
Operating Systems

Prof. Yongkun Li
中科大-计算机学院特任教授
http:staff.ustc.edu.cn/~ykli

Chapter 1
Overview of an Operating System

1

Objectives

• Overview of OS

– Overview of Computer System: Organization & Architecture

– What is an OS

– OS Operation: Interrupt-driven via system call

• Major OS Components

– Process Management

– Memory Management

– Storage Management

• Kernel Data Structures

• Misc: Computing Environments & Open-Sourced OS

What is an Operating System?

• According to your experience…

– Networking;

– Storage;

– Multimedia;

– Gaming;

– What else?

3

None of the above were about the OS!

Before we talk about OS…

Overview of Computer System
 -System Organization
 -Storage Structure
 -System Architecture

4

Computer System Organization

• Computer-system organization

– One or more CPUs, device controllers connect through
common bus providing access to shared memory

– Concurrent execution of CPUs and devices competing for
memory cycles

Computer-System Organization

• I/O devices and the CPU can execute concurrently
– Each device controller is in charge of a particular device type

– Each device controller has a local buffer

– CPU moves data from/to main memory to/from local buffers

– Device controller informs CPU that it has finished its operation by
causing an interrupt

Computer Startup

• bootstrap program is loaded at power-up or reboot

– Typically stored in ROM or EPROM, generally known as
firmware

– Initializes all aspects of system

– Loads operating system kernel into memory and starts
execution

• System processes or system daemons

– Run the entire time the kernel is running

– On UNIX, the first system process is “init”

• After fully booted, waits for events to occur

– Signaled by interrupt

Interrupt Handling

• Interrupt can be triggered by hardware or software

– Hardware sends signal to CPU

– Software executes a special operation: system call

• Interrupt procedure

– CPU stops what is doing

– Execute the service routine for the interrupt

– CPU resumes

• Operating system is interrupt driven

Interrupt Timeline

Common Functions of Interrupts

• Each computer design has its own interrupt mechanism

• Interrupt transfers control to the interrupt service routine

– A table of pointers to interrupt routines, the interrupt vector, can
be used to provide necessary speed

– The table of pointers is stored in low memory

• Interrupt architecture must save the address of the
interrupted instruction

– Modern architectures store the return address on system stack

Overview of Computer System
 -System Organization
 -Storage Structure
 -System Architecture

11

Storage Structure

• Storage systems organized in hierarchy

– Speed

– Cost

– Volatility

Storage Structure

• Main memory

– CPU can load instructions only from memory (only large
storage media that the CPU can access directly)

– Random access, typically small size and volatile

– All forms of memory provide an array of bytes

• Each byte has its own address

• Interaction: load & store (memory <-> register)

• Instruction-execution cycle

– Fetch an instruction from memory and store in register

– Decode instruction (fetch operands if necessary)

– Store result back to memory

Storage Structure

• Secondary storage – extension of main memory that
provides large nonvolatile storage capacity

– Hard disks – rigid metal or glass platters covered with
magnetic recording material

• Disk surface is logically divided into tracks, which are subdivided into
sectors

• The disk controller determines the logical interaction between the
device and the computer

– Solid-state disks – faster than hard disks, nonvolatile

• Various technologies

• Becoming more popular

Caching

• Caching – copying information into faster storage
system; main memory can be viewed as a cache for
secondary storage

• Faster storage (cache) checked first to determine if
information is there
– If it is, information used directly from the cache (fast)

– If not, data copied to cache and used there

• Cache smaller than storage being cached
– Cache management important design problem

– Cache size and replacement policy

• Important principle, performed at many levels in a
computer (in hardware, operating system, software)

I/O Structure
• Storage is only one of many types of I/O devices

• Device controller
– More than one device may be attached

– Local buffer storage & a set of registers

• Device driver: for each device controller to manage I/O,
provides uniform interface between controller and kernel

• Interrupt-driven I/O
– Device driver loads registers within the controller

– Controller examines the registers to decide what action to take

– Device controller starts data transfer to its local buffer

– Informs driver via an interrupt and returns control to OS

Direct Memory Access Structure

• Used for high-speed I/O devices able to transmit
information at close to memory speeds

