary conditions were applied, and the
system sizes were taken in the range 4 < L < 32. The Monte Carlo data for C, P, Cy, and Ps are shown
versus L%/° in Fig. 8.2. The approximate linearity of these data lines indicates that all these quantities are
specific-heat-like; the scaling behavior is described by Eq. (8.22) with the exponent y;; = 9/5. Further, we
observed that y o< x,s oc L2»1=2 = [37/20 (not shown). The data for the vacancy density p is shown versus
Lv~2 = [71/5 in Fig. 8.3, where we include the L — oo tricritical value p; = 0.4549506(2), taken from
Ref. [24].

For the universal ratios defined in Sec. II, including @, Q¢, @y, Qsm, @se, and Qs,, we fitted the data
according to the least-squares criterion by

Q(L) = Q + b LY + by L*¥7 (8.23)
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Figure 8.3: Vacancy density p of the unconstrained BC model at tricriticality vs. L¥—2 = L~1/5,

Table 8.1: Fit results for the dimensionless quantities of the constrained (Constr.) and the unconstrained
(Uncon.) Blume-Capel model.

Quant. | Qe Q. Q, Qom Qse Qsp |
Uncon. | .6620(5) .596(2)  .597(2) .4349(5) .4720(8)  .4705(8)
Constr. | .9821(1) .3331(2) - 81222(5) .84810(6) .84804(6)

where the terms with amplitudes b; and by account for corrections with the irrelevant scaling exponent
y; = —1 for the ¢ = 2 Potts tricritical universality class in two dimensions [17,18,21,22]. The results, shown
in Tab. 8.1, indicate that the universal asymptotic values of ). and Q. are identical to those of ), and
Qsp, respectively. This is as expected, since both (e) and p are energy-like.

Constrained systems

Simulations of the constrained BC model used a combination of Wolff and geometric cluster steps, as dis-
cussed earlier. Periodic boundary conditions were used, and the system sizes were taken in the range
6 < L < 720. For each system size, about 5 x 107 samples were taken.

Constrained behavior at the tricritical point. The tricritical point was taken from Ref. [24] as K; =
1.6431759(1), pr = 0.4549506(2). For a finite system L, however, the total number of the vacancies
V; = L?p; is generally not an integer. In that case, the actual simulations were performed at V_ = [V;] and
Vi = [V + 1], where brackets [ ] denote the integer part. For a sampled quantity A, its tricritical value A;
is then obtained by a linear interpolation as Ay = zA; 4+ (1 —z)A_, with z = V; — V_; the statistical error
margin of A; is estimated as 64; = \/(20A1)? + [(1 — )6 A_]2. The data for the constrained specific heat
C and the energy density (e) are shown in Figs. 8.4 and 8.5. In comparison with Figs. 8.2 and 8.3, these
figures indicate that the scaling behavior of C' and (e) is indeed modified by the constraint. In particular, the
constrained specific heat C reaches only a finite value instead of being divergent for L — oco. The exponents
used for the horizontal axes in Figs. 8.4 and 8.5 are those predicted in Sec. III. For the tricritical BC
model in two dimensions, the Fisher mechanism predicts that the leading thermal singularity in constrained
system is determined by the subleading exponent y;2, because the renormalized exponent 2 — y;; = 1/5
is smaller than y,» = 4/5. Thus, one obtains the leading finite-size behavior (e) oc L¥©2=2 = L=6/5 and
C o< L?¥>=2 = [=?/% in agreement with Figs. 8.4 and 8.5, respectively. By differentiating Eq. (8.19) with
respect to the thermal fields 71 and 72, the finite-size dependence of C' and (e) follows as

C = co+a L2724 qoL¥V27 Y 4 qu L2720 4 ...
(&) = eg+b LV 2 4 byl Y 4 ... (8.24)
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Figure 8.4: Specific heat C' of the constrained BC model at tricriticality vs. L?¥:2—2 = [=2/5,

176
174 |
172 |
17 |
168 |
166 |

164
162 |
16

<e>

0 001 002 003 004 005 0.06
L-6/5

Figure 8.5: Energy density (e) of the constrained BC model at tricriticality vs. L¥>~2 = L=6/5,

where the constants co and eo are equal to those in Eq. (8.22). The (e) and C data were fitted by Eq. (8.24),
with y; fixed at 9/5. In order to obtain a satisfactory fit, the data for small system sizes L < 8 were
discarded. We obtain y;» = 0.798(4) and 0.803(4) from the fit of C' and (e), respectively. These results are
in good agreement with the exact value y;2 = 4/5.

The g.(r) data for r = V2L /2 at tricriticality are shown in Fig. 8.6. The approximate linearity indicates
that the scaling behavior of g, is still governed by the leading thermal exponent y;1, i.e., go o L2¥1—4 = [,=2/5
as described by Eq. (8.22). This confirms that, as expected, the power law describing the spatial correlations
is not affected by the constraint, although the amplitude become negative. For an illustration of the influence
of the constraint on inhomogeneous fluctuations, we sampled the structure factors Cs and Ps, which display
the same scaling behavior as C' and P in the unconstrained systems, as shown in Fig. (8.2). The constrained
data for Cs; and P; are shown in Fig. 8.7. In contrast to the conventional quantities C' and P, the leading
behavior of the tricritical structure factors Cs and Ps remains the same as in the unconstrained systems.
The numerical data were fitted by Eq. (8.22) with the exponent y;» fixed at 4/5. After a cutoff for small
systems sizes L < 8, we obtain y; = 1.799(2) and 1.798(2) from the fits for Cs and P, respectively. These
results are in good agreement with the exact value y;; = 9/5.

As an illustration of the influence that the energy-like constraint has on magnetic quantities, we sampled
the quantities x and y;s. The data are shown in Fig. 8.8, where the exponent 37/20 used for the horizontal
scale is equal to 2yp; — 2 with yp; = 77/40 [20-22]. Thus, the constraint does not change the leading scaling
behavior of magnetic quantities. This is apparently related to the fact that the chemical potential D, the
conjugate parameter of the vacancy density p, is not directly coupled to the magnetic field.

The data for the universal ratios, including Qm, Qc, @p; Qsm, Qse, and Q,, were also fitted by Eq. (8.23).
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dependence of the slopes of these curves indicates that the critical exponent governing the scaling
behavior of ), as a function of p — p; is much smaller than 1.

We assume that, under the constraint, finite-size corrections still mainly arise from the irrelevant field. After
a cutoff for small system sizes L < 10, satisfactory fits can be obtained. The results are shown in Tab. 8.1,
where the quoted error margins are two statistical standard deviations. Thus, although the dimensionless
ratios are universal, they assume different values in unconstrained and constrained systems. The reason is
that these ratios depend on the spatial profile of correlation functions. Here the constraint plays a similar
role as the boundary conditions and the aspect ratios, etc. A particular feature in Tab. 8.1 is that the
constrained ratio Q. = 0.3331(2) = 1/3. This indicates that the fluctuations of the energy density resemble
the normal (Gaussian) distribution. As reflected by the fact that the specific heat C' remains finite in
constrained systems, this is because singularities of energy-related quantities are strongly suppressed so that
the ‘background’ (the analytical part of the free energy) plays an enhanced role.

Constrained behavior near the tricritical point. In addition to the tricritical point, the Fisher renormal-
ization mechanism also predicts the scaling behavior as a function of the distances K — K; and p — p;. In this
case, the dimensionless ratios serve a good choice for such investigations. The @), data at K = K} are partly
shown in Fig. 8.9 as a function the vacancy density. They indicate that the exponent y, of the deviation
of the vacancy density p — p; is much smaller than one, i.e., y, << 1, in agreement with the prediction by
Eq. (8.19). The Q,, data were fitted by

4
Qu(p D)= Qu+ Y ar(p— p) LEE) 4 b LV 4 b, L2 +
k=1
ci(p— p) L7V fco(p — pe) L2700 4o (8.25)

where the term with ¢; describes the ‘mixed’ effect of the leading irrelevant field and the scaling field 7
in Eq. (8.19). The term with ¢» arises from the nonlinear dependence of 71 on the distance p — p;. The
irrelevant exponent was fixed at y; = —1. Discarding the data for for small system sizes L < 12, we obtain
yes1 = 1.796(5), in agreement with the exact value y; = 9/5.

As shown earlier, precisely at the tricritical point, the leading scaling behavior of the structure factors
is not renormalized under the constraint. However, we argue here that the constrained scaling behavior of
these quantities as a function of the distance to the tricritical point is still governed by Eq. (8.19). Thus,
the leading finite-size scaling of C'(p, K, L) and Cs(p, K, L) can be expressed as

C(Tl, T2, L) = C(Tl, Tg) + .[42‘%2726‘(7’1[/27‘%1 , TQLym) ,
Cs(Tl,TQ, L) = Ca(Tl,TQ) + L2yt1_2CS(T1L2_y“,TgLytz) s (826)

where 71 = (p—p¢) +a(K — K;) and 75 = (K — K}) act as scaling fields. The terms ¢(71, 72) and ¢, (71, 72) arise
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from the analytical background. For the case K = K, Taylor expansions of Eq. (8.26) yield the behavior of
Cs(p, L) as

Cs(p, L) = cao + car(p — pe) + caz(p — pe)* + LY [do +
> ar(p — p) "LV by LY+ b L2V (8.27)
k

We fitted C data for K = K; by Eq. (8.27). After a cutoff for small system sizes L < 10, we obtain the
leading thermal exponent y;; = 1.793(8) = 9/5.

For an infinite system with the coupling constant K = K}, the specific-heat-like quantities C' and Cj
behave as C' x (p — py)~* and Cs x (p — py)~%*¢, respectively. The exponents «, and a;, can be obtained
by regarding L as a scaling factor, which satisfies (p — p;)L>7¥* = 1. From Eq. (8.26), one simply has

a, = 2y —d)/(d —yn) = =2 and a,, = (2ynn — d)/(d — ys1) = 8. Similarly, for the case p = py,
the specific heat C' and the structure factor Cs behave C' o< (K — K;)™® and Cs o« (K — K;)~ % in an
infinite system, respectively. Following the same procedure, one can obtain o = (2yt2 — d)/y2 = —1 and

as = (2yn —d)/y2 = 2.
As an illustration of the renormalization exponents due to the difference of K to the tricritical point, the
Qsm data for p = p; are partly shown in Fig. 8.10 as a function of K. We fitted these Q)s,, data by

4
Qun(K,L) = Qum + Y arp(K — K)FL*> 4 b LY + b, L% +
k=1
el (K — Kp) LYt 4 oy (K — K)? LY + -+ (8.28)

The exponent y; were fixed at —1, and the data for small system sizes L < 10 were discarded. We obtain
ye2 = 0.806(7), in agreement with the exact value y2 = 4/5.

8.4.3 Baxter’s hard-square model

Within the same universality class of the tricritical BC model, we also investigate Baxter’s hard-square lattice
gas [17,18], which is described by Eq. (8.4). Constrained simulations used the geometric cluster algorithm
only, and took place at the exactly known tricritical point J; = In(3 + v/5) and and p; = (5 + v/5)/10.
We used periodic boundary conditions and 24 system sizes in the range 4 < L < 360. Again, the actual
simulations were performed for two integer numbers of vacancies, and the tricritical quantities are obtained
by a linear interpolation. This model serves an independent test for the constrained behavior discussed in
the above subsection. We observe that, as expected, the constrained tricritical phenomena of this lattice gas
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Figure 8.12: Constrained specific heat C of the ¢ = 3 Potts model at tricriticality vs. L?¥2~2 = [=6/7,

and of the BC model are very similar. For instance, the constrained tricritical specific heat of the lattice
gas also reaches a finite value as L~2/5, illustrated in Fig. (8.11). For this reason, we do not give a detailed
account of the numerical results.

8.4.4 'Tricritical ¢ = 3 Potts model

Using a combination of Metropolis, Wolff, and geometric cluster steps, we first simulated the unconstrained
g = 3 Potts model with vacancies at the tricritical point [24] K; = 1.649913(5) and D; = 3.15217(1).
The system sizes were taken in the range 6 < L < 32, and the specific heat C' and the energy density (e)
were sampled. As expected, we found that these data are well fitted by Eq. (8.22), with the exact thermal
exponents y;1 = 12/7 and y = 4/7.

Next, we performed constrained simulations at tricriticality using the determined tricritical vacancy
density [24] p; = 0.34572(5). The system sizes were chosen as 20 values in the range 6 < L < 280. The
Monte Carlo data for C' and (e) are shown in Figs. 8.12 and 8.13, respectively. Again, the tricritical specific
heat C is suppressed and remains finite under the constraint. These figures confirm that the leading behavior
of C and (e) is governed by the exponents 2 — 2y;; and —y;;, respectively, as predicted by Eq. (8.24). For
a quantitative confirmation, the C' data were fitted by Eq. (8.24). First, we fixed y;; at 12/7 [20-22]. After
discarding the data for small system sizes L < 10, we obtain y2 = 0.572(3) ~ 4/7. Next, we fixed y;» at 4/7
and obtain yu = 1.714(2) =~ 12/7.

The scaling behavior of magnetic quantities and the structure factors also remains unchanged under the
constraint, as expected. As an illustration, the Cs data are shown in Fig. 8.14, indicating that at tricriticality
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Figure 8.14: Structure factor of the specific heat C; of the constrained ¢ = 3 Potts model at tricriticality vs.
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C, diverges indeed as L?¥1~2 = [10/7,

8.4.5 Dilute ¢ = 4 Potts model

The q = 4 Potts model is a marginal case of the tricritical Potts model in the sense that the critical and the
tricritical branch merge at ¢ = 4; accordingly, the subleading thermal exponent vanishes, i.e., y;2 = 0 [19].
In this case, we expect that the leading thermal exponent in constrained systems is equal to 2 —y;; = 1/2.
This corresponds with case 2 in Sec. III. Constrained simulations were performed at the ’fixed’ point,
ie, [24] Ky = 1.45790(1) and p; = 0.21207(2), where logarithmic corrections due to the marginal field
associated with yy are absent. The system sizes took 20 values in the range 12 < L < 280. The C; data
are plotted in Fig. 8.15. They show no indication that the constraint introduces slowly-convergent finite-size
corrections. According to Eq. (8.24), the C' and (e) data are plotted versus 1/L and L~3/? in Fig. 8.16 and
8.17, respectively. In contrast to the tricritical systems discussed above, the leading terms in Eq. (8.24) are
insufficient even to approximately describe these numerical data. Remarkably, the energy density (e) has a
maximum when the system size L increases. The data were fitted by

(e} = e + e1L73/% 4 eaL72 + e3 L75/2 , (8.29)

where the exponents were fixed as —3/2 = —yu, —2 = Y2 — 2, and —5/2 = —yyu — 1. After discarding
the data for small system sizes L < 12, the fit yields eg = 1.329377(4), e; = 1.53(2), ez = —11.0(2), and
es = 12.2(4), where we quote error margins of two standard deviations. The constants e; and e have
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opposite signs. Similarly, we fitted the C' data by
C=co+c L™+ e L73? (8.30)

and obtain ¢y = 3.960(4), ¢; = —2.1(4), and ¢; = —23(1). The amplitude ¢; is relatively small in comparison
with c2, which explains the strong nonlinearity in Fig. 8.16.

8.5 Discussion

The geometric cluster method serves well for a detailed investigation of the finite-size scaling behavior of con-
strained tricritical systems. For the ¢ = 4 Potts model with vacancies and the other systems, the constrained
data can be explained by the second and the first case of the Fisher renormalization described in Sec. III,
respectively. For clarity, a comparison of the unconstrained and constrained tricritical scaling behavior of
several quantities is listed in Tab. 8.2. These include the energy density (e), the specific heat C, the structure
factor Cs, and the magnetic susceptibility x. These data illustrate that the scaling behavior of conventional
energy-like quantities is significantly modified under the constraint, while that of magnetic quantities and
structure factors remains unchanged. Generally speaking, the agreement between the numerical results and
the theory is quantitatively satisfactory.

During the derivations of the scaling formulas in Sec. III, the Fisher renormalization mechanism makes
essential use of the universal renormalization exponents in the unconstrained free energy density as described
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Table 8.2: Leading finite-size scaling behavior of (e}, C, and C; of unconstrained (un) and constrained (co)
tricritical systems, including dilute ¢ = 1, 3, and 4-state Potts models, the Blume-Capel (BC)
model, and Baxter’s hard-square (HS) model.

Model | ¢=1 BC HS g=3 gq=

<e>un L1 L—1/5 —1/5 L2/7 L—1/2
<6>CO L1 1,-6/5 [,—6/5 —9/7 [,-3/2
¢ un L? 4 LG 5 L6 5 LlO 7
C <° InL L—2/5 L—2/5 L—6/7
Cs un L? 4 LG 5 L6 5 LlO 7
C, c° L7/4 L6/5 L6/5 L10/7
Xun L91/48 L77 10 L77/40 L38/21 L7/4
Xco L91/48 L77/10 L77/40 L38/21 L7/4
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by Eq. (8.14). This simply means that the present annealed type of constraint does not modify the uni-
versality class, and thus the critical exponents in the constrained and unconstrained systems are directly
related. We further demonstrate this point by investigating the scaling behavior of the structure factors
Cs and Ps, which remains unchanged under the constraint. Therefore, on the basis of the summary in the
above paragraph, we conclude that the Fisher renormalization mechanism straightforwardly and completely
describes the essential physics of the constrained scaling behavior. It then seems that there is no apparent
need to apply other theories. Nevertheless, in this context, we mention Imry’s theory [11,12,36] for con-
strained critical phenomena, which is more general and includes the Fisher renormalization mechanism [6]
as a special case. This theory has been applied to the Baker-Essam model [35], a compressible Ising model,
where a ‘special’ tricritical point was reported. Such a point, where no renormalization of critical exponents
occurs even for systems with a > 0, has not been observed in the present investigation. For the experimental
data [2] at the \ transition in the He-*He mixtures, both the Fisher approach and the renormalization group
(RG) calculations of Imry and coworkers [13] can be employed. This has been further confirmed [14] by the
Monte Carlo simulations of the tricritical Blume-Capel model in three dimensions. Although the RG calcu-
lations [13,36] can be regarded to correspond with the second case of the Fisher renormalization mechanism,
as described in Sec. III, the connection of these two theories is not always obvious. Thus, it seems justified to
ask the following questions: 1) in addition to the Baker-Essam model [35], can one further test the theoretical
predictions in Refs. [11,12] in other systems? In particular, can one observe the aforementioned ‘special’
tricritical point? 2) how are the RG calculations [13] related to the Fisher renormalization mechanism? 3)
how can the effect of the subleading thermal field be included in the RG calculations [13]7?

Although the mean-field theory is ‘unrealistic’ in general, it can yield an intuitive physical picture of a
phase transition. Moreover, for a sufficiently high spatial dimensionality, the mean-field theory can correctly
predict universal parameters. Therefore, we investigated [14] the influence of the constraint on the mean-field
version of the Blume-Capel (BC) model. Just as in finite spatial dimensions, the mean-field BC model has
a line of second and first-order transitions and a tricritical point. However, under the constraint, it can be
shown that the whole transition line reduces to mean-field critical Ising-like.

Finally, we remark that, in our application of the Fisher renormalization mechanism, only the leading
terms are kept, as mentioned in Sec. III. It is obvious that including subleading terms leads to additional
finite-size corrections besides those arising from the irrelevant scaling fields.
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Monte Carlo study of backbone exponents

By means of Monte Carlo simulations and finite-size analyses, we determine the backbone exponent of several
g-state Potts model in two and three dimensions.

9.1 The g-state Potts model in two dimensions

We determine the backbone exponent X, of several critical and tricritical g-state Potts models in two
dimensions. The critical systems include the bond percolation, the Ising, the ¢ = 2 — /3, 3, and 4-state
Potts, and the Baxter-Wu model, and the tricritical ones include the ¢ = 1 Potts model and the Blume-Capel
model. For this purpose, we formulate several efficient Monte Carlo method and sample the probability P
of a pair of points connected via at least two independent paths. Finite-size-scaling analysis of P yields X,
as 0.3566(2), 0.2696(3), 0.2105(3), and 0.127(4) for the critical ¢ = 2 — /3, 1,2, 3, and 4-state Potts model,
respectively. At tricriticality, we obtain X; = 0.0520(3) and 0.0753(6) for the ¢ = 1 and 2 Potts model,
respectively. For the critical ¢ — 0 Potts model it is derived that X; = 3/4. From a scaling argument, we
find that, at tricriticality, X, reduces to the magnetic exponent, as confirmed by the numerical results.

9.1.1 Introduction

The integer g-state Potts model [1] is an extension of the Ising model, and has been a subject of intense
research interest for decades. It can be generalized to the random-cluster model of all ¢ > 0 [4]. For a review
see [5]. This model has been shown to be very rich in its behavior. In two dimensions, the nature of the
critical singularities is now well established. In the study of critical phenomena, the Potts model has become
an important testing ground for various methods and approaches.

