

Y. Xiong

The author presented on this page has published more than 10 articles in Angewandte Chemie in the last 10 years, most recently: "Van der Waals Heterostructures Comprised of Ultrathin Polymer Nanosheets for Efficient Z-Scheme Overall Water Splitting": L. Wang, X. Zheng, L. Chen, Y. Xiong, H. Xu, Angew. Chem. Int. Ed. 2018, 57, 3454; Angew. Chem. 2018, 130, 3512.

The work of Y. Xiong has been featured on the back cover of Angewandte Chemie:

"Surface Polarization Matters: Enhancing the Hydrogen Evolution Reaction by Shrinking Pt Shells in Pt-Pd-Graphene Stack Structures": S. Bai, C. Wang, M. Deng, M. Gong, Y. Bai, J. Jiang, Y. Xiong, Angew. Chem. Int. Ed. 2014, 53, 12120; Angew. Chem. 2014, 126, 12316.

Yujie Xiong

Date of birth: July 17, 1979

Education:

Position: Professor of Chemistry, University of Science and Technology of China

E-mail: yjxiong@ustc.edu.cn

Homepage: http://staff.ustc.edu.cn/~yjxiong/

ORCID: 0000-0002-1995-8257

2000 BSc, University of Science and Technology of China

2004 PhD with Prof. Yi Xie, University of Science and Technology of China 2004–2007 Postdoctoral fellow with Prof. Younan Xia, University of Washington

2007-2009 Research associate with Prof. John A. Rogers, University of Illinois at Urbana-

Champaign

Awards: 2017 National Science Fund for Distinguished Young Scholars, National Natural Science

Foundation of China (NSFC); 2017 Fellow of the Royal Society of Chemistry; 2018

Distinguished Lectureship Award, Chemical Society of Japan

Current research Plasmonic catalysis and photocatalysis; catalytic conversion of carbon resources; materials

interests: surface and interface
Hobbies: Swimming; traveling; reading

The best advice I have ever been given is not to let my knowledge limit my imagination.

My favorite place on earth is Mount Rainier in Washington State (USA).

The most important thing I learned from my parents is the freedom of choice.

If I could have dinner with three famous scientists from history, they would be Alfred Nobel, Albert Einstein, and Michael Faraday.

And I would ask them to develop a collaborative project that can demonstrate the combination of theoretical physics and chemistry with applied science.

The most amusing chemistry adventure in my career was the finding that nanomaterials were produced in an autoclave where an explosive reaction unexpectedly happened.

What I look for first in a publication is the figures, which should be a carefully organized and presented set of data to support hypotheses and conclusions.

When I'm frustrated, I go swimming for two kilometers to gather my spirit.

My best investment is the time spent with my family.

My favorite quote is "Use what talent you possess; the woods would be very silent if no birds sang there except those that sang best" (Henry van Dyke).

If I were not a scientist, I would be a writer of novels.

My 5 top papers:

- "Isolation of Cu Atoms in Pd Lattice: Forming Highly Selective Sites for Photocatalytic Conversion of CO₂ to CH₄": R. Long et al., J. Am. Chem. Soc. 2017, 139, 4486. (Identification of bimetallic atom pairs as catalytically active sites for CO₂ activation in photocatalysis.)
- "Oxide Defect Engineering Enables to Couple Solar Energy into Oxygen Activation": N. Zhang et al., J. Am. Chem. Soc. 2016, 138, 8928. (Demonstration of oxygen vacancies as catalytically active sites for O₂ activation in photocatalysis.)
- 3. "Efficient Coupling Solar Energy into Catalytic Hydrogenation by Well-Designed Palladium Nanostructures": R. Long et al., *Angew. Chem. Int. Ed.* **2015**, *54*, 2425; *Angew. Chem.* **2015**, *127*, 2455. (Development

- of a palladium nanostructure for surface plasmondriven catalytic hydrogenation.)
- "Refining Defect States in W₁₈O₄₉ by Mo Doping: A Strategy for Tuning N₂ Activation towards Solar-Driven Nitrogen Fixation": N. Zhang et al., *J. Am. Chem. Soc.* 2018, 140, 9434. (Integration of defect engineering with elemental doping for enhanced nitrogen activation.)
- "Surface Facet of Palladium Nanocrystals: A Key Parameter to the Activation of Molecular Oxygen for Organic Catalysis and Cancer Treatment": R. Long et al., J. Am. Chem. Soc. 2013, 135, 3200. (Elucidation of the mechanism for O₂ activation on a palladium surface.)

International Edition: DOI: 10.1002/anie.201808856 German Edition: DOI: 10.1002/ange.201808856