• Device controller transfers blocks of data from
buffer storage directly to main memory without
CPU intervention

• Only one interrupt is generated per block, rather
than the one interrupt per byte

How a Modern Computer Works

Overview of Computer System
 -System Organization
 -Storage Structure
 -System Architecture

19

Computer-System Architecture

• Most systems use a single general-purpose
processor

– One main CPU capable of executing general-purpose
instruction set

• May have special-purpose processors as well

– Device-specific processors: disk, keyboard, etc…

– Run a limited instruction set

– Do not run user processes

– Managed by OS or built into the hardware

Computer-System Architecture

• Multiprocessors systems grow in use and importance
– Also known as parallel systems, multicore systems

• Advantages include:
– Increased throughput

– Economy of scale: share peripherals, mass storage and
power supply

– Increased reliability – graceful degradation or fault tolerance

• Two types
– Asymmetric Multiprocessing – each processor is assigned a

specie task: boss-worker relationship

– Symmetric Multiprocessing (SMP) – each processor
performs all tasks: all processors are peers

Symmetric Multiprocessing Architecture

• Symmetric Multiprocessing (SMP)

– Result from hardware or software

– Adds CPUs to increase computing power

– Causes non-uniform memory access (NUMA)

Multicore

• Multicore: include multiple cores on a single chip

• More efficient
– On-chip communication is faster than between-chip

communication

– Less power

• Dual-core design

Clustered Systems

• Like multiprocessor systems, but multiple systems
working together

– Usually sharing storage via a storage-area network (SAN)

– Provides a high-availability service which survives failures

• Asymmetric clustering has one machine in hot-standby mode

• Symmetric clustering has multiple nodes running applications,
monitoring each other

– Some clusters are for high-performance computing (HPC)

• Applications must be written to use parallelization

– Some have distributed lock manager (DLM) to avoid
conflicting operations

Clustered Systems

What is an Operating System?

26

Where is the OS?

• Let’s start understanding an OS from this question:
Where is it?

27

Where is the OS?

• Four components of a computer system

– Users: People, machines, other computers

– Hardware – provides basic computing resources (CPU,
memory, I/O devices)

– App. programs – define the ways in which the sys.
resources are used to solve the computing problems

• Word processors, compilers, web browsers, database systems,
video games, etc.

– Operating system

• Controls and coordinates use of hardware among various
applications and users

• It stands between the hardware and the user.

– A program that acts as an intermediary between a user of a
computer and the computer hardware

• Operating system goals:

– Execute user programs & make solving user problems easier

– Make the computer system convenient to use

– Use the computer hardware in an efficient manner

– Design tradeoff between convenient and efficiency

What is an Operating System?

User Hardware

Operating
System

What is an Operating System?

• How good is this design?

– The user does not have to program the hardware
directly.

• It hides all the troublesome operations of the hardware.

Example. The OS, on one hand, hides the physical system memory away from
you. On the other hand, it tells you that there is system memory available
when you run your applications.

User Hardware

Operating
System

Complex work…Process requests

30

What is an Operating System?

• Processes as the starting point!

– Whatever programs you run, you create processes.

• i.e., you need processes to open files, utilize system memory,
listen to music, etc.

– So, process lifecycle, process management, and other
related issues are essential topics of this course.

User Hardware
Process

Operating
System

31

What is an Operating System?

• Example (step 1)

User Hardware
Process

$ ls

ls

Most commands you type in the shell
are the same as starting a new process.

Operating
System

ls

32

What is an Operating System?

• Example (step 2)

User Hardware
Process File System

$ ls

ls

The operating system contains the codes
that are needed to work with the file
system.

The codes are called the kernel.

Operating
System

33

What is an Operating System?

• Example (step 3)

User Hardware
Process File System

$ ls

ls

The file system module inside the
operating system knows how to work
with devices, using device drivers.

Operating
System

34

What is an Operating System?

• Example (step 4)

User Hardware
Process

Operating
System

File System

$ ls

ls

Of course, the operating system will
allocate memory for the results.

Memory

35

What is an Operating System?