However, there is still a number of critical exponents, of which the exact values have not been obtained.
These exponents characterize geometric properties of the critical Potts models, and seem to have no analogue
in the thermodynamics. Among them there are fractal dimensions of ‘backbones’ [7] and of ‘chemical’
paths [18].

Here, we shall briefly review definitions of these quantities, in the language of the percolation model [3],
a special case of the Potts model for ¢ — 1. Consider a bond percolation model on the square lattice; each
edge of the lattice is occupied by a ‘conducting’ bond with probability p, or is ‘empty’ with probability 1 — p.
At the critical point p. = 1/2 [3], a percolating cluster, which consists of sites connected via these conducting
bonds, will grow arbitrarily large. Suppose one has a percolating cluster, which contains two sites S; and
Sy separated by a distance r. The backbone [7] is then defined as the set of sites from which conducting
paths exist both to S; and Ss, such that both paths have no bonds in common, i.e., the paths are mutually
independent. Thus, if a potential difference is applied to S; and Sz, the backbone consists exactly of those
sites through which current would flow, apart from the so-called ‘Wheatstone bridges’. At criticality, the
total number of sites or bonds in the backbone scales as Ny o =X where d = 2 and X, are the spatial
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and the backbone scaling dimension, respectively. The chemical path [18] is defined as the shortest path
between S; and S,. Its average length at criticality behaves as [ oc r?~Xmin with X, the corresponding
scaling dimension. Another exponent of interest is related to the so-called ‘red’ bonds. Suppose a bond
in the percolating cluster carries all the current and thus becomes ‘hot’ after some time, then this bond
is named a red bond [7,18]. A cluster with one or more red bonds will, if any red bond is cut, split into
disconnected sub-clusters. The total number of red bonds in the percolating cluster behaves as N, oc 74X~
with X, the red-bond scaling dimension.

As mentioned earlier, the ‘geometric’ exponents, such as X, X, and Xp;,, characterize geometric
structures of critical systems, and are thus of some physical relevance. For instance, the backbone and
red-bond scaling dimensions X, and X, are related to the electric conductivity of a random network [26].
The chemical path dimension X,,;, is the analogue in percolation of the dynamic scaling exponent of critical
phenomena [19].

Among these exponents, the red-bond dimension X, has been identified with another exponent X, [10,11],
which governs the RG flow of the bond probability p for critical systems. As a result, exact values of X, can
be calculated from the theory of the Coulomb gas [9]; these values are also included in the prediction of the
conformal field theory [10,14,42]. However, except for the special case ¢ — 0, exact values have not been
obtained for X}, and X,i,. Numerous theoretical attempts have been carried out. For the percolation model
g — 1, a relation was assumed by Herrmann and Stanley [18] as X = X, — Xpin, which satisfies numerical
tests quite well so far. However, this conjecture apparently cannot be generalized to the critical ¢ — 0 Potts
model, where X, = X, = X,in, as shown later. It was also assumed that X,(¢ — 1) = 7/16 [15,16], which
is, however, not consistent with current estimations. More recently, X;(¢ — 1) has been related to a partial
differential equation [17], which, unfortunately, appears to be intractable, even numerically.

In parallel with these theoretical attempts, several numerical determinations of X; have been achieved.
Significant progress is obtained by Monte Carlo simulations [18-20]. The basic idea of these simulations is
to count the total number of sites or bonds in the backbones. For instance, for the percolation model in
the ‘bus-bar’ geometry, Grassberger [19] determined X, = 0.3569(8). Slow convergence applies to X in this
case. For the ¢ = 2 and 3-state Potts models, it has been estimated [20] that X; = 0.25(1) and 0.25(2),
respectively.

Another approach was taken by Jacobsen and Zinn-Justin [22] recently. They applied a transfer-matrix
method, and obtained X; = 0.3569(6) for the percolation model. Instead of the total number of sites in the
backbones, they investigated the correlation length of k-connected clusters [43], where k > 1 is an integer. A
cluster is considered to be k-connected if, by eliminating any k£ — 1 sites or conducting bonds, no separation
into disconnected sub-clusters is possible. This means that any two sites in the cluster are connected via at
least k independent paths without any bond in common. At criticality, the behavior of these k-connected
clusters is dominated by a family of exponents Xj,. Moreover, it has been shown that X, = X, [44], so that
one can estimate X; by studying 2-connected clusters.

In such transfer-matrix calculations, the finite system sizes are restricted to relatively small values, since
the computer memory required increases exponentially with linear size L. For instance, in Refs. [22], L is
limited to 2 < L < 10. This effect, together with the aforementioned slow finite-size convergence, makes it
difficult to determine X, accurately.

In this paper, we present another Monte Carlo study of the backbone exponents. However, in comparison
with the earlier Monte Carlo studies [18-20], we apply a new sampling procedure. As mentioned above, the
earlier methods involve counting procedures for the number of sites or bonds in the backbone. In other
words, for a cluster of interest, all dangling bonds have to be identified and excluded. This appears to be
a time-consuming task. Instead, in the present work, we sample the probability P»(r) that a pair of sites,
separated by a distance r, are connected via at least two independent paths. For later convenience, we shall
refer to the quantity P»(r) as the ‘backbone correlation function’. The sampling procedure for Py(r), which
will be described in detail later, has a speed at least of the same order as the well-known Wolff cluster
method [45]. We note that, in comparison with Refs. [18-20], our procedure to sample P»(r) is more in line
with that used in Ref. [22].

The sampling procedure for P»(r) can be applied to the general g-state Potts model with any value
of ¢ > 0. Further, with this technique, we simply investigate systems with periodic boundary conditions
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rather than in the ‘bus-bar’ geometry [19,20]. Thus, one avoids any finite-size correction associated with the
surfaces in the ‘bus-bar’ geometry. This will be confirmed later.

In the present work, several critical and tricritical g-state Potts systems are investigated. The values of
q are chosen as ¢ = 2 — /3, 1, 2, 3, and 4 for the critical systems, and ¢ = 1 and 2 at tricriticality. The
critical ¢ = 1 and 2 Potts models are just the bond percolation and the Ising model, respectively, and the
tricritical ¢ = 2 system is the Blume-Capel model [46,47]. For ¢ = 4, we avoid slow finite-size convergence
by investigating a dilute ¢ = 4 Potts model and the Baxter-Wu model [48].

For these systems, extensive simulations were performed to determine Xj;. In order to suppress critical
slowing down, we make use of various efficient cluster Monte Carlo algorithms. For instance, for the dilute
g = 4 Potts and the Blume-Capel model, a geometric cluster method [49] was used to move vacancies on
lattices. Another example is the simulation of the critical ¢ = 2 — v/3 Potts model. For this this purpose, we
formulate a Monte Carlo method for the Potts model with non-integer ¢ > 0. This method hardly suffers
from critical slowing down for small ¢ > 0.

9.1.2 Models

We start from the Hamiltonian of the dilute g-state Potts model on the square lattice [5], which reads

H/kBT:_Kzéu'i,a']‘(]‘_(sa'i,o)_D260k70 (020717"' ,Q) . (91)
(4,5 k

Each site is occupied by a Potts variable with o = 1,--- , g or by a vacancy o = 0, and the sum () is over all
nearest-neighbor sites. The abundance of the vacancies is controlled by the chemical potential D. Nonzero
couplings K occur only between equal Potts variables, i.e., variables with nonzero values of o.

Just as the ‘pure’ Potts model, this model can be represented by Kasteleyn-Fortuin (KF) clusters [4,50],
with each site of the lattice also occupied by a vacancy or a Potts variable. A nearest-neighbor bond is placed
between each pair of equal, nonzero Potts variables with the probability p = 1 — exp(—K). We emphasize
that, for any pair of nearest-neighbor sites, no bond is present if any of them is a vacancy. The whole lattice
is then decomposed into clusters, i.e., the aforementioned KF clusters. This model is also referred to as a
random-cluster model with a partition sum

Z:Zu"”q”“w””, (u=ef —1and w=e"), (9.2)
{v,b}

where the sum is over all mutually consistent vacancy and bond configurations, and ny, n., and n, are the
total number of bonds, KF clusters, and vacancies, respectively. According to finite-size scaling, the average
size of these KF clusters at criticality is governed by the magnetic scaling dimension Xj. With the partition
sum (9.2), the Potts model is now also well defined for any non-integer ¢ > 0.

For D = —o0, the vacancies are excluded, and the system reduces to the ‘pure’ Potts model. In this case,
the model is self-dual, and the critical point follows [5] as u. = exp(K.) —1 = /g on the square lattice.
With sufficiently abundant vacancies, tricritical systems, described by Egs. (9.1) and (9.2), can be obtained.

Apart from these KF clusters, we also investigate so-called ‘Potts’ clusters [10,11,42], defined as sets of
Potts variables in the same state, connected by nearest-neighbor bonds. In other words, conducting bonds
are always present between nearest-neighbor Potts variables as long as they are in the same state. Exponents
describing Potts clusters are normally different from those for KF clusters. For instance, the ¢ = 2 Potts
clusters, i.e., Ising clusters, are described by the magnetic exponent of the tricritical ¢ = 1 Potts model [9-11],
different from that of the critical Ising model. Exponents for ¢ = 3 and ¢ = 4 Potts clusters have also been
predicted as X, = 7/80 and 1/8 [42].

Among the systems included in the present work, most of the systems can be described by Egs. (9.1) or
(9.2), except the Blume-Capel, and the Baxter-Wu model, which will be described later.

For the ¢ = 4 Potts model, logarithmic corrections arise due to the marginal field associated with the
fugacity of vacancies [5]. In order to avoid such corrections, we investigate a dilute system at the point
where this marginal field vanishes. We shall refer to this point, although somewhat imprecisely, as the
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‘fixed’ point. By means of a transfer-matrix calculation [51], we locate this fixed point as K;. = 1.45790(1),
Dy = 2.478438(2), and pg. = 0.21207(2) for the vacancy density. The precision of this result is considered
sufficient for our later investigation of the backbone exponents.

For the case of ¢ = 4, besides the aforementioned dilute system, we also investigate the Baxter-Wu
model [48], which is defined on the triangular lattice as

H/ksT = -K > oi0joy (0 ==+1), (9.3)
A,V

where the sum is over every up- and down-triangular face of the lattice. It has been shown that this model
belongs to the universality class of the ¢ = 4 Potts model, and that logarithmic corrections are absent [48].
This means that the Baxter-Wu model also sits at the aforementioned fixed point. The critical point is given
by K. =In(1+ v/2)/2 [48].

For the Ising and the Blume-Capel model, instead of Eq. (9.1), the Hamiltonian reads

H/keT = -K'" > oi0; + DV 07, (0 =—-1,0,1), (9.4)

(4,5) k
where vacancies are also denoted as ¢ = 0. We mention that, instead p = 1 —exp(—K), the bond probability
for the KF clusters is now p = 1 — exp(—2K D). Analogously, for the chemical potential DY) = —oo, the
system reduces to the ‘pure’ Ising model, with the critical point at Kél) = In(1 + v/2)/2. By means of a
transfer-matrix calculation [51], we locate, with a sufficient precision, the tricritical point of the Blume-Capel

model as K" = 1.6431759(1), D\" = 3.2301797(2), and py. = 0.4549506(2).

9.1.3 Algorithms

The Monte Carlo investigation of the backbone exponents of the aforementioned systems involves two parts,
i.e., the simulation and the sampling procedure.

Monte Carlo simulations

For pure Potts systems with integer ¢, one can simply use the standard Wolff procedure [45]. In the present
paper, these systems include the bond percolation, the Ising, and the ¢ = 3 Potts model. For the dilute
systems, i.e., the Blume-Capel and the ¢ = 4 Potts model, cluster algorithms to flip between vacancies
and Potts variables are generally not available. For this reason, we fix the global vacancy density at its
equilibrium value, so that critical slowing down due to fluctuations in the number of vacancies is avoided.
Cluster steps satisfying this conservation law are realized by a geometric cluster algorithm [49]. It moves
groups of vacancies and Potts variables over the lattice in accordance with the Boltzmann distribution. This
geometric cluster method is based on spatial symmetries, such as the spatial inversion symmetry. A detailed
account can be found in Ref. [49].

Simulations of the Baxter-Wu model [48], which involves three-spin interactions, can be performed as
follows [52]. The triangular lattice is divided into three sublattices, one of the sublattices is randomly chosen,
and its spins are ‘frozen’. Since each elementary triangle contains one spin from each sublattice, only two-
spin interactions remain effectively. Further, the Hamiltonian (9.3) is unchanged if all spins on these two
sublattices are flipped. Due to this symmetry, one can now apply the Wolff cluster method on these two
sublattices.

For the 0 < ¢ < 1 Potts model, we formulate a Monte Carlo method on the basis of the random-cluster
representation Eq. (9.2), which uses bond variables [ = 0 or 1. For simplicity, we illustrate this method
precisely at the critical point u. = ,/q:

1. Randomly choose a bond variable /, connecting sites i and j.
2. Draw a uniformly distributed random number 0 < r <1,

(a) if r < /q/(1 + ,/q), the edge [ is occupied by a bond, i.e., | = 1.
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Figure 9.1: Relative weights of the bond variables between neighboring sites ¢ and j for the critical Potts
model. Existing paths or bonds are represented by solid lines, while dashed lines means that no
path or bond is present. The relative weights between state (1) and (2) and those between (3)
and (4) are specified as W; with a = /q.

(b) if > 1/(1 + /q), no bond is present at the edge [, i.e., | = 0.

(c) if \/q/(1+ /q) <7 < 1/(1+./q), set | =0, and check whether sites i and j are connected. If
they are not I = 1; otherwise [ = 0.

3. Current Monte Carlo step is completed, and goto 1.

Figure 9.1 illustrates possible connectivities of sites ¢ and j and their relative weights. According to the
procedure described above, the transition probability from (1) to (2) is 712 = 1/q/(1+ /q), and that from
(2) to (1) is Ty—51 = 1/(1+ /q). Since equilibrium statistics implies that the probability p; /p» is 1/,/q, one
has p1T1 2 = paTs—,1. Thus, the condition of detailed balance is satisfied between states (1) and (2). The
same argument applies to states (3) and (4).

For small values of ¢, we observe that this method hardly suffers from critical slowing down. A similar
procedure for ¢ > 1 has already been published [53]. Using the procedure described in Ref. [53], we simulated
the ¢ = 2 + /3 Potts model. In this case, we did observe serious critical slowing down, in agreement with
the Li-Sokal bound [54] for the dynamic exponent. This is due to the rather strong energy fluctuations for
q > 2, especially when the marginal case q. = 4 is approached. In Ref. [53], this Monte Carlo technique was
used to locate the marginal value of g, in three dimensions, and it was claimed that no critical slowing down
occurs. This stands, however, in a remarkable contrast with our findings near ¢. = 4 in two dimensions.

Sampling procedure

Here, we illustrate, in the language of the bond percolation model, the sampling procedure of the backbone
correlation function Ps(r).

Step 1, form a KF cluster. We shall illustrate the construction of a KF clusters as follows. Suppose a
percolation model is defined on a L x L square lattice with periodic boundary conditions, and there are two
sites A and B separated by a distance L/2. The task of this step is to form a KF cluster F from site A, and
then to check whether B is also included in F, so that A and B are connected via conducting bonds. For
the Potts model with integer g, the sites in this KF cluster just form the Wolff cluster [45]. In the standard
Wolff algorithm, if two nearest-neighbor sites are already in the cluster, it is not necessary to check whether
the bond between them is present or absent. However, we are interested in the backbone correlation function
here. If A and B are connected, one then asks how many mutually independent paths exist between A and
B. Thus, all edges between nearest-neighbor sites within F have to be checked. We introduce a variable
C = 0,1, and 2, representing that there is no path, only one path, and at least two mutually independent
paths between A and B, respectively. First, the edge variables on the lattice are initialized as e; = —1 with
1 < i < 2L% The value e; = 1 represents that the ith edge is occupied by a bond, and e; = 0 stands
for an empty edge. Since only one KF cluster is formed, not all edges of the square lattice are necessarily
visited during the formation of F. The edges, which are not visited, keep their value e; = —1. After this
initialization, uniformly distributed random numbers are drawn for each edge connecting to a neighbor in
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Figure 9.2: Outline of the procedure to determine the connection variable C. The path W is shown as the
thick line, and the remaining conducting bonds are shown as the thin lines. The bonds on W
are temporarily eliminated first. In figure (a), the remaining path stops at 5. After the bonds
between A, 1,---, and 5 are restored, the path connects to B, so that C' = 2. In figure (b), the
bond between 3 and 4 is a red bond, and thus the path stops at site 3, so that C' = 1.

the same state. The edge is occupied by a bond if r < p, and is empty if r > p.. The sites connected via
these bonds are included in F, as stored in a stack memory S. Next, a site j is read and erased from S. Then,
the edges connecting to site j are checked. If they have not been visited (e; = —1), new random numbers
are used to determine whether they are occupied. Repetition of this procedure creates a list of occupied
edges and sites, and thus a cluster F is formed. The determination of the backbone between A and B indeed
requires that each bond between sites in [F is visited. This procedure costs some additional computer time
in comparison with the algorithm growing a Wolff cluster [3].

If the site B is not in the cluster FF, i.e., A and B are not connected, one has C' = 0, and the current
Monte Carlo step is completed; otherwise, it continues as follows.

Step 2, a path W is formed between A and B. This can be done by an ‘ant’ walking from A through
the conducting bonds. Suppose the ant is currently at site j, it continues its journey by randomly choosing
a conducting bond connecting to j, excluding the one it just passed. The ant does not pass a bond twice
unless it arrives at a ‘dead’ end. The ‘dead end is defined as a site whose connected nearest-neighbor sites
have all been visited. In this case, the ant walks back along the ‘old’ road until it finds a ‘new’ bond which it
has not visited. Since site B is also in [, the ant will always arrive at site B. The aforementioned path W is
just composed of the bonds through which the ant has passed once and only once. An example is shown in
Fig. 9.2a, where the path W is represented the thick solid line, and the sites on it are specified as 1,2, -+ ,n.

The next task is to check whether there is any red bond on W. If only one independent path can be
formed between A and B, then at least one red bond occurs on the path W. Furthermore, if any of these
bonds is cut off, the ant cannot arrive at site B. An inefficient way is as follows. Temporarily eliminate a
bond b on W, and then let the ant restart its journey. If the ant can still arrive at B, the bond b cannot
be a red bond, and thus is restored. Suppose all the bonds on the path W pass this test, then no red bond
occurs between A and B, so that C' = 2; Otherwise, C = 1. In this way, however, the ant may become too
tired to walk. Therefore, we apply a more efficient procedure.

Step 3, temporarily eliminate all the bonds on W, and let the ant restart its journey from A to B. Suppose
the ant cannot arrive at B; this does not necessarily mean, however, that there are red bonds. For instance,
in Fig. 9.2a, after the elimination of the whole path, the ant can only arrive at site 5. This indicates that
the bonds between A,1,---, and 5 are not red bonds, and may thus be restored. Then, the ant continues
its journey and arrives at B. In this case, no red bond occurs on the path W, and C = 2. An example of
opposite case is given in Fig. 9.2b. Following the same steps the ant cannot go beyond site 3, since the bond
between sites 3 and 4 is a red bond. In this case, one has C = 1.

In practical applications of this procedure, one can still improve the efficiency by some tricks. For
instance, during the formation of the path W, the site B may act as an ‘attractor’, so that W will not go
too far from B and the ant need not continue its journey randomly. Furthermore, after the elimination of
W, instead of having the ant restart the journey, one can form a new cluster from A on the basis of the
remaining bonds, and then check whether it includes B. In the case that B is not included, one restore the
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Figure 9.3: The ratio r, between the computer time for steps 2 and 3 and the total time (steps 1, 2, and
3 combined), vs. L~5/?* for the percolation model. Every data point involves 10° Monte Carlo

sweeps, and the system sizes are in the range 8 < L < 800. The ratio r extrapolates to 0 for
L — oo.

‘temporarily eliminated’ bonds on W which connect sites in A, and then continue to grow cluster A. This
procedure ends when either B is included or no growth of A is possible. This avoids the situation that the
ant has to walk back from a dead end.

With the connection variable C, the normal magnetic correlation function P; and the backbone correlation
function P, between sites A and B can be defined as

Py =(1-dcp), Py = (0c2) , (9.5)

where the symbol () means the statistical average.

Efficiency of the sampling procedure. As described above, the sampling of P, involves up to three steps;
the probability that steps 2 and 3 are performed is just the magnetic correlation function P;. Step 1 is just
a standard Wolff step with a small amount of added computer time, as mentioned above. Steps 2 and 3
involve a number of sites with an upper limit equal to the size of the cluster F, so that their computer time
is also of the same order as the Wolff step. Moreover, the probability P, that they are performed decays as
L=2Xr  and each sample is only taken between several simulation steps. As a result, the sampling procedure
requires less computer time than the Wolff method. As an illustration, we performed 10° Monte Carlo steps
for the percolation model with system size 8 < L < 800. We sampled the ratio r between the computer time
for steps 2 and 3 and the total time, i.e., for steps 1, 2, and 3. The data for r are shown in Fig. 9.3 versus
L2?Xn = [=5/24 The approximate linearity indicates that the fraction of the computer time needed by the
sampling procedure over the total time goes to 0 as L — oo.