• Example (final step)

User Hardware
Process

Operating
System

File System

$ ls
. .. index.html
$ _

ls

The memory management sub-system
will copy the result to the memory of the
process.

At last, the result returns.

Memory

Return

36

What Operating Systems Do

• System View

– OS is a control program

• Controls execution of programs to prevent errors and improper
use of the computer

– OS is a resource allocator

• Manages all resources

• Decides between conflicting requests for efficient and fair
resource use

What Operating Systems Do

• Depends on the point of view

• User View
– PC users want convenience, ease of use and good

performance, don’t care about resource utilization

– But shared computer such as mainframe or minicomputer
must keep all users happy: maximize resource utilization

– Users of dedicate systems such as workstations have
dedicated resources but frequently use shared resources
from servers: tradeoff

– Mobile computers are resource poor, optimized for usability
and battery life

– Some computers have little or no user interface, such as
embedded computers in devices and automobiles

Operating System Definition

• No universally accepted definition of what is part of
the operating system

– Operating systems grew increasingly sophisticated

– Microsoft case

• Current Mobile OS

– Once again the number of features constituting the OS is
increasing

– Core kernel + Middleware

• Databases, multimedia, graphics, etc…

Operating System Definition

• No universally accepted definition

• Simple viewpoint
– “Everything a vendor ships when you order an operating

system” is a good approximation

– But varies wildly

• Common definition
– “The one program running at all times on the computer”

is the kernel.

• Everything else is either
– a system program (ships with the operating system) , or

– an application program.

Operating System Operations

41

Multiprogramming
• Operating system provides the environments within which

programs are executed
– Single user cannot keep CPU and I/O devices busy at all times

• Multiprogramming needed for efficiency: most important
aspect of OS
– Multiprogramming organizes jobs (code and data) so CPU always

has one to execute

– All jobs are initially kept on disk in the job pool, a subset of total
jobs in system is kept in memory,

– One job selected and run via job scheduling

– When it has to wait (for I/O for example), OS switches to another
job

Memory Layout for Multi-programmed System

Multitasking

• Time sharing (multitasking) is logical extension in which
CPU switches jobs so frequently that users can interact with
each job while it is running, creating interactive computing
– Response time should be < 1 second

• Allow many users to share the computer
– Each user has at least one program executing in memory
process

• Issues
– If several jobs ready to run at the same time CPU scheduling

– If processes don’t fit in memory, swapping moves them in and
out to run

– Virtual memory allows execution of processes not completely in
memory

Interrupt Driven Mechanism

• Interrupt driven (hardware and software)
– Hardware interrupt by one of the devices

– Software interrupt (exception or trap):
• Software error (e.g., division by zero)

• Request for operating system service

• Other process problems include infinite loop, processes
modifying each other or the operating system

– An interrupt service routine is provided to deal with the
interrupt

Dual-mode Operation

• Dual-mode operation allows OS to protect itself and
other system components
– User mode and kernel mode

– Mode bit provided by hardware
• Provides ability to distinguish when system is running user

code or kernel code

• Some instructions designated as privileged, only executable in
kernel mode

• System call changes mode to kernel, return from call resets it
to user

Transition from User to Kernel Mode

• At system boot time, the hardware starts in kernel mode

• OS is loaded and starts user application in user mode

• Interrupt occurs, the hardware switches from user mode to
kernel mode

• Whenever the OS gains control, it is in kernel mode

System Calls

• Informally, a system call is similar to a function call,
but…

– The function implementation is inside the OS.

– We name it the OS kernel.

int add_function(int a, int b) {
 return (a + b);
}

int main(void) {
 int result;
 result = add_function(a,b);
 return 0;
}

// this is a dummy example…

Function
implementation.

This is a
function call.

48

System Calls

• System calls are the programming interface between
processes and the OS kernel

– System calls provide the means for a user program to ask the
operating system to perform tasks

• A system call usually takes the form of a trap to a specific
location in the interrupt vector, treated by the hardware as
a software interrupt

• The system call service routine is a part of the OS

Interacting with the OS

Process

./program

Process

int main(void) {
 time(NULL);
 return 0;
}

//somewhere in the kernel.
int time (time_t * t) {

}

OS Kernel

Invoke & return

Here contains codes that
access the hardware clock!