9.1.4 Results

As mentioned in Sec. 9.1.1, the backbone correlation function P, and thus the backbone exponent, is related
to the behavior of the red bonds. For critical Potts models 0 < g < 4, the value of X, is known to increase
with ¢, which indicates that the KF clusters become less and less ramified. As a result, the backbone
correlation function P» behaves more and more in line with P;, so that X, may be expected to approach the
normal magnetic exponent X as ¢ — 4. For the tricritical Potts model, since X, > 2, we expect that the
backbone exponent X reduces to the magnetic exponent Xj,.

For the critical ¢ — 0 Potts model [4,5], the KF clusters span the whole lattice without any loop, and are
thus referred to as spanning trees. In this case, between any pair of points on the lattice, there is precisely
only one path P, so that the backbone correlation function P, vanishes. This is due to the vanishing of the
amplitude of P, as ¢ — 0. As a consequence, one cannot obtain X;(¢ — 0) by investigating k-connected
clusters, as we will do for other values of ¢ > 0. In this case, one can simply make use of the original
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definitions of the ‘geometric’ quantities in Sec. 9.1.1, which include the backbone, the red-bond, and the
chemical-path exponents. From these definitions, one knows that the aforementioned path P is just the
chemical path, and that the backbone precisely consists of all the bonds on IP. Furthermore, all these bonds
are red bonds. Since the red-bond scaling dimension is exactly known X, = 3/4 [10,55], one simply has
that Xy = X}, = Xy, = 3/4 for ¢ — 0. In fact, the statement that X, = X, = X,,;;, holds for any type of
spanning tree.

In the remaining part of this section, we present our Monte Carlo determinations of X for the systems
discussed in Sec. 9.1.2. Periodic boundary conditions apply to all these systems. The aforementioned site A
was chosen at random, and site B is chosen at a distance r = L/2 in the = direction from A. Further, we
chose a site D also separated from A a distance L/2 but in the y direction.

The correlation functions P; and P, were sampled both in the x and y directions, such that P, =
(P + P®1/2 and Py = [P + P{")]/2. Moreover, we sampled another backbone correlation function Pys
that A is simultaneously connected to B and D by at least two mutually independent paths.

According to finite-size scaling, the quantities Py, P5, and Py behave at criticality as

P, = L *"(ag+ayl¥ + a3l % +a4L %), (9.6)
Py = L72Xv(bg 4 by LY® + by LY + by L ™2 + by L73) and (9.7)
Py = L73%v(co4 ¢ LY + o LY + csL72 + ¢, L73) (9.8)

where y; is the exponent of the leading irrelevant thermal scaling field, and we have assumed integer correction
exponents (of 1/L). The amplitudes a;, b;, and ¢; are unknown constants. In comparison with the magnetic
correlation function P;, the ‘geometric’ quantities P, and P32 may be expected to suffer from additional finite-
size corrections, with unknown associated exponents y;;. More rapidly decaying corrections are neglected
here. The unknown amplitudes and exponents are determined from multivariate least-square analysis using
the Levenberg-Marquardt method [56]. For the systems in the present work, the values of X}, obtained from
the fits of P;, are all in excellent agreement with their exact results [9], and need not be discussed in this
work.

The bond percolation model

For this model, the system sizes L were taken in the range 8 < L < 240. The data for P, are shown in
Fig. 9.5, and do not indicate the presence of large finite-size corrections. Equation (9.7) was fitted to the
Monte Carlo data according to the least-square criterion, and the exponent y;, was left as a free parameter.
We observed that the terms with amplitudes by, b3, and by do not decrease the residual x2, and thus they
were not included in the fit. We obtain X, = 0.3566(2) and y;, = —1.27(4), where the error bars are twice
the statistical standard deviations. Compared to Ref. [19], it seems that our Monte Carlo data suffer less
seriously from finite-size corrections. This may be due to our choice of a geometry with periodic boundary
conditions instead of the ‘bus-bar’ geometry. For clarity, we plot the value of P,L?X¢ — by as a function of
L='27 in Fig. 9.4, where X} = 0.3566(2) and by = 0.742(2) are taken from the fit. The apparent linearity
indicates that, indeed, finite-size corrections of P, can be well accounted for by a single power law by LY.

The Ising model and the tricritical ¢ = 1 Potts model

The simulations were performed for critical Ising systems on square lattices in the range 6 < L < 240.
The quantities P, and Py were sampled both for KF and Ising clusters. As mentioned above, the Ising
clusters are described by the magnetic dimension X} = 5/96 of the tricritical ¢ = 1 Potts model [9-11].
The Monte Carlo data for P, of the KF clusters are shown in Fig. 9.6, which indicates that 2X;, ~ 0.54.
Equations (9.7) and (9.8) were simultaneously fitted to P> and Pss, respectively, so that X, and y;, appears
in the fit only once. In addition to the terms with y;, the fit also included a correction with y; = —2. We
obtain X, = 0.2696(3) and y;, = —0.87(4) for KF clusters, and X; = 0.0520(3) for Ising clusters. Here, the
error bars are again two standard deviations. As expected, for the Ising clusters Xj is in a good agreement
with Xp, = 5/96 = 0.5208 - - - of the tricritical ¢ = 1 Potts model.
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The critical ¢ = 3 Potts model

The simulations were performed for the ¢ = 3 Potts model at criticality with system sizes L in the range
6 < L < 360. The quantities P, and P> were sampled both for KF and Potts clusters. As mentioned
above, the exponent for the Potts clusters has been predicted as X = 7/80 [42]. As a test, Eq. (9.6) was
fitted to the data for P;, and we obtain X; = 0.0876(2), in good agreement with 7/80. Furthermore, a
plot of the data for Ps; for Potts clusters in Fig. 9.7 also indicates X; ~ 7/80. Again, Eqgs. (9.7) and (9.8)
were simultaneously fitted to P, and Psg, respectively. For the ¢ = 3 Potts model, the correction term with
y; = —4/5 [14] appears difficult to separate from that with y;,, and thus it was neglected in the fit. The
corrections with L™% were included, and the fit yields that X;, = 0.2105(5) and y;, = —0.61(4) for the KF
clusters, and that X, = 0.0873(3) ~ X}, = 7/80 for the Potts clusters.

The tricritical Blume-Capel model

As mentioned above, the backbone exponent X, for the tricritical ¢ = 1 Potts model has already been
determined from the Ising clusters. The result X, = 0.0520(3) ~ 5/96 indicates that X}, reduces to the
magnetic exponent X, for tricritical Potts models. As an independent test, we directly Monte Carlo simulated
the tricritical Blume-Capel model. The simulations use the fixed-vacancy-density ensemble, as discussed in
Sec. 9.1.2. The system sizes were taken in the range 10 < L < 360, and both quantities P> and Pso
were sampled. The numerical fits yield X, = 0.0760(8) and 0.0753(4) for the KF and the Potts cluster,
respectively. Both are in good agreement with the tricritical magnetic exponent X, = 3/40 [9, 14].

The Baxter-Wu and the tricritical ¢ = 4 Potts model

The ¢ = 4 Potts model is a marginal case, not only because the second-leading thermal exponent X;» = 2,
but also because the red-bond exponent X, = 2 [10,42]. Thus, the bond-dilution scaling field, conjugate
to the red bonds, becomes marginal, and the question arises whether this field is marginally relevant or
irrelevant for critical KF and Potts clusters. As independent tests, Monte Carlo simulations were performed
both of the aforementioned dilute ¢ = 4 Potts model at the fixed point and the Baxter-Wu model. For the
latter, the system size L was taken as multiples of 6 and in the range 12 < L < 240. For the dilute ¢ = 4
model, the system sizes were in the range 10 < L < 360. The Monte Carlo data for P, of the KF clusters,
shown in Fig. (9.8), indicate that 2X;, ~ 1/4. For these two models, logarithmic finite-size corrections
are absent for ‘thermodynamic’ quantities such as the magnetic correlation P;. However, we have no solid
reason to assume that such logarithmic corrections are absent for ‘geometric’ quantities such as P,. Thus,
at criticality, we assume that, instead of Eqs. (9.7) and (9.8), P> behaves as

Py =L % (by + by /In L+ by/In® L + b3 /L?) . (9.9)
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Eq. (9.9) was fitted to the Monte Carlo data for these two models simultaneously. On the basis of the x>
criterion, we applied a cutoff for small system sizes L < 12. We then obtain that X; = 0.124(2) and 0.127(4)
for the Potts and the KF clusters, respectively, in agreement with X, = 1/8.

The critical ¢ = 2 — v/3 Potts model

As a case between ¢ = 0 and 1, we simulated the ¢ = 2 — /3 Potts model. The system sizes were taken in the
range 6 < L < 200, and the quantity P> was sampled. We find that, as expected, the finite-size corrections
converge rapidly, so that Eq. (9.7) with only the first two terms is sufficient to describe the Monte Carlo
data. To obtain a satisfactory x2 residual, we applied a cutoff for small system sizes L < 8. This leads to
Xp = 0.4953(3) and y;, = —2.3(2).

9.1.5 Discussion

We have developed several Monte Carlo methods to determine the backbone exponents of the g-state Potts
model. The efficiency of these methods is reflected by the precision of the numerical results, summarized
in Tab. 9.1, which significantly improves over existing results. We find that, for critical Potts models, the
backbone scaling dimension X} approaches the magnetic dimension Xj as ¢ — 4. This reflects the fact that
Kasteleyn-Fortuin clusters become more and more compact with increasing q. Further, it has been confirmed
numerically that, for the tricritical Potts model, the backbone exponent reduces to the magnetic exponent.
In Fig. 9.9, we plot X, and X}, as a function of the coupling constant of the Coulomb gas g [9]. The relation
between ¢ and ¢ is given by ¢ = 2 + 2cos(gm/2) [9], with 2 < g < 4 and 4 < g < 6 for the critical and
tricritical Potts models, respectively.

The present Monte Carlo methods can also be applied in three dimensions, and simulations for the
percolation and the Ising model are currently being performed [51].

9.2 The percolation and the Ising model in three dimensions

Using the sampling technique developed above, we determine the magnetic and backbone exponents X =
0.4768(7) and X, = 1.125(3) for the percolation and X5 = 0.5178(7) and X}, = 0.829(4) for the Ising model
in three dimensions.

9.2.1 Introduction

The Ising model and the percolation problem have for many years been of great interest to physicists and
mathematicians. While the Ising model presents a very simple theoretical description [2] for thermodynamic
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Table 9.1: Results for the backbone exponent X; and the associated correction-to-scaling exponent y;;, for
critical Potts systems. Estimated error margins in the last decimal place, which are twice the
standard deviations in the fits, are shown in parentheses. For comparison, the magnetic dimen-
sions X}, and estimations of X}, by other sources are also listed (X}, last column). The numbers

given as fractions are exact.

g Model Xh Xb Yib Xg

2 g = 0 Potts 0 3/4

7/3  q¢=2—+/3Potts | 11/168 0.4953(3) —2.3(2)

8/3  Percolation 5/48 0.3566(2) —1.27(4) 0.3569(6) [22]
3 Ising 1/8 0.2696(3) —0.87(4) 0.25(2) [20]
10/3 q =3 Potts 2/15  0.2105(5) —0.61(4) 0.25(2) [20]

4 g = 4 Potts 1/8 0.127(4) 1/InL?
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phase transitions in magnetic systems, the percolation provides a fascinating illustration [3] of many impor-
tant concepts of critical phenomena in terms of geometric properties. Both models can be exactly mapped
onto the random-cluster model [4], in which thermodynamic singularities of the Ising model can also be rep-
resented in terms of percolation clusters. For an introduction, we start with the Hamiltonian of the g-state
Potts model [5] on the square lattice

H/ksT = =K > 65105, (0=1,2,---,q), (9.10)
(i)

where the sum is over nearest-neighbor (NN) spins and K is the coupling strength. The random-cluster model
is obtained as follows. Between each pair of NN sites, a bond is placed with the probability p = 1 —exp(—K),
so that the whole lattice is decomposed into connected clusters, i.e., the well-known Kasteleyn-Fortuin (KF)
clusters [4]. The statistical weight of each bond-variable configuration is given by the partition function of
the random-cluster model

Zno(g; K) = v™q", (w=ef—-1). (9.11)
b

Here, the sum is over all bond-variable configurations, and n; and n. are the total numbers of bonds and KF
clusters, respectively. It can be shown [4,5,50] that the partition sum of the Potts model (9.10) is equivalent
with Z.. in Eq. (9.11). The Ising and percolation models are the special cases with ¢ = 2 and ¢ — 1,
respectively. Near the critical point K.(g), the scaling properties of KF clusters in Eq. (9.11) are governed
by the thermal and magnetic scaling fields.

Besides the thermal and magnetic scaling dimensions X; and X, there is still a number of critical
exponents, which characterize structure properties of critical KF clusters in Eq. (9.11) and do not have
thermodynamic analogue. Among them there are fractal dimensions [7] of ‘backbones’ and of ‘red’ bonds.
From the scaling behavior of IV,

In comparison with the two-dimensional case, exact results are scarce for critical behavior in three
dimensions. Therefore, investigations have to depend on approximations such as e- and series expansions,
and Monte Carlo techniques. Extensive studies have been carried out and significant results have been
achieved [3,27-35,41]. For instance, the percolation threshold of the bond-percolation on the simple-cubic
lattice was determined [27] as p. = 0.2488216(5), and the backbone dimension was reported [36] as X} =
1.145(15). From quantities such as the mean cluster size, the thermal and magnetic scaling dimensions were
estimated [3,27,28,41] as X; = 1.141(3) and X}, = 0.477(3), respectively. For the Ising model, there is also
some consensus [29-35] that the values of X; and X, are 0.413 and 0.518, respectively, with differences only
in the last decimal place. However, it seems that so far little attention has been given to the geometric
exponents of the Ising model, such as X and X,.

9.2.2 Models

We start with the Hamiltonian of a dilute Ising model on the simple-cubic lattice

M/kgT = -K> sis;+DY si (s=0,£1). (9.12)
(4,4) k

The spins assume the values 1 and 0. Those in state s = 0 are referred to as vacancies. The abundance of
vacancies is controlled by the chemical potential D, and nonzero couplings K occur only between NN Ising
spins. For D — —o0, the vacancies are excluded, and the model reduces to the ‘pure’ Ising model, i.e., the
’s spin-§ model [2]. This model has been investigated extensively, and the critical point was determined [35]
as K, =0.22165455(3). Along the critical line K.(D), the amplitude of the irrelevant scaling field with the
exponent y; = —0.821(5) varies as a function of D. It was reported [29,35] that this amplitude is very small
near D =1n2.

The present paper investigates the dilute Ising model (9.12) with D = Iln2. At this point, the critical
coupling and the corresponding vacancy density were determined [29,35] as K, = 0.39 342225(5) and p,, =
0.400 694(1), respectively. During the simulations, we fixed the global density of vacancies at the critical
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Figure 9.10: The backbone correlation function P; for the bond percolation model, shown as In Py(L) v.s.
In L.

value py., while they are still allowed to move freely over the lattice according to the Boltzmann distribution.
This means that an external constraint is imposed. For such a constrained system, it is known [37] that the
thermal exponent y; = 1.5868(3) [35] is renormalized to y; = X; = 1.4132(3). Thus, the constrained specific
heat has only a finite cusp at criticality [37, 38] instead of being divergent. Large-scale simulations of the
model (9.12) under the constraint are now possible because of the so-called geometric cluster method [49].
This algorithm is developed on the basis of geometric symmetries such as the spatial-inversion symmetry,
and has been explained in Ref. [49]. The geometric cluster simulations of these constrained systems suffer
little from critical slowing down. This may be related to the fact that the constrained critical specific heat
takes a finite value.

9.2.3 Results

Bond-percolation model

The bond-percolation model was investigated on L x L x L simple-cubic lattices with periodic boundary
conditions, and the bond probability p was set at the critical value [27] p. = 0.2488216(5). The magnetic
and backbone correlation functions P (L/2) and P»(L/2) were sampled for three pairs of points in the z, y,
and z directions, respectively, and the average values were calculated. The system sizes were chosen as 16
values in the range 6 < L < 80, and a number of 2.1 x 107 samples was taken for each system size. The
numerical data for P,(L/2) are listed in Tab. 9.2. In comparison with the magnetic correlations P;(L/2),
the backbone correlations P»(L/2) are relatively small, which indicates that critical KF clusters are rather
‘ramified’. According to the least-square criterion, we fitted the data for P;(L/2) and P»(L/2) by

Pi(L/2) = L™***(ap + a1 LY + azL ™2 + a3L™®) , (9.13)

and
Py(L/2) = L™2%(bo 4+ by LY + by L2 + by L™ + by L¥*) , (9.14)

where a; and b; are unknown parameters. The correction terms with exponent y; arise from the irrelevant
scaling field, of which the exponent y; has been determined [27] as y; = —1.14(15). For the backbone
correlation P, new finite-size corrections could appear, and thus we include the term with the exponent y;,
in Eq. (9.14). Figure 9.10 shows the data for P, on a logarithmic scale, i.e., In P»(L/2) versus In L. The
approximate linearity indicates that corrections-to-scaling are not very significant.

If the exponent y; is left free during the fit for the magnetic correlation P;, we have X} = 0.4769(6)
and y; = —1.5(3), where the quoted error margins are two standard deviations, as obtained from the
statistical analysis. The estimation of y; is consistent with y; = —1.14(15) [27]. The fit with y; fixed at
—1.14 yields that X, = 0.4768(4). Taking into account the uncertainties of the percolation threshold p.,
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Table 9.2: The data for P; and P> x 10 for the critical bond-percolation model in three dimensions. The
numbers in parentheses are the statistical errors at the last decimal place.

6 8 10 12 14 16
P, 20747(3)  .15496(2)  .12411(2)  .10378(2)  .08926(1)  .07839(1)
P, .13899(6)  .06889(4)  .04049(3)  .02641(2) .01846(2)  .01359(2)
18 20 24 28 32 36
P, .06996(1)  .06321(1)  .05301(1)  .045719(9) .040200(9) .035905(9)
P, .01039(2) .00815(1)  .00537(1)  .003801(8) .002803(8) .002149(7)
40 48 60 80
P, .032465(9) .027260(8) .022031(8) .016723(8)
P, .001694(7) .001117(6) .000676(5) .000354(5)
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Figure 9.11: Illustration of finite-size corrections in the backbone correlation P, for the bond percolation
model. This is shown as PoL*X* — by v.s. LY, where the values of Xj, by, and y;, are taken
from the numerical fit: X = 1.125(3), bp = 0.688(13), and y;;, = —2.0(5).

we conclude that X, = 0.4768(8) is a reasonable estimation, which is in agreement with existing results
Xp = 0.477(3) [27,28,41]. In the fit for the backbone correlation P, it seems unnecessary to include all
correction terms described by Eq. (9.14), because not all of them can be well determined, and moreover
results do not depend on whether they are present or not. After excluding the terms with a; and as,
we obtain X, = 1.125(3) and y;, = —2.0(5), which improves significantly over the existing estimation
Xp = 1.145(15) [36]. The fit to the data for P> is illustrated by Fig. 9.11.

Dilute Ising model

The dilute Ising model (9.12) on the simple-cubic lattice was also investigated with periodic boundary
conditions. Several Monte Carlo cluster steps were performed between subsequent samples. The simulations
took place at the critical point [29,35] py. = 0.400694(1) and K, = 0.39342225(5). As mentioned earlier,
the total number of vacancies is fixed at V. = L?p,., and thus a combination of the Wolff [45] and the
geometric [49] cluster steps was used. For finite systems L, however, V, is not an integer. Thus, the actual
simulations were performed at two numbers [V,] and [V.] + 1, where brackets [ | denote the integer part.
Numerical data at criticality were obtained by linear interpolation between [V.] and [V.] + 1. System sizes
were taken as 14 values in the range 6 < L < 64. Apart from the quantities P; and P, we also sampled
the probability P»y that the randomly chosen site A is simultaneously connected to B and D by at least two
mutually independent paths, where B and D are two points at a distance L/2 in the z and y directions,
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Figure 9.12: The backbone correlation function P, for the Ising model, shown as In P, v.s. L~2%s where
Xy = 0.829(5) is the backbone scaling dimension.

Table 9.3: The data for Py, P, x 10, and P32 x 100 for the dilute Ising model in three dimensions. The
numbers in parentheses are the statistical errors at the last decimal place.