50

System calls

• The system calls are usually
– primitive,

– important, and

– fundamental.

– e.g., the time() system call.

• Roughly speaking, we can categorize system calls as
follows:

Process File System Memory

Security Device

51

System calls VS Library function calls

• If a call is not system calls, then they are library calls
(or function calls)!

• Take fopen() as an example.
– fopen() invokes the system call open().

– So, why people invented fopen()?

– Because open() is too primitive and is not programmer-
friendly!

fopen(“hello.txt”, “w”);

open(“hello.txt”, O_WRONLY | O_CREAT | O_TRUNC, 0666);

Library call

System call

52

System calls VS Library function calls

• Library functions are usually compiled and packed
inside an object called the library file.

– In windows: DLL – dynamically linked library.

– In Linux: SO – shared objects.

Application
code invoking
fopen()

A library file containing
the implementation of

fopen().
OS Kernel

int open(......)

Big picture

53

OS Standards

• Who defines the system calls? Functionalities?
Arguments? Return values?

• There are standards!

Standards Full Name Example OS

POSIX Portable Operating
System Interface

Linux

BSD Berkeley Software
Distribution

Mac OS Darwin

SVR4 System V (five) Release 4 Solaris Unix

54

Introduction to Operating System
Components

Process

55

Process OR Program?

• A process is not a program!

ls -R /
Recursively print the directory entries,

starting from the directory ‘/’
Command A

ls -R /home
Recursively print the directory entries,

starting from the directory ‘/home’
Command B

Similarity Difference

Both use the program file “/bin/ls”. The program arguments are different.

The processes’ internal status are different,

such as running time.

Let’s consider the following two commands

56

Program != Process

• A process is an execution instance of a program.
– More than one process can execute the same program code
– Later, you’ll find that a process is not bounded to execute just

one program!

• A process is active.
– A process has its local states concerning the execution. E.g.,

• which line of codes it is running;
• which CPU core (if there are many) it is running on.

– The local states change over time.

• Commands about processes (and hopefully you’ve
tried them before) – e.g., ps & top.

57

Process-Related Tools

• The tool “ps” can report a vast amount of

information about every process in the system
– Try “ps -ef”.

This column shows the unique
identification number of a process,
called Process ID, or PID for short.

Hint: you can treat ps as the short-
form of “process status”

$ ps
 PID TTY TIME CMD
1200 ... 00:00:00 bash
1234 ... 00:00:00 ps
$ _

By the way, this is called shell.

58

Shell – a process launching pad

• So, what is going on inside that shell?
– The shell creates a new process, and is called a child

process of the shell.

• The child process then executes the command “ps”.

$ ps
 PID TTY TIME CMD
1200 ... 00:00:00 bash
1234 ... 00:00:00 ps
$ _

Shell – the
parent process

ps – the child
process

Parent-child
relationship

59

Process Hierarchy

• Process relationship:

– A parent process will have its child process.

– Also, a child process will have its child processes.

– This form a tree hierarchy.

Process A

Process B

Process C

Process D

Process E Process F

E.g., “Process E” is the shell and “Process F” is “ps”.

60

Process Summary
• A process is an execution instance of a program. It is a unit

of work within the system.
– Program is a passive entity, process is an active entity.

• Process needs resources to accomplish its task, process
termination requires reclaim of any reusable resources
– CPU, memory, I/O, files, Initialization data

• Single-threaded process has one program counter
specifying location of next instruction to execute, multi-
threaded process has one program counter per thread
– Process executes instructions sequentially, one at a time, until

completion

• Typically, system has many processes, some user, some
operating system running concurrently

Process Management Activities

• The operating system is responsible for the
following activities in connection with process
management:

– Creating and deleting both user and system processes

– Suspending and resuming processes

– Providing mechanisms for process synchronization

– Providing mechanisms for process communication

– Providing mechanisms for deadlock handling

Introduction to Operating System
Components

Memory

63

Process’ Memory

• What are the things that a process has to store?

Process

Global Variables

Local Variables

Dynamically
Allocated Memory

Program Code
and Constants

Every process should has its own
set of global variables, local
variables, and allocated memory.

64

Process’ Memory

• OMG…C is too low-level…

System memory layoutC program layout

Program code

Global variables

Constants

Local variables

Dynamically
Allocated
Memory

Data segment

Constants

Stack

Heap

Text segment

Execute

Loading
program

BTW, this arrangement is called segmentation!

65

Process’ Memory

• “Hey, you’re wrong! Some languages, e.g., Java, do
not have the above layout…”, you asked.

......
String str = new String(“hello”);
......

This statement creates an object!
C doesn’t have objects!

“hello”

JVM process

The object only exists inside the
JVM, and this JVM is just a process
inside the OS!

The “hello” String object is just a piece of
dynamically-allocated memory in the JVM
process.

It is created by “malloc()” and will be
“free()”-ed later.

Reality

Java Virtual Machine

OS Kernel

66

Sidetrack: Pros and Cons in using C

• Cons:

– Some people argued that C is a bad beginner’s
programming language. Now, you can understand why…

Because C requires a programmer to take care of the process-level memory
management.

Every programmer needs to know about the low-level memory layout in
order for him/her to understand what segmentation fault means!

Every aspect on memory management can be manipulated using C.

Learning malloc() exposes you to the heap manipulation. This makes a
high-level programming language becoming low-level. Plus, this exposes
you to unpredictable dangers!

* Disclaimer: choosing which programming language is really a personal choice.

67

Sidetrack: Pros and Cons in using C

• Pros:

– Some people argued that C is an efficient programming
language. Now, you can understand why…

Because C allows a programmer to manipulate the process-level memory
management “directly”.

That’s why many user libraries are implemented using C because of
efficiency consideration.

E.g., the Java Virtual Machine is implemented using C!

Most importantly, C is the only language to interact with the OS directly!
In other words, the system call interface is written in C.

* Disclaimer: choosing which programming language is really a personal choice.

68

Memory Hierarchy

• In case that someone doesn’t know about the
hierarchy below…

– A program is fetched from hard disk to main memory.

– When executed, instructions in the program are fetched
from the main memory to CPU.

CPU

Registers

Cache

Main Memory Hard Disk

69

Memory Hierarchy

• However, did you ever need to program those three
things when you want to run the program “ls”?

– Never! Then, who have the jobs done?

– Of course, OS!

CPU

Registers

Cache

Main Memory Hard Disk

70

Memory Hierarchy

• Typically, there are more than 100 processes running
“at the same time”.
– There is only a finite number of CPU cores, depending on how

much money you spent.
– Then, only a finite number of processes can be executed “really

at the same time”.
– So, other (non-running) processes are stored at different

devices controlled by the OS before they get a chance to run.

CPU

Registers

Cache

Main Memory Hard DiskProcess A
(running)

Process B

Process C

Process D

Process E

Process F

Process G

71

Memory Management Summary

• To execute a program

– All (or part) of the instructions must be in memory

– All (or part) of the data that is needed by the program must be in
memory.

• Memory management determines what is in memory

– Optimizing CPU utilization and computer response to users

• Memory management activities

– Keeping track of which parts of memory are currently being used
and by whom

– Deciding which processes (or parts thereof) and data to move into
and out of memory

– Allocating and deallocating memory space as needed

Introduction to Operating System
Components

Storage Management

73

What is a File System?

• A file system, FS, means the way that a storage
device is used.

• Have you heard of…

– FAT16, FAT32, NTFS, Ext3, Ext4, BtrFS?

– They are all file systems.

– It is about how a storage device is utilized.

Files / Data
Index

Metadata

74

What is a File System?

• A file system must record the following things:

– directories;

– files;

– allocated space;

– free space.

• Think about the consequences if any one of the
above is missing…

75

Two faces of a file system

• The storage design of the file system.

– A file spends most of its time on the disk.

– So, a file system is about how they are stored.

– Apart from files, many others things are stored in the
disk.

• The operations of the file system.

– A file can be manipulated by processes.