6 8 10 12 14

P, .15598(3) .11571(3) .09214(2) .07656(2) .06550(2)

P, .31726(9) .18909(9) .12878(8) .09479(8) .07339(7)

Py,  4668(2) .2151(2)  .1211(1)  .07649(9) .05212(8)
16 18 20 24 28

P, .05722(2) .05081(2) .04565(1) .03794(1) .03243(1)

P,  .05881(6) .04850(6) .04081(5) .03030(5) .02359(4)

Py, .03758(7) .02818(6) .02170(5) .01394(5) .00956(4)
32 40 48 64

P, .02832(1) .02257(1) .01873(1) .01395(1)

P, .01893(3) .01318(2) .00979(2) .00613(2)

Py, .00689(3) .00400(2) .00258(1) .00125(1)

respectively. The data for Py, P, and Psy are listed in Tab. 9.3. The scaling behavior of P is described by

P22 (L/2) = L73Xb (:UO + ZL“lLyi + $2L72 + ZL“3L73 + ZL“4Lyib) . (915)

The irrelevant exponent y; was set at —0.821(5) [35], and the data for P, were fitted by Eq. (9.13). We
obtain X} = 0.5178(7), in agreement with the earlier estimation X = 0.5184(1) [35], which was obtained
from the magnetic susceptibility. For the backbone problem, we simultaneously fitted Egs. (9.14) and (9.15)
by the data for P, and Pss, respectively, such that the backbone dimension X, appears only once. As in
the case of the bond-percolation model, we found no evidence that new correction terms with y;, exist. We
obtain X; = 0.829(4), where the quoted error is again twice the standard deviation. The data for P, are
shown in Fig. 9.12 versus L~2%> where X, = 0.829 was taken from the fit.

9.2.4 Discussion

In conclusion, we have numerically determined the backbone dimension X, for the bond-percolation and
Ising models in three dimensions. As the thermal and magnetic dimensions X; and X}, geometric critical
exponents are also universal, and thus our results for X, should also apply to other systems within the
percolation and Ising universality class in three dimensions.

Besides the backbone and red-bond dimensions X; and X, there are other exponents characterizing
geometric properties of critical systems, e.g., the fractal dimension Xp, of ‘chemical’ paths [7]. In perco-
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lation theory, these exponents have received significant attention, and they are considered to be of some
physical relevance. For instance, the chemical-path dimension X,,;, is the analog in percolation of dynamic
scaling exponent of critical phenomena [7]. However, further explorations of the geometric exponents seem
appropriate for other critical systems in three dimensions.
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10

Geometric properties of Potts configurations

We investigate the geometric properties of several Potts models in two and three dimensions.

10.1 The critical and tricritical Potts model in two dimensions

We investigate geometric properties of the general g-state Potts model in two dimensions, and define geomet-
ric clusters as sets of lattice sites in the same Potts state, connected by nearest-neighbor bonds with variable
probability p. We find that, besides the random-cluster fixed point, both the critical and the tricritical
Potts model have another fixed point in the p direction. For the critical model, the random-cluster fixed
point p, is unstable and the other point p, > p, is stable; while p, is stable and p, < p, is unstable at
tricriticality. Moreover, we show that the fixed point p, of a critical and tricritical g-state Potts model can
be regarded to correspond to p, of a tricritical and critical ¢’-state Potts model, respectively. In terms of the
coupling constant of the Coulomb gas g, these two models are related as gg’ = 16. By means of Monte Carlo
simulations, we obtain p, = 0.6227(2) and 0.6395(2) for the tricritical Blume-Capel and the ¢ = 3 Potts
model, respectively, and confirm the predicted values of the magnetic and bond-dilution exponents near p,.

10.1.1 Introduction

The geometric description of fluctuations near a critical point has been a subject of a long history, which goes
back to the formulation of phase transitions in terms of the droplet model [1]. For the general g-state Potts
model [8,47], the critical singularities can be represented in terms of Kasteleyn-Fortuin (KF) clusters [4,9].
For clarity, we start from the Hamiltonian of the g-state Potts model on the square lattice

H/ksT = K> 6510, » (6=1,2,---,q), (10.1)

(4.4)
where the sum is over all nearest-neighbor (NN) sites, and K is the coupling strength. This model can be
exactly mapped onto a random-cluster model [9]. Between each pair of NN sites, a bond is placed with
the probability p = 1 — exp(—K), so that the whole lattice is decomposed into connected clusters, i.e., the

aforementioned KF clusters. The statistical weight of each bond-variable configuration is expressed by the
partition sum of the random-cluster model as

Z(G K) =) vmgt, (v=ef—1). (10.2)
b

The sum is over all bond-variable configurations, and n; and n. are the total numbers of bonds and KF
clusters, respectively.
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The partition sum (10.2) defines the general Potts model with non-integer ¢ > 0, which has a continuous
and a first-order phase transition for 0 < ¢ < 4 and for 4 < ¢, respectively. Near the critical point K.(q), the
distribution of KF clusters reflects critical singularities of the Potts model (10.1). For instance, the scaling
properties of the average size of critical KF clusters are determined by the magnetic exponent X, (g). Exact
values of X} (q) have already been obtained by the theory of the Coulomb gas [22,48], and are also included
within the predictions of the conformal field theory [23,49]. In terms of the coupling constant of the Coulomb
gas g, Xp(g) is expressed as
(9-2)(6-9)

8g
where g is related to g as ¢ = 242 cos(gm/2) with 2 < g < 4 for the critical branch of the Potts model [22,48].

Apart from KF clusters, so-called Potts clusters [15-17,19] have received considerable attentions, which
are defined as sets of NN sites in the same Potts state. Thus, bonds are alway present between any pair of NN
sites as long as they are occupied by the same Potts variable. For critical Potts models (10.1), the exponents
for the Potts clusters are generally different from those for the KF clusters. A well known example is the
Ising model (¢ = 2). The exponent for the Ising clusters, i.e., the ¢ = 2 Potts clusters, is X,(lp) =5/96 [15-17],
equal to the magnetic exponent of the tricritical ¢ = 1 Potts model. Here, the superscript (p) refers to the
Potts clusters. For the bond percolation model (¢ = 1), all lattice sites belong to the same Potts cluster,
and thus X,(Lp) (¢ = 1) = 0. Apparently, X,(lp) (q9) # Xp(q) in these cases. Within the predictions of the

conformal field theory, Vanderzande [19] interpreted X ,(lp ) = 7/80 and 1/8 for the critical ¢ = 3 and 4-state
)

Xn(g) = ; (10.3)

Potts models, respectively. However, for the general non-integer 0 < g < 4 Potts model, exact value of X ,(lp
has not been reported yet, as far as we know. This is one purpose of the present work.

The tricritical Potts model [8] can be obtained by including vacancies in the *pure’ Potts model (10.1).
The question then arises what critical exponents describe Potts clusters of the general tricritical ¢g-state Potts
model. From Refs. [15-17,19], it is known that, for the critical Potts model, the exponent X ,(lp ) approaches

the magnetic exponent Xj as ¢ increases. Particularly, X ,(lp )= X r for ¢ = 4. Since the tricritical branch
of the Potts model is an extension of the critical Potts model [8], we simply assume that, for the tricritical
Potts model, the Potts clusters and the KF clusters are described by the same critical exponents. This will
be confirmed numerically later.

Moreover, both for the critical and the tricritical Potts model, we investigate a general type of ‘geometric’
clusters, which are defined analogously as the aforementioned KF clusters, but the bond probability can have
a variable value 0 < p < 1. Thus, KF and Potts clusters are just the special cases of geometric clusters with
p=1—exp(—K) and 1, respectively. For the critical Potts model, it is generally believed that, in terms of
geometric clusters, the percolation threshold p, coincides with the critical point of the corresponding Potts
model or random-cluster model p,, ie., p, = p, = 1 —exp(—K,). In contrast, at tricritical points Ky,
we show that the percolation threshold p, does not coincide with p, = 1 — exp(—Ky.), but 0 < p; < pr.
Furthermore, critical exponents near p, are different from those near p,. On the basis of the theory of the
Coulomb gas, we predict values of critical exponents near p, for the tricritical g-state Potts model.

To confirm these predictions, we perform Monte Carlo simulations for the tricritical Blume-Capel [21]
and the ¢ = 3 Potts model [8]. Numerical data clearly demonstrate the existence of p, for the tricritical
Potts model, and confirm the predicted critical exponents.

10.1.2 General analysis

We start from the critical Potts model, described by Eq. (10.1). For this model, the statistical properties of
geometric clusters can be obtained from a ‘mixed’ Potts model [4] with the Hamiltonian

H/ksT = =T > (Orir; = Vooioe; =KD 650 - (10.4)
(

(i,9) i,

The second term is just the aforementioned ‘pure’ g-state Potts Hamiltonian (10.1); the first term contains
auxiliary Potts variables 7 = 1,2,--- | s, and controls the distribution of bond variables. One can express
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Figure 10.1: RG flows of Potts models in the parameter space (K,p). Figures (a) and (b) apply to the
critical and the tricritical Potts model, respectively. The dashed lines represent the random-
cluster model p = 1 — exp(—K), The points, ‘r.c.’ and ‘g.c.’, represent the random- and the
geometric-cluster fixed point, p, and p,, respectively. Arrows show the direction of the RG
flows.

the partition sum of Eq. (10.4) in bond variables, and differentiate the resulting free energy with respect
to the parameter s. Taking the limit s — 1, one obtains the distribution of geometric clusters with bond
probability p = 1 — exp(—J). Particularly, if one chooses J = K, Hamiltonian (10.4) assumes a simple form
and describes the random-cluster model (10.2).

For this ‘mixed’ Potts model (10.4), the renormalization-group (RG) flow is sketched in Fig. 10.1(a) in
the parameter space (p, K) with p = 1 — exp(—J). The dashed line represents the random-cluster model
with J = K. At the critical point K = K, in terms of geometric clusters, the percolation threshold is just
pr =1 —exp(—K.). Thus, p, can be considered as a fixed point in the space (p, K), which is unstable both
in the bond-probability direction p and along the dashed line J = K. The scaling properties in these two
directions are described by the bond-dilution and the thermal scaling field, respectively. We shall denote
their associated exponents as y, and y;, respectively, where y,, is also referred to be the red-bond exponent [6].

Near the random-cluster fixed point p,, exact values of the bond-dilution and the thermal exponents,
yp and y;, have already been obtained by various methods. For instance, on the basis of the theory of the
Coulomb gas, it has been derived [6,16,17] that the scaling dimensions, X, = 2 —y, and X; = 2 —y;, satisfy

Xp(9) = %(39 —4)(g+4), (10.5)
and 6
Xi(g) = Tg : (10.6)

respectively, where g is the coupling constant of the Coulomb gas, as mentioned before. Furthermore, for
integers 0 < ¢ < 4, X,(¢) and X;(q) are also included in the predictions of the conformal field theory. For
clarity, we start from the Kac formula describing scalar observables [23,49]

[im — j(m + 1) — 1

Xijla) = om(m + 1)

; (m>1), (10.7)

where the positive integer m is related to the conformal analomy ¢ as ¢ = 1 — 6/m(m + 1). For the critical
branch of the Potts model, one has \/g = 2cos[r/(m + 1)]. It is known that X,(¢) and X;(¢) can be
identified as X; ; with coordinates (i = 0,j = 2) and (i = 2,j = 1), respectively. We also mention that the
aforementioned magnetic exponent X (q) can be interpreted as X; ; with i = j = (m +1)/2.

For the critical Potts model (2 < g < 4), Eq. (10.5) yields X,(¢) < 2, which indicates that the bond-
dilution field is relevant at the random-cluster fixed point p,., as shown in Fig. 10.1(a). Thus, geometric
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clusters at p,, i.e., KF clusters, and those with the bond-probability p # p, are described by different
exponents. For p < p,., we expect that the behavior of geometric clusters is dominated by the trivial p = 0
fixed point; while geometric clusters with p > p,., including Potts clusters, are described by a stable fixed
point pg > p,, shown in Fig. 10.1(a). For later convenience, we shall refer to the point p, as the geometric-
cluster fixed point. For the case of the Ising model on the square lattice, it has been found [17] that p, = 1.08,
in an unphysical region.

The above discussions apply to the critical branch of the Potts model. For the tricritical Potts model,
it is already known [22,48] that the magnetic and thermal exponents, X, (¢) and X¢(g), are still given by
Egs. (10.3) and (10.6), respectively, but with the coupling constant in the range 4 < g < 6. Accordingly, for
integers 0 < ¢ < 4, X;(g) and Xp(g) can be interpreted as X; » and X,;,/2 /2 in the Kac formula (10.7),
respectively. On this basis, for the tricritical Potts model, we simply assume that the bond-dilution exponent
X,(q) is still given by Eq. (10.5) with 4 < g < 6, and thus corresponds to X5 ¢ in the Kac formula (10.7).

To distinguish the critical and the tricritical branch of the Potts model, later, we shall express critical
exponents as a function of g only. Table 10.1 lists values of g, X,(g), and X} (g) for the Potts model with
integer 0 < g < 4.
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Table 10.1: The bond-dilution and the magnetic exponents, X, and X} for the two-dimensional Potts model. The superscripts (") and (¥
represent the random- and the geometric-cluster fixed point, p, and p,, respectively. the coupling constant of the Coulomb gas is
denoted as g, and the positive integer m is related to the conformal anomaly ¢ as ¢ =1— 6/m(m + 1).

Random-cluster fixed point Geometric-cluster fixed point
¢m g X;ST) X}(L”) XI()Q) X’(Lg) m@ g9 g
crit | 0 2 1 3/4 0 15/4 -3/16 |1 8 tri
ical |1 8/3 2 5/4  5/48 | 35/12 0 2 6 0 crit
2 3 3 35/24 1/8 21/8 5/96 3 16/3 1 ical
3 10/3 5 33/20 2/15 || 143/60 7/80 5 24/5 2+ 2cos(27m/5)
4 4 o |2 1/8 | 2 1/8 © 4 4
ti |3 14/3 6 65/28 2/21 || 143/84 15/112 | 6 24/7 2+ 2cos(2n/7) | crit
crit | 2 5 4 99/40 3/40 || 63/40  21/160 | 4 16/5 2+ 2cos(27w/5) | ical
ical | 1 16/3 3 21/8 5/96 || 35/24 1/8 3 3 2
0 6 2 35/12 0 5/4 5/48 2 8/3 1
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Figure 10.2: RG flows in the plane (g, p) for the general g-state Potts model in two dimensions. The thick
and thin solid lines represent the random- and the geometric-cluster fixed point, p, and pg,
respectively. Pairs of points in the same symbol have the same conformal anomaly. Arrows
show the direction of the RG flows. The ¢ = 4 Potts model is a marginal case.

As mentioned earlier, for the critical Potts model, the point p, is a fixed point in the parameter space
(p, K). Here, we assume this statement still holds for the tricritical Potts model (4 < g < 6). Equation (10.5)
yields X,(g) > 2, so that the bond-dilution scaling field is irrelevant near the random-cluster fixed point p;.
On the other hand, it is obvious that the trivial p = 0 fixed point is stable. On this basis, we expect that,
in the p direction, an unstable fixed point p, occurs in the range 0 < p < p, for the tricritical Potts model.
We shall also refer to this unstable point p, as the geometric-cluster fixed point. As far as we know, the
existence of p, has not yet been reported. The expected RG flow is shown in Fig. 10.1(b), which will be
confirmed numerically later.

In conclusion, according to the predicted values of the bond-dilution exponent X, [6,16,17], we predict
that both the critical and the tricritical Potts model have a pair of fixed points, p, and p,, on the critical line
parametrized by the bond probability p. For the critical branch of the Potts model, the random-cluster fixed
point p, is unstable, and the geometric-cluster fixed point p, > p, is stable. In contrast, for the tricritical
Potts model, p, is stable and p, < p, is unstable. The ¢ = 4 Potts model is a marginal case, and these
two fixed points, p, and p,, merge together. In the parameter space (p,q), we illustrate the RG flows in
Fig. 10.2.

The question arises what values the critical exponents take near the geometric-cluster fixed point p, for
the general critical and tricritical Potts model. For the Ising model (¢ = 2), it is already known [15-17,19]
that the fixed point p, corresponds to p, of the tricritical ¢ = 1 Potts model. In other words, p, of the
tricritical ¢ = 1 Potts model corresponds to p, of the Ising model. On this basis, we assume the followings
for the general Potts model with 0 < ¢ < 4.

Assumption 1, the geometric-cluster fixed point p, of a critical (tricritical) g-state Potts model corre-
sponds to the random-cluster fixed point p, of a tricritical (critical) ¢'-state Potts model.

Assumption 2, the critical ¢ and tricritical ¢'-state Potts models have the same conformal anomaly and
thus the same number m.

For the critical and the tricritical branch of the Potts model, as is well known, the coupling constant of
the Coulomb gas g is related to m as g = 4m/(m + 1) and g’ = 4(m' + 1)/m/, respectively. Therefore, the
aforementioned two models are related by gg' = 16.

With these assumptions, critical exponents can be easily obtained for the fixed point p,. As an example,

)

we consider the magnetic exponent X ,(lg for a model with the coupling constant g. As mentioned earlier,
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X}, is given by Eq. (10.3), so that, after the substitution g = 16/¢’, X,(Lg) (g) follows as

X19(g) = w _ (10.8)

The same procedure applies to other critical exponents, and the resulting values are consistent with the

existing predictions for the critical Potts model with ¢ = 1,2, 3, and 4. For clarity, we list values of X ,(Lg ) and

X,(,g) in Tab. 10.1 for integer 0 < g < 4.

10.1.3 Monte Carlo investigation

To confirm the predictions in Sec. 10.1.2, we perform Monte Carlo simulations for the tricritical Blume-Capel
and g = 3 Potts models.

The tricritical Blume-Capel model

The Ising model with vacancies, also called the Blume-Capel model [21], is defined on the square lattice,
with the Hamiltonian
MH/ksT =K Y o0, +DY o} (0 =0,£1). (10.9)
(i, k
The vacancies are denoted as ¢ = 0, and D is the chemical potential of the Ising spins ¢ = 1. We mention
that, in this case, the bond probability for KF clusters is p = 1 — exp(—2K).

For D — —oo0, the vacancies are excluded, and the model reduces to Onsager’s spin-3 model [18]. The
critical coupling constant K. is an increasing function of the chemical potential D, and the critical line
K.(D) terminates at a tricritical point. By means of a sparse transfer matrix technique, we have determined
the tricritical point [50] as K. = 1.6431759(1), D¢ = 3.2301797(2), and pg. = 0.4549506(2) for the vacancy
density. The precision improves significantly over that of the existing results [51] K. = 1.64(1), Dy =
3.22(2), and is considered to be sufficient for our present investigation.

For this model (10.9), however, no cluster Monte Carlo method to flip between vacancies and Ising spins
is generally available. Thus, during the simulations, we fixed the total number of vacancies in order to avoid
the critical slowing down due to fluctuations in the number of vacancies. This was realized by a recently
developed geometric cluster algorithm [37], which moves groups of vacancies and Ising spins on the lattice
in accordance with the Boltzmann distribution. A detailed account of the geometric cluster method can be
found in Refs. [37].

The Monte Carlo simulations were performed at the tricritical point. For finite systems, however, the
total number of vacancies V' at tricriticality is generally not an integer, so that the actual simulations took
place at V_ = [Vi.] = [picL?] and Vi = [Vi.] + 1, where square brackets [ ] denote the integer part of the
number in it. For a sampled quantity A, its value A;. at the tricritical point is approximated as

— A+(Vtc - V,) + A*(V+ — ‘/;56)

Ate , 10.1
¢ T— (10.10)
and the statistical error margin of A;. is taken as
1 - -
6Aze = ———[0AL (Vie = VOP2 + [0A_ (VL — Vio)]? . (10.11)

vV, —V_

Since we are interested in geometric properties of the Blume-Capel model, the aforementioned geometric
clusters have to be constructed with bond probability 0 < p < 1 during the sampling procedure. This was
realized by a Swendsen-Wang-like algorithm [13]. For a bond- and vacancy-variable configuration, we denote
the total number of geometric clusters as V., and the size of the ith cluster as s;. The following quantities

were sampled
Nc

S, = é(f}?) , Si= é(Zsb ,and 7= (89)%/(S4) . (10.12)

i A
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Figure 10.3: The dimensionless ratio r near the random-cluster fixed point p,. for the tricritical Blume-Capel
model. The data points +, x, 0, (O, and A represent L = 8,12,16,24, and 32, respectively.

It can be easily shown that, at the random-cluster fixed point p,, the quantity S, is just the magnetic
susceptibility, and the dimensionless ratio r plays a role as the universal Binder cumulant [52] in the Potts
model.