– So, a file system is also about the operations which
manipulate the content stored.

76

FS VS OS

• A FS is independent of an OS!

– If an OS supports a FS, then the OS can do whatever
operations over that storage device.

– Else, the OS doesn’t know how to read or update the
device’s content.

Windows XP supports Linux supports

NTFS, FAT32, FAT16, ISO9660,
Juliet, CIFS

NTFS, FAT32, FAT16, ISO9660,
Juliet, CIFS, Ext2, Ext3, etc…

Linux supports far more FS-es than any versions of Windows

77

File Operations?

• Pop quiz!
– Guess, what are the fundamental file (not dir) operations?

• Well…creating is not...
– It is just a special case of opening a file.

• Sorry…copying is not…
– Do you know how it is implemented through the above

operations?

• Sorry…moving is the same as renaming…
– Except that a file is moving from one disk to another.

Open Read Write Close Rename Delete

78

Storage Management
• OS provides uniform, logical view of information storage

– Abstracts physical properties to logical storage unit - file

– Various devices (i.e., disk drive, tape drive)
• Varying properties include access speed, capacity, data-transfer rate, access

method (sequential or random)

• File-System management
– Files usually organized into directories

– Access control to determine who can access what

– OS activities include
• Creating and deleting files and directories

• Primitives to manipulate files and directories

• Mapping files onto secondary storage

• Backup files onto stable (non-volatile) storage media

Mass-Storage Management

• Usually disks used to store data that does not fit in main
memory or data that must be kept for a long period of time

• Proper management is of central importance

– Entire speed of computer operation hinges on disk subsystem and
its algorithms

• OS activities

– Free-space management

– Storage allocation

– Disk scheduling

• Some storage need not be fast

– Tertiary storage includes optical storage, magnetic tape

– Still must be managed – by OS or applications

Performance of Various Levels of Storage

Kernel Data Structures

82

Kernel Data Structures

Lists, Trees, Hash Map and Bitmaps

83

Kernel Data Structures

• Many similar to standard programming data structures

• Lists

– Singly linked list

– Doubly linked list

– Circularly linked list

Kernel Data Structures

• Stack

– Last in first out (LIFO)

– Widely used when invoking function calls

• Queue

– First in first out (FIFO)

– Widely used in job scheduling

Kernel Data Structures

• Trees

– Binary tree

– Binary search tree: left <= right
• Worse-case search performance is O(n)

– Balanced binary search tree
• Worse-case search performance is O(lg n)

Kernel Data Structures

• Hash function

– Takes data as input, performs numeric operation on
the data, and returns a numeric value

– Retrieve data: O(1)

– Hash collision

• Hash function can create a hash map

Kernel Data Structures

• Bitmap – string of n binary digits representing
the status of n items

• Pros:

– Space efficiency

• Example: used to indicate the availability of disk
blocks

• Linux data structures defined in include files
<linux/list.h>, <linux/kfifo.h>,

<linux/rbtree.h>

MISC

Protection and Security, Computing Environments and
Open-sourced OS

89

Protection and Security
• Protection – any mechanism for controlling access of

processes or users to resources defined by the OS

• Security – defense of the system against internal and
external attacks
– Huge range, including denial-of-service, worms, viruses, identity

theft, theft of service

• Systems generally first distinguish among users, to
determine who can do what
– User identities (user IDs, security IDs) include name and

associated number, one per user, determine access control

– Group identifier (group ID) allows set of users to be defined and
controls managed, then also associated with each process, file

– Privilege escalation allows user to change to effective ID with
more rights

Computing Environments - Traditional

• Stand-alone general purpose machines

• Blurred as most systems interconnect with others
(i.e., the Internet)

– Portals provide web access to internal systems

– Network computers (thin clients) are like Web terminals

– Mobile computers interconnect via wireless networks

• Networking becoming ubiquitous – even home
systems use firewalls to protect home computers
from Internet attacks

Computing Environments - Mobile

• Handheld smartphones, tablets, etc

• What is the functional difference between them
and a “traditional” laptop?