Periodic boundary conditions were applied, and near the random-cluster fixed point p,, = 1—exp(—2K}.) ~
0.96260999, the system sizes were taken in the range 8 < L < 120. Figure 10.3 shows parts of the Monte
Carlo data of the dimensionless ratio r, in which the slope of r decreases as the system size L increases. This
indicates that the bond-dilution exponent y, is a negative number, and thus the random-cluster fixed point
p,- is stable, as expected. Moreover, according to the least-square criterion, we fitted the following equation
to the data of r.

r = ro + 71 (p — pc)Lyp + 7'2(10 _ pC)ZLZyp + -4 7-6(p _ pc)ﬁLGyp +
by LY + by LY + by LY® + ¢1(p — pe) LY T + ny(p — pe) > LY» (10.13)

Here, the amplitudes r;, b;, ¢;, and n; are unknown parameters, and the term with n; accounts for the fact
that the bond-dilution scaling field is a nonlinear function of (p — p.). The terms with b; describe finite-size

corrections, and the associated exponents were simply taken as integer numbers as y; = —1, y, = —2, and
ys = —3. Furthermore, we fixed p. at the random-cluster fixed point p, ~ 0.96260999. After a cutoff
for small system sizes L < 10, we obtain y, = —0.48(2), in agreement with the prediction y, = —19/40
(Tab. 10.1).

According to Fig. 10.1(b), for tricritical systems, Potts and KF clusters are described by the same critical

exponent, i.e., X ,(Lp )= X r- Thus, we fitted the following equation to the data of S> for Potts clusters

Sy = L™%n(ag 4+ a1 LY + aaL¥* + a3L¥?) . (10.14)

Here, the leading finite-size effect arises from the bond-dilution field, so that we set y; =y, =2 - X, =
—19/40, y» = 2y; = —19/20, and y3 = —2. After a cutoff for small system sizes L < 10, the fit yields
Xp =0.0747(5), in good agreement with X,(LT) (9 =5) =3/40 in Tab. 10.1.

We expect that an unstable geometric-cluster fixed point occurs in the range 0 < p, < p, for the
tricritical Blume-Capel model. This is clearly shown by Fig. 10.4, indicating p, ~ 0.62. Thus, we performed
extensive simulations in the range 0.61 < p < 0.65, and the system sizes were taken as 8 < L < 160. We
fitted Eq. (10.13) to the Monte Carlo data of r. After a cutoff for small system sizes L < 12, we obtain
pe = 0.6227(1) and y, = 0.4254(6), where the statistical error bars are two standard deviations in the fit.
The value of y, is in good agreement with the expected value y, = 2 — X, = 17/40 (Tab. 10.1).

At the geometric-cluster fixed point py, Tab. 10.1 predicts X,(Lg) (9 = 5) = 21/160. Thus, we fitted the
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Figure 10.4: The dimensionless ratio r near the geometric-cluster fixed point p, for the tricritical Blume-

Capel model. The data points +, x, O, O, A, and ¢ represent L = 8,12, 16,20, 24, and 28,
respectively.

following equation to the data of Sy near p,

So= L7 [so 4 s1(p— pe )L + s2(p — pe) L2 + -+ + s(p — pe) LV +
by LY' 4 boLY2 + by LY% + c1(p — pe) LY* Y2 + 0y (p — pe)? LY7] . (10.15)
Again, the exponents for finite-size corrections were simply taken as y; = —1, y2 = —2, and y3 = —3. After

a cutoff for small systems L < 12, we obtain p, = 0.62265(10) and X\? = 0.1311(5) ~ 21/160 = 0.13125.

For the general Blume-Capel model described by Eq. (10.9), the RG flows should, in principle, be shown
in the three-parameter space (p, K, D). For simplicity, we only consider its projection onto the plane (p, K),
which is schematically shown in Fig. 10.5. Areas K < K. and K > K;. represent a critical sheet and a
region for first-order phase transitions, respectively. For K — oo, the percolation problem of this Blume-
Capel model reduces to the bond-percolation model [8,12], which has a percolation threshold is p, = 1/2
on the square lattice. For K < Kj., the whole area above the solid line, p = 1 — exp(—2K), is within
the percolation thresholds, and critical properties are governed by the fixed point ‘P1’; in the universality
class of the tricritical ¢ = 1 Potts model. Besides this, there are four other fixed points, ‘I’, ‘TT’, ‘GT’,
and ‘BP’, which represent the Ising, the tricritical Blume-Capel, p, of the tricritical Blume-Capel, and the
bond-percolation model, respectively. Arrows show the direction of the RG flows.

The tricritical ¢ = 3 Potts model

It has been known [8] that, by including vacancies in the ‘pure’ Potts model (10.1), the tricritical Potts
model can be obtained. The Hamiltonian of the tricritical ¢ = 3 Potts model on the square lattice reads

H/ksT = =K > 651.0,(1 = 05.0) =D Y 000 (0=0,1,2,3) . (10.16)
(4.5) k

By means of a sparse transfer matrix technique, we have determined the tricritical points [50] as K. =

1.649923(5), Dy = 3.152173(10), and ps. = 0.34572(5) for the vacancy density.

Analogously, during the Monte Carlo simulations, we fixed the total number of vacancies, and thus
used a combination of the Wolff [14] and the geometric cluster [37] steps. The system sizes were taken as
8 < L <160, and periodic boundary conditions were applied. The sampled quantities include S>, Sy, and a
dimensionless ratio @ = (S2)?/(3S5# —2S,). Compared to the aforementioned ratio r, the quantity @ is more
in line with the well-known Binder ratio [52]. Near the random-cluster fixed point p, = 1 — exp(—Ki.) =~
0.808, the Monte Carlo data of @ also reveal that the bond-dilution scaling field is irrelevant.

Figure 10.6 shows parts of the Monte Carlo data of @) in the range p < p,, and indicates the geometric-
cluster fixed point p, ~ 0.64. According to the least-square criterion, we fitted Eq. (10.13) to the data
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Figure 10.5: RG flows diagram of the Blume-Capel model in the plane (K, P). The areas K < K. and
K > K. represent a critical sheet and the region for first-order phase transitions, respectively.
The model reduces to the bond-percolation model for K — oo, which has a percolation threshold
‘BP’ at p = 1/2. There are in total 5 fixed points, ‘I’, ‘P1’, ‘TT’, ‘GT’, and ‘BP’, representing
the Ising, the tricritical ¢ = 1 Potts, and the tricritical Blume-Capel, the geometric-cluster fixed
point of the tricritical Blume-Capel, and the bond-percolation model, respectively. Arrows show
the direction of the RG flows.

of @ in the range 0.62 < p < 0.66. The value of y, is fixed at 2 — 2X, = 25/84 (Tab. 10.1), we obtain
pg = 0.6395(2), with two standard deviations for the error bar.
We illustrate the data for Sy at p, = 0.6395(2) in Fig. 10.7 versus L = L7%/%6, The approximate

linearity indicates that X\? = 15/112, as predicted in Tab. 10.1. Moreover, we fitted Eq. (10.15) to the
data of S;. After a cutoff for small system sizes L < 12, we obtain X,(lg) = 0.1337(6), in good agreement
with X9 = 15/112.

The dilute ¢ = 4 Potts model

The ¢ = 4 Potts model is a marginal case, not only because the second-leading thermal scaling field is
marginal y» = 0 [22,48], but also the bond-dilution exponent y, = 0. We investigate a dilute ¢ = 4 Potts
model Eq. (10.16) at a point where the second-leading thermal field vanishes. By means of the transfer matrix
technique, we have determined this point [50] as K. = 1.45790(1), D. = 2.478438(2), and p, = 0.21207(2)
for the vacancy density. Analogously, the Monte Carlo simulations use a fixed-vacancy-density ensemble.
Periodic boundary conditions were applied, and the system sizes were taken in the range 8 < L < 280.
At the random-cluster fixed point p,., we find that Eq. (10.14) is sufficient to describe the data of S, and
finite-size corrections decay very rapidly with the leading exponent y; = —2.3(2). Furthermore, the fit yields
that the magnetic exponent X, = 0.1248(3), in good agreement with X; = 1/8. This indicates that, as
expected, logarithmic corrections due to the marginal second-leading thermal field are absent for the dilute
g = 4 Potts model at this point. For Potts clusters (p = 1), we find that the data of Sy cannot be described
by Eq. (10.14) anymore. Instead, we used the following equation during the numerical fit

Sy =L 2% (ag+a;/InL +ay/In* L+ asL™2) . (10.17)

This reflects that, for the ¢ = 4 Potts model, the bond-dilution scaling field is indeed marginal.

10.1.4 Discussion

We have determined geometric properties of the general critical and tricritical Potts model in two dimensions.
Apart from the random-cluster fixed point p,, we find a geometric-cluster fixed point p,. Moreover, on the
basis of the theory of the Coulomb gas, we predict critical exponents near py, which include the magnetic,
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Figure 10.6: The dimensionless ratio () near the geometric-cluster fixed point p, for the tricritical ¢ = 3
Potts model. The data points +, x, O, O, A, and { represent L = 12,16,24,32, 40, and 48,
respectively.
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Figure 10.7: The quantity S» at the geometric-cluster fixed point p, for the tricritical ¢ = 3 Potts model,
versus L=2X+" = [=15/66_ The system sizes are in the range 12 < L < 160.
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Table 10.2: The hull-cluster scaling dimensions Xy for the critical and the tricritical Potts model in two
dimensions. The superscripts (r) and (g) represent the random- and the geometric-cluster fixed
point, p, and p,, respectively.

Critical Potts model Tricritical Potts model
q o 1 2 3 i 3 2 1 0

XMoo 14 1/3 2/5 1/2]4/7 3/5 5/8 2/3
x| 3/4 2/3 5/8 7/12 1/2|5/12 3/8 1/3 1/4

the thermal, and the bond-dilution exponent, shown in Tab. 10.1. We have performed extensive Monte
Carlo simulations, and confirmed some predictions. As another example, we consider the fractal dimension
of the hull or external perimeter of a cluster, which consists of all the absent bonds surrounding the cluster

of interest. For the critical Potts model, exact values of the hull-cluster scaling dimension Xg) near the
random-cluster fixed point p, have already been given [6] as
X = (9=, (1018)

with g the coupling constant. By assuming that this formula applies to the tricritical branch of the Potts
model, and according to the relation gg' = 16 between the fixed points p, and p,, we obtain near the
geometric-cluster fixed point p,

X =(8-g)/8. (10.19)

The values of Xg) and Xl(f) for integers 0 < g < 4 are listed in Tab. 10.2.
From Tab. 10.1, the geometric-fixed point p, of the bond-percolation model corresponds to p, of the
tricritical ¢ = 0 Potts model.
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10.2 The critical and the tricritical Ising model in three dimen-
sions

Using the Wolff and geometric cluster algorithms and finite-size scaling analysis, we investigate the critical
Ising and the tricritical Blume-Capel model with nearest-neighbor interactions on the simple-cubic lattice.
The sampling procedure involves the decomposition of the Ising configuration into geometric clusters, each
of which consists of a set of nearest-neighboring spins of the same sign connected with bond probability p.
These clusters include the well-known Kasteleyn-Fortuin clusters as a special case for p = 1 — exp(—2K),
where K is the Ising spin-spin coupling. A dimensionless ratio R is then defined on the basis of the size
distribution of these geometric clusters. We observe that, unlike the case of two-dimensional tricriticality, the
percolation threshold of geometric clusters coincides with Kasteleyn-Fortuin clusters. Further, we determine
the corresponding red-bond exponents as y, = 0.757(2) and 0.501(5) for the critical Ising and the tricritical
Blume-Capel model, respectively. On this basis, we conjecture y, = 1/2 for the latter model.

10.2.1 Introduction

Second-order thermodynamic transitions are generally accompanied by long-range correlations both in time
and space. It is thus plausible that the precise microscopic structure of the system under consideration
becomes unimportant as far as the universal aspects of the transition are concerned, and transitions in
many different physical systems can be within the same universality class. It has been suspected long time
ago [1-6] that, as indicated by the divergence of spatial correlation lengths, thermodynamic singularities near
a critical point can be represented in terms of some sort of ‘geometric clusters’. For instance, one may relate
spontaneous long-range order below a critical temperature to the formation of an ‘infinite’ cluster. As early
as in 1967, Fisher [1] introduced a phenomenological droplet model for the two-dimensional Ising model, in
which ‘geometric clusters’ consist of nearest-neighboring (NN) Ising spins of the same sign. These clusters are
referred to as Ising clusters, and topological considerations imply [7] that its percolation threshold coincides
with the thermal critical point in two dimensions, at least for the square lattice. However, it can also be
shown [7] that Ising clusters are too ‘dense’ to correctly describe critical correlations of the Ising model.

For the g-state Potts model (for a review, see Ref. [8]), which includes the Ising model as a special case
g = 2, a solution was given by Kasteleyn and Fortuin [9,10] in 1969. The Hamiltonian of a lattice Potts
model with nearest-neighbor (NN) interactions only can be expressed as

H/kBT = — pz(saiaj ) (U = ]-727' t 7Q) ) (1020)
(25)

where the sum () is over all NN pairs and K is the coupling constant. A correct geometric representation of
this model can be obtained as follows. For each pair of NN spins in the same Potts state, a bond is placed
with with a probability pxr = 1 — exp(—Kp), such that the whole lattice is then decomposed into groups
of spins connected via the occupied bonds, which are known as the Kasteleyn-Fortuin (KF) clusters. The
statistical weight of each bond-variable configuration is then given by the partition sum

Z(u,q) =Y u™q™  (u=efr 1), (10.21)
b

where the sum is over all bond-variable configurations, and n; and n. are the total numbers of bonds and KF
clusters, respectively. As early as 1932, this partition sum had already appeared in the work of Whitney [11],
and the corresponding model is referred to as the random-cluster model. It can be shown [8-10] that the
random-cluster model can be exactly mapped onto the g-state Potts model. The percolation threshold of
the former occurs precisely at the thermal critical point in the latter. Scaling properties of KF clusters near
criticality are governed by critical exponents of the Potts model (10.20). For instance, the fractal dimension
of KF clusters at criticality is identical to the magnetic scaling dimension Xj. In fact, one may view the
partition sum (10.21) as a generalization of the Potts model to noninteger ¢. It also includes some special
cases such as ¢ — 0 and 1, where the latter reduces to the uncorrelated bond-percolation model [12]. It was
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Figure 10.8: Renormalization flow for the mixed Ising model described by Eq. (10.22) with ¢ = 2 in two
dimensions. The dashed line J = K, is for the random-cluster representation of the Ising model,
and arrows show the directions of renormalization flow.

because of the exact mapping between Eqs. (10.21) and (10.20) that Swendsen and Wang could develop [13]
a cluster Monte Carlo method for the Potts model with integer ¢ = 1,2,---. This method and its single-
cluster version, the Wolff algorithm [14], significantly suppress the critical-slowing-down effect which is very
prominent in the standard Metropolis method. Thus, these cluster algorithms have been extensively used in
the field of critical phenomena and phase transitions.

The Potts model (10.20) includes the Ising model as a special case for ¢ = 2. For other values of ¢, one
can, in the same way as the Ising clusters defined earlier, form Potts clusters [15-17] composed of NN spins
in the same Potts state. As expected, these Potts clusters are also on average too ‘large’ [19,20] to account
for thermodynamic singularities of the Potts model. In the context of the renormalization group theory, this
can be understood from a ‘mixed’ Potts model, as described by [4, 6]

H/ksT = =T (6r,r; = Vogi0; = K D S50, - (10.22)
(i7) (i7)

The second term is just the ‘pure’ g-state Potts model (10.20); and the first term contains an auxiliary Potts
variable 7 =1,2,--- | s. For the case that a pair of NN spins is in the same Potts state both for variables o
and 7, a bond is placed with the probability p, = 1 — exp(—.J). One can then express the partition sum of
Eq. (10.22) in such bond variables, and differentiate the resulting free energy with respect to the parameter
s. Taking the limit s — 1, one obtains the size distribution of geometric clusters composed of NN sites in
the same state o connected with probability p,. Thus, these clusters include KF and Potts clusters as two
special cases for J = K and pg; = 1, respectively.

The renormalization flow of the ‘mixed’ Potts model (10.22) in two dimensions is schematically shown [20]
in Fig. 10.8, where the dashed line J = K represents the random-cluster model (10.21). Near the random-
cluster fixed point J = K = K, the renormalization flow along the dashed line is governed by the thermal
exponent y; of the Potts model. Further, on the critical line K = K, the percolation threshold of geometric
clusters occurs precisely at J = J, = K, [20]. The scaling field parameterizing the critical line near J = K,
is the bond-dilution field, and the associated exponent is called the red-bond exponent y,.. In contrast to
the thermal and magnetic ones, the red-bond exponent y, characterizes geometric properties of the Potts
model, and does not have a thermodynamic analogue. The scaling properties of geometric clusters with
pg > pxr(Kc), including Potts clusters, are governed by another fixed point, shown as the black square in
Fig. 10.8. This fixed point is irrelevant (y, < 0) in the p, direction, and we refer to it was the geometric-
cluster fixed point [20]. For the two-dimensional Ising model on the square lattice, it occurs in the unphysical
region p, > 1 [17].

However, the renormalization scheme in Fig. 10.8 is not generally valid [20] for two-dimensional models.
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Figure 10.9: Renormalization flow for the two-dimensional tricritical Blume-Capel model (10.23) with D
fixed at the tricritical value D;. The horizontal direction is the bond probability p in geometric
clusters, and KF clusters are represented by the dashed line p; = 1 — exp(—2K).

For instance, we consider the two-dimensional Blume-Capel model [21] with the Hamiltonian

MH/ksT = —K, Y sis;j+ DY sp, (10.23)
(i) k

where the spins can assume the values £1 and 0, and those in state s = 0 are referred to as vacancies.
The abundance of vacancies is controlled by the chemical potential D. For D — —oo, the vacancies are
squeezed out, and the model (10.23) reduces to the spin-i model. The critical coupling is an increasing
function of D, and the critical line K.(D) terminates at a tricritical point (K;, D). We mention that, for
the Blume-Capel model (10.23), KF clusters should be constructed with the bond-occupation probability
pkr = 1 —exp(—2K) instead of pxp = 1 — exp(—K), due to the difference between the Potts and the Ising
Hamiltonian, as shown by Egs. (10.20) and (10.23), respectively. For the case that the chemical potential
D is fixed at the tricritical value Dy, the renormalization flow of the Blume-Capel model [20] is sketched in
Fig. 10.9. The bond-dilution field near the random-cluster fixed point pkr (K}) is now irrelevant (y, < 0); and
the percolation threshold pg. of geometric clusters is smaller than pxr(K;). Thus, at tricriticality (K, Dy),
the thermodynamic singularities of the Blume-Capel model can be correctly represented by geometric clusters
as long as the bond probability ps > pgc, including Ising clusters. It has been shown [20] that Fig. 10.9
applies to the whole tricritical branch of the Potts model in two dimensions.

As a result of exact solutions, Coulomb gas treatments [22], and conformal field theory [23], the critical
behavior of the Potts model (10.20) is now well established in two dimensions. The exact values of a number
of critical exponents are known. The geometric- and random-cluster fixed points in Figs. 10.8 and 10.9
were recently conjectured [20] to correspond with a pair of critical and tricritical Potts systems. These two
models share the same conformal anomaly, and are related as gg' = 16 in terms of the Coulomb gas coupling
constant g [22].

For the three-dimensional Ising model, however, exact information is scarce, so that investigations have
to depend on approximations, including Monte Carlo simulations as a powerful tool. A considerable amount
of research activities have been carried out [24-31]. For instance, there is some consensus that the thermal
and magnetic exponents are y; = 1.587 and y; = 2.482, with uncertainties restricted to the last decimal
place. Meanwhile, geometric properties of Ising systems have also received some attention [32-34]. For the
spin—% model on the simple-cubic lattice, infinite Ising clusters already exist even for zero coupling constant
K = 0. In the low-temperature phase K > K, infinite Ising clusters, composed of minority Ising spins,
occur at about 1.05K,. [32-34], before the critical temperature is reached. However, to our knowledge, no
systematic investigation has been reported about the renormalization flows such as in shown Figs. 10.8
and 10.9. Particularly, it is not obvious whether or not the percolation threshold of geometric clusters at
criticality K = K. coincides with the random-cluster fixed point; and the red-bond exponent y, remains to
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be determined.

In addition to the critical Ising model, the present work also investigates the tricritical Ising model in three
dimensions [35]. Since the upper tricritical dimensionality of O(n) systems is three, exact information for some
universal quantities is available, one of the rare cases in three dimensions. Exact values of critical exponents
can be obtained from renormalization calculations [35] of the Landau-Ginzburg-Wilson Hamiltonian, and
even from mean-field analyses. The leading and subleading thermal exponents [35] are y;; = 2 and y¢ = 1,
and those magnetic ones are yp; = 5/2 and yp2 = 3/2, respectively. However, no exact results or numerical
determinations for the red-bond exponent y,- have been reported to our knowledge; and it is even not obvious
where percolation threshold of geometric clusters occurs at tricriticality. It seems thus justified to perform
a Monte Carlo investigation for the tricritical Ising model in three dimensions.