– Extra feature – more OS features (GPS, gyroscope)

– Allows new types of apps like augmented reality

– Use IEEE 802.11 wireless, or cellular data networks for
connectivity

• Leaders are Apple iOS and Google Android

Computing Environments – Distributed

• Distributed computing
– Collection of separate, possibly heterogeneous, systems

networked together

– Network is a communication path, TCP/IP most common
• Local Area Network (LAN)

• Wide Area Network (WAN)

• Metropolitan Area Network (MAN)

• Personal Area Network (PAN)

– Network Operating System provides features between
systems across network

• Communication scheme allows systems to exchange messages

• Illusion of a single system

Computing Environments – Client-Server
Client-Server Computing

Dumb terminals supplanted by smart PCs

Many systems act as servers, responding to requests
generated by clients

Compute-server system provides an interface to client to
request services (i.e., database)

File-server system provides interface for clients to store
and retrieve files

Computing Environments - Peer-to-Peer

• Another model of distributed system, does not
distinguish clients and servers

– Instead all nodes are considered peers

– May each act as client, server or both

– Node must join P2P network

• Registers its service with central lookup service on network, or

• Broadcast request for service and respond to requests for
service via discovery protocol

– Examples include BitTorrent

Computing Environments - Virtualization

• Allows OSes to run applications within other OSes

• Emulation used when source CPU type is different from
target type (i.e. PowerPC to Intel x86)

– Generally slowest method

– Every machine-level instruction must be translated

• Virtualization – OS natively compiled for CPU, running
guest OSes also natively compiled

– Running multiple VMs allows many users to run tasks on a system
designed for a single user

– VMM (Virtual Machine Manager) provides virtualization services

Computing Environments - Virtualization

Computing Environments – Cloud Computing
• Delivers computing, storage, even apps as a service across a network

• Logical extension of virtualization because it uses virtualization as the
base for it functionality.
– Amazon EC2 has thousands of servers, millions of virtual machines, petabytes

of storage available across the Internet, pay based on usage

• Many types
– Public cloud – available via Internet to anyone willing to pay

– Private cloud – run by a company for the company’s own use

– Hybrid cloud – includes both public and private cloud components

– Software as a Service (SaaS) – one or more applications available via the
Internet (i.e., word processor)

– Platform as a Service (PaaS) – software stack ready for application use via the
Internet (i.e., a database server)

– Infrastructure as a Service (IaaS) – servers or storage available over Internet
(i.e., storage available for backup use)

Computing Environments – Cloud Computing

• Cloud computing environments composed of traditional
OSes, plus VMMs, plus cloud management tools

– Internet connectivity requires security like firewalls

– Load balancers spread traffic across multiple applications

Computing Environments – Real-Time Embedded Systems

• Real-time embedded systems: most prevalent form of
computers

– Car engines, robots, DVDs, etc.

• Real-time OS has well-defined fixed time constraints

– Processing must be done within constraint

– Correct operation only if constraints met

• Many other special computing environments as well

– Some have OSes, some perform tasks without an OS

Open-Source Operating Systems

• Operating systems made available in source-code format
rather than just binary closed-source

• Started by Free Software Foundation (FSF), which has
“copyleft” GNU Public License (GPL)

• Examples include GNU/Linux and BSD UNIX (including core
of Mac OS X)

• Can use VMM like VMware Player (Free on Windows),
Virtualbox (open source and free on many platforms -
http://www.virtualbox.com)