10.2.2 Monte Carlo methods and sampled quantities

For simplicity, we chose the spin—% and the tricritical Blume-Capel model as the subject of our simulations,
so that the Hamiltonian of both models can be expressed by Eq. (10.23). The systems are defined on the
L x L x L simple-cubic lattice with periodic boundary conditions.

For the spin-3 model, as described by Eq. (10.23) for D — —oo, one can simply apply the Swendsen-
Wang and Wolff cluster algorithms. In this case, the critical point on the simple-cubic lattice is known [31]
as K. = 0.22165455(3), where the number in brackets ( ) is the error margin in the last decimal place.
The finite-size analysis in Ref. [31] used a technique that Monte Carlo data for 11 Ising systems were
simultaneously fitted, such that universal parameters only occur only once. In the present investigation, the
precision of the above determination of K. is considered to be sufficient.

However, for the general Blume-Capel model (10.23) in the presence of vacancies, the Swendsen-Wang or
Wolff cluster simulations become incomplete, since they act only on Ising spins. In this case, the Metropolis
method, which allows fluctuations of vacancies, can be used in a combination with these cluster methods.
Further, for the special case D = 21n 2, a full-cluster simulation has also been developed [25,36] by mapping
the system (10.23) onto a spin-i model with two independent variables 7 = +1 and 7 = £1. Near
tricriticality, however, no efficient cluster method is available so far to flip between vacancies and Ising spins.
This problem was partly solved in Ref. [38] by means of the so-called geometric cluster method [25,37]. This
algorithm was developed on the basis of spatial symmetries, such as invariance under spatial inversion and
rotation operations. It moves groups of Ising spins and vacancies over the lattice in accordance with the
Boltzmann distribution, so that the magnetization and the vacancy density are conserved. A combination
of the Metropolis, Wolff, and geometric steps significantly suppresses the magnitude of critical-slowing-
down. Such simulations, together with other techniques such as the aforementioned simultaneous finite-size
analysis, yield [38] the tricritical point as K; = 0.7133(1) and D; = 2.0332(3) on the simple-cubic lattice.
The vacancy density p, at the tricritical point is p, = pyt = 0.6485(2) [38]. These results are consistent with
estimations [39,40] from other sources K; = 0.706(4), D; = 2.12(6), and p,: = 0.652(6), within two error
margins quoted in the brackets ().

The calculations in the present work include two parts: the Monte Carlo simulations and the formation
of geometric clusters with bond-occupation probability ps. The latter step is performed as follows. For each
pair of NN Ising spins of the same sign, a uniformly distributed random number 7 is drawn, and a bond is
placed if 7 < p,. This is done in an analogous way as in the well-known Swendsen-Wang procedures. In this
case, the whole lattice is decomposed into geometric clusters. The size of each cluster, defined as the total
number of lattice sites in the cluster, is determined and used to calculate the quantities

1 1
i i

where n; is the size of the ith geometric cluster, and N = L3 is the volume of the system. For KF clusters
in which the bond probability p; = pxr = 1 — exp(—2K), it can be shown that the quantities in Eq. (10.24)
are related to the magnetization m as

(m?y = (1) and (m*) =3(3) — 2(I4) . (10.25)



The first equality in Eq. (10.25) is derived as follows for the spin-; model. We denote the numbers of plus
and minus spins as Ny and N_, respectively, so that the total magnetization is M = Ny — N_. Since all
spins in a KF cluster are of the same sign, M can be written in terms of cluster sizes of KF clusters as
M = Zi n;7;, where 7; is the sign of spins in the ith cluster. The sign 7; assumes +1 and —1 with equal
probability, and is uncorrelated between different KF clusters. Thus, one has

1 1 .
m? =15 Y D ning it = 15 Y o ni (10.26)
i3 i

The derivation of the second equality in Eq. (10.25) follows along similar lines.
On the basis of the quantities Iy and Iy, we define a dimensionless ratio R as

R = (12)*/(3(13) — 2(14)) , (10.27)

which is equal to the magnetic ratio @ = (m?)?/(m*) for KF clusters, i.e., for p, = pkr. For the bond
probability p, # pkr, R will be different from @); its value reflects the geometric cluster size distribution.
Further, the scaling behavior as a function of the distance p, — pxr is governed by the red-bond exponent

Yr-

10.2.3 Results
Spin-% model

Simulations of the spin-3 model were performed at K, = 0.22165455(3) [31], where the bond-occupation
probability in KF clusters satisfies pxp (K .) = 1 —exp(—2K,.) = 0.35809 124(5). The system sizes were taken
in the range 6 < L < 48, and we sampled the geometric quantities Iy, l4, and R, and the magnetic ratio Q.
Several Wolff cluster steps were carried out between consecutive sampling procedures. Part of the data for
R is shown in Fig. 10.10, indicating that the percolation threshold of geometric clusters is near pg. ~ 0.358,
consistent with the random-cluster fixed point pxr(K.). According to the least-squares criterion, we fitted
the data of R by

R(pg, L) = Ry + Zrk — Dgc) VLY 4 Za LY +
j=1
c(pg — pgc)L’"“*y" +b(pg — pge)’ LV, (10.28)

where Ry is the universal number at pg.. The terms with amplitudes r describe the effect of the bond-dilution
field, and those with a; accounts for finite-size corrections. We set the exponent y; = y; = —0.821(5) [31],
the leading irrelevant exponent of the three-dimensional Ising universality class. Other exponents of the
correction terms, as described in Ref. [31], take values as y» = d — 2y, = —1.964 and y3 = y — 2y, = —3.375.
The term with yo arises from the field dependence of the analytic part of the free energy, and that with ys
is introduced by the nonlinear dependence of the thermal scaling field on the physical magnetic field. The
term with amplitude ¢ accounts for the ‘mixed’ effect of the bond-dilution field and the irrelevant thermal
field. The last term arises from nonlinear dependence of the bond-dilution field on the bond probability
pg. The data for () were also included in the fit by Eq. (10.28) with p; = pkr(K.). Further, we included
the @ data at K., published in Ref. [31]. These data, particular those for larger system sizes L = 48, 64,
128, and 256, were found very helpful in the numerical analysis. To obtain a satisfactory fit by Eq. (10.28)
according to the least-squares criterion, it was necessary to discard the R data for small system sizes L < 6.
We obtain Ry = 0.6238(8), p. = 0.35809 135(15) = pkr(K.), and y, = 0.757(2), where the error margins
are quoted as two standard deviations. The estimation of Ry is in good agreement with the Binder ratio
@ = 0.6241(4) [31]. We mention that, in Eq. (10.28), the contributions from the terms with b and ¢ are
significant. This is indicated by Tab. 10.3, which lists detailed results of the above fit.
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Figure 10.10: Dimensionless ratio R for the critical spin—% model in three dimensions, vs. he bond probability
pg- The data points +, x, O, O, A, and ¢ represent finite sizes L = 12,16, 20,24, 28, and
32, respectively. The intersections reveal that the location of the percolation threshold agrees
with the random-cluster critical point.

Table 10.3: The fit of the dimensionless ratio R for the critical spin—% model in three dimensions. The
numbers in parentheses are the statistical errors in the last decimal place.

Yr De Ry 1 T2 3
0.757(2) 0.35809135(15) 0.6238(5) —0.811(6) —1.01(2) —0.96(3)
T4 ai as as b c

45(5)  0.0965(3) 0.132(3)  1.2(8) ~0.35(2)  0.64(8)

Tricritical Blume-Capel model

Our simulations used a constrained version of the Blume-Capel model described by Eq. (10.23), namely the
total number of vacancies is conserved. In this case, the chemical potential D in Eq. (10.23) becomes implicit,
and a full-cluster simulation becomes possible by using a combination of Wolff and geometric cluster steps
only. A particular feature of such constrained simulations is that they hardly suffer from critical-slowing-
down even near the tricritical point. This is consistent with the Li-Sokal criterion [41] which specifies a lower
limit for the dynamic exponent, since the constrained specific heat has only reaches a finite cusp instead
of being divergent at tricriticality, as already noted in Ref. [38]. Simulations took place at the estimated
tricritical point Ky = 0.7133(1) and p,: = 0.6485(2). Geometric clusters were formed among Ising spins,
and we sampled I3, Iy, R, and Q. The system sizes were taken in the range 6 < L < 60. For a finite
system L at tricriticality, however, the total number of vacancies L3p,; is not always an integer. Therefore,
the actual simulations were performed at [L3p,;] and [L3p,¢] + 1, where the brackets [ ] denote the integer
part. Geometric clusters were formed among Ising spins, and we sampled I3, l4, R, and (). The value of a
sampled quantity at the tricritical point were obtained by a linear interpolation of the Monte Carlo data.
For instance, we consider the dimensionless ratio R, and denote the R data at [L®p,] and [L?py] + 1 as R,
and Ry, respectively. The tricritical value of R and its statistical error margin JR are then

R=2Ry+(1—-2)R, and O6R=\/(20Ry)? +[(1 —z)0Rs]?, (10.29)
respectively, where z = L3py¢ — [L3put].

At the tricritical point (K¢, pyt), the bond probability at the random-cluster fixed point is pxp(K;) =
1—exp(—2K};) = 0.7599(1). Part of the data for R is shown in Fig. 10.11, which indicates that the percolation
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Figure 10.11: Dimensionless ratio R for the tricritical Blume-Capel model in three dimensions, vs. bond
probability p;. The data points 4+, x, O, O, A, and ¢ represent finite sizes L = 8, 16,24, 32,
40, and 60, respectively.

Table 10.4: The fit of the dimensionless ratio R for the tricritical Blume-Capel model in three dimensions.
The numbers in parentheses are the statistical errors in the last decimal place.

Yr Pc Ry 1 T2 T3
0.501(3) 0.759876(3) 0.690(3) —0.248(6) —0.06(1) 0.08(3)
Ta ap a9 as a4 as
—0.2(2) —0.0144(5) 0.04(4) —0.227(5) 1.20(3) —1.0(2)
as b c g

1.20(3) 4.2(5) —0.40(5) —2.8(3)

threshold of geometric clusters also occurs at pkr(K;). The data for R were fitted by

4
R(pg, L) = Ro+ > ri[(pg = pge) LV]F + ar/In L+ az/In* L+ ag /L +
k=1

a4/L2 + a5/L3 + b(pg - pgc)Lyri1 + C(pg - ng)ZLy,- +
9(pg — pge) [ L* . (10.30)

The terms with amplitudes a; and as account for logarithmic corrections [35] for the tricritical Ising model
in three dimensions, as generally expected at borderline dimensionality of mean-field-like behavior. The
last term in Eq. (10.30) arises from the field dependence of the analytical part of the free energy, where
the factor 1/L? is obtained as L 2¥»t with y,1 = 5/2 [35]. In analogy with the procedure for the spin-}
model, the @ data of Ref. [38] were included in the analysis for R with the corresponding bond probability
pg = PKr(K). After a cutoff for small system sizes L < 8, we obtain Ry = 0.690(3), y, = 0.501(3), and
pg = 0.759876(3) ~ pxr(K;). Detailed results are shown in Tab. 10.4, which indicates that the amplitude
a1 and ay for logarithmic corrections are rather small. Further, we observe that the result does not depend
on whether the term with ay is included. Taking into account the uncertainties of the estimated tricritical
point (K¢, put), we obtain the red-bond exponent as y,. = 0.501(5).

As mentioned earlier, for the tricritical Ising model in three dimensions, exact values of a number of
universal parameters, including the thermal and magnetic exponents, are exactly known as integers or simple
fractions [35]. Thus, on the basis of the numerical result y, = 0.501(5), we congjecture that the red-bond
exponent y, = 1/2 at the three-dimensional Blume-Capel tricritical random-cluster fixed point.
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10.2.4 Discussion

Using Monte Carlo simulations and finite-size analysis, we have investigated geometric properties of the
critical Ising and tricritical Ising models in three dimensions. We find that the percolation threshold of critical
geometric clusters occurs at the random-cluster fixed point, and the corresponding red-bond exponents are
yr = 0.757(2) and 0.501(5) for the above two models, respectively. Just as the thermal and magnetic
exponents, the results of the red-bond exponent y,. apply to a large number of systems in the same universality
class.

In comparison with the two-dimensional case, geometric properties of the tricritical Ising model are
‘qualitatively’ different in three dimensions. In two dimensions, tricritical KF clusters are so ‘dense’ [20] that
the bond-dilution field becomes irrelevant near the random-cluster fixed point; the percolation threshold of
geometric clusters occurs before pkr(K}), and belongs to a different universality class. In three dimensions,
however, the red-bond exponent y, > 0 near pkr(K;), so that only KF clusters can correctly represent
thermodynamic singularities near tricriticality.

As mention earlier, the red-bond exponent y, describes geometric properties of the system under con-
sideration, and does not have a thermodynamic analogue. As a consequence, the exact value of y,. has not
been obtained even for the tricritical Ising model in three dimensions. Although the conjecture y, = 1/2
is in agreement with the numerical determination y, = 0.501(5), further investigations seem justified. For
instance, one may ask the question whether one can derive y, from mean-field-like considerations.

In addition to the red-bond exponent y,., there are other geometric critical exponents, such as the fractal
dimensions of ‘backbones’ [42—44] and of ‘chemical’ paths [45]. In the percolation theory, these exponents
have received considerable attention and are considered to be of some physical relevance. For the ¢ — 1
Potts model, the red-bond exponent y, just reduces to the thermal exponent y;, which is about 1.14(2) in
three dimensions [46].
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1

Edge transitions of two-dimensional tricritical Potts mod-

els

Using Monte Carlo techniques and finite-size analysis, we investigate several two-dimensional lattice models
with open edges, including the Blume-Capel model and the ¢ = 1 and 3 Potts models with vacancies. At
bulk tricriticality, we find that the open edges are dominated by the vacancies when the surface couplings K
and the chemical potential D, of the vacancies assume the bulk values. When K, and/or D, is sufficiently
enhanced, an edge phase transition takes place, beyond which spontaneous one-dimensional order occurs
on the edges. Edge phase transitions can also be induced by a surface magnetic field H;. We numerically
determine a number of edge critical exponents and derive phase diagrams in terms of K, D, and Hy. In the
low-temperature region, we observe first-order transitions when K and Dy are varied; the associated hys-
teresis loops of surface quantities are remarkably asymmetric. Some further insight in these edge transitions
is provided by the exact equivalence of the tricritical ¢ = 1 Potts model and the Ising model.

11.1 Introductions

While theoretical physicists frequently study phase transitions in systems with periodic boundary conditions,
in reality systems generally have surfaces. Thus, there may be a need to consider the effects due to the
presence of surfaces. For a d-dimensional system containing L% atoms, the relative fraction of atoms at or
near a surface is of order 1/L, and hence for large L it is usually justified to neglect the surface effects on
bulk properties of the material. However, near a phase transition, correlations become long-ranged, so that
relatively small perturbations can produce large responses. Therefore, surface effects can become significant,
and in many cases they cannot be ignored. Indeed surface phase transitions have been the subject of
considerable research interest in the past decades [1-11]. Many theoretical and numerical methods have been
developed, including mean-field approximations, high- and low-temperature expansions, renormalization
group (RG) techniques, conformal field theory, and Monte Carlo simulations etc.

Most of these results apply to three-dimensional systems, and in this context, we briefly review surface
critical phenomena of the Ising model on a simple-cubic lattice with two open surfaces in the z direction
and periodic boundary conditions in the zy plane [1,4,8,10]. The Hamiltonian of this system can be divided
into two parts: bulk terms and surface terms, i.e.,

(b) (b) (s) (s)

HiksT = K> sisj—HY  sp— K> sism— H > sn. (11.1)
(ig) k (lm) n

The spins assume values £1, and interactions occur between nearest-neighbor spins. The first two sums

account for the bulk, and the last two sums involve spins on the open surfaces. For a finite cube with linear
size L, the surface terms concern an area 2L?, because there are surfaces both at z =0 and at z = L.
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=y

Figure 11.1: Sketch of the surface phase transitions of the Ising model in three dimensions. The vertical
axis is the bulk temperature 1/K, and the parameter K = (K; — K)/K in the horizontal axis
represents the enhancement of the surface couplings. The ‘surface’, the ‘ordinary’, and the
‘extraordinary’ phase transitions are represented by the thick solid, the thin solid, and the
dashed line, respectively. The lines meet in a point, shown as the black circle, which is referred
to as the ‘special’ phase transition.

In three dimensions, exact information is scarce about the bulk critical behavior of the Ising model
described by Eq. (11.1), so that investigations have to depend on approximations. Nevertheless, accurate
information has been obtained. For instance, it has been determined [12] that the bulk critical point is
K = K. =0.22 165 455(3) and H = H, = 0, and the thermal and magnetic renormalization exponents are
yr = 1.5 868(3) and y, = 2.4 816(1), respectively. Surface critical phenomena in this magnetic system (11.1)
are now also well analyzed [1,4,8,10]. In the absence of magnetic fields H = H; = 0 and for ferromagnetic
couplings K > 0 and K > 0, the phase diagram is sketched in Fig. 11.1. In the high-temperature region,
i.e., the bulk couplings K < K., the bulk is in the paramagnetic state (‘disordered’), so that the bulk
correlations remain finite. However, phase transitions can still occur on the open surfaces when the surface
couplings K are varied. These transitions, referred to as the ‘surface transitions’, are shown as the curved
solid line in Fig. 11.1. Apparently, they belong to the same universality class as Onsager’s Ising model [13]
in two dimensions, so that the thermal and magnetic exponents are [13] y¢s = 1 and yps = 15/8, respectively.
At the bulk critical point K = K., the line of surface transitions terminates at a point (K., Ks.), which
acts as a multicritical point. For relatively small surface couplings K; < K., both the bulk and the
surfaces undergo a second-order phase transition at K = K. when K is varied. However, for larger surface
couplings Ky > K., the surfaces become ferromagnetic at a smaller bulk coupling K < K., so that the
bulk transition K = K, occurs in the presence of spontaneous surface order. Along the bulk critical line
K = K., the phase transitions for K; < K., Ks = K., and Ky > K. are referred to as the ‘ordinary’,
the ‘special’, and the ‘extraordinary’ transitions, respectively. In order to describe the scaling aspects of
these surface transitions, besides the bulk exponents y; and yj, additional surface critical exponents are
also needed. The ordinary and the extraordinary transitions have one additional relevant surface magnetic
scaling field; both the surface thermal and magnetic scaling fields are relevant at the special transition. We
denote the corresponding exponents as y,(;;), y,(LeS), yt(z), and y,(fs) , respectively, where the superscripts (o), (e),
and (s) are for the ordinary, the extraordinary, and the special transitions, respectively. In an analogy with
the bulk ones y; and y;, exact values of these surface exponents are unavailable. It has been numerically
determined [1,4,8,9,14] that 5\ = 0.737(5), y'2) = 0.94(6), and y\*) = 1.62(2).

The present paper investigates the surface effects on a number of two-dimensional systems. However,
in this case, the ‘surfaces’ are just one-dimensional edges. Since one-dimensional systems with short-range
interactions are known not to order for any nonzero temperature, the ‘surface transitions’ occurring at
K < K. simply cannot exist on open edges of two-dimensional systems. It may then seem natural that no
spontaneous edge order can occur without a long-ranged ordered bulk. In other words, in two dimensions,
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it may be expected that only the ordinary transition exists on the one-dimensional surfaces. It has further
been argued [1] that the surface dimensionality d = 2 is the lower critical dimensionality for the special,
the surface, and the extraordinary transitions. This is consistent with exact results for the Ising model in
two dimensions. Exact calculations of surface effects in this model [15,16] were not restricted to the critical
region but covered in the entire temperature range. At the bulk criticality, it was shown that, for any finite
surface coupling K, the transition on the open edges is just the ordinary transition. The corresponding
surface magnetic exponent is y,(l(;) = 1/2 [15,16], different from the bulk exponent y, = 15/8 [13]. The
surface magnetization density ms and the surface susceptibility xs at the ordinary transition appear to be
of logarithmic nature [15,16], i.e.,

ms(Hs) < Hg |InHy| (K = K., |H| << 1), (11.2)

and
Xo(t) o< [ ft] (Hy =0, ]t] = |K — K. << 1), (11.3)
where x; is defined as Oms/0H;.

The statement that only ordinary transitions occur on the edges can be generalized to the critical branch
of the g-state Potts model in two dimensions. For a review of the Potts model, see Ref. [17]. For this
model, the nature of the bulk critical singularities is now well established. This is mostly due to exact
calculations [18,19], Coulomb gas theory [20], and conformal field theory [3]. In the context of the Coulomb
gas theory [20], a sequence of universal exponents can be exactly expressed in terms of a single parameter g,
i.e., the coupling strength of the Coulomb gas. The parameter g satisfies ¢ = 242 cos(gm/2), with 2 < g <4
and 4 < g < 6 for the critical and the tricritical branch of the Potts model, respectively. The leading thermal
and magnetic exponents of the Potts model are [20,21] y: =3 —6/g and y, = (g+2)(g +6)/8g, respectively.
For the ordinary surface transition of the critical Potts model, Cardy [5-7] employed boundary conformal

field theory, and expressed the surface magnetic exponent y,(l(;) in terms of the bulk thermal exponent y; as

yo =2-3/B-y)=2-g/2 2<g<4). (11.4)

A remarkable feature of Eq. (11.4) is that y,(f;) is a decreasing function of the Coulomb gas coupling g. In

particular, for the ¢ = 4 Potts model (g = 4), Eq. (11.4) yields y,(los) = 0, so that the surface magnetic
scaling field is marginal. It seems natural that Eq. (11.4) can also be applied to g > 4, just as the above
expressions for the bulk exponents y; and y, [20,21]. This application then yields that the surface magnetic
scaling field is irrelevant for the tricritical Potts model. On the other hand, it is known that, near a second-
order transition, the strength of critical fluctuations and the sensitivity to perturbations are reflected by the
magnitudes of the critical exponents y; and y,. For the Potts model, y, = 3 — 6/g is an increasing function
of g, and, for 0 < ¢ < 4, yp is larger on the tricritical branch than on the critical one. Thus, one might
naively expect that the surface effects, including that of the surface magnetic field Hy, become stronger as
g increases. Further exploration of this paradox seems justified.

Recently, boundary conformal field theory has received considerable research interest [22-27]. In the
context of statistical physics, this has been applied to the tricritical Ising model in two dimensions. This
model is considered to correspond with an integral scattering theory of massive kinks [22], and it preserves
superconformal symmetry. By means of factorisable S matrix, fusion rules, and symmetry arguments, various
boundary operators were conjectured [23] and the corresponding renormalization flows were constructed. A
physical interpretation of these boundary phenomena was then provided by Affleck [24], indicating the
possible emergence of spontaneous edge order if the bulk is in the tricritical state. Moreover, this scenario
has been numerically confirmed in Ref. [28].

The present paper extends the work in Ref. [28]. First, as a direct illustration of the existence of the
edge transitions in tricritical Potts models in two dimensions, we make use of the exact equivalence of the
dilute ¢ = 1 Potts model with the Ising model in a magnetic field [29]. Thus, the exact information about
the edge critical phenomena in the latter model can be reformulated in the language of the former model.
Then, using suitable Monte Carlo methods, we simulate the Blume-Capel (BC) model [30,31] and the ¢ = 3
Potts model with vacancies. From the finite-size analysis of the numerical data, we derive a number of edge
phase diagrams in terms of surface parameters, and determine several surface critical exponents.
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11.2 Dilute 1-state Potts model

The dilute Potts model is obtained by including vacancies in the corresponding “pure” Potts model. On the
L x L square lattice with periodic boundary conditions, to which we shall refer as the torus geometry, the
Hamiltonian of the dilute g-state model reads

L L
HP/kBT =-K Z (1 - 60—2,y70)(60'm,y70'm+1,y + 60m,y,¢7m,y+1) -D Z 6Um,y70 , (11'5)
z,y=1 z,y=1
where the lattice site is occupied by a vacancy ¢ = 0 or a Potts variable with ¢ = 1,2,--- ,¢q. Nonzero

couplings K occur only between Potts variables, and the chemical potential D controls the concentration of
the vacancies. In Eq. (11.5), we have introduced the subscript P to represent periodic boundary conditions.
For the special case ¢ = 1 Eq. (11.5) reduces, apart from a constant, to

L L
Hp/kpT = -K Y 04401y +0uys1) +D Y 00y (0=0,1). (11.6)
z,y=1 z,y=1

For D — —oo0, the vacancies are excluded, and the first sum of Eq. (11.6) is just a constant. Nevertheless,
the random-cluster representation of Hamiltonian (11.6) corresponds with the bond-percolation model with
bond-occupation probability p = 1 — exp(—K), so that Eq. (11.6) still describes percolation phenomena.
In the presence of vacancies, Eq. (11.6) describes a correlated dilute bond-percolation model, which can
be transformed into the Ising model in a magnetic field. This follows from substitution of s = 20 — 1 in
Eq. (11.6), which yields

L L
HY kT = KD 3" 50y (Sor1y + sage1) = HD S 50y (5= £1), (11.7)
z,y=1 z,y=1
with the relations , ,
KY=K/4 and HY=-D/2+K, (11.8)

where the superscript (i) refers to the Ising model. In the absence of a magnetic field H®  the Ising
model (11.7) has a critical point at K1 = KV = In(1 + +/2)/2 [13]. This point is not percolation-like; it
serves as the tricritical point of the ¢ = 1 Potts system (11.6). Equation (11.8) yields the tricritical point as
K = K; =2In(1 + v/2) and D = D; = 4In(1 4+ v/2); the up-down symmetry of Ising spins implies that the
tricritical vacancy density is p = 1/2. Further, it follows from Eq. (11.8) that the leading and the subleading
thermal exponents of the tricritical Potts model are equal to the magnetic and the thermal exponent of
the Ising model, respectively, so that y;; = 15/8 and y;2 = 1. The leading magnetic exponent is known as
yn1 = 187/96 [20]. In the low-temperature region K® > Kéi), the Ising model undergoes a first-order phase
transition when the magnetic field H) changes sign. In other words, the dilute ¢ = 1 Potts model (11.6)
has a line of first-order phase transitions at D = 2K for K > K;.

Because of the attraction between the vacancies, the dilute ¢ = 1 model (11.6) is different from the
conventional site-bond percolation problem [32]. In the latter system, the vacancies are randomly distributed
over the lattice sites, and then bonds are placed with probability 0 < p < 1 between all nearest-neighboring
occupied sites. Apart from that, sites and bonds are uncorrelated. A limiting case is the ‘pure’ site-percolation
model, in which the bond-occupation probability is 1. This model is still in the percolation universality,
so that no tricritical point exists for the conventional site-bond percolation problem. In contrast, for a
correlated dilute g-state Potts model described by Eq. (11.5), it has been found [29,33] that the tricritical
point occurs for any value in the continuous range 0 < g < 4.

In order to investigate the surface effects, we define the correlated percolation model (11.6) on an open
cylinder, i.e., the L x L square lattice with periodic and free boundary conditions in the z and the y direction,
respectively. As for the three-dimensional case, the surface couplings K and the chemical potential Dy can
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assume different values from those in the bulk. The Hamiltonian Ho on the open cylinder can be written
as the sum of Hp in Eq. (11.6) and their difference, which reads

L L
Ho/ksT — Hp/kpT = K 0p1000 — Kk Y (00100411 +
=1 r=1
L
Uw,LU'z+17L) — Dkgq Z(Um,l + Uav,L) ) (119)
z=1

where k;, = Ks/K — 1 and kg = Ds/D — 1 represent the enhancements of the surface coupling and the
chemical-potential, respectively. The subscript O is for the open cylinder. The sums in the right-hand side
of Eq. (11.9) are only over spins sitting on the edges y = 1 and y = L. Thus, the surface effects can be
regarded to contain two parts: the first term in Eq. (11.9) accounts for the geometric effect due to ‘missing’
neighbors for spins at the surface layers, and the last two sums describe the enhancements of the surface
parameters K and D,. Effectively, the first term serves as a perturbation which decreases the correlations
along the lines y = 1 and y = L. After substituting o = (s +1)/2 in Eq. (11.9), one obtains the Ising model
on a cylinder with open ends

(i) (i) K K ¢
Hol /kBT—le /kBT = Z;SIJS%L — Zlik Z(sm,lsﬂerl,l +
L
Se.n8er1,0) — HP Y (s01 + 80.1) (11.10)
z=1
with a surface magnetic field Hs(i)
HY = [K 2k, — 1) — 2Dkg)/4 . (11.11)

Due to the equivalences of Egs. (11.6) and (11.7), and of Egs. (11.9) and (11.10), the edge transitions
of the Ising model can now be reformulated in the language of the dilute ¢ = 1 Potts model. In the
high-temperature region K > K;, no transition occurs on the one-dimensional edge. At bulk criticality,
the Ising model exhibits an ordinary edge transition at Hs() = 0, and the surface magnetic exponent is
y,(LS =1/2 [15,16]. In the context of the tricritical ¢ = 1 Potts model (11.9), this means that, as indicated
by the relation (11.11), an edge transition can be induced by varying the surface couplings K, and the
chemical potential D,. For instance, for the case kg = 0, the edges of the Potts model are dominated by
vacancies (o = 0) or by Potts variables (¢ = 1) for k; < 1/2 or & > 1/2, respectively. Since K, and D,
are temperature-like parameters, we refer to such an edge transition as the ‘special transition’. The surface
thermal exponent is simply obtained as y(s) (g =1) = 1/2. In the low-temperature region K > K, the bulk of
the Potts model (11.9) is in a two-phase equilibrium along the line D/K = 2, as discussed above. Therefore,
a small perturbation due to an enhancement k; or kg induces a first-order transition, which involves the
bulk as well as the edges. Fig. 11.2 sketches the phase diagram of the dilute ¢ = 1 Potts model (11.9) for
the case kg = 0.

For the ¢ = 1 Potts model at bulk tricriticality, Eq. (11.11) yields a line of ‘special’ critical points in the
(Kk, kq) plane, as shown in Fig. 11.3.

11.3 Blume-Capel model

The previous section indicates that, also in two-dimensional systems, special phase transitions can occur.
However, the dilute ¢ = 1 Potts model described by Eq. (11.9) is only a special case. For instance, the
coupling constants and the chemical potential in this Potts model are just the magnetic field in the Ising
model. In the following two sections, we shall investigate the Blume-Capel (BC) model and the dilute ¢ = 3
Potts model.
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Figure 11.2: Edge phase transitions of the dilute ¢ = 1 Potts model in two dimensions, with K/D = 1/2 and
ke = (Ds—D)/D =0. For K < K., both the bulk and the surface are in the ‘disordered’ state,
and no edge transition occurs. At bulk tricriticality K = K., the variation of k;, = (K;—K)/K
yields a ‘special’ edge critical point at k; = 1/2. For K > K., a line of first-order phase
transitions, k; = 1/2, separates the phases dominated by the vacancies and by the Potts
variables, respectively. Arrows describe the direction of the renormalization flow.

1/2

—~
/—1/4 0 Kg

Figure 11.3: Line of ‘special’ transitions in the dilute ¢ = 1 Potts model at bulk tricriticality. The fixed
point is shown as a black circle, and the arrows represent the direction of the renormalization
flow.
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Figure 11.4: Sketch of the bulk phase diagram of the BC model. The tricritical point is denoted as the black
circle, the second- and the first-order transition line is represented by the solid and the dashed
line, respectively.

The BC model, also referred to as the spin-1 Ising model, was independently introduced by Blume [30]
and Capel [31]. This model can be obtained by including vacancies in the Ising model, and it played an
important role in the development of the theory of phase transitions and critical phenomena. In the torus
geometry, the Hamiltonian reads

Hp/ksT = —-K» sisj+DY_sp (s =0,£1) . (11.12)
(ig) k
When the chemical potential D goes to —oo, the vacancies s = 0 are excluded, and this model reduces to the
spin—% Ising model. The critical coupling constant K.(D) is an increasing function of D, and the critical line
K. (D) terminates at the tricritical point (K, D). For K > K., this line continues as a line of first-order
phase transitions. The phase diagram of the bulk transitions is sketched in Fig. 11.4. At the tricritical point,
there are four relevant scaling fields; two of them are thermal ones and the other two are magnetic ones. In
two dimensions, the renormalization exponents are known as y;1 = 9/5 and y.2 = 4/5, and yp1 = 77/40 and
yr2 = 9/8 [20,21], respectively. By means of a sparse transfer-matrix technique and finite-size scaling, we
located the square-lattice tricritical point [33] as K; = 1.643 175 9(1) and D; = 3.230 179 7(2); the tricritical
vacancy density is pr = 0.454 950 6(2). This result is obtained from the requirement that both the bulk
leading magnetic and energy-energy correlation lengths simultaneously reach their theoretical values. The
precision is considered to be sufficient for the present investigation.
On the L x L open cylinder, as for the dilute ¢ = 1 Potts model (11.9), the Hamiltonian of the BC model
can be expressed as the sum of the Hamiltonian in the torus geometry and their difference, which reads

L L
Ho/ksT—  Hp/ksT =K o180 — Kk Y (Se18as1,1 + SaLS0t1,0) +
z=1 z=1
L
Diay (s +520) —He Y (Se1+501), (11.13)
z=1 k

where H, is the surface magnetic field. In the right-hand-side of Eq. (11.13), the first term corresponds with
the geometric effect, and the remaining three terms describe the effects of the surface parameters K, Dy,
and H;.

11.3.1 Bulk criticality K < K,

For bulk couplings K < K, the phase transition along the critical line K.(D) is just Ising-like. Thus, in
the absence of surface magnetic fields H,, only the ordinary transitions occur on the open edges, and the
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Figure 11.5: Exponential decay of the vacancy density p along an L x 10L cylinder for the tricritical BC
model. The system size is chosen as L = 12, and r represents the distance to one open end.
The correlation length used for the horizontal scale is calculated as & = L/(2nXy), where
Xun = 1/5 is the bulk thermal scaling dimension. In the middle of the cylinder, p is close to
the tricritical value p; = 0.4 549 506(2). Deviations from the exponential behavior occur near
the edges (right-hand-side) and near the middle (not visible on this scale).

surface magnetic exponent is y,(fs) =1/2 [15,16].

11.3.2 Bulk tricriticality: K = K;, D = D;

When the bulk is at the tricritical point, the prediction from conformal field theory described by Eq. (11.4)
and the discussions in Sec. II indicate that intriguing phase transitions can occur on the open edges of the
BC model.

Ordinary edge transitions

As discussed above, the surface effects can be divided into two parts: the geometric effect and the surface
enhancements. To study the former effect only, we investigated the tricritical BC model on an open cylinder
with circumference L and length nL for n = 10. We took the surface parametersin Eq. (11.13) as kg = kg = 0
and Hy; = 0. The system sizes assumed even numbers in the range 8 < L < 24. Simulations used a
combination of Wolff and Metropolis steps. The former step flips Ising spins, while the latter step also
allows fluctuations of the vacancy density. The vacancy density p was sampled along the cylinder. The p
data for L = 12 are shown in Fig. 11.5. One observes that, without sufficient enhancements of Ky and Dy,
the open edges of the tricritical BC model are mainly occupied by the vacancies. This is analogous to the
case of the tricritical ¢ = 1 Potts model.

An explanation of the paradox mentioned after Eq. (11.4) can be given as follows. As mentioned in
Sec. I, the effect of a temperature-like perturbation is reflected by the bulk thermal exponent y;, and thus
the geometric effect described by the first term in Eq. (11.13) also increases as a function of y;. For the
critical Potts model (g < 4), y; is relatively small, so that the edges maintain strong critical correlations.
As g increases, however, the density of the vacancies increases and the edge critical correlations become
less strong. As a consequence, the surface magnetic field becomes less ‘effective’. On the tricritical branch
(g > 4), the geometric effect is so large that the edges are dominated by vacancies, and the surface magnetic
field becomes irrelevant. We mention that, although the edges have a considerable degree of disorder, and
the decay of this disorder into the bulk can be long-ranged, the bulk tricritical correlation lengths remain
divergent. This is reflected by the asymptotically exponential decay of the vacancy density p in Fig. 11.5,
which takes place with the predicted length scale . Thus, the bulk transition at K = K; and D = D; occurs
in the presence of ‘disordered’ edges. In analogy with the three-dimensional Ising model, we refer to this
phase transition as the ‘ordinary transition’.
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Under Cardy’s well-known conformal mapping [3], the semi-infinite cylinder is be transformed into a
semi-infinite plane. The exponential decay of correlations along the cylinder is covariantly transformed into
algebraic decay into the bulk of the semi-infinite plane. Thus, the thermal correlation length along the
cylinder reads & = L/(27 Xy ), with the leading thermal scaling dimension Xy = 2 — y; = 1/5 [20, 21].
According to the least-squares criterion, we fitted the p data by the formula

p(r,L) = ps + L72X0 [0 (r) + ¥(nL — r)](ap + a1 LY + agL™2 +---) (11.14)

with the function
W(r) = (et — g7/ Ly=2 X (11.15)

where r is the distance to one of the open ends. A justification of Egs. (11.14) and (11.15) can be found
in Refs. [14,34]. The term ¢(nL — r) in Eq. (11.14) is due to the symmetry between the positions r and
nL —r. The parameters ag, a1, and a2 are unknown constants, and y; = —1 is the leading irrelevant thermal
exponent of the tricritical ¢ = 2 universality class [20,21]. For L — oo and r = L/2, the bulk vacancy
density p(r, L) approaches the tricritical value p; = 0.4 549 506(2) [33]. We fixed the values of y; and p,
and discarded the data for small system sizes L < 8 and for small distances y < L/4. Then, the fit yields
X =0.198(3), in good agreement with the theoretical value X;; = 1/5.

Special phase transitions

As for the case of the tricritical ¢ = 1 Potts model, we expect that the geometric effect in the tricritical BC
model can be asymptotically compensated by the enhancements of surface parameters Ks and D,. To test
this expectation, we used a combination of the Wolff and Metropolis methods to simulate the BC model on
open cylinders with size L x L. The simulations were performed at bulk tricritical point mentioned above,
and we took the surface parameters as kg = 0 and H; = 0. The system sizes assumed 14 odd values in the
range 9 < L < 121, and we sampled the magnetization density and the vacancy density p for several values
of k. Further, we defined two dimensionless ratios as

Qv = (mg)Q/(nﬁf) and @ = <mslms2>2/<(mslm32)2> , (11.16)

where my, mg1, and mgy are the magnetization density on the lines y = (L +1)/2, y = 1, and y = L,
respectively. These dimensionless quantities are closely related to the Binder ratio, and they are useful in
Monte Carlo analyses of critical points, because their asymptotic values at criticality are universal.

The absolute value of the surface magnetization |m,| and the edge vacancy density ps for system size
L = 15 are shown in Figs. 11.6 and 11.7, respectively. These figures illustrate that, for coupling enhance-
ments ki > 0.6, the open edges are dominated by Ising spins so that spontaneous order occurs on the
one-dimensional edges. Further, the clean intersection of the @), data in Fig. 11.8 reveals a second-order
phase transition near k; = 0.56. We fitted the data of Qp and Qs by the formula

4
()
QUai, L) = Qe+ anlik — ko) FLPW by + by LV by L +
k=1
(s) (s)

baL¥* + c(k — Kpe) LYt 79 + n(k — kg )? LYt (11.17)
where the terms with by, by, and b3 account for finite-size corrections. The exponent y; = y; = —1 arises from
the leading irrelevant thermal scaling field [20,21]. More generally, we expect analytic finite-size corrections
with exponents y; = —n with integer n > 1. Thus, the exponents y», y3, and y, were taken as —2, —3,

and —4, respectively. The term with ¢ describes the ‘mixed’ effect of the relevant and the irrelevant thermal
scaling field, and the last term in Eq. (11.17) is due to the fact that the surface thermal scaling field can be
a nonlinear function of k. After a cutoff for small system sizes L < 11, the fit of @} yields Q. = 0.765(4),
ke = 0.5660(4), and y!¥ = 0.407(8), and the fit of Q, yields Q. = 0.566(3), ki = 0.5664(4), and
yt(z) = 0.395(7). These two fits are consistent with each other, and the results for yt(z) are equal to the exact
value 2/5 [23,24] within the estimated error margins.

185



09 r ~

0.7 r

Imy|

05 +

03 r A

01 best™ o
-02 0 02 04 06 08 1 12
Kk

Figure 11.6: Absolute value of the edge magnetization |ms| of the tricritical BC model vs. coupling en-
hancement kj. The other surface parameters are kg = 0 and Hy = 0, and the system size is
L =15.
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Figure 11.7: Edge vacancy density ps of the tricritical BC model vs. coupling enhancement k. The other
surface parameters are kg = 0 and Hg = 0, and the system size is L = 15.
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Figure 11.8: Bulk magnetic ratio @, of the tricritical BC model vs. coupling enhancement k. The other
surface parameters are kg = 0 and Hy; = 0, and the system sizes are L = 11 (+), 15 (O),

19 (0), 23 (A), 31 (x), and 39 ().
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Figure 11.9: Surface magnetic ratio (s of the tricritical BC model vs. chemical-potential enhancement kg4.
The other surface parameters are k;, = 0 and Hy = 0, and the system sizes are L = 9 (+),
13 (x), 17 (0), 21 (O), and 29 (A).