– Use to run guest operating systems for exploration

Summary

• OS Overview

– OS Concept

– Multiprogramming & Multitasking

– Dual Mode & System Call

• OS Components

– Process Management

– Memory Management

– Storage Management

• Computer System Organization & Architecture

– Interrupt

End of Chapter 1

103

	幻灯片 1: Chapter 1 Overview of an Operating System
	幻灯片 2: Objectives
	幻灯片 3: What is an Operating System?
	幻灯片 4: Before we talk about OS…
	幻灯片 5: Computer System Organization
	幻灯片 6: Computer-System Organization
	幻灯片 7: Computer Startup
	幻灯片 8: Interrupt Handling
	幻灯片 9: Interrupt Timeline
	幻灯片 10: Common Functions of Interrupts
	幻灯片 11
	幻灯片 12: Storage Structure
	幻灯片 13: Storage Structure
	幻灯片 14: Storage Structure
	幻灯片 15: Caching
	幻灯片 16: I/O Structure
	幻灯片 17: Direct Memory Access Structure
	幻灯片 18: How a Modern Computer Works
	幻灯片 19
	幻灯片 20: Computer-System Architecture
	幻灯片 21: Computer-System Architecture
	幻灯片 22: Symmetric Multiprocessing Architecture
	幻灯片 23: Multicore
	幻灯片 24: Clustered Systems
	幻灯片 25: Clustered Systems
	幻灯片 26
	幻灯片 27: Where is the OS?
	幻灯片 28: Where is the OS?
	幻灯片 29
	幻灯片 30: What is an Operating System?
	幻灯片 31: What is an Operating System?
	幻灯片 32: What is an Operating System?
	幻灯片 33: What is an Operating System?
	幻灯片 34: What is an Operating System?
	幻灯片 35: What is an Operating System?
	幻灯片 36: What is an Operating System?
	幻灯片 37: What Operating Systems Do
	幻灯片 38: What Operating Systems Do
	幻灯片 39: Operating System Definition
	幻灯片 40: Operating System Definition
	幻灯片 41
	幻灯片 42: Multiprogramming
	幻灯片 43: Memory Layout for Multi-programmed System
	幻灯片 44: Multitasking
	幻灯片 45: Interrupt Driven Mechanism
	幻灯片 46: Dual-mode Operation
	幻灯片 47: Transition from User to Kernel Mode
	幻灯片 48: System Calls
	幻灯片 49: System Calls
	幻灯片 50: Interacting with the OS
	幻灯片 51: System calls
	幻灯片 52: System calls VS Library function calls
	幻灯片 53: System calls VS Library function calls
	幻灯片 54: OS Standards
	幻灯片 55
	幻灯片 56: Process OR Program?
	幻灯片 57: Program != Process
	幻灯片 58: Process-Related Tools
	幻灯片 59: Shell – a process launching pad
	幻灯片 60: Process Hierarchy
	幻灯片 61: Process Summary
	幻灯片 62: Process Management Activities
	幻灯片 63
	幻灯片 64: Process’ Memory
	幻灯片 65: Process’ Memory
	幻灯片 66: Process’ Memory
	幻灯片 67: Sidetrack: Pros and Cons in using C
	幻灯片 68: Sidetrack: Pros and Cons in using C
	幻灯片 69: Memory Hierarchy
	幻灯片 70: Memory Hierarchy
	幻灯片 71: Memory Hierarchy
	幻灯片 72: Memory Management Summary
	幻灯片 73
	幻灯片 74: What is a File System?
	幻灯片 75: What is a File System?
	幻灯片 76: Two faces of a file system
	幻灯片 77: FS VS OS
	幻灯片 78: File Operations?
	幻灯片 79: Storage Management
	幻灯片 80: Mass-Storage Management
	幻灯片 81: Performance of Various Levels of Storage
	幻灯片 82
	幻灯片 83
	幻灯片 84: Kernel Data Structures
	幻灯片 85: Kernel Data Structures
	幻灯片 86: Kernel Data Structures
	幻灯片 87: Kernel Data Structures
	幻灯片 88: Kernel Data Structures
	幻灯片 89
	幻灯片 90: Protection and Security
	幻灯片 91: Computing Environments - Traditional
	幻灯片 92: Computing Environments - Mobile
	幻灯片 93: Computing Environments – Distributed
	幻灯片 94: Computing Environments – Client-Server
	幻灯片 95: Computing Environments - Peer-to-Peer
	幻灯片 96: Computing Environments - Virtualization
	幻灯片 97: Computing Environments - Virtualization
	幻灯片 98: Computing Environments – Cloud Computing
	幻灯片 99: Computing Environments – Cloud Computing
	幻灯片 100: Computing Environments – Real-Time Embedded Systems
	幻灯片 101: Open-Source Operating Systems
	幻灯片 102: Summary
	幻灯片 103