Near the above estimated special transition k; = K. and kg = 0, the surface magnetic susceptibility
xs = L(m?) was sampled, and the Monte Carlo data were fitted by

4
(s) (s)
Xs(kk, L) =10 + 11(Kk — Kigee) + 12(K — Iikc)z + L2¥ne 1 l E ap(k — nkc)kkats
k=0

+b1 LYt + by LY2 + b3 LY + ¢(k — ﬁkc)Lyt(z)"'yl +n(k — /@kc)2Lyt(§)] . (11.18)

The terms with rg, r1, and 72 come from differentiations of the analytical part of the free energy with respect
to the surface magnetic scaling field. We fixed the surface thermal exponent yt(z) at the value 2/5 [23,24], and
obtain k. = 0.5658(8) and y,(fs) = 0.914(8), where the error margins are quoted as two standard deviations.
The corresponding scaling dimension X\¥ = 1 — ¢'® = 0.086(8) is marginally consistent with the bulk

magnetic scaling dimension Xj = 3/40 but also with the exact value 1/10 [23,24]. We shall come back to
this point in Sec. V.

Just as kg, the enhancement k4 of the surface chemical potential also induces a ‘special transition’. This
is illustrated by the @5 data in Fig. 11.9 for the case kr = 0. The fit of the @, data by Eq. (11.17) yields a
critical point at k4. = —0.344(2). Using the same technique, we have determined a number of special critical
points in the parameter space (K, D), which are listed in Tab. 11.1. On this basis, the line of special edge
transitions is shown in Fig. 11.10. For the limit Ky — oo, the edge transition is first-order, and separates
a state with edges fully occupied by the vacancies from one with fully magnetized edges. From the relative
statistical weights of these phases, the transition is simply obtained as K,./Ds;. = 1. For the opposite
limit Dy — —o0, no vacancies occur on the edges. We simulated this limit for system sizes in the range
11 < L < 111. We still find a second-order transition at Ky, = K;(1+ xg.) = 0.1183(8). The surface critical
coupling strength K. is quite small in comparison with the bulk tricritical value K; = 1.6 431 759(1). Near
the critical point K., the data of the surface susceptibility x, were fitted by Eq. (11.18). We obtain the
surface magnetic exponent as y,(lss) = 0.098(2), in good agreement with the exact value 1/10 [23,24].

As indicated in Fig. 11.10, the line of the special transitions exhibits two bends near the limits Dy — +o0.
To display its behavior for large D; — —oo in more detail, this line is shown again in Fig. 11.11 in the
parameter space (Kj,e").

Extraordinary phase transitions

In the upper region of the critical line in Fig. 11.10, the edges and the bulk undergo a first- and a second-
order transition, respectively, when the bulk coupling K is varied, i.e., the surface magnetization density
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Figure 11.10: Line of special transitions of the tricritical BC model in the parameter space

(tanh K, tanh D). The symbols A represent the numerical data. When the bulk coupling K
is varied, the transition on the edge is first-order in the region above the curve.

Table 11.1: Numerical results for several special edge transition points of the tricritical BC model in the
space (K, Dy). The critical values are given in terms of the surface enhancements xy. and kgc;
the corresponding values of K. and Dy, are Ks. = K¢(1 + kge) and Kg. = De(1 + Kqe)-

Kae —o00 17 —1.6 —15 14
Kre —0.9280(4) —0.9050(4) —0.8964(4) —0.8845(4) —0.8686(4)
Kae —1.3 1.2 11 —1.0 —0.9

Kre —0.8474(4) —0.8175(4) —0.7778(7) —0.7252(7) —0.6576(7)
Kae —0.8 —0.7 —06 —0.45 —0.35

kre —0.5737(8) —0.4732(8) —0.3563(9) —0.1261(8) —0.0095(9)
Kae —0.15 0 0.6

kee 0.3096(8)  0.5662(4)  1.6665(8)

0.8

o1ft— ..
0 02040608 1 1214 16 18 2
exp Dy

Figure 11.11: Line of special transitions of the tricritical BC model in the parameter space (K, e”*).
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Figure 11.12: Bulk magnetization moment ratio @), of the tricritical BC model vs. surface coupling enhance-
ment k. The other surface parameters are kg = 0 and Hy; = 0. The data points +, x, OO, O,
A, ¢, and x represent L = 7,9, 11, 13, 17, 21, and 29, respectively. The clean intersection
of these data lines implies that, in addition to the ‘special’ transition ki = K. = 0.5662(5),
there is another ‘fixed’ point at ki =~ 0.81. However, in contrast to Fig. 11.8, the slope of these
lines is a decreasing function of the system size L. This means that this fixed point is stable
in the k; direction.

my displays a discontinuity. In comparison with the three-dimensional Ising model, this can be considered
to correspond with the coincidence of the ‘surface’ and the ‘extraordinary’ transitions. The existence of
spontaneous edge order is only possible because the bulk is tricritical. At this point, spins on the edges
in effect interact via sufficiently long-ranged bulk correlations, so that also the edge correlations become
long-ranged.

It seems reasonable to expect that the bulk critical properties are reflected on the edges even if the edge
transition is first order. As a test, we simulated the tricritical BC model for k; = 0 and x; > 0.6. The
system sizes were taken in the range 9 < L < 185, and part of the @), data are shown in Fig. 11.12. The
clean intersection in Fig. 11.12 indicates a fixed point near x; = 0.81. The decreasing slope as a function
of L indicates that this fixed point is stable in the kj, direction. Naturally, the question arises what critical
exponent governs the renormalization flow in the kj direction. For this purpose, we fitted the @), data by

Eq. (11.17), where the exponent y*) is replaced by y'®. After discarding data for small system sizes L < 9,

we obtain ). = 0.892(2) and yt(? = —0.80(5). We note that, for an arbitrary d-dimensional system, a surface
thermal exponent y;s = —1 has been reported [35] to occur. However, the result yt(s) = —0.80(5) is slightly
different from this exact value, which dominates the range of the ordinary transitions.

For a further illustration of the edge critical properties in the range of the extraordinary transition, we

fitted the m? data at kj = 0.805, which are listed in Tab. 11.2, by the formula
mﬁ = a% + LiZX’S? (bo + b1Lyt(z) + bQLyi + b3L72 + b4L73) 5 (1119)

where the term ag represents the spontaneous edge magnetization density. The exponent yt(? was fixed at

the estimated value —0.80(5), and we obtain ap = 0.94776(4) and X,(l? = 0.3987(15) = 2/5. Thus, critical
correlations still occur on the edges.

Field-driven edge transition

It seems reasonable that, in analogy with the enhancements of the surface couplings K and the chemical
potential Dy, the geometric effect can also be compensated by the surface magnetic field Hs. Thus, we
simulated the tricritical BC model for surface parameters kg = k1, = 0 but Hg # 0. The edge magnetization
density ms is shown versus Hy in Fig. 11.13 for system size L = 32. It behaves consistently with the
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Table 11.2: Monte Carlo data for the second moment m

2
s

of the surface magnetization density at the ex-
traordinary transition in the tricritical BC model. The surface parameters are Hs = 0, kg = 0,

and k; = 0.805.

I 9 11 13 15 17
m?  91720(1) .91560(1) .91399(1) .91262(1) .91145(1)
I 19 21 23 % 29
m?  .91044(1) .90960(1) .90886(1) .90821(1) .90717(1)
L 33 37 45 55 65
m?  .90631(1) .90562(1) .90459(1) .90367(1) .90299(1)
I % 105 145 185
m2  .90206(1) .90151(1) .90076(1) .90031(1)
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Figure 11.13: Edge magnetization density ms of the tricritical BC model vs. surface magnetic field H; The
system size is L = 32, and surface parameters are kg = 0 and ki = 0.

above expectation. To test for the presence of a field-driven edge phase transition, we defined the ratio
Qsy = ((ms — (ms))%)?2/{(ms — (ms))*). The Q,; data in the range 8 < L < 48 were fitted by Eq. (11.17),
and we obtain Q. = 0.4419(10), Hy, = 0.6772(10), and y . = 0.405(10) ~ 2/5. This result, in particular
the relevant exponent y};s, confirms the existence of the phase transition.

The phase diagram in the parameter space (ky, Hs) is sketched in Fig. 11.14 for k4 = 0. The numerical
results for the estimated critical points, as denoted by x in Fig. 11.14, are listed in Tab. 11.3. It is clear
from Fig. 11.14 that the special transition, at k. = 0.5662(4), H; = 0, behaves as a ‘multicritical’ point,
because several phase transition lines merge in this point.

Table 11.3: Numerical determinations of several field-driven edge transitions for the tricritical BC model in
the parameter space (ky, Hs). The surface chemical-potential enhancement is k4 = 0.

rkpe 045 0.4 0.3 0.2
H,. 0.0661(10) 0.1212(8)  0.2500(10) 0.3880(8)
Fre 0.1 0 —0.2 —05

H,. 0.5315(10) 0.6772(10) 0.9720(10) 1.4080(10)
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Figure 11.14: Sketch of the phase transitions of the tricritical BC model in the parameter space (ki, Hy)
with kg = 0. The fixed points are denoted by the black circles, and the arrows show the
direction of the renormalization flow.
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Figure 11.15: Hysteresis loop of the bulk vacancy density p, of the BC model with K = 1.8 and D = 3.55535,
vs. surface coupling enhancement xj. The system size is L = 63.

11.3.3 Bulk first-order range: K > K,

For K > K, the bulk of the BC model exhibits a line of first-order transitions, which separates the fer-
romagnetic phases from the vacancy-dominated phase. On this transition line, just as for the tricritical
q = 1 Potts model, the surface parameters can also induce first-order transitions. These transitions occur
simultaneously on the edges and in the bulk. As an example, we simulated the BC model for K = 1.8 and
D = 3.55535, which is very close to the line of the bulk transitions. The surface parameters were fixed at
kq = Hg = 0, and we sampled the bulk and edge vacancy densities, p, and ps, on the lines y = (L + 1)/2
and y = 1, L, respectively. The hysteresis loops of p, and p, for system size L = 63 are shown in Figs. 11.15
and 11.16, respectively. The hysteresis loop of ps is rather asymmetric.

According to the investigations in this section, the edge phase transitions of the Blume-Capel model are
sketched in Fig. 11.17. The shaded area represents the surface of bulk phase transitions. For K < K, only
the ordinary transitions occur on the edges, so that all renormalization flow lines in this part of the critical
surface end in a single fixed point. Along the bulk tricritical line K = K; and D = Dy, there are three
fixed points, representing the ordinary, the special, and the extraordinary phase transitions, respectively.
For K > K, there is a line of first-order transitions, which is denoted as the dashed line in Fig. 11.17. On
the left- and the right-hand-side of this line, the edges and the bulk of the BC model are dominated by the
vacancies and the Ising spins, respectively.
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Figure 11.16: Hysteresis loop of the edge vacancy density ps of the BC model with K = 1.8 and D = 3.55535,
vs. surface coupling enhancement xj. The system size is L = 63.
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Figure 11.17: Sketch of the edge phase diagram of the BC model for H; = 0. The fixed points are shown as
black circles, and the arrows show the renormalization flow.
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11.4 Tricritical 3-state Potts model

The Hamiltonian of the dilute ¢ = 3 Potts model in the torus geometry is described by Eq. (11.5) with
q = 3. The bulk phase diagram of this model is analogous to that of the Blume-Capel model described
by Eq. (11.12). At tricriticality, the leading and subleading bulk thermal exponents are y;; = 12/7 and
Y2 = 4/7, respectively, and the magnetic ones are y1 = 40/21 and yp» = 22/21 [20,21]. By means of
a sparse transfer-matrix technique, the tricritical point on the square lattice has been determined [33] as
K, =1.649913(5) and D; = 3.152173(10); the tricritical vacancy density is p; = 0.34 572(5).

On the L x L open cylinder, the Hamiltonian of the dilute ¢ = 3 Potts model reads

L L
Ho/ksT — Hp/ksT = KZ 60'm,1,0'm,L(1 - 6Uw.170) — Kky, 2[6071.170w+1,1
=1

z=1

L
(1 - 60'm,170) + 6aw,L7Uw+1,L(1 - 60'm,L,0)] — Dkq 2(60}0,170 + 60'm,L,0) -

z=1
L H L
sl
Hy Z((sam.hl + 5%.L71) + 9 Z((sam.hZ + 60':0,Ly2) +
k=1 k=1
Hg
28 kz_;((slfm.lb‘ + 6Um.L73) . (1120)

The surface magnetic field Hy; serves to enhance the statistical weight of the Potts state ¢ = 1 with respect
to states 0 =2 and o = 3.

In analogy with the BC model, the system (11.20) has a line of bulk critical points for K < K}, in the
same universality class as the ‘pure’ ¢ = 3 Potts model. Thus, only the ordinary phase transition occurs on
the open edges, with a surface magnetic exponent y,(:;) = 1/3, as predicted by Eq. (11.4). For K > K, a
first-order transition can be induced by enhancements of the surface couplings and the chemical potential.

In the present work, we concentrate on the case that the bulk is precisely at the tricritical point.

11.4.1 Special phase transitions

We simulated the tricritical ¢ = 3 Potts model (11.20) on the L x L open cylinder by means of a combination
of the Metropolis and Wolff methods, with the linear size in the range 7 < L < 65. The bulk parameters
were set at the aforementioned tricritical point, and the surface parameters at Hsy = 0 and kg = 0. The
edge order parameter was defined as m? = [(p1 — p2)? + (p2 — p3)* + (p3 — p1)?]/2, in which p; is the density
of the edge spins in state i. Accordingly, we sampled the ratio Q51 = (m2)2/(m?). The Q,; data are partly
shown in Fig. 11.18. They indicate a special edge transition near x; = 0.7. The @Qs; data were fitted by
Eq. (11.17), in which the correction exponents were fixed at y1 = y; = —10/7 [3], y2 = —1, y3 = —2, and
ys = —3. We obtain Q1. = 0.941(2), kke = 0.702(2), and 4> = 0.282(5). Near this special phase transition,
ie., kpe = 0.702(2) and kg = 0, we also analyzed the edge susceptibility xs by Eq. (11.18). The fit yields

X\ =0.133(15).

11.4.2 Field-driven edge transitions

Next, we simulated the tricritical ¢ = 3 Potts model (11.20) in the presence of the surface magnetic field
H,; the other surface enhancements were taken as kK = kg = 0. The system sizes were taken as 10 odd
values in the range 7 < L < 49, and we sampled the bulk ratio ), in Eq. (11.16). Analogous to the case of
the tricritical BC model, edge phase transitions are introduced by the field Hy;. Nevertheless, the symmetry
between the positive and the negative field is now absent. The @, data were fitted by Eq. (11.17), and we
found two edge transitions at Hg;. = 0.5710(15) and —2.27(3). At these two points, the asymptotic values of
the ratio @y are 0.462(4) and 0.232(8), respectively; those of the renormalization exponent y!  are 0.278(8)
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Figure 11.18: Surface magnetic ratio Qs of the tricritical ¢ = 3 model, vs. coupling enhancement . The
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Figure 11.19: Sketch of the edge phase diagram of the tricritical ¢ = 3 Potts model in the (Hyg1, ki) plane for
kq = 0.The fixed points are denoted by black circles, and the arrows show the renormalization
flow.

and 0.280(8), respectively, which are identical to each other within the estimated error margins. From these
results, we conjecture the loci of the edge transitions in the plane (ky, Hs1) as sketched in Fig. 11.19.

In addition to Hgi, the surface magnetic fields, Hso and Hgz, can also be applied to the Potts sys-
tem (11.20). Thus, for the case ks = Kk, = 0, Fig. 11.20 illustrates the edge phase diagram in the space
(Hsh Hsl ) HS3)'

11.5 Discussion

By means of Monte Carlo simulations and finite-size scaling, we have found that rich surface critical phe-
nomena still occur in two-dimensional systems with short-range interactions only. In particular, when the
bulk of a Potts model is at the tricritical point, edge transitions are introduced by enhancements of the
surface couplings and the chemical potential, and by a surface magnetic field. For the critical branch of the
Potts model, however, only the ordinary phase transition exists on the one-dimensional edges. Thus, one
concludes that, in two dimensions, it depends on the strength of bulk critical fluctuations whether other
types of edge phase transitions can occur.

Let us now address the question what are the exact values of the critical exponents describing the edge
phase transitions described in this work. At the special transitions, one has the exact result yt(z) (g=1)=1/2
for the tricritical ¢ = 1 Potts model. For the case of the tricritical Blume-Capel model, in the context of
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Figure 11.20: Sketch of the edge phase diagram of the tricritical ¢ = 3 Potts model as a function the surface
fields for kg = ki, = 0. The fixed points are denoted by black circles, and the arrows illustrate
the renormalization flows.

Table 11.4: Theoretical predictions of the surface thermal and magnetic exponents, yt(z) and y,(fs), at the

special phase transitions for the tricritical ¢g-state Potts model with ¢ = 1, 2, 3, and 4. The
parameter g is the Coulomb gas coupling constant.

Model ¢=0 ¢=1 ¢g=2 ¢g=3 q¢qg=4
g 6 16/3 5 14/3 4
y® 2/3 1/2  2/5 2/T 0

y') 1 15/16 9/10 6/7  3/4

superconformal field theory, it has been predicted that the surface thermal and magnetic exponents are [23,24]
yt(z) = 2/5 and y,(fs) = 9/10, respectively. For the whole tricritical branch of the Potts model, it has been
recently conjectured [28] that, in terms of the Coulomb gas coupling constant g, the exact expressions of y,(fs)

and yt(z) read

yp) = (39—6)/29 and yf) =2-8/g, (11.21)

respectively. These values of y,(fs) and yt(z) are one half of the leading and subleading bulk thermal exponents,

ye1 and yo, respectively. For the tricritical Potts models with ¢ = 0, 1, 2, 3, and 4, the results according to
Eq. (11.21) are listed in Tab. 11.4. A remarkable feature is that the expression of yt(z) in Eq. (11.21) can be
simply obtained by substituting g = 16/¢’ in Eq. (11.4), which describes the surface magnetic exponent y,(l(;)
at the ordinary phase transitions. The underlying meaning of this procedure is clear for the tricritical ¢ =1
Potts model, because the special transition of this model is just the ordinary transition of the Ising model
and the Coulomb gas coupling of these two models are g = 16/3 and g = 3, respectively. For a pair of critical
and tricritical Potts models, we note the relation gg' = 16 has been reported [36,37] in other cases. Thus,
Eq. (11.21) might mean that the effect of surface couplings K in a tricritical Potts model is equivalent with
that of the magnetic field H; in a critical system, the two models being related as gg' = 16.

For the tricritical ¢ = 1 Potts model, Eq. (11.21) predicts a surface magnetic exponent y,(lss) =15/16. It is
known that the bulk Potts magnetic scaling dimension X} = 5/96 is the fractal dimension of Ising clusters,
which connect nearest-neighbor Ising spins of the same sign. Thus, one would expect that the exponent y,(fs)
governs the scaling behavior of the correlation function g (r), which is defined as the probability that a pair
of edge points is in the same Ising cluster. However, it has been shown that the decay of g(¥) (r) is described

by a geometric scaling dimension X, = 1/6 [28], different from X ,(Lss) = 1/16. The physical interpretation of

y,(fs) is so far not clear.
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For the tricritical BC model, the results obtained from Eq. (11.21) are in agreement with the predictions in

Ref. [23,24]. In particular, the prediction ygs) = 2/5 is well confirmed by our numerical result y(s) = 0.395(7).

However, the exact value y,(L) = 9/10 is only marginally consistent with the result y(s) = 0.914(8) for the case
kqa = Hg = 0 and kg = 0.5662(4). On the other hand at the critical point k. = —0.9280(4), kg = —o0,
the result y,(L) = 0.902(2) is in good agreement with y = 9/10. This might be taken as a suggestion that
the end point of the line of special transitions at kg = —oo in Fig. 11.10 acts as an unstable fixed point with
the expected exponent y,(L) = 9/10, while the rest of the line is attracted by another fixed point. However,
the numerical evidence is only marginal, and moreover, if the end point at kg = —oc0 is a fixed point, then
one would in general expect that the line of special transitions, when parametrized by the activity of the
vacancies and the surface coupling enhancement, displays a singularity at k4 = —oo. No sign of such a
singularity is visible in Fig. 11.11.

For the tricritical ¢ = 3 model, the predictions in Tab. 11.4 are consistent with the numerical determi-
nations yt(s) =0.282(5) and y(s) =0.867(15).

The ¢ = 4 Potts model is a marginal case for several reasons. First, the critical and the tricritical
branch of the Potts model join at ¢ = 4. Second, Eq. (11.4) predicts that, at the ordinary phase transitions,
the surface magnetic scaling field is marginal, i.e., y(o) = 0. Third, Eq. (11.21) yields 5 = 0, so that
the surface coupling and the chemical-potential enhancement become marginal. However, the prediction
yhss) = 3/4 according to Eq. (11.21) is apparently different from the exponent y( °) = (. The result yt(z) =0
also differs from the existing surface thermal exponent y;s = —1 [35]. These phenomena indicate that there
exists a special phase transition for the ¢ = 4 Potts model.
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